
PRELIMINARY MATERIAL FOR M382D: DIFFERENTIAL TOPOLOGY

(These notes are swiped from a set written by Dan Freed when he taught this course; they should

be basically applicable to my version of the course as well.)

Here is a brief list of topics you should know or review:

Linear algebra: abstract vector spaces and linear maps, dual space, direct sum, subspaces and

quotient spaces, bases, change of basis, matrix computations, trace and determinant, bilinear forms,

diagonalization of symmetric bilinear forms, inner product spaces.

Calculus: directional derivative, differential, (higher) partial derivatives, chain rule, second de-

rivative as a symmetric bilinear form, Taylor’s theorem, inverse and implicit function theorem,

integration, change of variable formula, Fubini’s theorem, vector calculus in 3 dimensions (div,

grad, curl, Green and Stokes’ theorems), fundamental theorem on ordinary differential equations.

You may or may not have studied all of these topics in your undergraduate years. Most of the

topics listed here will come up at some point in the course.

Here are a few possible references (in addition to whatever texts you used as an undergraduate).

The first three chapters of Spivak’s Calculus on Manifolds contains most of the material on calculus

and has the virtue of being short. Advanced Calculus by Loomis and Sternberg has all of the

required material and much more. A more elementary text, with many applications, is A Course

in Mathematics for Students of Physics by Bamberg and Sternberg. The text Linear Algebra by

Hoffman and Kunze is a classic. There are many alternatives to these references.

Here we sketch some definitions and ideas from linear algebra and differential calculus. There are

exercises interspersed in the text to help you review/learn the material. Some of them are open-

ended; I encourage you to explore these with classmates. Don’t worry if you don’t complete all of

the exercises; at least read through and think about each of them. These preliminary problems are

not to hand in.

1. Linear Algebra

As stated above you should be comfortable with abstract vector spaces.

Exercise 1.

(a) From algebra you know that if G is a group and H a normal subgroup, then the set of left

cosets G/H is naturally a group. Similarly, show that if V is a vector space and W a vector

subspace, then the set of cosets V/W is a vector space. It is called the quotient (vector)

space. If V is finite dimensional, then what is the dimension of V/W in terms of that of V

and W? Define a natural linear map V → V/W . (Interpret ‘natural’ as ‘without choice of

basis.’ There is a way to make this precise.)

(b) Suppose V1 and V2 are vector spaces. Define the direct sum V1⊕ V2 to be the set V1× V2 of

all pairs (v1, v2), v1 ∈ V1, v2 ∈ V2 with component-wise addition and scalar multiplication.
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Show that this is a vector space. What is its dimension, assuming V1, V2 are finite dimen-

sional? Define natural linear maps V1 → V1 ⊕ V2 and V1 ⊕ V2 → V1. Suppose W ⊂ V is a

subspace. Is there a natural isomorphism V →W ⊕ V/W?

(c) Let V,W be vector spaces. Let Hom(V,W ) be the set of linear maps V → W . Define a

vector space structure on Hom(V,W ). Assume V,W are finite dimensional. Given bases

for V,W define a basis for Hom(V,W ). What is dim Hom(V,W )?

Exercise 2. This problem gives practice with index notation and the summation convention, which

states: an index which is repeated, once as a subscript and once as a superscript, is summed over.

Note carefully the placement (superscript vs. subscript) of the indices in what follows. The actual

name of the index (i or j or µ) is arbitrary, though as always a judicious choice of notation helps

you and your readers.

Let V be an n-dimensional vector space. Suppose {ej} and {fi} are two bases for V which are

related by the equation

(1) ej = P ijfi,

where P is an invertible matrix. My convention is that i is the row index and j the column index

when we view P ij as the entry in a matrix.

(a) Suppose ξ ∈ V is a vector. Then we can find real numbers ξj and ξ̃i such that ξ = ξjej =

ξ̃ifi. Express ξ̃i in terms of the ξj by substituting (1) and using the uniqueness of the

expansion of a vector in terms of a basis.

(b) Suppose T : V → V is a linear transformation. Relative to the basis {ej} it is expressed

as the matrix A defined by Tej = Aijei, and relative to the basis {fi} it is expressed as the

matrix B defined by Tfi = Bj
i fj. What is the relationship between A and B?

(c) The dual space V ∗ is the vector space of all linear functionals V → R; it is also n dimen-

sional. Every basis of V gives rise to a dual basis of V ∗. For the basis {ej} of V the dual

basis {ei} of V ∗ is defined by the equation

ei(ej) = δij =

{
1, i = j;

0, i 6= j.

