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Abstract—Modeling natural and artificial systems has played
a key role in various applications and has long been a task that
has drawn enormous efforts. In this work, instead of exploring
predefined models, we aim to identify implicitly the system degrees
of freedom. This approach circumvents the dependency of a spe-
cific predefined model for a specific task or system and enables a
generic data-driven method to characterize a system based solely
on its output observations. We claim that each system can be
viewed as a black box controlled by several independent parame-
ters. Moreover, we assume that the perceptual characterization of
the system output is determined by these independent parameters.
Consequently, by recovering the independent controlling parame-
ters, we find in fact a generic model for the system. In this work,
we propose a supervised algorithm to recover the controlling
parameters of natural and artificial linear systems. The proposed
algorithm relies on nonlinear independent component analysis
using diffusion kernels and spectral analysis. Employment of the
proposed algorithm on both synthetic and practical examples has
shown accurate recovery of parameters.

Index Terms—Kernel, linear systems, modeling, multidimen-
sional signal processing, non-parametric estimation, nonlinear
dynamical systems, system identification.

I. INTRODUCTION

M ODELING natural and artificial systems has played a
key role in various applications and has long been a task

that has drawn enormous efforts. Usually a predefined model is
developed for every type of task or system. Then the parame-
ters of that model are estimated based on observations of the
system output. In this work, we take a different approach. In-
stead of exploring predefined models, we aim to identify implic-
itly the system degrees of freedom or modes of variability. This
approach enables to capture the intrinsic geometric structure of
the system. Moreover, it circumvents the dependency of a spe-
cific predefined model for a specific task or system and provides
a generic data-driven method to characterize a system based
solely on its output observations. We claim that each system
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can be viewed as a black box controlled by several independent
parameters. Furthermore, we assume that the perceptual charac-
terization of the system output is determined by these indepen-
dent parameters. Consequently, by recovering the independent
controlling parameters, we find in fact a generic modeling for
the system. Thus, in this work, we aim to recover the control-
ling parameters of natural and artificial systems.
Musical instruments are examples of such systems, as each

musical instrument is controlled by several independent param-
eters. For example, a flute is controlled by covering its holes.
Formally, the parameter space can be written as a -dimensional
binary space , assuming the flute has holes and each
hole can be either open or covered. An important observation is
that the output signal of the flute depends on the blow of air (the
input signal) and the covering of the holes. However, the audible
music, or the music tones, depends only on the covering of the
holes. In other words, the played music depends solely on a fi-
nite set of the instrument’s controlling parameters. Another ex-
ample worth mentioning is a violin. Violin music is determined
by the length of the strings. We note that unlike the control-
ling parameters of the flute, the parameter space of the violin is
continuous, and can be written as , assuming strings of
length . In both examples, by recovering the independent con-
trolling parameters of the musical instrument, we may naturally
characterize the music and identify the played tones.
Recently, Singer and Coifman [1] have proposed a nonlinear

independent component analysis (ICA) method based on diffu-
sion kernels [2]–[7]. They assume that the observable data is a
nonlinear mapping of few independent parameters. Moreover,
the parameters are assumed to realize a specific variability
scheme, described by an Itô process [8], [9]. Based on esti-
mation of the local distortions of the observations, an intrinsic
metric is computed. This metric is invariant to the nonlinear
mapping and conveys the distance between the parameters.
Using this intrinsic metric, a kernel between the observations is
computed, and a spectral ICA [10] is employed. The obtained
spectral decomposition is used to build an inverse mapping of
the observable data into the parametric space.
The spectral embedding proposed in [1] is computed for a

given set of observations. However, in practice, and specifi-
cally in supervised learning tasks, not all the data is available.
Therefore, various extension methods for the spectral decompo-
sition have been explored [4], [11]–[14]. Unfortunately, none of
these methods can be naturally employed in [1] since the metric
used in the kernel relies on estimates of the local distortions of
the parameters in the observable space, which are unavailable.
Kushnir et al. [15] extend [1] and propose an efficient extend-
able spectral ICA algorithm. The authors propose a different in-
trinsic metric between the observations, which depends only on
estimates of the local distortions of just a few reference points.

1053-587X/$26.00 © 2011 IEEE
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The ability to extend the embedding provides an efficient recov-
ering of the independent parameters of observations, which are
not available in advance.
In this work, we exploit the nonlinear ICA method to recover

the independent parameters of systems. Themain difference and
challenge is that the output of a system heavily depends on the
excitation signal. Thus, it is not solely determined by the con-
trolling parameters, whereas the nonlinear maps discussed in
[1] and [15] are functions of the parameters. For that reason,
we restrict the scope of this work and consider only linear sys-
tems and propose a spectral algorithm based on [1] and [15]
to recover the independent parameters of a system. Based on
Fourier theory, we show that the problem of recovering the pa-
rameters of a linear system can be formulated as a problem of
recovering the parameters of a nonlinear map, which is inde-
pendent of the excitation signal. Consequently, we are able to
present the recovering algorithm as an application of the algo-
rithm presented in [15]. This algorithm is data-driven and not
specifically tailored for a certain task. These attractive features
can make it useful in the design, control, and calibration of a va-
riety of systems.We employ the algorithm on both synthetic and
practical examples. First, we show that the proposedmethod can
accurately recover the poles of an autoregressive (AR) process.
Next, we utilize the algorithm to retrieve the controlling param-
eters of acoustic channels in practical setups. It is worthwhile
noting that acoustic channels are known to be highly difficult
to model and acquire and play a key role in developing audio
processing applications, e.g., [16]–[23]. In [24], we applied the
proposed algorithm to the problem of source localization in a re-
verberant room using measurements from a single microphone.
Experimental results in a real reverberant environment demon-
strated accurate recovery of the source location.
This paper is organized as follows. In Section II, we formu-

