
M 382D: Differential Topology
Spring 2015

Exercise Set 9
Due: Wed Apr 15 (tax day)

Exercises marked with (?) will definitely not be graded.

Exercise 1. Let φ : A3 → A3 be given by

(x1, x2, x3) 7→ (y1, y2, y3) = (x1x2, x1x3, x2x3).

Compute φ∗(dy1), φ∗(dy1 ∧ dy2), φ∗(dy1 ∧ dy2 ∧ dy3), and φ∗(y1y2dy3).

Exercise 2. This exercise gives a little practice with changes of coordinates for vector fields
and forms. Our conventions for spherical coordinates on S2 are

x = cos θ, y = sin θ sin ϕ, z = sin θ cos ϕ.

1. Show that there exists a smooth vector field ξ ∈ X(S2) such that, on every patch
where spherical coordinates (θ, ϕ) give a diffeomorphism, we have ξ = ∂

∂ϕ . (There
are two things that have to be checked: one is that this vector field glues well along
overlaps of patches, the other is that it extends smoothly to the poles of S2, which
are not covered by any spherical coordinate patch.)

2. Show in contrast that there is no smooth vector field ξ ∈ X(S2) which has ξ = ∂
∂θ on

every such patch.

3. Show that there is a 2-form ω ∈ Ω2(S2) which has ω = sin θ dθ ∧ dϕ on each such
patch. Show moreover that ω is nowhere vanishing on S2. Why is this not a contra-
diction with the fact that sin θ vanishes at θ = 0?

4. Compute
∫

S2 ω. (You may freely use the principle mentioned but not proven in
class, that we are allowed to excise subsets of measure zero.)

5. Show that ω of the previous part is not exact, i.e. there is no η ∈ Ω1(S2) such that
ω = dη.

6. Show that the form dx on A1 does not extend to the one-point compactification S1

(thought of as a smooth manifold), while the vector field ∂
∂x does extend. Show that

the extended vector field vanishes at the added point x = ∞. (Hint: to save a little
effort, you can actually deduce the fact that dx does not extend to x = ∞ from the
fact that the extended vector field vanishes there.)

Exercise 3. In this problem you will study differential forms on Euclidean 3-space E3 and
relate the exterior derivative d to div, grad, and curl. (Note E3 is setwise the same as A3;
we call it E3 to emphasize the inner product on the underlying vector space; the relevance
of this point will appear below.)
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Suppose ξ = P(x, y, z) ∂
∂x + Q(x, y, z) ∂

∂y + R(x, y, z) ∂
∂z is a vector field on E3. We asso-

ciate to ξ a 1-form αξ and a 2-form βξ by the formulas

αξ = Pdx + Qdy + Rdz,
βξ = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy.

These formulas give isomorphisms

X(E3) ' Ω1(E3) ' Ω2(E3).

Also, we can associate a 3-form ω f to a function f by the formula

ω f = f (x, y, z)dx ∧ dy ∧ dz.

1. These isomorphisms are made pointwise, so belong to linear algebra. That is, they
are derived from similar isomorphisms for a 3-dimensional real inner product space.
So, fix a 3-dimensional real inner product space V. Choose an orthonormal basis
for V and define isomorphisms V ' V∗ ' ∧2V∗ by imitating the formulas above.
Explain how these isomorphisms depend on the choice of basis (you should find
that for two orthonormal bases which define the same orientation on V you get the
same isomorphisms, but if the two bases define different orientations there are some
extra signs.)

2. Identify the composition

Ω0(E3)
d→ Ω1(E3)→ X(E3)

with the operator taking the gradient of a function. (The second map is the isomor-
phism above.) Generalize to En for any n.

3. Identify the composition

X(E3)→ Ω1(E3)
d→ Ω2(E3)→ X(E3)

with the curl operator. (The first and last maps are the isomorphisms above.)

4. Identify the composition

X(E3)→ Ω2(E3)
d→ Ω3(E3)→ Ω0(E3)

with the divergence operator. (The first and last maps are the isomorphisms above.)

5. What is the meaning of the identity d2 = 0 in terms of divergence and curl?

6. (?) Can you say anything about analogues in higher dimensions?

Exercise 4. Suppose V is a vector space. Let or(V) denote the set of orientations of V;
given o ∈ or(V) let −o ∈ or(V) denote the other orientation. Now define the space of
densities on V, D(V), to be

D(V) = (det(V)× or(V))/ [(ω, o) ∼ (−ω,−o)] .
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1. (?) Give a natural structure of 1-dimensional vector space on D(V). Show that,
given a map T : V → W with dim V = dim W, there is a natural induced map
D(T) : D(V) → D(W), which behaves functorially, i.e. D(T ◦ T′) = D(T) ◦ D(T′).
Show that if T : V → V then the corresponding map D(T) : D(V) → D(V) is
multiplication by |det T|. The absolute value sign here is the crucial new point.

2. (?) If M is a smooth manifold, construct a line bundle D(M) such that D(M)p =
D(T∗p M): this is the bundle of densities on M. Show that D(M) admits nonvanishing
global sections, whether or not M is orientable (in contrast to det T∗M which admits
nonvanishing global sections if and only if M is orientable).

3. (?) For ρ ∈ Γ(D(M)) define
∫

M ρ. The definition should be very similar to our def-
inition of integration of differential forms over oriented M, but it should not require
M to be oriented. A precise way of stating the relation between the two notions
of integration is: if M does happen to be oriented (with orientation o), then given
ω ∈ Ωm(M) we can define a corresponding ρ ∈ Γ(D(M)) by ρ(p) = (ω(p), o(p)),
and in that case we should have

∫
M ω =

∫
M ρ.
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