
CHAPTER 2

Preliminaries: Numbers and Functions

What exactly is a number?

If you think about it, to give a precise answer to this question is
surprisingly difficult. As is often the case, the word ‘number’ reflects a
concept of which we have some intuitive understanding, but no concrete
definition. In this introduction, we will attempt to pin down what we
mean by a number by describing exactly what we should expect from a
number system. In fact, though we will not prove it, the only collection
that satisfies are of our demands is R, the collection of real numbers.
Thus we conclude that a number is an element of the set R. Just as
with numbers, most of us have probably heard the term ‘real numbers,’
but may not be exactly sure what they are. Studying real numbers will
be one of the important purposes of this course.

As mentioned above, we all know the things that we should expect
from a number system. Think back to when you first met the idea of a
number. Probably the very first purpose of numbers in your life is that
they allowed you to count things: 50 states, 32 professional football
teams, 7 continents, 5 golden rings, etc. Needing to count things leads
us to the invention (or discovery depending on your point of view) of
the natural numbers (the numbers 1, 2, 3, 4, 5, · · · ). Mathematicians
typically denote the collection of natural numbers by the symbol ‘N.’
Though this collection can be constructed quite rigorously from the
standard axioms of mathematics, we will assume that we are all famil-
iar with the natural numbers and their basic properties (such as the
concept of mathematical induction; see the appendices). The natural
numbers fulfill quite successfully our goal of being able to count.

The next thing that we expect of our number system is that it
should be able to answer questions like the following: “If the Big Twelve
has 10 football teams and the Big Ten has 12 (shockingly it’s true), how
many teams do the conferences have between them?” In other words
we will need to add. We will also multiply. The natural numbers are
already well-suited for these tasks. Really this should not come as a
surprise. After all, adding natural numbers is really just a different way
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6 2. PRELIMINARIES: NUMBERS AND FUNCTIONS

of looking at counting (i.e., adding three and five is the same as taking
three dogs and five cats and counting the total number of animals). As
we all know, multiplication of natural numbers is really just repeated
addition.

Having addition naturally leads us to subtraction. This is the first
place the natural numbers will fail us. Subtracting 7 from 2 is an op-
eration that cannot be performed within N. The need for subtraction,
therefore, is one of the reasons that N will not work as our entire num-
ber system. Thus we need to expand the set of natural numbers to the
integers. As we all probably know, the integers are comprised of the
natural numbers, the number zero, and the negatives of the natural
numbers (at this point, you might protest and say that zero should be
included as a natural number as it allows us to count collections which
contain no objects; in fact many mathematicians do include zero in N,
but the distinction is of little importance). The collection of integers is
denoted by Z. Again we will assume we know all the basic properties
of Z.

The integers are a very good number system for most purposes,
but they still have an obvious defect: we cannot divide. Surely any
reasonable number system allows division: if you and I have a sandwich
and we each want an equal share, a number should describe the portion
we each get. Needing division, we throw in fractions: symbols which
are comprised of two integers, one in the numerator and one in the
denominator (of course the denominator is not allowed to be zero). A
fraction will represent the number which results when the numerator
is divided by the denominator.

Combining all the numbers we have so far gives Q, the collection
of rational numbers. Again, we will assume that we are familiar with
all its basic properties. Before we go on to justify our assertion that Q
is not a sufficient number system, we have another property to point
out. Notice that most of our properties so far involve operations
among our numbers: namely addition, subtraction, multiplication, and
division. We call these types of properties algebraic (in mathematics,
the word algebra describes the study of operations). The property we
are going to discuss next is not algebraic.

Suppose then that I pick a rational number and you pick another.
We can easily decide which is bigger: Namely a

b
is bigger than c

d
(where

a, b, c, and d are integers) if ad is bigger than bc (assuming b and d
both positive; we can easily assure both denominators are positive by
moving any negative into the numerator). Since ad and bc are integers,
we know how to compare them (because we know how to compare



2. PRELIMINARIES: NUMBERS AND FUNCTIONS 7

natural numbers and how to take negatives into account). Since we
can always compare any two rational numbers in this way, we say that
Q is totally ordered.