late the problem. In Section III, we present the computation of
a diffusion kernel. In Section IV, the proposed algorithm for re-
covering the independent parameters is presented, including a
synthetic example. Finally, the application to acoustic channels
and experimental results are shown in Section V.

II. PROBLEM FORMULATION

Throughout this paper, vectors are denoted by bold small let-
ters and matrices are denoted by bold capital letters. In addition,
elements in vectors and matrices are written with a superscript
index in parentheses, e.g., the element of a vector is ex-
pressed as .
Let denote a vector of parameters that control a par-

ticular natural or artificial system of interest. We follow Singer
and Coifman [1], and Singer et al. [25], and assume that the con-
trolling parameters evolve in time according to two evolution
regimes: 1) a small fluctuations regime, representing fast natural
changes of the system and 2) perceptual slow system variations.
In the violin example mentioned in the Introduction, a percep-
tual system variation corresponds to setting different lengths of
violin strings. On the other hand, small fluctuations may cor-
respond to different finger placements on the strings aiming to
produce the same tone. As in [1], we model these propagation
regimes by stochastic Itô processes in order to obtain a traceable
derivation.
We restrict the scope of the work and consider only linear

systems. Let be a real-valued input signal, a real-valued

impulse response of a linear system, which varies in time as a
result of the time varying controlling parameter , and the cor-
responding observable output signal. We assume that the input
signal is a zero-mean, wide-sense stationary (WSS) process.
In practice, we only require that the input signal is a quasi-
stationary process (i.e., WSS process in short time intervals),
which is a much weaker assumption that holds for many natural
signals such as speech and music.
We observe the output signal in short-term intervals of

length . We assume the interval length is sufficiently short,
such that in each interval, the linear system can be considered
time-invariant. Consequently, the controlling parameter of the
system in each interval is assumed to be constant. In the flute
example, each time interval may correspond to a different flute
tone, which is configured by a different cover of the flute’s
holes. According to our assumption, the finger placement on
the flute does not vary during the entire short-term interval.
We note that we discard intervals with varying parameters as
it exceeds the scope of this paper and intend to address it in
future work.
Let be the number of time intervals, and let

be the set of the controlling parameters, such
that is the parameter vector controlling the system in the

interval. Let and denote the corresponding input and
output signals in time interval . Thus, the relation between
and is expressed using linear convolution, denoted by , as

where and are discrete time indices.
We assume short-term intervals are available beforehand.

Let denote a subset of training parameters corresponding
to the available intervals. Each training parameter is re-
covered times from different measurements. Unfortunately,
in practice we cannot repeat the measurement with exactly the
same parameter. Thus, for each training parameter , we have
a set of additional intervals of the measured signal with cor-
responding parameters .
With respect to the proposed temporal evolution model of

the controlling parameters, a pair of parameters and , in
time intervals and , convey perceptually different system con-
figurations, e.g., a different cover of the flute holes producing
different tones. On the other hand, for each training interval
, the parameters in the additional intervals are seen as
small perturbations of , e.g., different finger placements pro-
ducing the same tone. See Appendix I for mathematical details
of the temporal evolution of the parameters where we represent
the slow and rapid variation regimes as drift and noise coef-
ficients of a stochastic Itô process. The Itô process modeling
provides a unique solution to the generally ill-posed nonlinear
ICA problem. In addition, it enables to compute the local Jaco-
bian-based distortion metric induced by the nonlinear transfor-
mation that maps the parameter space into the observable space,
as described in Section III.
Our goal in this work is to recover the inaccessible set of con-

trolling parameters given the output signal observations. In
addition, we assume training observations and their corre-
sponding parameters are given beforehand. These training sam-
ples are utilized for the calibration and training of the proposed
recovering algorithm.
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III. DIFFUSION KERNEL

In this section we construct an anisotropic diffusion kernel.
We utilize an approximation of the Euclidean distance in the
parametric space (i.e., the controlling parameters domain) [1],
[15] and build a kernel between the given observations of the
output signal of the linear system of interest.

