Riemannian Geometry: Exercise Set 3

Exercise 1

Define a conformal map ϕ between Riemannian manifolds (M, g) and (M', g') to be one for which $\phi^*g' = fg$, for some nowhere-vanishing $f \in C^{\infty}(M)$.

- 1. Show that ϕ is conformal if and only if it preserves (the cosines of) angles between tangent vectors.
- 2. Suppose M, M' are open subsets of the complex plane with its usual flat metric. Show that $\phi : M \to M'$ is conformal if and only if it is either holomorphic or antiholomorphic and has no critical points. What is the rescaling factor f? (Hint: it is convenient to write the metric as $g = \frac{1}{2} dz d\bar{z}$; but if you do this you should be careful to understand exactly what it means!)
- 3. (For fun.) Give a direct "geometric" argument no grubby computations, just pictures that stereographic projection is an angle-preserving (hence conformal) map from a patch of S^n to \mathbb{R}^n .

Exercise 2

1. Do Exercise 3.11 of Lee (proof that the Poincare half-space model of hyperbolic space is isometric to the Poincare ball model — the notation is defined on page 38).

Exercise 3

Suppose M is a smooth manifold with vector bundles E, E' with connections ∇, ∇' .

1. Fix bases for E and E'. Write the connection coefficients for the canonical induced connections on $E \oplus E'$, $E \otimes E'$, E^* and End(E) (with respect to the induced bases), in terms of the connection coefficients for ∇ and ∇' . **Exercise 4**

Suppose M is a smooth manifold with a vector bundle E.

- 1. Suppose *E* has connections ∇ , ∇' with $\nabla = \nabla' + A$, where $A \in \mathcal{E}(\text{End } E \otimes T^*M)$. For any $\omega \in \mathcal{E}(E \otimes T^*M)$, show that $d_{\nabla}\omega = d_{\nabla'}\omega + A \wedge \omega$.
- 2. Show the "Leibniz rule": for any $s \in \mathcal{E}(E)$, $d_{\nabla}(As) = d_{\nabla}(A)s A \wedge \nabla s$. (Note the tricky minus sign!)

Exercise 5

Suppose M is a smooth manifold with a vector bundle E and connection ∇ .

- 1. Verify that if $\gamma: [0,1] \to M$ and $\tilde{\gamma}(t) = \gamma(1-t)$ then $P_{\gamma,\nabla} = P_{\tilde{\gamma},\nabla}^{-1}$.
- 2. Suppose $s \in \mathcal{E}(E)$ and $X \in T_p M$. Show that $\nabla_X s$ depends only on the restriction of s to a curve passing through p whose tangent vector at p is X. (In other words: fix some such curve and consider two sections s, s' which agree along the curve; then show $\nabla_X s = \nabla_X s'$.)