(This equation defines the symbol δij.) The dual basis {f j} is defined similarly. Express f j

in terms of the ei.

(d) Suppose ω ∈ V ∗. Then we define its components relative to the basis {ei} by the equation

ω = ωie
i and its components relative to the basis {f j} by the equation ω = ω̃jf

j. Express

the ωi in terms of the ω̃j.

(e) Compute the evaluation ω(ξ) in terms of the components in both pairs of dual bases. Check

that the expressions agree under change of basis.

2. Affine Spaces

We will distinguish between points and vectors. This distinction is present in ordinary calculus

on flat space, and if anything is easier on manifolds, as we will see in the course. Points are elements

of an affine space and vectors are elements of a vector space.
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Definition 1. Let V be a vector space. An affine space A modeled on V is a set A with a simply

transitive action of V .

The action is a map

(2)
A× V −→ A

(p, ξ) 7−→ p+ ξ

which satisfies (p+ ξ) + ξ′ = p+ (ξ+ ξ′) for all p ∈ A and ξ, ξ′ ∈ V . Simple transitivity asserts that

for each p ∈ A the map

(3)
V −→ A

ξ 7−→ p+ ξ

is a bijection. Thus there is a well-defined “subtraction” map A × A → V which sends a pair of

points p, q ∈ A to the unique ξ ∈ V such that q = p+ ξ.

Exercise 3. Let V be a vector space and ω ∈ V ∗ a nonzero linear functional. Show that {ξ ∈ V :

ω(ξ) = 1} is naturally an affine space, in this case an affine subspace of a vector space.

Elements of an affine space A are called points; elements of the associated vector space V are

called vectors. The vectors act as displacements or translations on points. Points cannot be added:

what, approximating the Earth as flat, would be the sum of New York City and Boston? Rather, in

an affine space we can subtract points to obtain a vector, and can take weighted averages of points:

the center of mass of New York City and Boston is approximately Middletown, Connecticut.

Exercise 4. Define the weighted averaging operation on an affine space A. Thus if λ = (λ1, . . . , λn)

is an ordered n-tuple of scalers with λ1 + · · ·+ λn = 1, then define a map

(4)
An −→ A

(p1, . . . , pn) 7−→ λ1p1 + · · ·+ λnpn

which is the weighted average. Can you generalize to integrate an A-valued function defined on a

measure space?

We will always take the vector space V to be defined over the field R or C—usually the former.

If V is finite dimensional, then there is a unique topology on V for which the vector addition and

scalar multiplication are continuous. Any affine space over V then inherits this topology using (3).

For any integer n ≥ 0 there is a standard affine space

(5) An =
{

(x1, x2, . . . , xn) : xµ ∈ R
}

which has associated vector space

(6) Rn =
{

(ξ1, ξ2, . . . , ξn) : ξµ ∈ R
}
.

The action is given by pointwise addition.
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Remark 1. A vector space V may be regarded as an affine space (with associated vector space V ),

in which case we ignore the special role of 0 ∈ V .

Exercise 5. Define the notion of an affine line in an affine space A. Notice that an affine line

determines a one-dimensional subspace of the associated vector space V . (A one-dimensional sub-

space of a vector space is simply called a ‘line’.) Generalize your definition to affine subspaces of

higher dimension.

Definition 2. Let A,A′ be affine spaces over V, V ′. A map α : A → A′ is affine if there exists a

linear map L : V → V ′ such that

(7) α(p+ ξ) = α(p) + L(ξ)

for all p ∈ A, ξ ∈ V .

The differential dα : A → Hom(V, V ′) of the affine map (1) is the constant L; we define the

differential of non-affine maps in the next section. We define an affine subspace to be the image of

an injective affine map. (See Exercise 5.) Thus we have notions of affine lines, affine planes, etc. If

A is a finite dimensional real affine space, then a collection of affine functions x1, x2, . . . , xn : A→ R
such that the differentials

(8) dx1, dx2, . . . , dxn ∈ V ∗

form a basis is called an affine coordinate system on A. The ordered collection of these n functions

defines an affine isomorphism A→ An. The dual basis of V is denoted

(9) ∂/∂x1, ∂/∂x2, . . . , ∂/∂xn ∈ V.

They can be viewed as translation-invariant=constant=parallel vector fields on A.