A. The Observations and Covariance Matrices

Let denote the covariance function of the output signal
, which is defined as [26]

(1)

where denotes mathematical expectation, and is the
covariance of the input signal . Since is a WSS process,

is time invariant, and therefore (1) implies that the time
variations of depend solely on the evolution of the con-
trolling parameters of the linear system. Thus, we obtain a
representation of the observable output signal as a function of
the (dynamics of the) controlling parameters . It is worthwhile
noting, that the same result could be obtained by observing the
short-term power spectral density (PSD) of the output signal.
For simplicity, we prefer to observe the second order statistics
of the signal directly, conveyed by the covariance of the observ-
able signal in the time domain, rather than to use the (“prede-
fined”) Fourier transform.
Let denote the (nonlinear) mapping of the parameter vectors

to the first covariance function elements of the output
signal, given by

(2)

where is a vector of length consisting of the covari-
ance function elements, i.e.,

for .
In the remainder of this paper, we view the covariance func-

tion elements of the linear system output as observations. More-
over, these observations are interpreted as (nonlinear) mappings
of the controlling parameters via the function . In practice, the
covariance elements are not available. However, they can be es-
timated given the output signal as an empiric average of the
cross-multiplication of the output signal in each time interval
separately. In each interval , according to (2), we calculate
elements of the corresponding covariance function
based on the output signal . Let denote the set
of observations, and let denote the subset of ob-
servations corresponding to the training parameters in . Using
this notation we can define to be the nonlinear map
between an unknown parametric manifold and
a corresponding observed data set . This presentation
enables to relax our problem setting to the proposed setting in
[15].
We illustrate the settings by observing the following autore-

gressive (AR) process of order 1

where is a zero-mean white noise with variance, and
is the AR coefficient. Clearly, in this example,

the system is controlled by a single parameter . How-
ever, observing the output signal in the time domain heavily
depends on the random white noise input . Consequently,
the evolution of the controlling parameter may be weakly
emerged in , and hence hard to recover.
Fortunately, we are able to represent the AR process using

convolution with the following infinite AR impulse response

This impulse response demonstrates a nonlinear dependency be-
tween the system and the controlling parameter . The corre-
sponding covariance function of the AR process is given by

(3)

where denotes absolute value. In (3) we represent the covari-
ance function of the observable signal as a (nonlinear) function
of the controlling parameter . We note that should satisfy

in order to get a stable impulse response.
In this work, given the output signal measurements, we es-

timate their covariance function elements. These elements are
viewed as observations of the nonlinear mapping (3). Thus, the
goal in this work is to recover the controlling parameter from
such observations.
Let denote the covariance matrix of size of the

observation , defined by

(4)

It can be shown (see Appendix I for the derivation and mathe-
matical details) that the covariance matrix can be expressed as

(5)

where is the Jacobian matrix of the function , whose ele-
ments are given by , where are first-order partial
derivatives of the coordinate of the mapping with respect
to the parameter , and denotes matrix transpose. The
Jacobian of the function is of key importance to the proposed
algorithm as described in Section IV but unfortunately is un-
available. However, (5) allows to represent via the
accessible covariance matrix of the observations.
We are able to compute the covariance matrices of only the

training observations. Given measurements of the output signal
corresponding to the perturbations of the training samples

, we compute their corresponding observations .
Now, based on the “cloud” of observations , we estimate
the local covariance matrix for each training observation
empirically via

(6)

where .

B. Computation of the Anisotropic Kernel

The proposed parametrization method is based on the com-
putation of an anisotropic diffusion kernel. In order to obtain
recovery of the independent parameters, the computed kernel is
based on the Euclidean distance between the parameters. Un-
fortunately, the parameters are available only via the nonlinear
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observations. In [1], Singer and Coifman showed that the Eu-
clidean distance between two samples in the parametric space
can be approximated by the observations. In this work, we adopt
a similar strategy to approximate the Euclidean distance be-
tween the parameters, as proposed by Kushnir et al. in [15],
which also enables a natural extension.
Let , be two parameter samples, i.e., two system con-

figurations in the parametric space. According to previous nota-
tion, we observe their nonlinear mapping via . Let

and be the mapping of and into
the observable space. It is shown in [15] that a second-order ap-
proximation of the squared Euclidean distance in the parametric
space is given by (see Appendix II)

(7)

We note that the rank of is and therefore a pseudo-
inverse should be computed.
We compute an affinity matrix between the obser-

vations in and the observations in . The affinity is based on
a Gaussian kernel with scale parameter and given by

(8)

We observe the following matrix

(9)

where is a diagonal matrix containing the sum of along
columns, i.e., . It is shown [15] that
corresponds to

(10)

for and , and denotes the de-
terminant of the matrix . Based on [15, Lemma 3.3], is a
Gaussian kernel based on approximation of the Euclidean dis-
tance between the training samples in the parametric space (7).
Moreover, (9) implies that the affinity between the training sam-
ples in is conveyed via the affinity between just the training
samples and all the other samples in . In other words, two
training samples are similar if they are “seen” the same way
by the rest of the samples. This property provides the possi-
bility to naturally extend the kernel to new samples as shown
in Section IV.
It is worthwhile to emphasize two points for further insight

on the equivalency between the direct computation of the kernel
between the training samples in (10) and the computation via
new samples in (9). First, [15, Theorem 3.2] claims that the
equivalence between the two alternative computations hold only
for sufficient number of new (randomly distributed) samples.
Second, the role of the Gaussian (or exponentially decaying)
kernel is to discard implicitly from the distance approximation
in (9) new samples that do not lie between the training samples.
See Appendix III for a simulation of the kernel computation in
a simple 2-D example.

