
CHAPTER 3

Sequences

1. Limits and the Archimedean Property

Our first basic object for investigating real numbers is the sequence.
Before we give the precise definition of a sequence, we will give the in-
tuitive description. To begin, a finite sequence is just a finite ordered
list of real numbers. For example, (1, 2, 3, 4, 5) is a sequence with five
terms and (π, e, 3, 3) is a sequence with four.

We added the adjective ‘ordered’ above to reflect the fact that the
order of the terms matters. For example, the 2 term sequence (π, 7)
is not the same as the 2 term sequence (7, π). Notice that a sequence
is not the same as a set for which order (and also repetition) do not
matter. The sets {7, π} and {π, 7} are the same. Likewise the sets {3}
and {3, 3} are the same, whereas the sequences (3) and (3, 3) are not.

So far we have been discussing finite sequences, but for this course,
these objects will not be the focus of our study. For us, a sequence
will always be an infinite sequence. As you have probably guessed, an
infinite sequence is essentially an infinite ordered list of real numbers.
We now give the precise definition.

Definition. A sequence is a function f : N→ R.

At this point you decide for yourself whether the definition we have
given captures the intuitive idea we were seeking. Giving a precise
definition for an intuitive idea is a very important skill in studying
mathematics.

For example, the functions defined by f(n) = n2 and g(n) = 1
n

are
both sequences.

Although a sequence is technically a function, we typically do not
use functional notation to discuss sequences as this notation does not
reflect the intuitive notion we are attempting to describe. Instead of
writing something like f(n) = n2 or g(n) = 1

n
to denote a sequence, we

write (n2)∞n=1 or ( 1
n
)∞n=1. If we say “consider the sequence (an)∞n=1,” we

are referring to the sequence whose value at n is the real number an
(in other words the sequence whose nth term is an).
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20 3. SEQUENCES

Like any function, a sequence does not have to be defined via an
elementary formula: any random list of numbers will work. For ex-
ample, a sequence could be defined by saying the nth term is the nth
decimal of π (we have not actually defined decimal expansions yet, but
this infinite list of numbers certainly does not follow an elementary
formula).

One good way to define a sequence is recursively: one states the
first term (or the first several terms) and then gives a rule for getting
each term from the previous ones.

3.1. A famous example of a recursively defined sequence is the Fi-
bonacci sequence. It is defined by

a1 = 1, a2 = 1, an+2 = an+1 + an for n ≥ 1.

Find the third, fourth, and fifth terms for the Fibonacci sequence.

Although it is usually defined recursively, it is actually possible to
give a formula for the Fibonacci sequence. This need not be the case
for a recursively defined sequence.

A constant sequence is a sequence whose every term is the same
number. For example, (1, 1, 1, . . . , ) is the constant sequence of value
one. Once again we emphasize that a sequence is not to be confused
with a set. For example, the set {1, 1, 1, . . . } is really just the set {1}
but (1, 1, 1, . . .) denotes the function f : N→ R with f(n) = 1 for all n.
It is true that every sequence gives a set, namely the set of values that
it takes (in other words the range of the corresponding function), but
different sequences can give the same set (and you should give some
examples of this occurrence).

Before we continue, we should point a common convention of the no-
tation here. Sometimes we will write “consider the sequence (an)∞n=4.”
To be precise, this means our sequence is given by the function f(n) =
a3+n for n ∈ N. We do this because it is often notationally convenient
to do something like “starting the sequence at n = 4.”

We now proceed to discuss the notion of convergence. We cannot
overstate the importance of this concept. In fact, it is easily the most
importance concept of this chapter and in understanding the structure
of the real numbers (beyond the algebraic and ordering properties we
described in the appendices). In some sense the entire purpose of in-
troducing sequences is to give a framework under which we can study
convergence in R.

All that being said, many students find the definition of convergence
a bit confusing (at least at first) and so you should certainly attempt to
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think carefully about it and from several different points of view (and
we will attempt to help you do so). As with sequences, we will begin
by giving an intuitive description.

Intuitively, a sequence converges to a number L if the terms of the
sequence are ‘heading towards L’ as we go down the list. In one at-
tempt to formulate a definition, one might say that a sequence (an)∞n=1

converges to a limit L if “the terms of (an) get closer and closer to L as
n gets larger and larger.” For example the sequence (1, 1

2
, 1
3
, 1
4
, 1
5
, . . .) is

clearly getting closer and closer to zero as we proceed through the list.
However, though they shed some light on the concept, the words we

have said above do not quite capture the idea fully. For instance, we
might also consider the sequence (1, 0, 1

2
, 0, 1

3
, 0, . . .). This sequence is

certainly also heading to zero and yet the terms are not always getting
closer to zero as we go along. For example, the first occurrence of 0 is
certainly closer to 0 than is the later term 1

2
. Furthermore, returning to

our previous example of (1, 1
2
, 1
3
, . . .), we see that terms of the sequence

are also in fact getting closer and closer to −1 (or any other number
less than zero).

Thus is perhaps more appropriate to say that (an)∞n=1 converges to
L if “the terms of (an) get arbitrarily close to L as n gets larger.” This
definition solves the problems to which we have already alluded, but
it introduces some other linguistic difficulties. Specifically, it may not
be clear exactly what we mean by the phrase ‘arbitrarily close’. To
be a little clearer, we might say that no matter how close we want to
be to the limit L, there is a point in the sequence past which we are
always at least that close to L. The language here is more specific,
but it also more convoluted. Expressing precise mathematical ideas in
plain language is often quite difficult, but the attempt can be a very
beneficial exercise.

We now give the precise definition.

Definition. A sequence (an)∞n=1 is said to converge to L ∈ R if for
all ε > 0 there exists N ∈ N so that for all n ≥ N , |an − L| < ε.