In retrospect, we should have demanded this property of our num-
ber system from the beginning. Numbers should come with some notion
of size. Fortunately, we got it for free. Moreover, it is interesting to
notice that our expectation that a number system should include the
natural numbers and that it should have certain algebraic properties is
enough to lead us to include all of Q. We did not need to insist that
our system be ordered to find Q. The order properties turn out to be
more important in telling us which potential numbers we should not
include (such as the imaginary number i).

Q comes very close to satisfying everything we want in a number
system. Unfortunately it is still lacking. Suppose we draw a circle
whose diameter is 1. The area of a circle with radius one (usually
called the unit circle) should certainly be a number. If, however,
we restrict ourselves to the rational numbers, this area will not be a
number (the number is of course usually denoted π and it is not a
rational number). The same could be said of the length of one of the
sides of a square whose area is 2 (this number is usually denoted

√
2).

These two examples merely comprise our attempt to give a (geo-
metric) demonstration that Q is lacking as a number system. The real
(more general) property that we seek, called ‘completeness’, is actually
quite subtle and has to do with the presence of something like ‘gaps’ in
Q (the absence of the number

√
2 or of the number π is an example of

such a gap). These gaps have to do with something called a ‘monotone
sequences’ which we will study in detail in this course. One conse-
quence of filling in these gaps is that we are able to perform calculus
(showing this might be viewed as the main mathematical purpose of
this course). This, in turn, allows us to express all the lengths, ar-
eas, volumes, etc. of geometric objects like the examples above as real
numbers.

In that we have been a little bit vague in the preceding discussion,
we formulate our demands precisely in the appendices (with the excep-
tion of the completeness axiom as it is a major object of study in this
course). Once again, one of the fundamental results in mathematics is
that the collection of real numbers is the only system of numbers which
satisfies all of our demands. We thus conclude that the real numbers
comprise the only possible choice of a number system (at least in the
sense we have given; there are a surprising number of close competitors
if we relax some of our demands).
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To give an exact definition of the real number is surprisingly com-
plicated. In fact, the first rigorous construction of the real numbers
was given by Georg Cantor as late as 1873 (by comparison, the ratio-
nal numbers where constructed in ancient times). For our purposes,
we will first take it on faith that the real numbers exist as a number
system and that they satisfy the demands we have described. Later
in the book (towards the ends of Chapter 3), we will describe a way
to define the real numbers rigorously using decimal expansions (there
are actually several well-known ways and the way we choose, though
perhaps the most famous, was not the first).

Finally, it is important to realize that the properties given in the
appendix (which we will call axioms), together with the completeness
axiom, are the only properties that we assume about R. Strictly speak-
ing, any other statement we want to make must be proven from either
from our axioms or from properties we have already assumed about N,
Z, and Q (or, of course, some combination of the two).

In general, however, this can get to be a little bit tedious. Hence,
we will allow you to assume all of the ‘basic’ or ‘obvious’ properties of
the real numbers. Unfortunately, deciding which properties are obvious
is a subjective process. Therefore, if there is any doubt about whether
a statement is obvious, you should prove it rigorously from the axioms
(or at least describe how to prove it rigorously). Actually, the ability
to decide when statements are obvious or ‘trivial’ is an important skill
in mathematics. Possessing this ability can often be a reflection of
great mathematical maturity and insight. In general, make sure you
are prepared to back up all your assertions to your fellow students and
to your instructor.

In the appendix to this chapter, we will also derive some proper-
ties of R that follow from our axioms. We may work on some of these
in class, but thereafter you may consider them “known.” The appen-
dix also contains a discussion of basic set theory, induction, and some
supplementary material on cardinality.

1. Functions

Although most people may not realize it, the concept of a function
is far more basic to mathematics than is the concept of a number.
Roughly speaking, a function f from a set A to a set B is a rule that
assigns to each element of A an element of B. In this case we write
f : A→ B. What do we mean by ‘rule’? Let’s try to be more precise.
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Definition. A function f from A to B, denoted by f : A → B, is
a subset f of the Cartesian product A × B = {(a, b) : a ∈ A, b ∈ B}
satisfying

(1) for each a ∈ A there exists b ∈ B such that (a, b) ∈ f
(2) for all a ∈ A and for all b, b′ ∈ B if (a, b) ∈ f and (a, b′) ∈ f

then b = b′.

The set A is called the domain of f and B is called its codomain.