Exercise 6. Show that the image of an affine line under an affine map is an affine line or a point.

Does this property characterize affine maps?

Exercise 7. Let A be an affine space with underlying vector space V . Define Aut(A) as the group of

invertible affine maps A→ A. Show that V is a normal subgroup of Aut(A). Identify the quotient

group as a group of transformations—in fact, the group of all automorphisms—of some geometric

object.

3. Differential Calculus

The differential is a linear approximation to a nonlinear map. Let A,A′ be affine spaces with

underlying vector spaces V, V ′. Let U ⊂ A be an open set and f : U → A′ a function. Fix p ∈ U .

Then (if it exists) the differential of f at p is a linear map

(10) dfp : V −→ V ′.
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For ξ ∈ V small it approximates the nonlinear displacement f(p+ ξ)− f(p) due to f by the linear

displacement dfp(ξ). Turning that around, it approximates the non-affine map f near p,

(11) p+ ξ 7−→ f(p+ ξ),

by the affine map

(12) p+ ξ 7−→ f(p) + dfp(ξ).

The map (12) is the first-order Taylor approximation, which is a reasonable approximation if f is

differentiable. Recall that the zeroth-order Taylor approximation is the constant map

(13) p+ ξ 7−→ f(p),

which is a good approximation near p if f is continuous at p.

Exercise 8. Give a definition of the differential in terms of ε, δ. First recall the definition of

continuity of f at p: for every ε > 0 there exists δ > 0 such that if ‖ξ‖ < δ, then ‖f(p+ξ)−f(p)‖ < ε.

This quantifies the idea that the zeroth-order approximation (13) is a good one. Now give a similar

ε-δ definition of differentiability and the differential. Check that your definition works for real-valued

functions of a single variable.

Remark 2. In Exercise 8 we use a norm on V and V ′. A norm on V is a function ‖− ‖ : V → R
such that for all ξ, ξ1, ξ2 ∈ V , we have ‖ξ‖ ≥ 0 with equality iff ξ = 0; ‖λξ‖ = |λ| ‖ξ‖ for all λ ∈ R;

and ‖ξ1 + ξ2‖ ≤ ‖ξ1‖+ ‖ξ2‖. Here are some examples of norms on Rn:

(14)

‖(ξ1, . . . , ξn)‖ =
√

(ξ1)2 + · · ·+ (ξn)2

‖(ξ1, . . . , ξn)‖ = p
√

(ξ1)p + · · ·+ (ξn)p, p ≥ 1

‖(ξ1, . . . , ξn)‖ = max(ξ1, . . . , ξn)

A norm on V induces a topology on V : for the balls {ξ ∈ V : ‖ξ‖ < r} (r > 0) and their affine

translates form a basis of open sets. If V is finite dimensional than the norm topology on V is

independent of the choice of norm, and so the definition of continuity and of the differential in

Exercise 8 do not depend on the choice of norm.

Exercise 9.

(a) If ξ ∈ V is a vector, define the directional derivative in terms of the differential by

(15) ξf(p) = dfp(ξ) ∈ V ′.
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(b) If A = An is the standard affine space, or if we choose a coordinate system on A to give an

isomorphism with An, then define the partial derivatives of a differentiable function as

(16)
∂f

∂xi
(p) = dfp(∂/∂x

i)

where ∂/∂xi are the vector fields in (9). Check that this corresponds to the definition in

terms of difference quotients. Notice the consistency of notation between (15) and (16): set

ξ = ∂/∂xi.

We can also approach this in the reverse order. Namely, given f : U → A′ as above, p ∈ U and

ξ ∈ V we first define the directional derivative

(17) ξf(p) =
d

dt

∣∣
t=0

f(p+ tξ) ∈ V ′,

which is the usual derivative in one-variable calculus of the function f restricted to the parametrized

affine line t 7→ p+ tξ through p with velocity ξ. Then a basic theorem asserts that if all directional

derivatives exist in a neighborhood of p and are continuous at p, then the directional derivatives

at p depend linearly on ξ ∈ V and f is differentiable at p with differential defined by (15).

Exercise 10. Prove this theorem or look it up. You’ll need the definition in Exercise 8.

Exercise 11. Now that the differential has been defined, check the statements after Definition 2.

Namely, verify that the differential of an affine function is what it is claimed to be.

Exercise 12 (Important! ). Relate the differential defined here with the matrix of partial derivatives

you learned about in vector calculus. For this assume you have affine coordinates, or equivalently a

map between standard affine spaces.

