Riemannian Geometry: Exercise Set 4

Exercise 1

Suppose E is a line bundle over M, i.e. a vector bundle of rank r = 1. Let ∇ be a connection in E. Note that End E is canonically trivial (a basis is provided by the identity map $1 \in \mathcal{E}(\text{End } E)$), whatever E is.

1. Suppose that E is globally trivializable over M, and choose a global trivialization $s \in \mathcal{E}(E)$. Let $A \in \mathcal{E}(\text{End } E \otimes T^*M) \simeq \mathcal{E}(T^*M)$ be the connection 1-form representing ∇ with respect to this trivialization. Show that

$$P_{\nabla,\gamma}(s(\gamma(0))) = e^{-\int_{\gamma} A} s(\gamma(1)). \tag{0.1}$$

2. Suppose that E is globally trivializable over M. Suppose γ is a closed path in M which is the boundary of some 2-chain C. Show that

$$P_{\nabla,\gamma} = e^{-\int_C F_{\nabla}}.\tag{0.2}$$

- 3. Repeat the previous part without the assumption that E is globally trivializable.
- 4. Suppose ∇ is flat. Show that $P_{\nabla,\gamma}$ depends only on the homology class of γ .
- 5. In class we proved that for E of arbitrary rank and ∇ flat, $P_{\nabla,\gamma}$ depends only on the homotopy class of γ . In the last part you showed the stronger statement that if E is a line bundle then $P_{\nabla,\gamma}$ depends only on the homology class of γ . Re-derive this result directly from the statement about homotopy, using the relation between π_1 and H_1 .

Exercise 2

Suppose E is a vector bundle with a metric, i.e. we are given $g \in Sym^2(E^*)$. Let \langle, \rangle be the induced bilinear pairing on $\mathcal{E}(E)$. Suppose ∇ is an *orthogonal* connection in E, i.e. $d\langle s, s' \rangle = \langle \nabla s, s' \rangle + \langle s, \nabla s' \rangle$ for any $s, s' \in \mathcal{E}(E)$.

- 1. Show that $\nabla g = 0$.
- 2. Show that the parallel transport operator $P_{\nabla,\gamma}$ is orthogonal, i.e. $\langle e, e' \rangle = \langle P_{\nabla,\gamma}(e), P_{\nabla,\gamma}(e') \rangle$. In particular, if γ begins and ends at the same point $x \in M$, then $P_{\nabla,\gamma}$ belongs to the orthogonal group $O(E_x)$.

Exercise 3

For any vector space V with nondegenerate bilinear pairing \langle, \rangle , define $o(V) \subset \operatorname{End} V$ to consist of those matrices B with

$$\langle Bv, v' \rangle = -\langle v, Bv' \rangle. \tag{0.3}$$

Equivalently, in an orthogonal basis for V, o(V) consists exactly of the skew-symmetric matrices. (Indeed o(V) is the Lie algebra of the orthogonal group O(V).)

Now suppose given a bundle E over M. Let o(E) be the subbundle of End E whose fiber at $x \in M$ is $o(E_x)$.

- 1. Suppose given two orthogonal connections ∇ , ∇' in E. Let $A = \nabla' \nabla \in \mathcal{E}(\text{End } E \otimes T^*M)$. Show that that $A \in \mathcal{E}(o(E) \otimes T^*M)$. (So, in an orthogonal basis for E, A would be represented by an *antisymmetric* matrix of 1-forms.)
- 2. Suppose given an orthogonal connection ∇ in E. Show that $F_{\nabla} \in \mathcal{E}(o(E) \otimes \wedge^2 T^*M)$.