
1 Why study complex geometry?

The main goal of this course is to understand the natural differential geometry of complex
manifolds : Kähler geometry.

Why should we care about this? Several possible answers.
For differential geometers : A general Riemannian metric is a difficult beast. We’d like to

look for a class of metrics which is big enough to contain a lot of interesting examples, but
somehow better behaved than the most general case. Kähler metrics provide such a class.
Essentially all of the standard formulas of Riemannian geometry simplify when restricted to
Kähler metrics. So, for instance, if you are looking for a compact Ricci-flat manifold, your job
is much easier if you look at the Kähler case: existence theorems and deformation theory are
both well understood. Another way of making the same point is to say that special holonomy
manifolds are easier than general ones, and Kähler manifolds are the easiest example of this
class (their holonomy is controlled by a unitary group rather than orthogonal).

For algebraic geometers : If you are interested in projective algebraic varieties X over
C, then you should be interested in Kähler metrics: every such X has one, and it leads to
information about the variety that is otherwise hard to get at. One “easy” example: the odd
Betti numbers of X (b1, b3, . . . ) are all even (this generalizes the fact that a Riemann surface
of genus g has b1 = 2g− 2). In fact, we will discover a rich structure in the cohomology of a
Kähler manifold.

For symplectic geometers : A Kähler metric is a particularly nice case of a symplectic
structure.

For physicists : Riemannian metrics arise very often in quantum field theory, as the target
spaces of sigma models. If we consider supersymmetric sigma models in four dimensions
(or their dimensional reduction to lower dimensions) then we naturally encounter Kähler
geometry.

2 Topics

1. Linear algebra of complex vector spaces. This is a little subtler than it first
sounds — one has to understand clearly the relationship between a real vector space
V and its complexification, particularly in the case when V already carries a complex
structure. We will work this out and its consequences for tensor algebras, particularly
the exterior algebra.

2. Complex manifolds. These are our basic objects of study. A complex manifold
can be defined in two ways: either as a space locally modeled on an open subset of
Cn with holomorphic transition functions, or as a real C∞ manifold of dimension 2n
equipped with a complex structure. In general a single real manifold may admit various
inequivalent complex structures. We will describe various families of examples.

3. Differential calculus on (almost) complex manifolds. On any C∞ manifold
one has the ((super)commutative) differential graded algebra of C∞ differential forms,
graded by degree, equipped with the exterior derivative d with d2 = 0. On a complex
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manifold one can refine this to include a second grading, and there is a natural de-
composition d = ∂ + ∂̄ with ∂2 = 0, ∂̄2 = 0, ∂∂̄ = −∂̄∂. The operators ∂ and ∂̄ are
fundamental for much of what follows.

4. Newlander-Nirenberg theorem. A useful way of thinking about complex structures
is given by the Newlander-Nirenberg theorem, which says that a complex structure is
equivalent to an almost complex structure obeying an additional condition of integra-
bility. We will state this theorem and prove the easy direction (a complex structure
induces an integrable almost complex structure) but probably not the hard direction.

5. Dolbeault cohomology. The finer decomposition of the algebra of C∞ differential
forms just mentioned corresponds to a finer decomposition of the de Rham cohomology,
Hn(X) =

⊕
p+q=nH

p,q(X). Importantly, the spaces Hp,q(X) can also be defined using
only holomorphic objects, not C∞ ones. This purely holomorphic description is best
given in the language of sheaves and sheaf cohomology, so we will take a little detour
to learn the basic facts about these, which is well worth doing in any case.

6. Holomorphic vector bundles. On a complex manifold we have a natural notion of
holomorphic vector bundle. Much like complex manifolds, holomorphic vector bundles
can be defined in two ways. One way is to say they are vector bundles for which
the transition functions are holomorphic. The other is to say they are vector bundles
equipped with a ∂̄-operator obeying an “integrability” condition. The equivalence
between the two is a sort of linearized version of the Newlander-Nirenberg theorem.
Just as the notion of complex manifold is finer than that of C∞ manifold, the notion
of holomorphic vector bundle is finer than that of C∞ vector bundle. Holomorphic
vector bundles occur often in nature (one canonical example is the tangent bundle of a
complex manifold). We will briefly discuss the classification of such bundles in simple
situations, particularly over CP1 (Grothendieck’s theorem).

7. Holomorphic line bundles and divisors. Holomorphic vector bundles of rank 1,
also called holomorphic line bundles, play a particularly important role in complex ge-
ometry, especially in its algebraic applications. We will discuss them relatively briefly.
In particular we will introduce the “Picard group” Pic(X) consisting of all holomor-
phic line bundles on X up to isomorphism. By considering the zeroes and poles of a
meromorphic section, one also discovers that line bundles are closely related to divisors,
certain codimension-1 subsets of X given locally as zero sets of holomorphic functions.