Substituting (5) and (6) into (10) yields

This kernel constitutes the key point of the algorithm. The
affinity between the observations is based on an approximation
of the Euclidean distance between the corresponding under-
lying parameters.

IV. FROM THE OBSERVABLE DATA TO THE

LINEAR SYSTEM PARAMETERS

In this section, we propose a supervised algorithm for the
reparametrization of linear systems based on the algorithm pre-
sented in [15]. The recovery of the controlling parameters of
the system relies on the kernel computed in Section III. Based
on the kernel eigendecomposition, the observations are mapped
into a new domain, which corresponds to the parametric domain
up to a monotonic distortion.

A. Inverse Mapping

Let be the normalized graph-Laplacian [27] defined as

where is a diagonal matrix with . It
can be shown that converges to the backward Fokker–Planck
operator on the parametric manifold [6], [28]

where is the density potential , and denotes
the Laplacian operator. Assuming the set is a uniform sam-
pling of the underlying parameter yields constant potential and

. By (Section IV-A), we obtain a convergence of the
graph-Laplacian to the Laplace–Beltrami operator .
There exist eigenfunctions of that are monotonic

functions of the parameters as guaranteed by the Sturm–Liou-
ville theory. These eigenfunctions can be chosen as suggested
in [10]. Thus, they can be used to represent the data in terms
of its independent controlling parameters. For simplicity, we
assume that these eigenvectors correspond to the largest eigen-
values. Let be a map from the observations to the
space spanned by eigenfunctions of , given by

(11)

Ideally, the map can be seen as the inverse map of the non-
linear function up to a monotonic distortion. Unfortunately, in
practice we have the eigenvectors of , which only approximate
the eigenfunctions of .

B. Restriction and Extension Operators

Let be a normalized affinity matrix , and let
, and be the singular values and the

left and right singular vectors of the matrix , where
the singular values are denoted in descending order. The vectors

and form an orthonormal basis
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Fig. 1. A diagram of the parametric and observable space. We illustrate the set
of samples and the mappings.

of and respectively. In addition, we have that and
are the eigenvalues and eigenvectors of . It

implies that establish the reparametrization of the training
observations in . Accordingly, let be an embedding of the
training observations into the space spanned by the eigenvec-
tors, given by

(12)

Clearly, (12) can be considered an approximation of the map
(11). Consequently, it may represent the data in terms of its in-
dependent controlling parameters.
On the other hand, are the eigenvectors of , which

is an affinity matrix between observations in . To cir-
cumvent additional spectral decomposition, the extended eigen-
vectors can be computed via

(13)

Reference [15, Lemma 4.1] implies that and coin-
cide on the training observations. It further implies that
are the extension of to new observations according to a
regularized mean square error criterion. In addition, since
are obtained by the SVD, the extension preserves orthonor-
mality. As a consequence, we conclude that provide
reparametrization of the observations. It is worthwhile noting
that in (13) the extended eigenvector is given by linear
combinations of . Thus, in the case of a large training
set and a small kernel scale, the extended eigenvectors may
accurately approximate the eigenfunctions of as well.
Let be an embedding of the observations onto the eigen-

vectors of , given by

(14)

Consequently, the map approximates the independent pa-
rameters of the linear system corresponding to the observations
up to monotonic distortion. See the illustration of the mapping
in Fig. 1.
In order to obtain an estimate of the parameters, we inter-

polate the training samples according to distances in the em-
bedded space. Let consist of the -nearest training embedded

samples of with the Euclidean metric, and let
be interpolation coefficients between and
, given by

where is set to the minimal distance between and its
nearest neighbor. Thus, an estimate of the parameters is given
by the following weighted sum of the training parameters

(15)

Accordingly, let denote the reparametrization error, de-
fined by

(16)

We note that in the case that the parameters of merely few
training samples are available, we can use them to pinpoint
the embedded samples into the proper scale (from
the scale of the eigenvectors to the scale of the parameters).
For that matter, we replace with the rescaled in the
estimation (15).

C. Setting the Algorithm Parameters

We define an inverse mapping from the parameter space
to the observable space, which approximates the mapping , as
follows:

(17)

where is a set of the neighbors of , and are interpolation
coefficients which are given as

(18)

where is set to the minimal distance between and its
nearest neighbor in the parametric space. In case the parameters
of the training samples are unavailable, we can use the mapping

as approximation of in (18). Let denote the
following validation error:

(19)

which conveys the accuracy of in estimating .
The mean error of (19) is computed for all training samples.

Then the algorithm parameters are set to minimize this error.
A particular parameter of interest is the kernel scale . As dis-
cussed in [29] and [30], setting the scale conveys a tradeoff
between integration of large number of samples (large scale),
and locality (small scale). We note that this tradeoff emerged in
our empirical testing. In [15], the authors define a more general
map for every sample. However, in practice, we use this map-
ping for setting the parameters in a training stage, where only
the training observations are available. Therefore, for this par-
ticular use, (17) is sufficient.
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Fig. 2. The mean validation error obtained for all training samples as function
of the kernel scale .

