M 382D: Differential Topology Spring 2015 Exercise Set 9 Due: Wed Apr 15 (tax day)

Exercises marked with (\star) will definitely not be graded.

Exercise 1. Let $\phi : \mathbb{A}^3 \to \mathbb{A}^3$ be given by

$$(x^1, x^2, x^3) \mapsto (y^1, y^2, y^3) = (x^1 x^2, x^1 x^3, x^2 x^3).$$

Compute $\phi^*(dy^1)$, $\phi^*(dy^1 \wedge dy^2)$, $\phi^*(dy^1 \wedge dy^2 \wedge dy^3)$, and $\phi^*(y^1y^2dy^3)$.

Exercise 2. This exercise gives a little practice with changes of coordinates for vector fields and forms. Our conventions for spherical coordinates on S^2 are

$$x = \cos \theta$$
, $y = \sin \theta \sin \varphi$, $z = \sin \theta \cos \varphi$.

- 1. Show that there exists a smooth vector field $\xi \in \mathfrak{X}(S^2)$ such that, on every patch where spherical coordinates (θ, φ) give a diffeomorphism, we have $\xi = \frac{\partial}{\partial \varphi}$. (There are two things that have to be checked: one is that this vector field glues well along overlaps of patches, the other is that it extends smoothly to the poles of S^2 , which are not covered by any spherical coordinate patch.)
- 2. Show in contrast that there is *no* smooth vector field $\xi \in \mathfrak{X}(S^2)$ which has $\xi = \frac{\partial}{\partial \theta}$ on every such patch.
- 3. Show that there is a 2-form $\omega \in \Omega^2(S^2)$ which has $\omega = \sin \theta \, d\theta \wedge d\varphi$ on each such patch. Show moreover that ω is nowhere vanishing on S^2 . Why is this not a contradiction with the fact that $\sin \theta$ vanishes at $\theta = 0$?
- 4. Compute $\int_{S^2} \omega$. (You may freely use the principle mentioned but not proven in class, that we are allowed to excise subsets of measure zero.)
- 5. Show that ω of the previous part is not exact, i.e. there is no $\eta \in \Omega^1(S^2)$ such that $\omega = d\eta$.
- 6. Show that the form dx on \mathbb{A}^1 does not extend to the one-point compactification S^1 (thought of as a smooth manifold), while the vector field $\frac{\partial}{\partial x}$ does extend. Show that the extended vector field vanishes at the added point $x = \infty$. (Hint: to save a little effort, you can actually deduce the fact that dx does not extend to $x = \infty$ from the fact that the extended vector field vanishes there.)

Exercise 3. In this problem you will study differential forms on Euclidean 3-space \mathbb{E}^3 and relate the exterior derivative d to div, grad, and curl. (Note \mathbb{E}^3 is setwise the same as \mathbb{A}^3 ; we call it \mathbb{E}^3 to emphasize the inner product on the underlying vector space; the relevance of this point will appear below.)

Suppose $\xi = P(x, y, z) \frac{\partial}{\partial x} + Q(x, y, z) \frac{\partial}{\partial y} + R(x, y, z) \frac{\partial}{\partial z}$ is a vector field on \mathbb{E}^3 . We associate to ξ a 1-form α_{ξ} and a 2-form β_{ξ} by the formulas

$$\alpha_{\xi} = Pdx + Qdy + Rdz,$$

$$\beta_{\xi} = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

These formulas give isomorphisms

$$\mathfrak{X}(\mathbb{E}^3) \simeq \Omega^1(\mathbb{E}^3) \simeq \Omega^2(\mathbb{E}^3).$$

Also, we can associate a 3-form ω_f to a function *f* by the formula

$$\omega_f = f(x, y, z) \, \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z.$$

- 1. These isomorphisms are made pointwise, so belong to linear algebra. That is, they are derived from similar isomorphisms for a 3-dimensional real inner product space. So, fix a 3-dimensional real inner product space *V*. Choose an orthonormal basis for *V* and define isomorphisms $V \simeq V^* \simeq \wedge^2 V^*$ by imitating the formulas above. Explain how these isomorphisms depend on the choice of basis (you should find that for two orthonormal bases which define the same orientation on *V* you get the same isomorphisms, but if the two bases define different orientations there are some extra signs.)
- 2. Identify the composition

$$\Omega^0(\mathbb{E}^3) \stackrel{d}{\to} \Omega^1(\mathbb{E}^3) \to \mathfrak{X}(\mathbb{E}^3)$$

with the operator taking the gradient of a function. (The second map is the isomorphism above.) Generalize to \mathbb{E}^n for any *n*.

3. Identify the composition

$$\mathfrak{X}(\mathbb{E}^3) \to \Omega^1(\mathbb{E}^3) \stackrel{\mathrm{d}}{\to} \Omega^2(\mathbb{E}^3) \to \mathfrak{X}(\mathbb{E}^3)$$

with the curl operator. (The first and last maps are the isomorphisms above.)

4. Identify the composition

$$\mathfrak{X}(\mathbb{E}^3) \to \Omega^2(\mathbb{E}^3) \xrightarrow{d} \Omega^3(\mathbb{E}^3) \to \Omega^0(\mathbb{E}^3)$$

with the divergence operator. (The first and last maps are the isomorphisms above.)

- 5. What is the meaning of the identity $d^2 = 0$ in terms of divergence and curl?
- 6. (*) Can you say anything about analogues in higher dimensions?

Exercise 4. Suppose *V* is a vector space. Let or(V) denote the set of orientations of *V*; given $o \in or(V)$ let $-o \in or(V)$ denote the other orientation. Now define the space of *densities on V*, D(V), to be

$$D(V) = (\det(V) \times or(V)) / [(\omega, o) \sim (-\omega, -o)].$$

- 1. (*) Give a natural structure of 1-dimensional vector space on D(V). Show that, given a map $T : V \to W$ with dim $V = \dim W$, there is a natural induced map $D(T) : D(V) \to D(W)$, which behaves functorially, i.e. $D(T \circ T') = D(T) \circ D(T')$. Show that if $T : V \to V$ then the corresponding map $D(T) : D(V) \to D(V)$ is multiplication by $|\det T|$. The absolute value sign here is the crucial new point.
- 2. (*) If *M* is a smooth manifold, construct a line bundle D(M) such that $D(M)_p = D(T_p^*M)$: this is the bundle of *densities on M*. Show that D(M) admits nonvanishing global sections, whether or not *M* is orientable (in contrast to det T^*M which admits nonvanishing global sections if and only if *M* is orientable).
- 3. (*) For $\rho \in \Gamma(D(M))$ define $\int_M \rho$. The definition should be very similar to our definition of integration of differential forms over *oriented* M, but it should *not* require M to be oriented. A precise way of stating the relation between the two notions of integration is: if M does happen to be oriented (with orientation o), then given $\omega \in \Omega^m(M)$ we can define a corresponding $\rho \in \Gamma(D(M))$ by $\rho(p) = (\omega(p), o(p))$, and in that case we should have $\int_M \omega = \int_M \rho$.