Again this definition might appear a bit confusing and so you should
think about it carefully. Does this match the intuitive idea we had in
mind? How are we measuring closeness to L? What is the purpose of
the number N? Can you choose different values of N for two different
values of ε? What is the relationship between ε and N? Come up with
some other open-ended questions to ask yourself.
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Although the intuitive idea of convergence has been around for quite
some time, this precise definition seems to have been first published by
Bernard Bolzano, a Czech mathematician, in 1816. As you might have
gleaned from your calculus courses, it is the notion of convergence or
of limits that distinguishes analysis/calculus from, say, algebra. Never-
theless, the precise formulation came about 150 years after the creation
of calculus (due independently to Newton and Leibniz). The fact that
it will probably take you some time to understand and become com-
fortable with it is therefore no surprise: it took even the world’s most
brilliant mathematicians more than a century to nail it down precisely
(of course they were trying to accomplish the task without the aid of
textbooks and instructors).

Definition. If the sequence (an)∞n=1 converges to L, L is called a limit
of the sequence. If there exists any L ∈ R such that (an)∞n=1 converges
to L then we say (an)∞n=1 converges or that (an)∞n=1 is a convergent
sequence.

So far we have not actually shown that a number sequence cannot
have more than one limit. If we want our intuitive understanding of
limit to be satisfied, we will certainly want this to be the case. You
will now show that it is, beginning with the following helpful lemma.

3.2. Let a ≥ 0 be a real number. Prove that if for every ε > 0 we have
a < ε then a = 0.

3.3. Prove that if (an)∞n=1 converges to L ∈ R and (an)∞n=1 converges
to M ∈ R then L = M .

Thus it makes sense to talk about the limit of a sequence (rather
than a limit of a sequence). If the limit of (an)∞n=1 is L we often write
lim
n→∞

an = L. In other words, lim
n→∞

an is the limit of the sequence (an)∞n=1.

Similarly, we often write an → L if limn→∞ an = L.

Caution: Before we write lim
n→∞

an we must know that an has a limit:

we will see below that many sequences do not have limits.

We have emphasized repeatedly that one of the keys to understand-
ing a definition is creating and understanding examples. At this point
you should come up with some sequences for which you can figure out
the limit. We have already mentioned that (1/n)∞n=1 should converge
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to 0. Can you give some other examples? The intuition that you have
developed in you calculus courses should be helpful.

Of course there is a difference between knowing intuitively that
something is true (or being told it is true by an authority figure like
a teacher) and having a mathematical proof (and thus a rigorous un-
derstanding) of the fact. We now need to move from the former to the
latter, beginning with the simplest sequences.

3.4. Show using the definition of convergence that the constant se-
quence of value a ∈ R converges to a.

3.5. Prove using the definition of a limit that lim
n→∞

1
n

= 0.

Let’s examine the proof here. Your proof should look something
like this.

Proof. We will show lim
n→∞

1
n

= 0. Let ε > 0 be arbitrary but fixed.

We must find N ∈ N so that if n ≥ N then | 1
n
− 0| < ε which is

the same as 1
n
< ε. Choose N ∈ N so that 1

N
< ε. Then if n ≥ N ,

1
n
≤ 1

N
< ε. �

The proof above relies on two things. Firstly, we used the basic
properties of order which we have assumed are known. Secondly, we
have used the fact that, given an ε > 0, there exists N ∈ N with 1

N
< ε

or in other words with 1
ε
< N . This is actually a fact that needs to be

proven, but we will temporarily take it as known.
Explicitly, we assume that N ⊂ R has the Archimedean Prop-

erty, which says that for every x ∈ R there exists an n ∈ N with x < n.
The proof of this seemingly obvious fact is surprisingly delicate. In fact,
it necessarily relies on the completeness axiom which we have yet to
formulate. This is an example of a situation where a seemingly obvious
fact is not so obvious when we attempt to prove it.

3.6. Prove the following consequence to the Archimedean property:
For every ε > 0 there exists an n ∈ N such that

0 <
1

n
< ε.

Armed with the Archimedean property and its consequences, we
can now study some more concrete examples of limits precisely.
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3.7. Prove using the definition of a limit that

lim
n→∞

1− 1

n2 + 1
= 1 and lim

n→∞

n2 − 1

2n2 + 3
=

1

2
.

3.8. Let (an)∞n=1 be sequence defined by saying that an = 1
n

for n odd
and an = 0 for n even. Show that lim

n→∞
an = 0.

We will see in this chapter that convergent sequences have many
special and important properties. We give the first now.

Definition. A sequence (an)∞n=1 is called bounded if the associated
set {an : n ∈ N} is contained in a bounded interval.

Notice that (an) is bounded if and only if there exists K ≥ 0 with
|an| ≤ K for all n ∈ N. (why?)

3.9. Prove that if (an)∞n=1 is a convergent sequence with lim
n→∞

an = L

then (an)∞n=1 is bounded.

Now that we have a considered a few affirmative examples, we need
to consider some negatives ones. In other words, we need to think
about what it means for a sequence not to converge.

3.10. Negate the definition of lim
n→∞

an = L to give an explicit definition

of “(an)∞n=1 does not converge to L.”

We can write (an)∞n=1 does not converge to L as (an)∞n=1 6→ L.

Caution: We should not write lim
n→∞

an 6= L to mean (an)∞n=1 does not

converge to L unless we know that lim
n→∞

an exists.

Definition. A sequence (an) is said to diverge or be divergent if it
does not converge to L for any L ∈ R.

3.11. Without making a reference to the definition of convergence, for-
mulate in precise logical language (as in the definition of convergence)
a definition for ‘(an)∞n=1 is divergent.’ Avoid using a phrase like ‘there
exists no L.’ Compare your definition to the one you gave for ‘(an)∞n=1

does not converge to L’.
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Definition. We will distinguish two special types of divergence:

(1) A sequence (an) is said to diverge to +∞ if for all M ∈ R
there exists N ∈ N such that for all n ≥ N we have an ≥ M .
In an abuse of notation we often write lim

n→∞
an = +∞ or an →

+∞.
(2) A sequence (an) is said to diverge to −∞ if for all M ∈ R

there exists N ∈ N such that for all n ≥ N we have an ≤ M .
Again in an abuse of notation we often write lim

n→∞
an = −∞ or

an → −∞.