At this point, it is probably a good time for some general advice
regarding definitions. When taking a rigorous proof-based courses,
many students merely skim over (or ignore) the definitions and go
straight to the problems (specifically the ones they have been assigned).
It is our recommendation that you avoid this behavior: the more deep
thinking that you do about the concepts of a course, the easier time
you will have succeeding. This is not to say that thinking deeply is
easy. It is typically a very difficult time consuming process, but the
results can be very rewarding.

Thus rather than simply read the definitions you come across, you
should attempt to think deeply about them, particularly the ones that
are confusing or long. At times, when we feel that a definition is
particularly confusing, we will try to help you through this process,
but you should be doing it all the time.

We will give some general advice now in how to think about defi-
nitions. We will also give some more advice later in this chapter (after
we have more examples of definition that we may use to illustrate
our points). Throughout the course, we will emphasize the fact that
most (or perhaps all) definitions have two sides to them: the precise
definition in mathematical language and the intuitive notion that the
definition is an attempt to express.

For example, in the present case, we, speaking intuitively, stated
that a function is a rule. We then proceeded to give the precise math-
ematical definition. When you have both sides of the definition before
you, you should ask yourself how the precise definition captures the
intuitive notion. Does it capture it fully? Is anything missing? Is the
precise definition more broad than the intuitive notion? Is it more nar-
row? Ask yourselves these questions about the definition above. We
will often give a precise definition without giving an intuitive descrip-
tion. In those cases, you should describe for yourself the intuitive idea
that is attempting to be captured.

In general, both sides of the definition are important. When giving
a proof of a statement which involves a term that we have defined,
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you will likely need to use the precise definition in your proof. Nev-
ertheless, it is oftentimes the intuitive notion that leads your to the
proof. Probably more often than not, mathematicians think about a
result intuitively and then write down a rigorous proof to back up their
intuition.

Technically, then, a function from A to B is just a special subset
of A × B. Mathematicians, however, rarely think of functions in this
way. Rather we think of their more intuitive notion: a rule. For this
reason, we typically use a different notation when discussing functions.
Explicitly, instead of saying that the point (a, b) is an element of our
function, we write f(a) = b. Translating the definition of a function
into this notation gives the following definition for function:

for each a ∈ A there exists a unique b ∈ B such that
f(a) = b

You should see for yourself why this statement is the same as the above
definition.

Reflecting the intuitive notion that they capture, a function is some-
times called a mapping or a transformation. Correspondingly, if
f(a) = b, one might say “f maps a to b” or “f sends a to b.” We
should point out, however, that a function is more than just a rule. It
actually has three ingredients: the domain, the codomain, and a rule
which sends elements of A to elements of B. For example the function
f : [0, 1]→ R given by f(x) = x2 and the function g : R→ R given by
g(x) = x2 are not the same.

As our next bit of general advice regarding definitions, we point
out that some definitions, like the previous one, define terms, such as
‘function,’ that we have all heard before. If you come across a definition
that you have already learned, you should compare the definition given
with idea in your own head on the other. Are the two notions the
same? Is the definition given more general than the one in your head?
Is it more specific?

Along these lines, many beginning students believe that a function
is the same things a formula. In other words, many students think
that in order to specify a function, they need to find a formula using
variables. This is not the case. It is perfectly reasonable to define a
function by saying something like:

Define a function from the set of real numbers to the
set {0, 1} by assigning the value 1 to all rational num-
bers and the value 0 to all irrational numbers.

Since every number has been given a value and no number has been
given more then one, our rule gives a function.
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This function f : R → {0, 1} would probably be more commonly
described by saying that for x ∈ R,

f(x) =

 1 if x ∈ Q

0 if x ∈ R\Q
,

but either description would work. Notice that it would be essentially
impossible to find what most people would call a ‘formula’ to describe
this function.

You should come up with some examples of this kind on your own.
In other words, give some examples of functions that don’t have a
formula in this sense.

We now define some more terms related to general functions.
Suppose that f : A → B is a function and suppose that S is a

subset of A. We can define a new function f̃ : S → B by using same

rule as for f but by restricting ourselves to points in S. That is, f̃ is

defined by f̃(x) = f(x) for x ∈ S. f̃ is called the restriction of f to
S and is usually denoted f |S.

Definition. If f : A → B is a function, the range of f , denoted by
f(A), is

f(A) = {f(a) : a ∈ A}.