8. Hermitian metrics and Hermitian bundles. On a complex manifold, a coarse
notion of “metric compatible with a complex structure” is that of a Hermitian metric
on the tangent bundle. We will describe this notion and its analogue for a general
vector bundle.

9. Kähler manifolds. A Kähler manifold is a complex manifold equipped with a partic-
ularly congenial Hermitian metric. There are several equivalent ways of understanding
what a Kähler manifold is. The most differential-geometric approach is to say it is a
metric in which around every point there is a system of Riemann normal coordinates
which are also holomorphic coordinates. Another approach, more adapted to the needs
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e.g. of mirror symmetry, is to say it is a metric induced by a symplectic structure and
a complex structure which are compatible in a precise sense.

10. Fubini-Study metric. Perhaps the most famous Kähler metric is the “Fubini-Study
metric” on CPn. Its importance derives largely from the fact that it induces a Kähler
metric on any compact complex submanifold of CPn, which implies that projective
varieties are Kähler.

11. Hodge theory. For C∞ Riemannian manifolds there is an especially important dif-
ferential operator, the Laplacian ∆ acting on C∞ forms. For compact manifolds the
kernel of ∆, the space of harmonic forms, consists of privileged representatives for the
de Rham cohomology. For compact Kähler manifolds there is a similar story for the
Dolbeault cohomology. The proof uses essentially the same analytic tools as in the C∞

case; we will give a detailed sketch of the proof but probably not fill in all the details.
One thing we learn immediately from this is that the cohomology of a compact Kähler
manifold carries an intricate linear-algebraic structure known as a Hodge structure,
which encapsulates a lot of information about the manifold. In particular it says that
the Betti numbers bn can be refined to Hodge numbers hp,q, with bn =

∑
p+q=n h

p,q.

Moreover one has Hp,q(X) ' Hq,p(X), so hp,q = hq,p from which the even-ness of Betti
numbers mentioned in the introduction follows.

12. Jacobians. The set of all holomorphic line bundles on a complex manifold X forms
an interesting group Pic(X). In general this group is difficult to understand, but when
X is Kähler we can use Hodge theory to show that it can be elegantly described as a
disjoint union of complex tori.

13. Lefshetz sl(2). The space of harmonic forms on X (which we now know is isomorphic
to the cohomology) carries a natural action of the Lie algebra sl(2), generated by three
operators E,F,H: H is the total degree operator (shifted by the dimension of X), E
is the operation of wedging with the Kähler form, F is the operation of contracting
with the Kähler form. This gives a lot of information about the cohomology of X. By
the way, the appearance of sl(2) here might seem a bit mysterious; why should sl(2),
an algebra of 2 × 2 matrices, have anything to do with the manifold X? It may be
clarified (for physicists anyway!) by the observation that sl(2) ' so(2, 1) and SO(2, 1)
would arise as the R-symmetry group in dimensional reduction from R3,1 to R1,0, so
it might naturally appear in a 4-dimensional supersymmetric theory. We will make a
few remarks in this direction.

14. Lefshetz (1,1) Theorem. There is a canonically defined map Pic(X) → H1,1(X)
which we will prove is surjective on the integral classes H1,1(X,Z) = H1,1(X) ∩
H2(X,Z). This is the essential step in proving the “Hodge conjecture for curve classes,”
as we will explain.

15. Chern classes. Some of the discrete topological information specifying a complex vec-
tor bundle is nicely captured by cohomological invariants known as the Chern classes.
An especially important case is the first Chern class of a complex line bundle, which
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already appeared as the map Pic(X) → H1,1(X) above. We will describe the basic
properties of the Chern classes.

16. Hirzebruch-Riemann-Roch formula. The sheaf cohomology groups Hp(E) of a
holomorphic vector bundle over a compact complex manifold X are somewhat delicate
objects: their dimensions are not easy to calculate in general. However, there is a rather
elegant formula for the alternating sum of the dimensions, called the “holomorphic
Euler characteristic” χ(E), which only depends on the Chern classes of E (in particular
it only depends on the C∞ structure of E, not the holomorphic structure!) This formula
is a special case of the celebrated Atiyah-Singer index theorem and well worth knowing.
We should definitely state the formula and some of its applications, and ideally we will
give at least a sketch of a proof when X is Kähler (by now there are several different
proofs using quite different technologies).

17. GAGA. Those whose background is in algebraic geometry may wonder how the holo-
morphic point of view (where we allow arbitrary holomorphic functions in all our
constructions), which we take in most of the course, relates to a purely algebraic point
of view (where we only allow algebraic functions, not transcendental ones). The an-
swer, fortunately, is that in many contexts the two points of view agree. This is known
generally as the “GAGA principle” after Serre’s paper “Geometrie Algebrique et Ge-
ometrie Analytique.” Also relevant here is Chow’s Theorem which says that every
compact complex submanifold of CPn is a projective variety.