In fact, we need to justify this terminology.

3.12. Show that if (an) diverges to∞ then an diverges. Likewise, show
that if (an) diverges to −∞, it diverges.

Thus one way for a sequence to diverge is for it to ‘head off to ±∞’
(i.e., to ∞ or −∞). This is, however, not the only way.

3.13. We have seen that every convergent sequence is bounded. Give
an example of a sequence which is bounded and yet divergent. Show
that it does not diverge to ±∞.

3.14. Which, if any, of the following conditions are equivalent to (an)∞n=1

converges to L. If a condition is equivalent, prove it. If not, give a
counter-example.

(1) There exists an ε > 0 such that for all N ∈ N there is an
n ≥ N with |an − L| < ε.

(2) For all ε > 0 and for all N ∈ N, there is an n ≥ N with
|an − L| < ε.

(3) For all N ∈ N, there exists an ε > 0 such that for all n ≥ N ,
|an − L| < ε.

(4) For all N ∈ N and n ≥ N , there is an ε > 0 with |an−L| < ε.

2. Properties of Convergence

Now that we have established the basic terminology of convergence
(and of divergence), we need to study all the basic properties. These
properties will both help us to understand limits and help us to prove
things about limits.
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3.15. Prove that a sequence (an)∞n=1 converges to L ∈ R if and only if
for all ε > 0 the set

{n ∈ N : |an − L| ≥ ε}

is finite.

Thus a sequence converges to L if and only if, for each ε > 0, the
number of terms which are more than ε distance from L is finite. This
observation has a couple of interesting corollaries.

3.16. Prove:

(1) If we change finitely many terms of a sequence, we do not alter
its limiting behavior: if the sequence originally converged to
L then the altered sequence still converges to L, and if the
original sequence diverged to ±∞ or diverged in general then
so does the altered sequence.

(2) If we remove a finite number of terms from a sequence then
we do not alter its limiting behavior.

The previous results confirm a fact which is perhaps intuitively
clear: if we change or remove some terms at the beginning of a sequence,
we do not change where it is headed.

3.17. Let S ⊂ R be a set. Assume that for all ε > 0 there is an a ∈ S
with |a| < ε. Prove there there is a convergent sequence (an)∞n=1, with
an ∈ S for all n, and lim

n→∞
an = 0.

3.18. Prove or disprove:

(1) If lim
n→∞

an = L then lim
n→∞
|an| = |L|.

(2) If lim
n→∞
|an| = |L| then lim

n→∞
an = L.

(3) If lim
n→∞
|an| = 0 then lim

n→∞
an = 0.

(4) If lim
n→∞

an = 0 then lim
n→∞

|an| = 0.

This next result is often called the Squeeze Theorem for se-
quences.

3.19. If an ≤ cn ≤ bn for all n ∈ N and lim
n→∞

an = lim
n→∞

bn = L then

lim
n→∞

cn = L.
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We next prove a collection of results known as the Limit Laws
for sequences. In fact, this name is a misleading as essentially all the
results of this chapter could equally be given the same name (as they
are all facts about limits). For historical reasons, the results given
this name are those that describe the relation between limits and the
algebraic properties of R.

The following result is not a limit law, but it will be very useful in
proving them (specifically the one related to division).

3.20. Let (bn)∞n=1 be a convergent sequence whose limit M is nonzero.
Prove that there exists an N ∈ N such that for all n ≥ N we have
|bn| > |M |

2
.

Suppose now that (an)∞n=1 and (bn)∞n=1 are sequences and c ∈ R is
a real number. We can define new sequences (c · an)∞n=1, (an + bn)∞n=1,
and (an · bn)∞n=1. If bn 6= 0 for all n ∈ N then we can define(

an
bn

)∞
n=1

.

3.21. Let (an)∞n=1 and (bn)∞n=1 be sequences and let c ∈ R. Prove the
Limit Laws:

(1) If (an)∞n=1 is a convergent sequence and c ∈ R then (c · an)∞n=1

is a convergent sequence and

lim
n→∞

(c · an) = c · lim
n→∞

an.

(2) If (an)∞n=1 and (bn)∞n=1 are convergent sequences then (an +
bn)∞n=1 is a convergent sequence and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

(3) If (an)∞n=1 and (bn)∞n=1 are convergent sequences then (an·bn)∞n=1

is a convergent sequence and

lim
n→∞

(an · bn) =
(

lim
n→∞

an
)
·
(

lim
n→∞

bn
)
.

(4) If (an)∞n=1 and (bn)∞n=1 are convergent sequences with bn 6= 0
for all n ∈ N and lim

n→∞
bn 6= 0 then

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

.

Hint: For the third part, the problem is that we have two quantities
changing simultaneously. To deal with this we use a very common trick
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in analysis: we add and subtract additional terms, which does not affect
the value, and then group terms so that each term is a product of things
we can control. Let L = lim

n→∞
an and M = lim

n→∞
bn. We can write

an · bn − L ·M = an · bn − L ·M + L · bn − L · bn
= (an − L) · bn + L · (bn −M).

Hint: For the fourth part, given the third part, it suffices to prove
(explain why) that

lim
n→∞

1

bn
=

1

lim
n→∞

bn
.

Let M = lim
n→∞

bn and notice that

∣∣∣ 1

bn
− 1

M

∣∣∣ =
|M − bn|
|Mbn|

<
|M − bn|
(M2/2)

if |bn| > |M |
2

.

3.22. Give an example of two sequences (an) and (bn) such that (an)
and (bn) diverge and yet (an + bn) converges. Give an example where
(an) and (bn) diverge and yet (anbn) converges.

