M 365C
FaLL 2013, SECTION 57465
MIDTERM 2 SAMPLES

True or False. Whichever way you think it goes, sketch a proof in a few lines. You may
freely use any result we proved in class, or any result proved in Rudin. Throughout, let X
and Y denote metric spaces.

10.
11.

12.
13.
14.

. If {z,} is a sequence in X with lim, .. =, = x, and f: X — Y is any function, then

limy, o0 f(2n) = f(2).

Suppose f : [a,b] — R and g : [a,b] — R are both continuous, f(a) > g(a) and
f(b) < g(b). Then there exists some x € [a,b] such that f(x) = g(z).

If f : [a,b] — Ris differentiable at @ and has f’(a) > 0, then there exists some = € (a, b)
such that f(z) > f(a).

If > a, converges and {b,} is bounded, then > a,b, converges.

. If f: R — R is continuous, the set £ = {x € R| f(x)> > 2} is open.

If f:(0,1) = R is bounded and continuous, then it is uniformly continuous.

Let E ={1/n|n € N} U{0} C R. Every function f: E — R is continuous.

If f:R — R is continuous, and f(z) =« for all z € Q, then f(x) =z for all z € R.
If f: X — Y is continuous, and £ C X is open, then f(F) C Y is open.

If f: R — Ris continuous, and )7  a, is convergent, then Y > | f(a,) is convergent.

Suppose given f : R — R such that there is no x with f(x) = 0. Define g(z) = f(z)>.
Suppose ¢ is differentiable. Then f is also differentiable.

Suppose f: R — R has f'(z) =1 for all z € R, and f(0) = 0. Then f(z) = z.
The function f : [0,1] — R given by f(z) = 3 is uniformly continuous.

Suppose given two functions f : [a,b] — R and g : [a,b] — R, such that f(z) = g(z)
except for countably many points z. Suppose f is Riemann integrable. Then g is also
Riemann integrable and f; flz)de = fabg(x)da:

Extra problem. Suppose f : R — R is continuous. Define a new function g : R - R
by g(z) = f(3z). Prove carefully that g is continuous. Use only the definition of continuity.






10.

11.

. False. For example, we could take X =Y =R, z,, = 1/n, z =0, and

0if z # 0,
f@)_{1ﬁx=o
True. Apply the Intermediate Value Theorem to h(x) = f(z) — g(x): it has h(a) < 0,
h(b) > 0, so at some z € [a,b] it must have h(z) = 0.

True. Since f’'(a) > 0 we have lim,_,, ! (x;:f (@) - (. Thus there exists some neighbor-
hood N of a such that reN = f(zi [0) > 0. For any = € (a,b) with z € N, we

a

have z > a, and L& - f(a) > 0,s0 f(xz) — f(a) >0, ie f(x)> f(a).

False. Consider the sequence a, = (—1)"X, b, = (=1)". Then ) a, converges but
> anb, does not.

True. Since f is continuous, h = f? is also continuous. The set F is h™'((2,00)), and
(2,00) is an open subset of R. Thus F is the of the form h~*(U) where h is continuous
and U open. Thus F is open.

False. This one is tricky. Consider the function f(z) = cos(1/x). This function is
defined and continuous on (0, 1). However, for any 0, there exist x,y with |z —y| < ¢
but f(z) = —1, f(y) = 1. (Take z = 52—, y = m, for large enough n.) Thus if we
pick € = 1, there is no ¢ for which |z —y| < § = |f(x) — f(y)| <e.

False. For example, we could take

_JOifz #0,
f@)_{1ﬁx:0

True. Q is dense in R, so for any = € R there is a sequence {z,} where all z,, € Q and
x, — x. Then f(x,) = f(z). But f(x,) = x,, so this says x,, — f(z). By uniqueness
of the limit, then f(z) =

False. Say f: R — R is a constant function. Then for any open subset £ C R, f(F)
consists of just a single point, so f(F) is not open.

False. Say f : R — R is f(z) = 1. Then suppose »_ a, is any convergent series. Then
b, = f(ay) is just the constant sequence b, = 1. For }_ b, to be convergent we would
need b, — 0, which the constant sequence b, = 1 certainly doesn’t satisfy.

1ifx <0,
f@y_{lﬁx>0

False. Say

2

Then f(x) is not continuous and hence not differentiable, but f(z)* is the constant

function 1, which is differentiable.



12. True. Consider the function g(z) = f(z) — . This function has ¢'(z) = f'(z) — 1 =
1—1=0. Thus g is a constant function, g(x) = ¢. So f(zr) = x+c. Pluggingin z =0
we get f(0) = ¢. But we know f(0) = 0, so this says ¢ =0, i.e. f(x)=x.

13. True. Any continuous function on a compact set is uniformly continuous.

14. False. Say f(z) = 0 for all z. This is Riemann integrable. Say

(2) = lifz € Q,
IE = 0Oif ¢ Q

Then g(x) differs from f(z) only when z € Q. But g(x) is not Riemann integrable (as
we have shown in class).

Extra problem. Fix p € R and € > 0. Since f is continuous at 3p, there exists some ¢’
for which

ly—3pl <& = |f(y) — fBp)| <e
Now, take § = ¢'/3, so ' = 3. Now suppose x is arbitrary. Plugging in y = 3z in the above
implication gives
3z —3p| <36 = [f(3z) — f(3p)| <
ie.
[z —pl < = lg(z) —g(p)| <€

This shows that ¢ is continuous at p. But p was arbitrary, so ¢ is continuous.