The complete description of the proposed method is summa-
rized in Algorithm 1.
Algorithm 1 Reparametrization Algorithm: Training stage:
1) Obtain intervals of the system output corresponding
to (known) training samples of the controlling parameters

.
2) Calculate elements of the covariance function of the
measurements, which constitute training observations

.
3) Given clouds of additional observations corresponding to
perturbations of the training parameters, estimate local co-
variance matrices of the training observations.

4) Compute the affinity matrix according to (10), for an
arbitrary kernel scale .

5) Employ eigenvalue decomposition of and obtain the
eigenvalues and the eigenvectors .

6) Construct the map according to (12) to obtain
reparametrization of the independent controlling pa-
rameters of the training observations.

7) Construct the inverse map according to (17).
8) Find the optimal kernel scale that minimizes (19), by
repeating 4–7 for different scales.

Testing stage:
1) Given a set of new observations corresponding to new
controlling parameters, compute the normalized affinity
matrix according to (8).

2) Calculate as a weighted combination of via (13).
3) Construct the map according to (14) to obtain
reparametrization of the independent controlling pa-
rameters of the new observations.

4) Recover the independent parameters according to (15) and
compute the mean reparametrization error (16).

D. Example: Autoregressive Model

In this section, we recover the parameters of an AR system.
Consider the following AR process of order

(20)

where is a zero-mean white noise with variance , and
are the AR coefficients. Such an AR process is commonly used
in many signal processing applications. In particular, it is widely

used in modeling the human vocal tract in speech recognition
tasks [31], [32].
An AR process can be viewed as a white noise going through

a linear system, where the corresponding transfer function
is given by

(21)

Alternatively, we can express in a canonical form as

(22)

where are the system poles. Consequently, according to
(22), the system is controlled by independent parameters
.
Let be the PSD of the AR process, which is given by

(23)

We observe in (23), that the PSD depends only on the control-
ling parameter . Consequently, the variations of the controlling
parameters are conveyed by the PSD. Now, from (23), we can
express the covariance function of the output signal as

(24)

where denotes the inverse Fourier transform. For sim-
plicity, we omit the explicit expression of the covariance
function. In (24) we represent the covariance of the observable
signal as a (nonlinear) function of the controlling parameter .
We assume that the poles satisfy to maintain
system stability.
Next, we examine the ability of the proposed algo-

rithm to recover the parameters of an AR system of order
. For training, we randomly generate

uniformly distributed training samples in a rectangular
. Each realization repre-

sents a pair of AR poles, i.e., the controlling parameters of an
AR system of order . Let denote the set of training
parameters. For each realization of the 2-poles in , we
create 200 low variance Gaussian perturbations to create a
local “cloud” in the vicinity of , such that

with , and is 2-D zero-mean unit-variance
Gaussian noise.
The training parameters and their clouds are mapped to an

observable space as follows. For each system , we generate
a white Gaussian excitation signal of length
and measure the corresponding output signal . It is worth-
while noting that this experiment was repeated with a uniformly
distributed excitation signal, and similar results were obtained.
Based on the measured output, estimates of elements
of the covariance function are computed. Let
denote the set of observations corresponding to the training pa-
rameters. In addition, based on the observations corre-
sponding to the cloud of points around , the covariance ma-
trix of each training observation is computed as via (6).
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Fig. 3. Scatter plot of the embedded training samples: (a) Color coding according to the values of the first pole and (b) color coding according to
the values of the second pole .

Fig. 4. Scatter plot of the embedded samples: (a) Color coding according to the values of the first pole and (b) color coding according to the values of the
second pole .

In summary, we have a set of training parameters in a 2-D
parametric space, and a corresponding set of observations in
an 8-D observable space. The observations are obtained via a
nonlinear mapping of the controlling parameters,
i.e., .
We follow steps 1–8 in Algorithm 1. Accordingly, we con-

struct a 2-D embedding of via

Next, we determine the proper kernel scaling . Fig. 2 shows
the mean validation error (19) obtained by averaging over all the
training samples as a function of the kernel scale . Accordingly,
we choose the scale , whichminimizes themean error.
In addition, the existence of an optimal scale is derived from
the tradeoff between a small scale for better locality and a large
scale for better sample integration, which is evident from the
curve.
Fig. 3 shows a scatter plot of the embedded training samples

in via , where the color coding corresponds to the values

of the parameters. We observe that an approximate rectangular
shape is retrieved and that the coloring of the points is parallel to
the axes. Hence, it implies that the embedding comprises the in-
dependent controlling parameters of the AR system. Moreover,

and can be interpreted as a reparametrization of
the pair of poles and .
An additional 1000 samples are generated from the same

distribution and mapped to the observable space as described
above. Let and denote the sets of all samples in
the parameter and observable spaces, respectively.We construct
the matrix , which measures the affinity between the training
samples and the additional samples. The extended eigenvectors

are calculated, which correspond to the right singular vec-
tors of . We construct a map using the extended eigenvectors
as