This next result is also sometimes including among the Limit Laws.
Needless to say, it gives the interaction between the notion of a limit
and the ordering properties of R.

3.23. Suppose a ≤ an ≤ b for all n ∈ N. Prove that if lim
n→∞

an = L,

then L ∈ [a, b]. Prove that the conclusion is still true if an is outside
[a, b] for only finitely many n.

3.24. Let (an)∞n=1 and (bn)∞n=1 be convergent sequences with a = lim
n→∞

an

and b = lim
n→∞

bn. Prove that if an − bn = 1
n

for all n ∈ N then

a = b. Would this theorem still be true if, instead of equality, you
had an − bn < 1

n
? What if an − bn = 1

2n
?

3. Monotone Sequences

In this section, we will finally formulate the completeness axiom.
To do so, we introduce another class of sequences.



3. MONOTONE SEQUENCES 29

Definition. Let (an) be a sequence. We say that (an) is increasing
if for all n ∈ N, an ≤ an+1. Likewise, we say that (an) is decreasing if
for all n ∈ N, an ≥ an+1. A sequence is called monotone if it is either
increasing or decreasing.

3.25. Prove the following:

(1) If (an) is increasing and unbounded then (an) diverges to +∞.
(2) If (an) is decreasing and unbounded then (an) diverges to −∞

Thus we see that an increasing sequence can diverge if it “escapes to
+∞.” Suppose though that we decided ahead of time that this was not
allowed. In other words consider an increasing sequence which is also
bounded above. For the sake of intuition, assume that the sequence is
strictly increasing meaning that each term is strictly larger than the
last (i.e., not equal to the last).

In some sense we should expect that this sequence should be ‘trapped.’
On the one hand, the terms of the sequence are getting larger and
larger. On the other, we have assumed that there is a ceiling that they
cannot break. Of course, there is no guarantee that they will every get
very close to our ceiling. But that just means we could pick a smaller
ceiling. If they don’t get close to that one either, we can just pick
another and so on. In this way, we should be able to trap the sequence
into smaller and smaller spaces (as the terms gets larger).

Thus it seems reasonable that these terms should be ‘headed’ some-
where specific. However, if you try to make a rigorous proof out of our
intuitive ideas, it will always fail. Thus to make our idea work, we have
to add an assumption to our axioms for the real numbers. This is the
essence of the completeness axiom. The completeness axiom states
that every bounded increasing sequence of real numbers converges.

In the introduction to chapter 2, we said that the completeness
axiom forbids the existence of ‘gaps’ in the real line. In some sense,
our formulation of the completeness axiom captures this idea because
it asserts that there are no gaps towards which the ‘trapped’ sequence
can head: it has to be heading towards a specific number. Our use of
the word ‘gap’ here is an attempt to express an abstract mathematical
ideal in plain language (a theme we have emphasized throughout the
course). Nevertheless, we will see below that it is not a perfect choice of
words. Perhaps after you complete and understand the material of this
chapter, you can give a better explanation (and you should certainly
try).

We can however finally prove the Archimedean property.
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3.26. Suppose that x ∈ R. Then there is some n ∈ N with n > x.

Hint: Consider the sequence (n)∞n=1. If the Archimedean property is
false then it is bounded. Since it is increasing, it must have limit L.
Consider precisely the implications of assuming that all the natural
numbers head towards a fixed number L.

You will notice that you used the completeness axiom in your proof.
This is not an accident: it is impossible to prove the Archimedean
property without assuming the completeness axiom . More precisely,
the Archimedean property cannot be proven using the other axioms
alone. We can view this fact as yet more motivation for assuming the
completeness axiom (as it seems like a strange thing to assume at first).
Certainly the set N should not be bounded by a real number.

3.27. Suppose that (an) is decreasing and bounded. Than (an) con-
verges.

We will now give several results which demonstrate the power of
the completeness axiom. We begin by studying an important class of
sequences known as geometric sequences.

3.28. Let r ∈ R.

(1) Prove that if 0 ≤ r < 1 then (rn)∞n=1 converges to 0.
(2) Prove that if r > 1 then (rn)∞n=1 diverges to +∞.
(3) Prove that the sequence (rn) converges if and only if −1 < r ≤

1. If r = 1 prove that lim
n→∞

rn = 1. If −1 < r < 1, prove that

lim
n→∞

rn = 0.

Hint: For the first part, show the sequence is decreasing and bounded
below. Let L be the limit and proceed by contradiction: suppose L > 0,
find an with L ≤ an < r−1L, and hence produce a contradiction.

3.29. Let a1 = 2 and let (an) be generated by the recursive formula

an+1 =
1

2

(
an +

2

an

)
for n ≥ 1.

(1) Prove that an is well-defined and positive.
(2) Prove that 2 < a2n for all n ∈ N.
(3) Prove that an is decreasing and hence converges.
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(4) Now take limits on both sides of the recursive formula and
prove and use the fact that

lim
n→∞

an+1 = lim
n→∞

an

to show that a2 = 2 if a = lim
n→∞

an. Show that a > 0.

Hint: For the second part, assuming an > 0 turn

1

2

(
an +

2

an

)
>
√

2

into an equivalent condition on a quadratic polynomial. Proceed by
induction.

Needless to say the real number a considered in the previous result
is usually denoted by

√
2. Thus the completeness axiom also implies

that
√

2 is a well-defined real number.

3.30.
√

2 is not a rational number.

Of course we call a real number which is not rational an irrational
number. Thus we have proven the (‘obvious’) fact that there exist
irrational numbers. In other words, the collection of real numbers is
larger than the collection of rational numbers. We will, however, see
now that it is not too much larger (in an appropriate sense).

