
CHAPTER 4

Limits of Functions and Continuity

1. Limits of Functions

In the previous chapter, we used the notion of convergence to refine
our understanding of the real numbers. In this chapter, we use many
of these same intuitive notions to study functions. First a word about
conventions. In the section in which we introduced functions, we were
very careful to specify that a function has three ingredients: a domain,
a codomain, and a rule (which is technically a certain subset of the
cartesian product of the domain and codomain).

For the remainder of the book, however, (unless we specify other-
wise) the codomain of our functions will always be R itself. Likewise
the domain will always be some subset of R. Thus when we say f is a
function, we mean that it is a function whose codomain is R and whose
domain is some (potentially unspecified) subset of R.

Furthermore, though it is also technically incorrect, we will often
specify functions by giving only a formula or rule (as calculus textbooks
often do). For example, we might say “consider the function f(x) =
1/x.” This is technically not enough information. In this case, there
are a large variety of subsets of R which could serve as the domain.
Nevertheless when we say something like the above, we really mean
that the domain should be every real number for which the formula
makes sense. In our previous case then, the domain would be R\{0},
that is, all real numbers except for zero.

At times, this sort of vagueness can get one into trouble, but in all
the cases we will consider, the intended domain will be clear. In fact,
it is a (perhaps unfortunate) common practice in mathematics for an
author, when defining an object, to specify only the noteworthy piece
of data and leave it up to the reader to surmise the other pieces. In
the case of functions, this is the practice taken by most calculus books
(though perhaps without warning) and it will be our practice as well.

Now that we have made our conventions clear, we proceed to discuss
limits of functions. Intuitively, we saw that a sequence (an) has limit
L if it gets arbitrarily close to L as n gets larger. The intuitive idea of
a function is similar, but whereas sequences themselves (possibly) have
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48 4. LIMITS OF FUNCTIONS AND CONTINUITY

limits, functions (possibly) have limits at points in R. In other words,
if we want to consider the limit of a function, we need to specify the
point at which we are focusing our attention.

Intuitively then, a function f has limit L at the point p ∈ R if the
value, f(x), of the function gets arbitrarily close to L as x gets very
close to p. In particular, the limit does not depend on the value of f at
p but only on the value of f at points x near p. Indeed, for a limit to
exist at p it is not even necessary that f be defined at p. It is, however,
necessary that f be defined at points x near p, in a sense made precise
below.

Definition. Let f be a function and L, p ∈ R. We say that L is a
limit of f as x approaches p if, for every ε > 0, there exists a δ > 0
such that for all x ∈ R with 0 < |x − p| < δ, x is in the domain of f
and |f(x)− L| < ε.

Again you should think careful about this definition. How is close-
ness to L measured? How is closeness to p measured? Where does f(x)
need to be defined? How does δ relate to ε? How does this definition
compare to the notion of a limit that we have described above? How
does it compare to the notion of a limit that you developed in your
calculus courses? You should also try to draw some pictures of the
situation. Where should ε go? What about δ?

Notice that when proving that L is a limit of f as x approaches p,
we are given an arbitrary ε > 0 and have to find a δ > 0 exactly as we
had to find a N ∈ N when proving that L was the limit of a sequence.
In your proofs, you will need to choose δ judiciously, depending upon
what f , p, and ε are.

Exactly as for sequences, we have to show that limits of functions
are in fact unique.

4.1. Let f be a function and p ∈ R. Suppose L and M are both limits
of f as x approaches p. Show that L = M .

This shows that if a limit of f as x approaches p exists then it
is unique. As with sequences, we can talk about the limit of f as x
approaches p and write lim

x→p
f(x) = L.

Similar to sequences, we should not write lim
x→p

f(x) unless we know

that limit exists. In other words, as with sequences, when we write
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lim
x→p

f(x) = L we are making two assertions: the limit of f as x ap-

proaches p exists, and its value is L.

4.2. Let f be a function and p, L ∈ R. Give the negation of the
definition of “lim

x→p
f(x) = L”.