In Fig. 4, we illustrate the embedding of the extended sam-
ples. Although the shape of the scatter plot is slightly deformed,
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Fig. 5. The mean validation error obtained for all training samples as a function
of the kernel scale , now with the fourth-order process.

the general rectangular shape is maintained. Moreover, the col-
oring of the samples implies that the embedding of the extended
samples comprises the independent controlling parameters of
the AR system as well. Based on the embedding, the interpo-
lation coefficients are computed. Since the embedding orga-
nizes the points according to the values of the underlying pa-
rameters, the interpolation coefficients are comprised of a no-
tion of affinity between the parameters. Using the interpolation
coefficients, we estimate the parameters via (15). To demon-
strate the ability to recover the parameters from the obtained
reparametrization, we compute the parametrization error (16).
The obtained mean error of the extended samples is

.
We further illustrate the ability to recover the independent

controlling parameters of the system. We extend the AR model
by adding a pair of poles and . Thus, we find
that the fourth-order AR system is still controlled by just two in-
dependent parameters (the additional two poles are determined
by and ). We note that model-based algorithms, such as
the widely used Levinson–Durbin algorithm [26], provide esti-
mates of the four AR coefficients but cannot detect the actual
degrees of freedom.
In Fig. 5, we show the mean validation error (19) as a func-

tion of the kernel scale . Accordingly, the kernel scale for this
experiment is set to . A much larger scale is used in this
experiment compared to the previous one, which results in in-
tegration of more samples. In addition, the mean error values in
this experiment are higher than the mean error values obtained
in Fig. 2.
Figs. 6 and 7 show the same trends as Figs. 3 and 4. We ob-

serve a rectangular shape and color lines parallel to the axes.
Consequently, we obtain that the map captures the actual de-
grees of freedom, i.e., the two independent poles of the system.
In this case, recovering the parameters yields mean error (16)

. We note that the recovering error value is
slightly higher than the mean error achieved in the previous ex-
periment, where the dependency of the observations on the pa-
rameters was less complicated.

V. ACOUSTIC CHANNELS

We demonstrate the recovering of independent parameters of
acoustic channels by first describing the simulation model and
laying out theoretical background. Then, we present some ex-
perimental results.

A. The Image Model

The propagation of a sound wave within an enclosure can
be considered linear if the medium is homogeneous. In this
case, the propagation is governed by the wave equation. Ac-
cordingly, the acoustic channel from a source to a microphone
is obtained by solving the wave equation. However, this solu-
tion can hardly ever be expressed analytically, and therefore,
must be approximated. The most common method for approx-
imating the solution is the Image Method, presented by Allen
and Berkley [33]. This method efficiently computes a finite im-
pulse response (FIR) that approximates the acoustic channel be-
tween a source and a sensor in a rectangular room. To model an
ideal impulse response from a source to a sensor, all possible
sound reflection paths should be resolved. These paths propa-
gate through the room and are reflected after every collision with
the room walls. The energy of the sound in each such propaga-
tion path decreases as a consequence of the sound absorption of
the air and of the walls. To circumvent the calculations of all the
reflections and collisions, the image method is based on simu-
lating virtual sources, called images. These virtual sources are
located beyond the room boundaries, such that the direct propa-
gation path between the virtual source and the microphone, ap-
proximates the reflected path.
Consider a rectangular room with length, width, and height

denoted by , , and . Let the sound source be at a location
, and let the microphone be at a location

. Both vectors are with respect to the origin, which is
located at one of the corners of the room. The relative positions
of the images are computed with respect to the walls at ,

, and can be written as

where is a triplet consisting of binary ele-
ments representing the eight different re-
flection directions. In order to consider all images, let

, where , , and are integer
values between and , where represents the maximal
order of reflection taken into account. Accordingly, let de-
note the position of an image

The corresponding distance between each image and the micro-
phone is given by , and time delay of
arrival of the reflected sound is expressed by .
The finite impulse response can now be written as a superpo-

sition of all attenuated and delayed reflections, given by

(25)
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Fig. 6. Scatter plot of the embedded training samples with the fourth-order case: (a) Color coding according to the values of the first pole and (b) color coding
according to the values of the second pole .

Fig. 7. Scatter plot of the embedded samples with the fourth-order case: (a) Color coding according to the values of the first pole and (b) color coding
according to the values of the second pole .

where ,
, and

are the reflection coefficients of
the six walls. In discrete time simulations, the delays do not
always fall at the sampling instants. However, for simplicity,
we assume band-limited excitation and that the sampling fre-
quency is sufficiently high, such that is approximately
an integer for each delay . See [34] for alternative discrete
simulation. Finally, in order to simulate the signal picked up by
the microphone, the source signal can be convolved with the
corresponding impulse response. For more details regarding
acoustic channel modeling and simulating, we refer the readers
to [35] and the references therein.
In order to approximate channels in typical rooms, we

usually need to take into account delayed reflections ranging
between 0.1 and 2 seconds. For example, sampling frequency

16 kHz corresponds to impulse responses of length
ranging between 1600 and 32 000. Consequently, typical im-
pulse responses consist of thousands of taps. In other words,

each impulse response can be expressed as a vector ,
in a high-dimensional space. However, the presentation of the
finite impulse response in (25) implies that the acoustic channel
between a source and a microphone inside a rectangular room
is controlled by a set of parameters: 1) the six reflection
coefficients of the walls ; 2) the location of the source ;
and 3) the location of the microphone . It is worthwhile
noting, that the dependency between the impulse response of an
acoustic channel and the controlling parameters, as conveyed
in (25), is highly nonlinear. Therefore, the task of recovering
the controlling parameters from measurements of the signal
picked up in the microphone, is challenging.
Particular parameters of interest are the source coordinates.