3.31. Prove the following using the Archimedean property:

(1) for every x ∈ R there exists an m ∈ Z such that

m ≤ x < m+ 1,

(2) for every x ∈ R and n ∈ N there exists an m ∈ Z such that

m

n
≤ x <

m+ 1

n
,

Using these we can prove that every real number can be approx-
imated arbitrarily well by a rational number. The following result is
referred to by saying that Q is dense in R.

3.32. Prove:

(1) For every x ∈ R and every ε > 0 there exists m
n
∈ Q such that

0 ≤ x− m

n
< ε.
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(2) For every x ∈ R and every ε > 0 there exists m
n
∈ Q such that

−ε < x− m

n
≤ 0

(3) For every x ∈ R and ε > 0 there exists an a ∈ Q with |x−a| <
ε.

(4) For every x ∈ R there is a sequence (xn) of rational numbers
with limn→∞ xn = x.

The previous result shows a weakness of the language we used in
our attempt to describe the completeness axiom. We stated that the
truth of the completeness axiom was tantamount to saying that R
contains no gaps. But this result implies that if we draw a ‘gap’ (i.e.,
an interval) on the real line, no matter how small, there is always a
rational number inside of it. Thus there are no gaps of this kind in Q
either, despite the fact that Q is not complete (i.e., does not satisfy
the completeness axiom: there are bounded increasing sequence in Q
which do not converge to a limit in Q). It might be better to say that
the completeness axiom states that R has no ‘infinitely-small gaps.’
But perhaps at this point our language starts to lose meaning.

The irrational numbers are also dense in R.

3.33. Prove:

(1) For all m
n
∈ Q \ {0} the number

√
2 m

n
is irrational.

(2) For every x ∈ R and every ε > 0 there exists m
n
∈ Q such that

0 ≤ x−
√

2
m

n
< ε.

(3) For every x ∈ R and every ε > 0 there exists m
n
∈ Q such that

−ε < x−
√

2
m

n
≤ 0

3.34. Let x ∈ R+. What can you say about the sequence given by
a1 = 1 and an+1 = 1

2
(an + x

an
) for n ≥ 1?

3.35. For each n, let In = [an, bn] be a bounded closed interval. Sup-
pose that I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(1) Prove that there exists a p ∈ R such that p ∈ In for all n ∈ N.
(2) Suppose in addition that lim

n→∞
(bn − an) = 0. Prove that if

q ∈ In for all n ∈ N then q = p.
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4. Subsequences

Intuitively, a subsequence of the sequence (an) is a (new) sequence
formed by skipping (possibly infinitely many) terms in an.

Definition. A sequence (bk)
∞
k=1 is a subsequence of (an)∞n=1 if there

exists a strictly increasing sequence of natural numbers n1 < n2 < · · ·
so that for all k ∈ N, bk = ank

.

Again you should see for yourself that this definition captures the
intuitive idea above. As an example, (1, 1, 1, . . .) is a subsequence of
(1,−1, 1,−1, . . .). In fact, any sequence of ±1’s is a subsequence of
(1,−1, 1,−1, . . .).

In particular, we see that a subsequence of a divergent sequence
may be convergent.

3.36. Give an example of a sequence (an)∞n=1 of natural numbers (i.e.,
with an ∈ N for each n) so that every sequence of natural numbers is
a subsequence of (an). Can you do the same if N is replaced with Z?

( 1
n2 )∞n=1 is a subsequence of ( 1

n
)∞n=1, and both

(
1
n

)∞
n=1

and
(

1
n2

)∞
n=1

converge to 0. The next problem asks if this example can be general-
ized.

3.37. Prove or disprove: If (bn) is a subsequence of (an) and lim
n→∞

an =

L, then lim
n→∞

bn = L.

Subsequences are useful because, if a specified sequence does not
have a certain desirable property, we can often find a subsequence which
does.

3.38. Prove that every sequence of real numbers has a monotone sub-
sequence.

Hint: Consider two cases. The first is the case in which every subse-
quence has a minimum element.

Thus we get the following very useful result.

3.39. Prove that every bounded sequence of real numbers has a con-
vergent subsequence.
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5. Cauchy Sequences

One of the reasons that the completeness axiom is so strong is that
it (by definition) allows us to conclude that certain sequences converge
without knowing their limit beforehand (for example we were able to
show that

√
2 exists as a real number without assuming it beforehand).

But bounded monotone sequences are certainly not the only type
of sequence which converges. In this section, we give a condition which
is equivalent to convergence, but makes no reference to knowing the
limit of the sequence.

Definition. A sequence (an) is called Cauchy if for all ε > 0 there
exists an N ∈ N such that for all m,n ≥ N we have |an − am| < ε.

3.40. Negate the definition of Cauchy sequence to give an explicit def-
inition of “(an)∞n=1 is not a Cauchy sequence.”

3.41. Which of the following conditions, if any, are equivalent to “(an)∞n=1

is Cauchy” or “(an) is not Cauchy?”

(1) For all ε > 0 and N ∈ N there are n,m > N with n 6= m and
|an − am| < ε.

(2) For all n ∈ N there is an N ∈ N such that for all p, q ≥ N ,
|ap − aq| < 1/n.

(3) There exists an ε > 0 and n 6= m in N with |an − am| < ε.
(4) There exists N ∈ N such that for all ε > 0 there are n 6= m

with n,m > N and |an − am| < ε.

3.42. Prove that every convergent sequence is Cauchy.

This is particularly useful in the contrapositive form: if (an)∞n=1 is
not Cauchy then (an)∞n=1 diverges.

3.43. Prove that every Cauchy sequence is bounded. Is the converse
true?

3.44. Let (an) be a Cauchy sequence and let (ank
) be a convergent

subsequence. Prove that (an) is convergent and lim
n→∞

an = lim
k→∞

ank
.

We are thus led to the following extremely important result.

3.45. Show that a sequence is convergent if and only if it is Cauchy.
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Hence, a Cauchy sequence in R is the same as a convergent se-
quence in R. Again the advantage is that the definition of a Cauchy
sequence makes no reference to the limit: it is an intrinsic property of
the sequence.

