
Theorem.
Let f be a real-valued function. Let D ⊂ R be the domain of f , and p ∈ D. Then,

f is continuous at p

if and only if

for all sequences (xn) ⊂ D such that xn → p, we have f(xn)→ f(p).

Proof.
First, we prove the forward direction: assume that f is continuous at p, and suppose given

some sequence (xn) ⊂ D, such that xn → p. We would like to show that f(xn)→ f(p).
Fix some arbitrary ε > 0. Since f is continuous at p, there exists a δ > 0 such that

(x ∈ D, |x− p| < δ) =⇒ |f(x)− f(p)| < ε.

Also, since xn → p, there exists an N ∈ N such that

n ≥ N =⇒ |xn − p| < δ.

Combining these two (and the fact that xn ∈ D from above), we have that

n ≥ N =⇒ |f(xn)− f(p)| < ε.

So f(xn)→ f(p).

Next, we prove the backward direction. For this we switch to its contrapositive. So,
assume that f is not continuous at p. We would like to show that there exists some sequence
(xn) ⊂ D, such that xn → p, and f(xn) 6→ f(p).

Since f is not continuous at p, there exists some ε > 0 such that, for all δ > 0, there exists
an x ∈ D with |x − p| < δ and |f(x) − f(p)| ≥ ε. Fix this ε. Then for any n ∈ N, taking
δ = 1/n, it follows that there exists an xn ∈ D with |xn − p| < 1/n and |f(xn)− f(p)| ≥ ε.
This defines our sequence (xn) ⊂ D.

Since |xn − p| < 1/n, we have p− 1/n ≤ xn ≤ p + 1/n; and p + 1/n→ p, p− 1/n→ p,
so applying the “Squeeze Theorem” (problem 3.19) gives xn → p.

But since |f(xn)− f(p)| ≥ ε for all n, f(xn) 6→ f(p) (problem 3.10).
So we have shown that (xn) has all the desired properties.

1