Some functions have certain important properties that we shall
name.

Definition. Let f : A→ B.

(1) f is surjective (or onto) if f(A) = B. That is, f is onto if,
for every b ∈ B, there exists some a ∈ A such that f(a) = b.

(2) f is injective (one-to-one or 1–1) if for all a1, a2 ∈ A,
f(a1) = f(a2) implies a1 = a2. That is, f is 1–1 if, for all
a1, a2 ∈ A such that a1 6= a2, we have f(a1) 6= f(a2).

(3) f is a bijection (or a 1–1 correspondence) if it is 1–1 and
onto. This is equivalent to: for all b ∈ B there exists a unique
a ∈ A with f(a) = b. (Note: it is usually simpler to show
that a function is a bijection by showing it is 1–1 and onto
separately.)

We point out that these notions depend on the domain and codomain
of the function just as much as the depend on the rule.
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2.1. Give an example of a function, f : R → R, and a subset S ⊂ R,
such that f is not injective, but the restriction f |S : S → R is injective.

If a function is a bijection then you can ‘reverse it’ to obtain a
function going the other way. The following theorem makes this precise.

2.2. Let f : A → B be a bijection. Then there exists a bijection
g : B → A satisfying

(1) for all a ∈ A, g(f(a)) = a.
(2) for all b ∈ B, f(g(b)) = b.

Furthermore (and this is still part of the problem), this function g is
unique; if g1 and g2 are bijections satisfying (1) and (2) then g1 = g2.
(Would it be enough to assume g1 and g2 both satisfy (1)?)

The bijection g is called the inverse function of f and is usually
denoted by f−1. Do not confuse this with “1/f” (which would mean
what?)

Definition. Let f : A→ B. Let D ⊆ A, and C ⊆ B.

(1) The image (or direct image) of D under f , denoted f(D),
is

f(D) = {f(x) : x ∈ D}.
(2) The pre-image, of C under f , denoted f−1(C), is

f−1(C) = {a ∈ A : f(a) ∈ C}.

The definition above might lead to some temporary confusion in
that we are using the symbol f−1 in two different ways. Explicitly, if
the function f−1 exists, which is not always the case, then there are
two different ways of reading f−1(C): it can be read as the direct image
of the set C under the function f−1 or it can be read as the inverse
image of C under the function f . Check for yourself that these two
interpretations give the same set and so there is no ambiguity. We
point out that f−1(C) always exists even if the function f−1 does not.

2.3. Let P be the collection of nonnegative real numbers. Give an
example of a function f : R → R that meets each of the following
criteria. You can (and will have to) use different functions for different
examples.

(1) f−1(P ) = ∅,
(2) f(P ) = {−10, 10}, and
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(3) there is some set D ⊂ R so that f(f−1(D)) 6= D (and you
should specify the set D as well).

We next given an important way to combine two functions.

Definition. Let f : A → B and g : B → C. The composition
g ◦ f : A→ C is defined by (g ◦ f)(a) = g(f(a)).

2.4. Let f : A → B and g : B → C be two bijections. Then g ◦ f :
A→ C is also a bijection.

Caution: If f and g are functions, it is not true in general that f ◦g =
g ◦ f . In fact, these two compositions may have completely different
domains and codomains!

2.5. Give an example of two function f : R→ R and g : R→ R such
that f ◦ g 6= g ◦ f .

If f : A→ B is a bijection then f−1 ◦f : A→ A is the identity map
on A and f ◦ f−1 : B → B is the identity map on B (the identity map
on a set S is the map id : S → S defined by id(x) = x for all x ∈ S.)
f−1 is the only function with these properties.

2. The Absolute Value

Now that we have given the general framework for functions, we
move on to consider real numbers. In this section, we define an ex-
tremely important function on the real numbers.

Definition. Given a real number a ∈ R, we define the absolute value
of a, denoted |a| to be a if a is nonnegative and −a if a is negative.

Our definition might appear a bit strange at first. Surely we all
know that the absolute value of a number should never be negative.
Yet we said that the absolute value of a, at least for some values of a,
is −a, which appears to be negative. Try some examples to figure out
what is going on and explain this apparent contradiction to yourself.
This sort of thinking will help you in the proof of the next result.