Locating the source is a problem that has drawn enormous
research efforts in the last few decades [36]–[38]. Usually,
a beamformer based on microphone array measurements is
implemented [39]–[43]. In this work, we show how to recover
the source location based on measurements from a single
microphone relying on training.
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Fig. 8. Scatter plot of the embedding : (a) Color coding according to the values of the azimuth angle and (b) color coding according to the values of the
elevation angle.

B. Experimental Results

In this section, we examine the ability of the proposedmethod
to recover the controlling parameters of acoustic channels, sim-
ulated using the image method, as described in Section V-A.
In the first experiment, we recover the reflection coefficients

of two walls.We start by generating training channels.
We equally distribute 300 reflection coefficients of two walls

in the range , creating a 2-D grid. The other
four coefficients are set to 0.15. Then we simulate a room of size

. We place a microphone at ,
and a source at , distant 3m from themicrophone and
at the same altitude. The azimuth angle of the direction of arrival
of the direct sound propagating from source to the microphone
is , and the elevation angle is 0. Let denote
the 2 controlling parameters of the acoustic channel of order

, and let denote the set of parameters on the grid. For
each parameter , we create low variance Gaussian
perturbations to create a local “cloud” in the vicinity of .
Now, using the image method, we simulate
acoustic channels, where each channel corresponds to .
The training channels and their clouds are mapped to an ob-

servable space as follows. For each parameter vector , we
generate a white Gaussian excitation signal of length
24 000 and measure the output signal , of going through
the corresponding acoustic channel . Based on the measured
output, the first elements of the covariance function
are calculated. Let denote the set of observations
corresponding to the training parameters. In addition, based on
the observations corresponding to the cloud of parameters
around , the covariance matrix of each training sample
is computed.
Now, an additional 325 pairs of reflection coefficients are

generated in the same range and mapped to the observable space
as described above. Let and denote the sets of all
samples in both the parameter and observable spaces.
In summary, we have a set of parameter vectors

of a 2-D reflection coefficients space, and a corresponding set
of observations in 24-D observable space. The observations
are obtained via a nonlinear mapping of the re-
flection coefficients, i.e., . In this case, the nonlin-

earity conveys the relation between the reflection coefficients
and the acoustic channel, combined with the relation between
the acoustic channel and the observation.
According to Algorithm 1, and similarly to the construction

in Section IV-D, we obtain a 2-D embedding of via

using . This kernel scale was chosen such that it brings
the validation error to a minimum. Fig. 8 shows a scatter plot of
the embedded training samples, where the color coding corre-
sponds to the values of the parameters and . We observe
that the samples are organized on a rectangular grid. In addi-
tion, the coloring of the samples is parallel to the axes. Hence,
the embedding represents the two reflection coefficients.
By constructing the matrix , the extended eigenvectors

are calculated. Thus, we obtain embedding of the entire obser-
vation set via

In Fig. 9, we scatter plot the embedded samples. From the
coloring of the samples, we conclude that the extended em-
bedding captures the independent controlling parameters. The
recovering of the reflection coefficients based on interpolating
the training samples according to the distance in the embedded
space (15) yields a mean error of .
In the second experiment, we test the ability of the proposed

method to recover the location of the source. We simulate the
same room dimensions and location of the microphone. We uni-
formly distribute 300 source locations on a sector of a
sphere around the microphone. The sphere radius is 3 m, the
sector azimuth and elevation angles range between . There-
fore, we have approximately one source per 1 in both look di-
rections. In this experiment, the independent controlling param-
eter is a pair of azimuth and elevation angles. The rest of the
experiment is performed similarly to the first experiment.
Fig. 10 shows a scatter plot of the embedded training samples,

where the color coding corresponds to the parameters . It
implies that both the azimuth and elevation angles are accurately
recovered. The scatter plot takes the shape of a rectangular grid
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Fig. 9. Scatter plot of the extended embedding (a) Color coding according to the values of the azimuth angle (b) Color coding according to the values of the
elevation angle.

Fig. 10. Scatter plot of : (a) The color coding according to the azimuth angle and (b) the color coding according to the elevation angle.

where, according to the coloring, each axis represents either the
azimuth or the elevation angle.
In Fig. 11, we present the embedding of the additional points.