Again the negation of “lim
x→p

f(x) = L” is not “lim
x→p

f(x) 6= L” since

the latter implies implies the existence of the limit. The negation could
read “f(x) does not approach L as x approaches p.” For this there are
two possibilities: lim

x→p
f(x) exists but does not equal L, or f has no limit

as x approaches p, but try to give the negation in terms of ε and δ as
in the definition.

4.3. Let f be a function and p, L ∈ R. Assume there exists ε0 > 0 so
that x is in the domain of f if 0 < |x − p| < ε0. Determine which, if
any, of the following are equivalent to lim

x→p
f(x) = L.

(1) For all ε > 0, there is a δ > 0 and an x with 0 < |x − p| < δ
and |f(x)− L| < ε.

(2) For all n ∈ N, there exists a δ > 0 such that for all x ∈ R with
0 < |x− p| < δ, we have |f(x)− L| < 1/n.

(3) For all n ∈ N, there exists a m ∈ N such that for all x ∈ R
with 0 < |x− p| < 1/m, we have |f(x)− L| < 1/n.

(4) For all δ > 0 there is an x in the domain of f such that
0 < |x− p| < δ and f(x) = L.

(5) There exists a δ > 0 such that for all ε > 0, if x is in the
domain of f and 0 < |x− p| < δ then |f(x)− L| < ε.

As usual, an important first step in understanding a new concept
(or a least a concept that we are meeting rigorously for the first time), is
considering examples. We begin with the simplest functions: constant
functions.

4.4. Let a ∈ R and let f be the function given by f(x) = a for all
x ∈ R. Let p ∈ R be arbitrary. Prove that lim

x→p
f(x) = a.
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Notice that, in the case of a constant function, you can choose a
δ that does not depend on ε. This behavior is extremely rare for a
function.

We now proceed with a few more examples.

4.5. Let f be the function given by f(x) = x and let p ∈ R. Prove
lim
x→p

f(x) = p.

Now we see that δ depends on ε and that δ goes to 0 as ε goes to
0. However the choice of δ still does not depend on the choice of p.

4.6. Let f be the function given by f(x) = 3x−5 and let p ∈ R. Prove
lim
x→p

f(x) = 3p− 5.

4.7. Let f be the function given by f(x) = x/x. Show that lim
x→0

f(x) =

1, despite the fact that f is not defined at zero.

The previous example shows that indeed a function need not be
defined at a point to have a limit there. In fact, this is even more
obvious than we are making it seem: we can always take a function
that has a limit at some point and then create a new function by
removing this point from the domain. This new function will have the
behavior to which we are referring. The previous example is, however,
interesting since it is an example of a function of this kind defined by
a simple formula.

4.8. Let f be the function given by f(x) = x2 and let p ∈ R. Prove
lim
x→p

f(x) = p2.

Notice that regardless of how we produce our choice of δ for the
previous proof, it always depends on the point p. For a fixed ε we
see that the δ required gets smaller and smaller as |p| gets bigger and
bigger. How could you tell this from looking at the graph of f?

4.9. Prove that lim
x→2

(2x2 − x+ 1) = 7.

4.10. Let f be given by

f(x) =

{
0 x is irrational

1 x is rational.
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Prove that lim
x→p

f(x) does not exist for any p ∈ R.

4.11. Let f be given by

f(x) =

{
0 x is irrational

x x is rational.

Prove that lim
x→p

f(x) exists for only one value of p.

We now add a brief discussion regarding the domain of a function
for which we want to consider a limit at p ∈ R. Indeed, one of the
requirements of the definition of a limit says that we must find a δ > 0
such that for all x ∈ R with 0 < |x − p| < δ, x is in the domain of
f . In other words, the set (p− δ, p+ δ)\{p} must be contained in the
domain of f . Hence we see that f is defined on I\{p}, where I is an
open interval containing p. It is thus convenient to make the following
definition.

Definition. Let p ∈ R. We say a function f is defined near p if
the domain of f contains a set of the form I\{p} where I is an open
interval containing p.

In other words f is defined near p if there is some δ > 0 such that
for x ∈ R with 0 < |x − p| < δ, x is in the domain in f . Essentially
that means that we can find a small sliver of the real line containing
p on which f is defined (except for possibly at p). Do you think that
this is a good meaning for the phrase ‘near p’? Why or why not?