18. Kodaira/Serre vanishing. There are some special cases where one can understand
sheaf cohomology a bit better: when L satisfies an appropriate “positivity” condition,
one can show for large enough m that all the higher cohomology groups H i(E⊗Lm) are
actually trivial. In that case the Hirzebruch-Riemann-Roch formula gives a formula for
the dimension of H0(E⊗Lm), i.e. the number of sections of E⊗Lm. Such “vanishing
theorems” have many applications; we could try to sketch some.

19. Kodaira embedding. Given a compact Kähler manifold X we may ask whether
it can be embedded into CPn for some n. (As mentioned, by Chow’s Theorem this
is the same as asking whether X lives naturally in the world of algebraic geometry.)
The answer is no in general, but sometimes yes: according to Kodaira’s embedding
theorem, if L is a positive line bundle on X, then for large enough m L⊗m has “a lot
of sections”, and one can use those sections to map X into projective space. It is often
possible to show very easily that such an L exists (e.g. in the case of simply connected
Calabi-Yau manifolds, for which see below.)

20. Yau’s Theorem. In general it is difficult to find compact manifolds for which the Ricci
curvature vanishes (apart from “boring” examples like flat spaces). Remarkably there
exists a large class of Kähler manifolds with this property, which are called Calabi-Yau
manifolds since their existence was established by Yau’s proof of Calabi’s conjecture.
We will certainly not prove this theorem, but we should describe some examples of
Calabi-Yau manifolds and their basic properties.
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21. (Variation of) Hodge structures. The structure on H∗(X) given by Hodge theory
can be described a bit more abstractly as a Hodge structure. If we have a family of
compact Kähler manifolds depending holomorphically on parameters, then we get a
family of Hodge structures which varies in a controlled way. This structure is rigid
enough that whenever you find such a family it is reasonable to ask whether it actually
came from a family of compact Kähler manifolds. It can be fruitful to study such
variations “abstractly,” without reference to the original family; this construction plays
a crucial role in mirror symmetry, and has been exploited to great effect elsewhere as
well (sadly I am not very knowledgeable on the other applications, but would love an
excuse to learn about them!)

22. Mirror symmetry. As mentioned above, a Kähler metric is a particularly nice fusion
between a symplectic structure and a complex structure. There is a bizarre-sounding,
but apparently very deep, theory of “mirror symmetry” which in a certain sense ex-
changes the two structures. The simplest case to state is that of Calabi-Yau manifolds:
given a “mirror pair” of Calabi-Yau manifolds X and Y , mirror symmetry relates the
symplectic geometry of X to the complex geometry of Y , and vice versa. We can
probably do no more than a brief overview of how this relation is supposed to go, and
perhaps a bit about its origin in physics.

23. Berger classification of holonomy. The holonomy group of a “generic” Riemannian
manifold of dimension n is SO(n). A differential-geometric way of understanding the
importance of the Kähler condition is that Kähler manifolds of complex dimension m
are special holonomy manifolds, where the holonomy group is instead U(m) ⊂ SO(2m).
According to Berger’s classification, for an irreducible manifold there are not too many
other possibilities: one can have SU(m) (Calabi-Yau manifolds), Sp(k) (hyperkähler
manifolds), Sp(k) × Sp(1)/Z2 (quaternionic-Kähler manifolds), G2 or Spin(7). Each
of these types has its own distinct sort of geometry, which would be fun to describe.

24. Hyperkähler manifolds. A hyperkähler manifold is one with a Riemannian metric
which is Kähler with respect to three different complex structures I1, I2, I3 obeying
the quaternionic relations IiIj = εijkIk. Very loosely one could say that “hyperkähler
is to quaternions as Kähler is to complex numbers.” Hyperkähler manifolds have
particularly pleasant properties — for example, they are always Ricci-flat.

25. Twistor spaces. Although the definition of “hyperkähler” involves just three complex
structures, in fact a hyperkähler manifold naturally carries a whole S2 worth of complex
structures. It is natural to organize them into a single complex manifold Z fibered over
CP1, called the twistor space; in this way one manages to reduce hyperkähler geometry
to complex geometry. Holomorphic objects over the twistor space then get translated
to more differential-geometric objects over the original hyperkähler space.

26. Moduli spaces of Higgs bundles. Suppose we fix a Riemann surface C, and a
complex Lie group G. Then we can consider the moduli space X of flat G-connections
on C. X is “obviously” a complex manifold (or more precisely it has an open subset
which is). What is much more surprising, discovered by Hitchin, is that X is actually
hyperkähler.
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