Exam solutions now posted on course web pages

Up to now: we've been studying \mathbb{R}^n
Now: a more general/abstract P&V on linear algebra

Vector Spaces (Sec 4.1)

A vector space V is a set whose elements ("vectors") can be added to one another and can be multiplied by scalars (constants) obeying these axioms:

- If \vec{x}, \vec{y} are in V then $\vec{x} + \vec{y}$ is in V.
- If \vec{x} is in V then $c \cdot \vec{x}$ is in V for any constant c.
- $\vec{x} + \vec{y} = \vec{y} + \vec{x}$.
- $(\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + \vec{w})$
- There is a vector $\vec{0}$ in V such that $\vec{0} + \vec{x} = \vec{x}$ for all \vec{x} in V.
- $c(\vec{x} + \vec{y}) = c \cdot \vec{x} + c \cdot \vec{y}$.
- $(c + d) \cdot \vec{x} = c \cdot \vec{x} + d \cdot \vec{x}$.
- $c(d \cdot \vec{x}) = (cd) \cdot \vec{x}$.
- $1 \cdot \vec{x} = \vec{x}$.
- For every \vec{x} in V there is another vector $-\vec{x}$ in V such that $\vec{x} + (-\vec{x}) = \vec{0}$.

Facts

If V is a vector space and $\vec{x} \in V$
then
- $(\cdot (-1)) \vec{x} = -\vec{x}$
- $c \cdot \vec{0} = \vec{0}$
- $0 \cdot \vec{x} = \vec{0}$
Ex \(V = \mathbb{R}^n \) is a vector space, for any \(n \).
(with our previous def. of \(\bar{x} + \bar{y} \) and \(c \bar{x} \))

Ex \(V = \{ \text{all doubly-infinite sequences of numbers} \} \)

- \(\bar{y} = (\ldots, y_3, y_2, y_1, y_0, y_1, y_2, y_3, \ldots) \) each \(y_i \) is a constant

- \(\bar{y} = (\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots) \)
 \(\bar{y} = (\ldots, 0, 0, 0, 0, 0, 0, \ldots) \)
 \(\bar{y} = (\ldots, 1, 1, 1, 1, 1, 1, \ldots) \)

Rule for addition: \(\bar{y} = (\ldots, y_{-1}, y_0, y_1, y_2, \ldots) = (y_k) \)
\(\bar{x} = (\ldots, x_{-1}, x_0, x_1, x_2, \ldots) = (x_k) \)

Then we define \(\bar{x} + \bar{y} = (\ldots, x_{-1} + y_{-1}, x_0 + y_0, x_1 + y_1, x_2 + y_2, \ldots) = (x_k + y_k) \)
\(c \bar{x} = (\ldots, c x_{-1}, c x_0, c x_1, c x_2, \ldots) = (c x_k) \)

These rules obey all the vector space axioms.

Ex \(c (\bar{x} + \bar{y}) = c \bar{x} + c \bar{y} \)

- \(c (\ldots, x_{-1} + y_{-1}, x_0 + y_0, x_1 + y_1, \ldots) \)
- \((\ldots, c x_{-1} + c y_{-1}, c x_0 + c y_0, c x_1 + c y_1, \ldots) \)
- \((\ldots, c x_1, c x_0, c x_1, \ldots) + (\ldots, c y_1, c y_0, c y_1, \ldots) \)
\[V = \mathbb{P}_n = \{ \text{all polynomials with real coefficients, of degree } \leq n \} \]

\[\text{e.g. if } n=3, \quad f = x^3 - 3x^2 + 4x - 7 \in \mathbb{P}_3 \]
\[g = 2x^2 - 3x + 9 \in \mathbb{P}_3 \]

Define addition, multi.

\[\text{e.g. } \quad f + g = x^3 - x^2 + x + 2 \in \mathbb{P}_3 \]
\[2f = 2x^3 - 6x^2 + 8x - 14 \in \mathbb{P}_3 \]

We could check that \(V \) obeys all the vector space axioms.

(But I won't do it here.)

Why not take \(\mathbb{P}'_n = \{ \text{all poly. of degree exactly } n \} \)?

Then if \(f, g \in \mathbb{P}'_n \), \(f + g \) might not be:\n
\[\text{e.g. } \quad f = x^2 + 3 \in \mathbb{P}'_2 \]
\[g = -x^2 - 7x + 1 \in \mathbb{P}'_2 \]
\[f + g = 7x + 3 \notin \mathbb{P}'_2 \]

So \(\mathbb{P}'_n \) is not a vector space!

\[V = \mathcal{F} = \{ \text{all real-valued continuous functions of one variable} \} \]

\[\text{e.g. } \quad f(x) = \sin x \in V \]
\[f(x) = x^2 - \cos x + \sin \left(\frac{x^2 + 1}{17} \right) \in V \]

\underline{Additive law}: \(f \in V \) and \(g \in V \) define \(f + g \in V \)
by \((f + g)(x) = f(x) + g(x) \)

\underline{Scalar mult.}: \(f \in V \) and constant \(c \) define \(cf \in V \)
by \((cf)(x) = c \cdot f(x) \)
Checking the vector space axioms:

- One of the axioms is that there is a zero vector \(\vec{0} \in V \) such that \(\vec{x} + \vec{0} = \vec{x} \) for all \(\vec{x} \in V \).