4.12. Suppose p, L ∈ R and that f is a function. Show that lim
x→p

f(x) =

L if and only if f is defined near p and for every ε > 0 there is a δ > 0
such that for x ∈ R with 0 < |x− p| < δ, |f(x)−L| < ε whenever f(x)
is defined.

The preceding discussion and result had very little content to it
and was essentially semantics or technicalities. Nevertheless, though
we would all prefer to avoid them, technicalities play an essential role
in the study of mathematics. In particular, the discussion above is
important because of certain complications that might be introduced
if were less careful.

For example, suppose that we had defined “f(x) converges to L as
x approaches p” to mean “for every ε > 0 there is a δ > 0 such that for
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x ∈ R with 0 < |x− p| < δ, |f(x)− L| < ε whenever f(x) is defined.”
We just saw that this definition is equivalent to ours, provided that f
is defined near p. If, however, the domain of f contained no points in
an open interval containing p, then any real number would satisfy this
definition of limit at p! Clearly this means that the definition above is
not a good one. We conclude that our definition needs to force f to be
defined near p (or at least at some points near p: some authors use a
slightly more general definition, but we have used ours to avoid even
more technicalities).

More generally, we say a property of functions is true near p if it
is true on a set of the form I − {p} with I an open interval containing
p. For example we might say f(x) ≤ g(x) is true near p to say that
f(x) ≤ g(x) is true for all x on some set of the form I\{p} (in particular
we are asserting that both f and g are defined near p).

Now that we have considered a few examples and thought a little
bit about the above definition, the next logical step is to study its basic
properties. Before we do so however, we introduce another important
concept which will help us to better understand limits. It is the notion
of a ‘one-sided limit’. Intuitively a one-sided limit describes the situ-
ation when we approach the number p from only one side rather then
from either side.

Definition. Let f be a function and p, L ∈ R. We say that L is a
right-hand limit of f as x approaches p if for every ε > 0, there
exists a δ > 0 such that for x ∈ R with p < x < p + δ, x is in the
domain of f and |f(x)−L| < ε. Similarly, we say that L is a left-hand
limit of f as x approaches p if for every ε > 0 there exists a δ > 0,
such that for x ∈ R with p − δ < x < p, x is in the domain of f and
|f(x)− L| < ε.

4.13. Show that left-hand and right-hand limits are unique.

The left-hand limit is denoted by lim
x→p−

f(x) = L and the right-hand

limit is denoted by lim
x→p+

f(x) = L.

Left-hand and right-hand limits also require something about the
domain of the function f . We might say that a right-hand limit requires
f to be defined “near p on the right” and likewise for left-hand limits.

4.14. Give an example of a function f and a point p ∈ R such that
lim
x→p+

f(x) exists but lim
x→p−

f(x) does not. Give an example of a function
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and a point where the left-hand limit and the right-hand limit both
exist but they are not equal.

4.15. Let f be a function and p ∈ R. Prove that lim
x→p

f(x) = L if and

only if lim
x→p−

f(x) = lim
x→p+

f(x) = L.

Thus in order for the limit at p to exist it is necessary and suf-
ficient for the right-hand and left-hand limits to exist and be equal.
Now that we have considered one-sided limits, we proceed to study the
basic properties of limits of functions. Our first task is give a rela-
tionship between limits of functions and limits of sequences. Indeed,
the next result is known as the sequential characterization of lim-
its (though it might be more precise to say that it is the “sequential
characterization of limits of functions.”)

4.16. Let p, L ∈ R and suppose that f is a function defined near p.
Let D be the domain of f . Prove that lim

x→p
f(x) = L if and only if for

every sequence (xn) ⊆ D \ {p}, with xn → p, we have lim
n→∞

f(xn) = L.

Hint: To prove “if for every sequence (xn) ⊂ D \ {a} with lim
n→∞

xn = p

we have lim
n→∞

f(xn) = L implies that lim
x→p

f(x) = L” you should switch

to the contrapositive.

Why did we have to assume that f was defined near p in the previous
result?