2.6. For a ∈ R:

(1) |a| ≥ 0,
(2) |a| = 0 if and only if a = 0,
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(3) |a| ≥ a, and
(4) | − a| = |a|.

Thus the absolute value gives us a function whose domain is R and
whose codomain is the collection of non-negative real numbers.

The following technical observations will be of assistance in some
arguments involving the absolute value.

2.7. For all a ∈ R, a2 = |a|2.

2.8. For all a, b ∈ R with a, b ≥ 0 we have a2 ≤ b2 if and only if a ≤ b.
Likewise, a < b if and only if a2 < b2.

The next statement gives two fundamental properties of the abso-
lute value.

2.9. Let a, b ∈ R, then

(1) |ab| = |a||b| and
(2) |a+ b| ≤ |a|+ |b|

Hint: One can prove these by laboriously checking all the cases (e.g.,
a > 0, b ≤ 0) but in each case an elegant proof is obtained by using
our previous observations to eliminate the absolute value and then
proceeding using the properties of arithmetic.

The second inequality above is perhaps the most important inequal-
ity in all of analysis. It is called the triangle inequality.

The remaining results in this section are important consequences of
the triangle inequality.

2.10. Let a, b, c ∈ R. Then we have

(1) |a− b| ≥
∣∣|a| − |b|∣∣ and

(2) |a− c| ≤ |a− b|+ |b− c|.

The major importance of the absolute value is that it will give
us some notion of ‘distance’ or ‘length.’ Indeed, you have probably
measured the length of something using a yardstick. Needless to say,
you typically line up one end of the object with zero and read the length
by looking to see where the other end hits the ruler. In a tight place,
however, you might line up one end at 7′′ and the other at 13′′. What
is the length of the object in this case? Of course it is 13′′ − 7′′ = 6′′.
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A bit more abstractly, if I told you one end was at x and the other
was at y, what would be the length? Well, y − x if y > x and x− y if
x > y. In other words, it would be |x − y|. So, we can regard |x − y|
as the distance between the numbers x and y. Note this works for all
real numbers, even if one or both is negative. It also explains why we
call the inequality in Problem 2.9(2) the triangle inequality (why? See
Problem 2.10(2)).

The statement of Problem 2.10(1) is often called the reverse tri-
angle inequality.

2.11. Let x, ε ∈ R with ε > 0. Then:

(1) |x| ≤ ε if and only if −ε ≤ x ≤ ε, where the double inequality
−ε ≤ x ≤ ε means −ε ≤ x and x ≤ ε.

(2) If a ∈ R, |x− a| ≤ ε if and only if a− ε ≤ x ≤ a+ ε.

We point out that, by a similar proof, the same properties hold
with ≤ replaced by <.

3. Intervals

Intervals are a very important type of subset of R. Loosely speaking
they are sets which consist of all the numbers between two fixed num-
bers, called the endpoints. We also (informally) allow the endpoints to
be ±∞. Depending on whether the endpoints are finite and whether
we include them in our sets, we arrive at 9 different types of intervals
in R.

Definition. An interval is a set which falls into one of the following 9
categories (assume a, b ∈ R with a < b). We apply the word ‘bounded’
if both the endpoints, a and b, are finite. Otherwise we use the word
‘unbounded’.

(1) Bounded open intervals are sets of the form

(a, b) := {x ∈ R : a < x < b}.

(2) Bounded closed interval are sets of the form

[a, b] := {x ∈ R : a ≤ x ≤ b}.

(3) There are two type of half-open bounded intervals. One type
is sets of the form

[a, b) := {x ∈ R : a ≤ x < b}.
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(4) The other is sets of the form

(a, b] := {x ∈ R : a < x ≤ b}.
(5) There are also two types of unbounded open intervals not equal

to R. One type is sets of the form

(a,+∞) := {x ∈ R : a < x}.
(6) The other is sets of the form

(−∞, b) := {x ∈ R : x < b}.
(7) There are two types of unbounded closed intervals not equal

to R. One type is sets of the form

[a,+∞) := {x ∈ R : a ≤ x}.
(8) The other is sets of the form

(−∞, b] := {x ∈ R : x ≤ b}.
(9) The whole real line R = (−∞,∞) is an interval. We count R

as being open, closed, and unbounded.