3.46. Is every Cauchy sequence in Q convergent to some point in Q?

We remark that the equivalence of Cauchy sequence and conver-
gent sequence is itself actually equivalent to the completeness axiom.
In other words, one can assume that Cauchy sequences converge and
prove that bounded monotone sequences converge. Many books begin
with the Cauchy perspective and call the above equivalence the com-
pleteness axiom (the fact that bounded monotone sequence converge is
then called the ‘monotone convergence theorem’).

3.47. Prove or give a counterexample: if a sequence of real numbers
(xn)∞n=1 has the property that for all ε > 0, there exists N ∈ N such
that for all n ≥ N we have |xn+1 − xn| < ε, then (xn) is a conver-
gent sequence. How is this different from the definition of a Cauchy
sequence?

6. Decimals

So far we have not had a systematic way of describing real numbers.
In other words, unless we are dealing with a special number like a
rational number or

√
2, we have no systematic way to specify a number.

We will attempt to solve this problem by using decimal expansions.
Of course this method will fall somewhat short as many decimal

expansions cannot be written down or even specified easily. In some
sense, the only decimal expansion that we can easily write down either
terminate

1

8
= 0.125

27

50
= 0.54

or become periodic

1

3
= 0.3333 . . . = 0.3

1

7
= 0.142857142857 . . . = 0.142857

and we will see that such expansions do not encompass all numbers.

3.48. Write down a decimal expansion that is not periodic in such a
way that the pattern is clear.
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It is an interesting fact that a decimal expansion which either ter-
minates or becomes periodic always represents a rational number (and
we will show this fact below).

Another ‘problem’ with decimal expansions is that a single number
can have two different expansions. For example, we will see that

1

8
= 0.1249 = 0.125.

Fortunately, we will also see that all the numbers that have multi-
ple decimal expansions are in fact rational. However, not all rational
numbers have multiple expansions.

Shortly we will prove that every real number has a decimal ex-
pansion. For example the real number π has a decimal expansion
even though not all the digits are known. As of this writing, the
first 2,699,999,990,000 decimal digits have been calculated. Ironically a
Frenchman named Fabrice Bellard was able to complete this calculation
on his home computer using a new algorithm of his own design. It took
Bellard’s computer 131 days to complete the program. This accomplish
is particulary impressice since the previous record was calculated on a
Japanese super computer known as the T2K Open Supercomputer.

Chao Lu of China holds the Guinness Book of Records record for
reciting digits of π. In just over twenty-four hours, he recited the first
67, 890 digits of π. He was given no breaks of any kind as the rules
stated that he had to recite each digit within 15 seconds of the previous
one.

We now define and construct decimal expansions precisely. Con-
sider the interval [0, 1]. Firstly, we divide the interval [0, 1] into 10
equal closed subintervals (of length 1

10
):[

0, 1
10

]
∪
[

1
10
, 2
10

]
∪
[

2
10
, 3
10

]
∪
[

3
10
, 4
10

]
∪
[

4
10
, 5
10

]
∪
[

5
10
, 6
10

]
∪ · · · ∪

[
9
10
, 1
]
.

Label these intervals I0, I1, . . . I9, respectively.
Now let k1 be an integer between 0 and 9. Then Ik1 is the interval

Ik1 = [k1
10
, k1+1

10
]. We may further divided this interval into ten equal

pieces (of length 1
100

):[
k1
10
,
k1
10

+
1

100

]
∪
[
k1
10

+
1

100
,
k1
10

+
2

100

]
∪ · · · ∪

[
k1
10

+
9

100
,
k1 + 1

10

]
.

Label these intervals Ik1,0, Ik1,2, . . . , Ik1,9. By dividing further and fur-
ther, we may define the interval Ik1,k2,...,kn where (k1, . . . , kn) is any
finite sequence with values in 0, . . . , 9.

3.49. What are the endpoints of the interval Ik1,...,kn?
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Definition. Suppose that a ∈ [0, 1]. A decimal expansion for x is
an infinite sequence, (ki)

∞
i=1, such that each 0 ≤ ki ≤ 9 is an integer

and so that a ∈ Ik1,...,kn for each n.

This definition might seem a little bit strange at first. How does it
compare to the picture you have in mind for a decimal expansion?

3.50. Explain how a number in [0, 1] can have more than 1 decimal
expansion.

3.51. Suppose a ∈ [0, 1]. First prove that we may find a decimal
expansion for a. Next assume that (ki)

∞
i=1 is a decimal expansion for

a ∈ [0, 1]. Define a sequence (an)∞n=1 by saying that

an =
k1
10

+
k2

100
+ · · ·+ kn

10n
=

n∑
i=1

ki
10i

.

Prove that (an) is convergent and limn→∞ an = a.

You may recall from your calculus course that we denote the limit
of of the above sequence (an) by

∞∑
i=1

ki
10i

.

There is a converse to the last result which perhaps demonstrates that
our definition of decimal expansion is a reasonable one.

3.52. Suppose that (ki)
∞
i=1 is such that ki is an integer with 0 ≤ ki ≤ 9.

Show that
∞∑
i=1

ki
10i

always exists. Furthermore show that if

a =
∞∑
i=1

ki
10i

then (ki) is a decimal expansion for a.

It perhaps goes without saying that if (ki) is a decimal expansion
for a, we often write a = 0.k1k2k3 . . .. Of course this notation does
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not reflect any kind of multiplication of the ki. If we write a terminat-
ing decimal sequence like 0.k1k2 · · · kn, we mean the first n terms are
k1, . . . , kn and all the other terms are zero.

So far we have only considered decimal expansions for numbers
in [0, 1]. Of course we should define decimal expansions for all real
numbers.

3.53. Extend the definition of decimal expansion to all real numbers.
Explicitly state what it means for (ki)

∞
i=0 to be a decimal expansion for

a ∈ R. Show that the previous two results work for all real numbers
and not just numbers in [0, 1].