4.17. a) State the contrapositive of the sequential characterization of
limits (i.e., get a new if and only if statement by negating both sides).

b) Let f : D → R be defined near a point p ∈ R. Prove that the
limit of f as x approaches p does not exist if and only if there exists a
sequence (xn) ⊆ D \ {p} with xn → p so that (f(xn))∞n=1 diverges.

This statement is quite useful for proving that a function has no
limit as x approaches p.

4.18. Which of these limits (if any) exist? Prove your answer.

(1) lim
x→0

sin
(
1
x

)
.

(2) lim
x→0

x sin
(
1
x

)
.
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Hint: By definition sin(θ) is the y-coordinate of the point on the unit
circle at angle θ from the positive x-axis. You will be able to complete
this exercise using only this definition (and the results of the course
thus far).

We now prove the Limit Laws for functions (which are of course
analogous to the limit laws for sequences). As in the sequential cause,
we need to begin with a preliminary result which will help us.

4.19. Let f be a function let p ∈ R. Assume lim
x→p

= L and L > 0.

Prove f(x) > L/2 near p.

Now we prove the Limit Laws. If f and g are functions, we remark
the the formulas f(x) + g(x) and f(x)g(x) make sense as long as x is
in both the domain of f and the domain of g and so the domain of the
functions given by these formulas is defined to be the intersection of
the domain of f with that of g. Likewise, the domain of the function
given by f(x)/g(x) is the intersection of the domain of f and the set
on which g is nonzero.

4.20. Let p ∈ R and let f and g be functions satisfying

lim
x→p

f(x) = L lim
x→p

g(x) = M

Let c ∈ R. Prove that

(1) lim
x→p

c · f(x) = c · L.

(2) lim
x→p

(
f(x) + g(x)

)
= L+M .

(3) lim
x→p

(
f(x) · g(x)

)
= L ·M .

(4) If g is nonzero near p and M 6= 0 then lim
x→p

f(x)
g(x)

= L
M

.

Hint: There are two ways to prove these statements; one is to use the
definition of limit directly as with sequences, and the other is to use the
sequential characterization of limits and the Limit Laws for sequences.

As with sequences, we have a result discussing the interplay between
the order on R and limits of functions.

4.21. Let f be a function and p ∈ R. Assume that a ≤ f(x) ≤ b near
p. Prove that if L = lim

x→p
f(x), then L ∈ [a, b].
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We also have the Squeeze Theorem for functions.

4.22. Let f , g, and h be functions and let p ∈ R. Suppose that
g(x) ≤ f(x) ≤ h(x) near p. Prove that if lim

x→p
g(x) = lim

x→p
h(x) = L ∈ R,

then lim
x→p

f(x) = L.

2. Continuous Functions

Hopefully your calculus courses convinced you that continuity is an
important property. At some point, you probably heard your instructor
say something to the effect of “a function is continuous if you can draw
its graph without picking up your pencil.” In some sense this is the
intuitive idea behind continuity, but in this case we will find the precise
definition leads us a little further from the intuitive notion than in the
previous cases we have considered.

With a few technicalities to be considered, to say that a function f
is continuous at p ∈ R is to say that p is in the domain of f (which is
not a requirement to consider the limit of the function at p) and the
value of f(x) gets arbitrarily close to f(p) as x gets close to p.

Definition. Let f be a function and let p be in the domain of f . We
say that f is continuous at p if for every ε > 0 there exists a δ > 0
such that for x ∈ R with |x−p| < δ, we have |f(x)−f(p)| < ε whenever
x is in the domain of f .

4.23. Let f be a function and let p be in the domain of f . Negate the
definition of “f is continuous at p”.

As always, we begin by considering examples

4.24. Show that the function f(x) = x is continuous for every p ∈ R.

4.25. Let f be given by

f(x) =

{
1 0 ≤ x ≤ 1

0 otherwise.

Find all points p ∈ R at which f is continuous. Justify your answer.
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4.26. Let f be given by

f(x) =

{
0 x is irrational

1 x is rational.

Find all points p ∈ R at which f is continuous. Justify your answer.