Some mathematicians include the empty set, ∅, and single points,
{a} for some a ∈ R, as intervals. To distinguish these special sets,
people often call them ‘degenerate intervals’ whereas sets of the above
would be ‘non-degenerate intervals.’ We will reserve the word ‘interval’
for the non-degenerate case. That is, in our language, an interval is
not allowed to be ∅ or {a}.

We now give some more general advice regarding definitions. One of
the first things that you should do when you come across a definition is
to come up with some examples of things that fit into the definition (at
least in your own head, but it might help to write down your examples).
In the present case, we will get you started: an example of an interval is
all the numbers between 2 and 3, not including 2 or 3. More specifically,
this is an example of a bounded open interval.

You should also attempt to make your examples as interesting or
weird as possible so that you can test the outer reaches of what a def-
initions entails. For example, if we wanted to give an example of a
number, we could certainly say the number 1 or the number 2. How-
ever, more exotic examples include numbers like 1

3
, −7

3
, π or π2 + 7 (at

least once we prove they exist). The benefit of giving weird examples
is that we can catch ourselves thinking too narrowly about a concept.
If we say the word “number,” many people think of 1, 2, 3, 4, 5 . . ., but
in fact there are many more types of numbers, and forgetting this fact
can sometimes lead to trouble.
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Another way of looking at this bit of advice is that you should come
up with examples that are not basically the same. In other words, if
you want to create three examples of numbers, it would suffice to say
1, 2, and 3, but it might be more informative of the nature of numbers
to say 0, −21

8
and −e2 + 1

2
+π. In fact, it is important to generate both

‘easy’ or normal examples and ‘weird’ elaborate ones.
Perhaps equally important is to think of examples that do NOT

fall into the definition. An easy way to do this is to name something
that doesn’t have anything to do with the definition. For example, the
University of Texas football team is not an interval and neither is your
roommate. However, it might be a better idea to come up with some
examples that are close to the definition, but don’t fall into it. For
example, can you think of some subsets of the real numbers that are
not intervals? Try to come up with some cheap examples and some
clever ones. In general, try to get as close as you can to the definition
without satisfying it. If a definition has two parts, try to come up with
an example which fits one part but not the other.

Another question you should ask yourself: “why does this definition
exist?” Why is the concept so important that generations of mathe-
maticians have agree it should have a name? This question is not
always to easy to answer, especially if you haven’t seen the definition
used a few times. Nevertheless, you should keep the question in mind
as you go through the exercises and results surrounding the definition.
In general the answer to this question can be closely related to the
intuitive notion behind the definition.

You will notice that we actually gave this type of explanation for
the absolute value: we said that it is important as way to measure
length or size. We won’t spell out exactly why intervals were given
a name (you should try to come up with some reasons on your own),
but we will say a word about why the notation exists. If we want to
specify a set which includes exactly “all the numbers between 3 and
π,” we notice that the English phrase necessary is a bit long. It’s also
ambiguous: do we want to conclude 3 and π or leave them out? Thus to
be clear, we really have to say something like “all the numbers between
3 and π, including 3 but not including π.”

This terminology is definitely getting very cumbersome and so math-
ematicians have found it convenient to replace all these words with the
symbols [3, π). This is definitely much shorter, but it comes at a price:
the meaning of the symbols might not be obvious to somebody who was
already familiar with them and, more importantly, the notation might
disguise some subtlety in the definition. This balance is one that any
mathematician has to strike for himself or herself.
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2.12. Let a ∈ R and ε > 0. Write the set

{x ∈ R : |x− a| ≤ ε}
as an interval. Write

{x ∈ R : |x− a| < ε}
as an interval.

Definition. The closure of an interval I, denoted I, is the union of I
and its finite endpoints.

Thus, for a < b,

(a, b) = [a, b] = [a, b) = (a, b] = [a, b]

(a,+∞) = [a,+∞) = [a,+∞)

(−∞, b) = (−∞, b] = (−∞, b]
R = R

Definition. The interior of an interval I, denoted I◦, is I minus its
endpoints.

Thus

(a, b)◦ = [a, b]◦ = [a, b)◦ = (a, b]◦ = (a, b)

(a,+∞)◦ = [a,+∞)◦ = (a,+∞)

(−∞, b)◦ = (−∞, b]◦ = (−∞, b)
R◦ = R

Now that we have given all the basic terminology, we will begin our
study of some of the deeper properties of numbers.