Again we usually denote the decimal expansion (ki)
∞
i=0 by k0.k1k2k3 . . ..

Now that we have defined decimal expansions, we prove that all the
basic results that we expect are true.

3.54. Suppose x, y ∈ R are not equal and suppose (ki) and (`i) are
decimal expansions for x and y respectively. In addition, assume with-
out loss of generality that neither (ki) nor (`i) ends with a constant
sequence of 9’s. Show that x < y if and only if there exists a r ∈ N
with k0.k1k2 . . . kr < `0.`1`2 . . . `r.

3.55. Suppose x, y ∈ R and suppose {ki} and {`i} are decimal ex-
pansions for x and y respectively. Describe (and prove) how to find a
decimal expansion for x+ y, for −y and for x− y.

3.56. Suppose x, y ∈ R and suppose {ki} and {`i} are decimal ex-
pansions for x and y respectively. Describe (and prove) how to find a
decimal expansion for xy, for 1/y and for x/y.

3.57. Prove that a decimal expansion is eventually periodic if and only
if it comes from a rational number.

We conclude our study of decimal expansions by remarking that
the ideas of this section can be used to construct the real numbers
rigorously (rather than taking their existence on faith). One defines
the real numbers to be the set of integer sequences (ki)

∞
i=0 such that

0 ≤ ki ≤ 9 for i ≥ 1. We have to a little bit careful in that we need to
specify that decimals that should give the same number are equal (this
is accomplished by putting a equivalence relation on the set).
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We then define addition, subtraction, multiplication, and division
in the way that we did in the previous exercises. Likewise we define an
order on the collection. We then verify that all the axioms (including
the completeness axiom) hold. If you feel particularly ambitious, you
could attempt to carry out this construction precisely and verify all
the axioms. You certainly have the intellectual tools at your disposal,
but the construction and verification might be a bit long and it will
certainly take persistence.

7. Supremums and Completeness

In this section, we give yet another equivalent formulation of the
completeness axiom. This version is a little bit different than the others
in that it makes no mention of sequences and instead deals with sets.
We begin with a few definitions.

Definition. Let A ⊆ R and x ∈ R.

(1) x is called an upper bound for A if, for all a ∈ A, we have
a ≤ x.

(2) x is called an lower bound for A if, for all a ∈ A, we have
x ≤ a.

(3) The set A is called bounded above if there exists an upper
bound for A. The set A is called bounded below if there
exists a lower bound for A. The set A is called bounded if it
is both bounded above and bounded below.

(4) x is called a maximum of A if x ∈ A and x is an upper bound
for A. We will often write x = maxA.

(5) x is called a minimum of A if x ∈ A and x is a lower bound
for A. Again we will often write x = minA.

Previously we said a sequence, (an), was bounded if the associated
set, {an : n ∈ N} was contained in a bounded interval. How do these
two uses of the same word relate to each other?

Note that if a set has a maximum or a minimum, it only has one
of each (why?)

3.58. For each of the following subsets of R:

(a) A = ∅,
(b) A = [0, 1],
(c) A = (0, 1) ∩Q.
(d) A = [0,∞),

(1) Find all lower bounds for A and all upper bounds for A,
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(2) Discuss whether A is bounded.
(3) Discuss whether A has a maximum and if so find it.
(4) Discuss whether A has a minimum and if so find it.

In particular, we see that not every set has a maximum and so the
usefulness of the concept is a bit limited. Thus we introduce a more
useful term which captures a similar idea.

Definition. Let A ⊆ R and x ∈ R.

(1) x is called a least upper bound of A or supremum of A if
(a) x is an upper bound for A,
(b) for all y, if y is an upper bound for A then x ≤ y.

(2) x is called a greatest lower bound of A or infimum of A
if
(a) x is a lower bound for A,
(b) for all y, if y is a lower bound for A then y ≤ x.

3.59. Let A ⊆ R. Prove that if x is a supremum of A and y is a
supremum of A then x = y.

Hence, if the set A has a supremum then that supremum is unique
and we can speak of the supremum of A and write supA. Similarly, if
the set A has an infimum then that infimum is unique and we can speak
of the infimum of A and write inf A. The supremum is a generalization
of the idea of a maximum and the infimum is a generalization of the
idea of a minimum.

3.60. Suppose that A ⊂ R is a set and that maxA exists. Show that
supA exists and maxA = supA. Similarly if minA exists show that
inf A exists and minA = inf A.

To better understand the infimum and the supremum, we should
consider some examples.

3.61. Find inf A and supA, if they exist, for each of the following
subsets of R:

(1) A = ∅,
(2) A = [0, 1],
(3) A = (0, 1) ∩ (R\Q)
(4) A = [0,∞).
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Thus we see that, like the maximum, the supremum also does not
always exist. On the other hand, let us consider the reasons why the
supremum failed to exist in some of the previous examples. Firstly,
if the set in question is the empty set it cannot have a supremum.
Hence assume that it is nonempty. We saw in the previous exercise
a nonempty set without an supremum. What was it about that set
which forced it not to have a supremum?

In fact this is the only other reason a supremum might not exist.

3.62. Suppose that A is nonempty and bounded above. Then A has a
supremum.

Hint: Show that there is a least element k1 ∈ Z such that k1 is an
upper bound for A. If k1 is not a least upper bound for A, show there
is a least k2 ∈ N such that k1 − 1

2k2
is an upper bound for A. Proceed

in this way to find the supremum.

Again we needed to use the completeness axiom in the proof of the
previous result. Like the convergence of Cauchy sequences, the truth
of the last result is equivalent to the completeness axiom. In fact, most
authors take the last result as their formulation of the completeness
axiom.

We have a similar existence result for infimums.