4.27. Let f be given by

f(x) =

{
0 x is irrational

x x is rational.

Find all points p ∈ R at which f is continuous. Justify your answer.

The next result can help add to our intuition of continuity.

4.28. Suppose that f is function and p is in its domain. Show that f is
continuous at p if and only if for each open interval I containing f(p),
there is an open interval, J , containing p such that f(x) ∈ I whenever
x is in the domain of f and x ∈ J .

Thus we might say that f is continuous at p if, for x near p, f(x)
is always near (or equal to) f(p) (when defined).

We will see momentarily that continuity and limits of functions are
closely related (as we might expect by comparing their definitions).
However there are some notable differences.

4.29. Define a function f : {0} → R by putting f(0) = 1. Show that
f is continuous at 0. Is the same true if f : {0} ∪ [1, 2] → R is given
by f(0) = 1 and f(x) = x for x ∈ [1, 2].

The function above is certainly not defined near zero and yet it is
continuous at zero. A difference then between our definition of conti-
nuity at a point and our definition of the limit at a point then is that
the former does not require the function to be defined near the point.
There are certain important reasons that we want to do it this way
(mostly to line up with notions from higher mathematics courses such
as ‘topology’), but other authors may use a different convention.

We now make the connection between limits and continuity explicit.
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4.30. Let f be a function and let p be in the domain of f . Assume
that f is defined near p. Prove that f is continuous at p if and only if
lim
x→p

f(x) = f(p).

There is also a connection between limits of sequences and conti-
nuity. Not surprisingly, it is called the sequential characterization
of continuity and it is the next result. In proving it, you should be
careful to consider what happens if f is not defined near p.

4.31. Let f be a function, let D be the domain of f and let p ∈ D.
Prove that f is continuous at p if and only if for every sequence (xn) ⊆
D with lim

n→∞
xn = p, we have lim

n→∞
f(xn) = f(p).

4.32. Give the contrapositive to the sequential characterization of con-
tinuity.

Not surprisingly, we have results for continuity which are analogous
to the Limit Laws.

4.33. Let f and g be functions and let p be a real number in the
domain of each. Assume that f and g are continuous at p. Let c ∈ R.
Prove:

(1) f + g is continuous at p.
(2) c · f is continuous at p.
(3) f · g is continuous at p.

(4) If g(p) 6= 0 then f(x)
g(x)

is continuous at p.

In the above problem you should consider the domains of the various
functions. For example the domain of f + g is {x : x ∈ dom(f) ∩
dom(g)}. For the next problem, what is the domain of g ◦ f?

4.34. Let f and g be functions and let p be a point in the domain of
f such that f(p) is in the domain of g. Prove that if f is continuous at
p and g is continuous at f(p) then g ◦ f is continuous at p.

This can be proved either directly from the definition or by repeated
application of Problem 4.31.

So far, we have been discussing continuity only at points, but it is
probably far more important to consider continuity on sets.
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Definition. Let f be a function and S a subset of R. We say that f
is continuous on S if S is contained in the domain of f and if for
each p ∈ S and ε > 0, there is a δ > 0 such that for all x ∈ R with
|x − p| < δ, we have |f(x) − f(p)| < ε whenever x ∈ S. We say a
function is continuous if it is continuous on its domain.

We remark that the previous definition is used most frequently in
the case that S is an interval (although not always). It is also a bit
subtle. For example there is a difference between being continuous on
S and being continuous at every point of S.

4.35. Define f : [0,∞)→ R by

f(x) =

{
0 x ∈ [0, 1]

1 x ∈ (1,∞).

Show that f is continuous on [0, 1] and yet it is not continuous at every
point of [0, 1]. What part of the definition of ‘continuous on S’ allows
this to be the case? What is

{x ∈ [0,∞) : f is continuous at x}?

Assuming we rid ourselves of some technicalities, however, the two
notions do indeed coincide.

4.36. Suppose that S is a subset of R and f is a function. Assume in
addition that S is the domain of f . Show that f is continuous on S if
and only if it is continuous at every point of S.

In other words, if f is a function whose domain contains a set S, f
is continuous on S if and only if f |S is continuous.