Exercise 13. Let x, y, z be the standard coordinates on A3.

(a) Compute the differential of the function f(x, y, z) = xey − y3 cos z − 5xyz2. Express your

answer in terms of the differentials of the coordinate functions, i.e., in terms of dx, dy, dz.

(b) Evaluate the directional derivative of f at (1, 2,−2) in the direction (−1, 3, 2).

(c) Write the differential of f at (1, 2,−2) with respect to the basis {(1, 0, 1), (1, 1, 0), (0,−1, 2)}
of R3.

Exercise 14. Suppose A is an n dimensional affine space with associated vector space V . Let γ :

(t0, t1)→ A be a smooth curve, where (t0, t1) ∈ R is an open set. Define the tangent vector γ̇(t) ∈ V
as a limit of difference quotients. Given an affine coordinate system x : A → An we can write the

composition of γ and x as n functions xi(t), i = 1, . . . , n. Then the ordinary derivatives ẋi(t) give

the coordinates of γ̇(t) in the basis of V induced from the coordinate system x. Check directly that

if we change to a new affine coordinate system y, that the new coordinates of the tangent vector

define the same abstract vector γ̇(t). What is the relationship between γ̇(t) and dγt?

Exercise 15. Suppose U ⊂ An is a connected open set and f : U → Am is a smooth function

whose differential dfp vanishes for all p ∈ U . Prove that f is constant.
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Exercise 16. Let U be a connected open subset of an affine space A and f : U → A′ a smooth

map to an affine space A′. Prove that f extends to an affine map A → A′ if and only if the

differential df : U → Hom(V, V ′) is constant. Here V, V ′ are the vector spaces associated to the

affine spaces A,A′.

The chain rule computes the differential of the composite of two maps. Thus if A,A′, A′′ are affine

spaces with associated vector spaces V, V ′, V ′′, and U ⊂ A, U ′ ⊂ A′ open sets, and f : U → A′,

g : U ′ → A′′ differentiable functions such that the composition g ◦ f : U → A′′ is defined, then

g ◦ f is differentiable and

(18) d(g ◦ f)p = dgf(p) ◦ dfp, p ∈ U.

Exercise 17. Continuing with the notation just established, suppose that A′′ = A and the compo-

sitions f ◦ g and g ◦ f are defined and equal to the identity map. Prove that for each p ∈ U the

differential dfp is an invertible map.

Higher directional derivatives are defined as iterations of (17). Thus if f : U → A′ for U ⊂ A

open, and p ∈ U , then for ξ1, ξ2 ∈ V we define

(19) (ξ1ξ2f)(p) = ξ1
(
ξ2f
)
(p),

where we need to assume that the directional derivative ξ2f exists in a neighborhood of p: the outer

derivative in (19) is the directional derivative of the function ξ2f : U → V ′ at p in the direction ξ1.

A basic theorem asserts that if all second directional derivatives exist and are continuous in a

neighborhood of p, then for any ξ1, ξ2 ∈ V we have

(20) (ξ1ξ2f)(p) = (ξ2ξ1f)(p).

In other words, mixed partials commute.

Exercise 18. Show that relative to an affine coordinate system

(21)
∂2f

dxjdxi
=

∂2f

dxidxj

for all i, j.

If all second directional derivatives exist and are continuous at p define the second differential d2fp
by the formula

(22) (d2fp)(ξ1, ξ2) = (ξ1ξ2f)(p).

The second differential is a symmetric bilinear form

(23) d2f : V × V → V ′.
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Exercise 19. Relate (23) to the Hessian square matrix of second partial derivatives you learned

in vector calculus in case the codomain of f is A′ = R. Review the diagonalization of a symmetric

bilinear form. How does that apply to the second partial? Review the statements about the local

behavior of f at p if dfp = 0 and d2fp is nondegenerate. Do this first for functions of one variable

(A = R).

Exercise 20. Now suppose ξ1, ξ2 : U → V are vector fields which may not be constant. Is (20) still

true? If not, what can you say about the difference between the two sides of the equation. For

example, ostensibly it is a second derivative of f . Is that indeed true? (When ξ and η are constant,

(20) asserts that the difference is not a second derivative of f but rather a constant: zero!) Can

you give a meaning to ξ1ξ2 − ξ2ξ1?

Finally, please look up the inverse and implicit function theorems. We will discuss then in

lectures, but best if you have thought about the statements in advance.
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