3.63. Suppose that A is nonempty and bounded below. Then inf A
exists.

3.64. Suppose that A 6= ∅ is bounded. Prove that inf A ≤ supA.

3.65. Give examples, if possible, of the following.

(1) A set A with a supremum but no maximum.
(2) A decreasing sequence (an)∞n=1 so that

inf{an|n ∈ N}

does not exist.
(3) An increasing sequence (an)∞n=1 so that

inf{an|n ∈ N}

does not exist.
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Now that we have proven the existence of supremums and infimums
for nonempty bounded sets, we will study their properties. For exam-
ple, though supA need not be in the set A there are elements of A
arbitrarily close to supA.

3.66. Let A ⊆ R be non-empty and bounded above. Prove that if
s = supA then for every ε > 0 there exists an a ∈ A with s−ε < a ≤ s.

3.67. What result regarding the infimum would correspond to the pre-
vious result? State and prove it.

3.68. Let A ⊆ R be bounded above and non-empty. Let s = supA.
Prove that there exists a sequence (an) ⊆ A with lim

n→∞
an = s. Prove

that, in addition, the sequence (an) can be chosen to be increasing.

3.69. Again state and prove an analogous result for infimums.

3.70. Prove or disprove:

(1) If A,B ⊆ R are nonempty sets such that for every a ∈ A and
for every b ∈ B we have a ≤ b then supA and inf B exist and
supA ≤ inf B.

(2) If A,B ⊆ R are nonempty sets such that for every a ∈ A and
for every b ∈ B we have a < b, then supA and inf B exist and
supA < inf B.

3.71. Let A ⊂ R be nonempty and suppose that A ⊂ [a, b]. Show that
supA and inf A exist and that

a ≤ inf A ≤ supA ≤ b.

3.72. Let A,B ⊂ R be non-empty, bounded sets. We define

A+B = {a+ b : a ∈ A and b ∈ B}.
Prove that sup(A + B) = sup(A) + sup(B). State and prove a similar
result regarding infimums.

3.73. Let f : R→ R and g : R→ R and A ⊆ R, with A 6= ∅. Assume
that f(A) and g(A) are bounded. Prove that

sup(f + g)(A) ≤ sup f(A) + sup g(A) .

Give an example where one has equality in the inequality and an ex-
ample where one has strict inequality.
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3.74. Let A ⊂ R be a non-empty, bounded set. Let α = sup(A)
and β = inf(A), and let (an)∞n=1 ⊂ A be a convergent sequence, with
a = lim

n→∞
an. Prove that β ≤ a ≤ α.

3.75. In the notation of the previous result, give an example where the
sequence (an) is strictly increasing and yet a 6= α. Give an example
where the sequence is strictly decreasing and yet a 6= β.

3.76. If A ⊂ R is a non-empty, bounded set and B ⊂ A is nonempty,
prove

inf(A) ≤ inf(B) ≤ sup(B) ≤ sup(A) .

3.77. If A,B ⊂ R are both non-empty, bounded sets, prove

sup(A ∪B) = max{sup(A), sup(B)} .

8. Real and Rational Exponents

In calculus, we often consider functions f : R → R of the form
f(x) = 2x. To understand what the expression 2x means we need to
define a notion for exponentiating by an arbitrary real number, rather
than just by integers. We will do so in this section, beginning with
exponentiating by rational numbers.

3.78. Suppose that a < b are positive real numbers. Show that, if k is
any natural number (not including zero), ak < bk.

Definition. Suppose that a ≥ 0 and k ∈ N. We say that x is a kth
root of a if x ≥ 0 and xk = a. The previous result shows that that kth
roots are unique. (why?) We denote the kth root of a by k

√
a or a1/k.

3.79. Suppose that x, a ∈ R satisfy xk < a. Show that there is a
number y ∈ R so that x < y and yet yk < a. If xk > a show that there
is a number y ∈ R such that x > y and yet yk > a.

Hint: For the first part, consider the sequence (x+ 1
n
)k. To what real

number does it converge? What does that tell you?

The next result demonstrates a powerful application of supremums.

3.80. Let a ≥ 0 and k ∈ N. Show that k
√
a exists in R.
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We point out that the roots are a purely algebraic concept and yet
the completeness of R implies their existence. This is a very special
property of R. We have seen for example that it does not hold for Q.

3.81. Suppose that r ∈ Q and a ≥ 0. Give a definition for ar. Show
that it agrees with the special cases when r ∈ N or r = 1/k for some
k ∈ N. Prove the usual rules of exponents:

(1) asr = (ar)s for r, s ∈ Q and a ≥ 0,
(2) as+r = aras for r, s ∈ Q and a ≥ 0, and

(3) a−r =
1

ar
for r ∈ Q and a ≥ 0.

Of course we can also consider roots for negative numbers.

3.82. Suppose that a ∈ R (a not necessarily positive), for which k is
there a real number x with xk = a. Give the values for all such x in
terms of k

√
|a|, which we have already defined.

Hint: Of course we know that if k is even and a < 0, there is no x ∈ R
with xk = a. Proving it, however, is not completely trivial. Derive a
contradiction by deciding whether such an x would have to be positive
or negative.

We now lay the ground work for exponentiating by real numbers.

3.83. Suppose that a > 0 and show that ( n
√
a)∞n=1 converges to one.

Hint: Begin with the case a > 1.

3.84. Suppose that (rn) is a Cauchy sequence of rational numbers.
Show that if a ≥ 0, (arn) is a also Cauchy.

3.85. Suppose that (rn) and (sn) are two sequences of rational numbers
which converge to the same real number r. Show that lim

n→∞
arn =

lim
n→∞

asn .

Definition. Suppose that r ∈ R and a ≥ 0. Pick a sequence (rn)
of rational numbers that converges to r. Then we define ar to be
limn→∞ a

rn .
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3.86. Show that the normal rules of exponents hold for real exponents
as well as rational ones. Show that if a > 0, the map f : R→ R given
by f(x) = ax is injective.