4.37. Let f and g be functions and let S be a subset of R. Suppose
that f and g are continuous on S. Let c ∈ R. Prove:

(1) f + g is continuous on S.
(2) c · f is continuous on S.
(3) f · g is continuous on S.

(4) f(x)
g(x)

is continuous on S, provided that g is never zero on S.

The terminology here is perhaps also sightly different than the ter-
minology one would see in a calculus course.
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4.38. Show that function f(x) = 1/x is continuous.

Of course a calculus student would never say f(x) = 1/x is contin-
uous. What we are really saying is that it is continuous on its domain,
that is, it is continuous on the set (−∞, 0)∪ (0,∞). Calculus students
would agree that this is the appropriate result. It is indeed false that
the function is continuous on R because it is not even defined on all of
R.

Definition. We recall that a polynomial is a function on f : R→ R
of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for an integer n ≥ 0 and ai ∈ R. If f is not the zero function (that is,
the function whose every value is zero), we may assume an 6= 0 and we
call n the degree of f . A linear function is a function which is either
a polynomial of degree zero or one or a function which is identically
zero. Polynomials of degrees 2, 3, 4, and 5 are called quadratic func-
tions, cubic functions, quartic functions, and quintic functions,
respectively.

Definition. A rational function is a function of the form f(x) =
g(x)/h(x) where g and h are polynomials (so that the domain of f is
the set where h is nonzero).

4.39. Prove that every polynomial is continuous on R and that every
rational function is continuous.

4.40. Let a ≥ 0. Show that the function f : R→ R given by f(x) = ax

is continuous.

3. Theorems About Continuous Functions

One of the fundamental theorems regarding continuous functions,
more specifically functions which are continuous on an closed intervals,
is the Intermediate Value Theorem.

We give the explicit formulation next, but first we discuss the in-
tuitive statement. Suppose that f is a function and we know that f is
continuous on [a, b]. Intuitively, we can draw the graph of f (at least
between a and b) without picking up our pencil. Hence if y is some
value between the beginning value, f(a), of f and the ending value,
f(b), of f , we should expect that at some point the graph of f should
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have to ‘cross’ the value y. In other words, there should be a c ∈ [a, b]
with f(c) = y.

4.41. Suppose a < b and f is a function which is continuous on [a, b].
If f(a) ≤ y ≤ f(b) or f(a) ≥ y ≥ f(b) then there exists c ∈ (a, b) with
f(c) = y.

Hint: Suppose f(a) < y < f(b) and let E = {x ∈ [a, b] : f(x) < y}.
Let p = supE. Show the point p can be written as the limit of a
sequence xn ∈ E and as the limit of a sequence x′n ∈ [a, b] \ E. Then
prove that f(p) = y.

Notice that in proving the previous result, we needed to use the
completeness axiom. This is not a coincidence as should perhaps be
intuitively clear. Indeed, if there were ‘gaps’ in the real line than those
gaps would allow a function to ‘jump over’ the value y without actually
hitting it.

4.42. Suppose that f is a polynomial of odd degree. Show that f has
a zero. That is, show that there is some a ∈ R with f(a) = 0.

4.43. Suppose that a ≥ 0 and suppose k ∈ N. Use the intermediate
value theorem to give another proof that k

√
a exists.

4.44. Suppose that a, b > 0. Show that there is a unique number c ∈ R
so that ac = b.

Definition. If a, b ≥ 0, the unique number c with ac = b is called the
logarithm base a of b and denoted loga(b).

4.45. Show the usual rules of logarithms hold.

We next study the images of intervals under continuous functions.

4.46. Let I ⊆ R be any interval and suppose that f is a function which
is continuous on I. Furthermore, assume that f is nonconstant on I
(meaning that f takes on more than one value on I). Prove that f(I)
is an interval.

Hint: First prove that it suffices to show that given any two points
c, d ∈ f(I) the entire interval between them is contained in f(I).
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In general we cannot say any more about the interval f(I). In
other words, it might be bounded or unbounded and it might be open
or closed or neither.