In \(V = \mathbb{F} \), \(\vec{0} \) is the zero function: \(f_0(t) = 0 \) for all \(t \).

Indeed, if \(f \in V \) is any vector (function)

then \(f + f_0 = f \)
\[
\begin{align*}
(f + f_0)(t) &= f(t) + f_0(t) \\
&= f(t) + 0 \\
&= f(t)
\end{align*}
\]

- We could also (should?) check that \(V \) satisfies the rest of the vector space axioms, e.g.

\(c(d \vec{x}) = (cd) \vec{x} \)

which here becomes \(c(d f) = (cd) f \)

(I won't check them all now...)

Even though "vector" now means any element of \(V \) — not necessarily a column of numbers — we still use some intuition from previous chapters...

But remember that \(\vec{x}, \vec{y} \) are elements of \(V \) now!
Subspaces

Say V is a vector space.

A subspace H of V is a subset of V with 3 properties:

1. The vector \(\overrightarrow{0} \in V \) is contained in H.
2. If \(\overrightarrow{u}, \overrightarrow{v} \) are in H then \(\overrightarrow{u} + \overrightarrow{v} \) is also in H. ("closed under addition")
3. If \(\overrightarrow{u} \) is in H and \(c \) is any constant then \(c \overrightarrow{u} \) is in H. ("closed under multiplication")

Ex

\(V = \mathbb{R}^3 \)

\[H = \text{xy-plane} = \{ \text{vectors of the form } \left[\begin{array}{c} x \\ y \\ 0 \end{array} \right] \} \]

But not

\[H' = \{ \text{vectors of the form } \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right] \} \]

because

\[
\left[\begin{array}{c} x \\ y \\ 1 \end{array} \right] + \left[\begin{array}{c} x' \\ y' \\ 1 \end{array} \right] = \left[\begin{array}{c} x + x' \\ y + y' \\ 2 \end{array} \right]
\]

so \(H' \) is not closed under addition

\(H' \) is not a subspace!

Ex

For any vector space V, the subset \(H = \{ \overrightarrow{0} \} \) is a subspace.

(Why? \(\overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0} \) and \(c \cdot \overrightarrow{0} = \overrightarrow{0} \))
Ex Define \(H' = \left\{ \text{all vectors in } \mathbb{R}^3 \text{ which have } 0 \text{ as at least one of their entries} \right\} \)

\(H' \) is not a subspace of \(\mathbb{R}^3 \):

\[\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix} \]

Ex Say \(V = \mathbb{F} \)

Then: \(H = \left\{ \text{all polynomial functions} \right\} \) is a subspace of \(V \).

\[\begin{aligned} &\text{Because:} \\ &\quad \text{the zero function is a polynomial} \\ &\quad \text{the sum of 2 poly. is a poly.} \\ &\quad \text{a scalar multiple of a poly. is a poly.} \end{aligned} \]

And: \(H = \left\{ \text{all periodic functions with period 1} \right\} \) is a subspace of \(V \).

\[\begin{aligned} &\text{Because:} \\ &\quad \text{zero } f^n \text{ is periodic} \\ &\quad \text{sum of 2 periodic } f^n \text{ is periodic} \\ &\quad \text{a scalar multiple of periodic } f^n \text{ is periodic} \end{aligned} \]

Ex If \(\vec{v}_1 \) and \(\vec{v}_2 \) are elements of a vector space \(V \)

Define \(\text{Span} \{ \vec{v}_1, \vec{v}_2 \} \) to be the set of all lin. comb. of \(\vec{v}_1 \) and \(\vec{v}_2 \)

i.e. all vectors of the form \(x_1 \vec{v}_1 + x_2 \vec{v}_2 \) where \(x_1, x_2 \) are constants
Then \(H = \text{Span}\{\vec{v}_1, \vec{v}_2\} \) is a subspace of \(V \).

Why? \(\vec{0} \in \text{Span}\{\vec{v}_1, \vec{v}_2\} \)

\[(x_1\vec{v}_1 + x_2\vec{v}_2) + (x'_1\vec{v}_1 + x'_2\vec{v}_2) = (x_1 + x'_1)\vec{v}_1 + (x_2 + x'_2)\vec{v}_2 \in H \]
so \(H \) is closed under addition

\[c(x_1\vec{v}_1 + x_2\vec{v}_2) = (cx_1)\vec{v}_1 + (cx_2)\vec{v}_2 \in H \]
so \(H \) is closed under scalar mult.

Fact If \(\vec{v}_1, \ldots, \vec{v}_p \) are vectors in \(V \)
then \(\text{Span}\{\vec{v}_1, \ldots, \vec{v}_p\} \) is a subspace of \(V \).

(Why? Just like the above example)