Definition. Let S be a subset of R and let f be a function. Then we
say that f is bounded on S if S is contained in the domain of f and
the set f(S) is bounded. Thus if f is defined on S, it is bounded on
S if and only if there exists K ∈ R such that |f(x)| ≤ K for all x ∈ S
(why?).

4.47. Give an example of a function which is continuous on (0, 1) but
not bounded on (0, 1). Given an example of a function which is con-
tinuous on (0, 1] but bounded neither above nor below on (0, 1].

Thus the continuous image of a bounded interval may be unbounded.

4.48. Give an example of a continuous function f : (0, 1) → R such
that f

(
(0, 1)

)
is a closed and bounded interval.

Thus the continuous image of an open interval may be a closed
interval.

However, in the special case of a continuous function on a closed
and bounded interval we can say a lot more.

4.49. Let I be a closed bounded interval and suppose that f is a
function which is continuous on I. Show that f is bounded on I.

Hint: Put I = [a, b] and proceed by contradiction. Suppose that f is
not bounded above on I and construct a sequence (xn)∞n=1 with xn ∈
[a, b] for all n ∈ N such that

lim
n→∞

f(xn) = +∞

Now apply the sequential characterization of continuity, Problem 4.31,
to obtain a contradiction.

The next result is called the Extreme Value Theorem.

4.50. Let I be a closed and bounded interval and suppose that f is a
function which is continuous on I. Show that there exist xm, xM ∈ I
such that f(xm) ≤ f(x) ≤ f(xM) for all x ∈ [a, b]. In other words, f
attains a maximum value and a minimum value on I.
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Hint: Construct a sequence (xn)∞n=1 with xn ∈ [a, b] for all n ∈ N such
that

lim
n→∞

f(xn) = sup{f(x) : x ∈ [a, b]}.

4.51. Give an example of a function which is bounded and continuous
on (0, 1) but has neither a maximum nor a minimum on (0, 1). Can
you do the same for (0, 1]?

4. Uniform Continuity

In this section we discuss an important property for functions which
is actually stronger than continuity. Recall that the function f is con-
tinuous on the set S if S is in the domain of f and if for all p ∈ S and
for all ε > 0, there exists a δ > 0 such that for all x ∈ S with |x−p| < δ
we have |f(x)− f(p)| < ε.

For a continuous function, the δ generally depends upon both ε
and the point p as previous exercises have illustrated. If we remove the
dependence on p, we get our new concept.

Definition. Let f be a function and S a subset of R contained in the
domain of f . We say that f is uniformly continuous on S if for all
ε > 0, there exists a δ > 0 such that for all x, y ∈ S with |x − y| < δ,
we have |f(x)− f(y)| < ε.

4.52. Suppose S ⊆ R and let f be a function. Prove that if f is
uniformly continuous on S than it is continuous on S.

4.53. Let f be a linear function. That is, let f(x) = mx + b for
some m, b ∈ R. Prove that f(x) is uniformly continuous on R.

4.54. Negate the definition of uniform continuity.

4.55. Let f : R → R be given by f(x) = x2. Prove that f is not
uniformly continuous on R.

Hint: Fix an ε > 0 and show that no matter what δ > 0 is chosen you
can always choose x, y ∈ R such that |x− y| < δ and |x2 − y2| ≥ ε.

4.56. Prove that if I is a bounded interval and f is a function which
is uniformly continuous on I then f is bounded on I.
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This together with Problem 4.47 shows that we can have continu-
ous functions on (0, 1) that are not uniformly continuous (why?). As
in the previous section the case of functions on closed and bounded
intervals is very different.

4.57. Let I be a closed and bounded interval. Show that a function is
continuous on I if and only it is uniformly continuous on I.

Hint: Suppose that f is not uniformly continuous. Then there exists
an ε > 0 such that for every δ > 0 there exists x, y ∈ [a, b] such that
|x−y| < δ but |f(x)−f(y)| ≥ ε. Show that there exists two sequences
(xn), (yn) ⊂ [a, b] which both converge to the same point p ∈ [a, b] but
such that |f(xn) − f(yn)| ≥ ε. Show that this implies that f is not
continuous on I.