From the coloring of the points, we conclude that the extended
embedding captures the independent controlling parameters, as
the coloring scheme is maintained. In this case, recovering the
original parameters yields a mean error . This
result is of particular interest since we accurately recover the
direction of arrival of a random source in a room based on ob-
servations from a single microphone and training.

VI. CONCLUSION

We proposed a general algorithm for reparametrization of
linear systems using diffusion kernels. The proposed algorithm
is based on recent developments of spectral and nonlinear
independent component analysis techniques, anisotropic ker-
nels, and classical results from statistical signal processing and
Fourier analysis. We claim that each system can be viewed as
a black box controlled by several independent parameters. By
recovering these parameters, we reveal the actual degrees of

freedom of the system and obtain its intrinsic modeling. These
attractive features are extremely useful for system design,
control, and calibration. We employed the proposed algorithm
on both synthetic and practical examples. We showed that
the proposed method can accurately recover the poles of an
autoregressive process and retrieve the controlling parameters
of acoustic channels. Acoustic channels are a fundamental
component in front-end speech processing applications, such
as speech dereverberation, source localization, and echo can-
cellation. Therefore, the parametrization of acoustic channels is
highly important, especially since acoustic channels are known
to be challenging to model and acquire.
The characterization of processes (e.g., an AR process) is of

particular interest since it opens the door for intrinsic modeling
of audio signals. As described in the paper, we can view any
audio signal as a product of artificial or natural (e.g., human
vocal tract) musical instruments. Thus, by capturing the instru-
ment’s intrinsic geometric structure, we are able to provide per-
ceptual analysis. For future work, we aim to explore this new
lead in order to obtain characterization of, for example, different
music tones, various instruments, speech phonemes, or different
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Fig. 11. Scatter plot of : (a) The color coding according to the azimuth angle and (b) the color coding according to the elevation angle.

speakers. Such features may enable us to naturally cluster, clas-
sify, or even filter music genres, speakers, phonemes, and other
similar tasks which are challenging to perform using existing
tools.

APPENDIX I
TEMPORAL EVOLUTION MODEL OF THE

CONTROLLING PARAMETERS

Following Singer and Coifman [1], we assume that the con-
trolling parameters evolve according to a stochastic differential
equation. Specifically, the parameters are described as indepen-
dent Itó processes [8], [9], given by

(26)

where and are unknown drift and noise coeffi-
cients, and are independent white noises ( are Brownian
motions). As described in Section II, this implies that the con-
trolling parameters evolve according to two regimes: 1) small
fluctuation regime conveyed by Brownian motion and the noise
coefficients and 2) slow system variations dependent on the
drift coefficients .
From 2), we have that the controlling parameters are observed

via the nonlinear map . The observed elements
satisfy the stochastic dynamics given by the Itô lemma [8], [9]

(27)

where and are first- and second-order partial derivatives
of the coordinate of the mapping with respect to .
From (4), using (27), we obtain

(28)

In matrix form, we can express (28) by the Jacobian matrix of
the function as

where is a diagonal matrix with . The matrix
can be assumed to be the identity matrix , by applying a
change of variables on (26) such that

where is a vector of ones of length . In this case, using the
Itô lemma, we obtain

APPENDIX II
EUCLIDEAN DISTANCES ON THE PARAMETRIC MANIFOLD

We briefly review the derivation of the approximation of the
Euclidean distance in the parametric space from [15]. Let
be two parameter vectors (i.e., two system configurations

in the parametric space). According to previous notation, we
observe the nonlinear mapping . Let and

be the mapping of and into the observable space.
Define to be the inverse map of . Each coordinate
of at can be approximated by a Taylor series at the
middle point , denoting :

(29)
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where is the first order derivatives of with respect to ,
and are the second order derivatives of with respect to

and . Similarly to (29), we approximate at

(30)

By the definition of the norm, we have

(31)

Substituting (29) and (30) into (31) yields

(32)

and in matrix form

(33)

It is shown in [15] that

(34)

where is the Jacobian of . Substituting (34) into (33) yields a
second-order approximation of the squared Euclidean distance
in the parametric space (7)

APPENDIX III
AN EXAMPLE OF THE ANISOTROPIC KERNEL COMPUTATION

We present a simple 2-D simulation to illustrate the equiva-
lence of computing the kernel between two reference samples
directly (10) and via new samples (9). In this example, we as-
sume no mapping between the parameters and the observations,
i.e., the nonlinear map is the identity map. As a result, the Jaco-
bian is a unit matrix. We fix two reference samples at
and and generate random new samples ,

Fig. 12. Scatter plot of the new samples .

uniformly distributed in the unit square. We continue by com-
puting the kernel between and in two ways. Direct
computation according to (10) yields

(35)

and computation based on the new samples according to (9)
implies

(36)

with , and

for . We fix the kernel scale to .
Fig. 12 depicts a scatter plot of the new samples.

The color coding of each sample is set according to
, which can be seen as the weight of the

sample in the summation (36). As seen, only new samples
which lie approximately in the middle between and
obtain high values and therefore are taken into account in (36).
For these points . We note
that this result is obtained due to the Gaussian kernel, which
significantly attenuates the value of the summation term in (36)
in case the new sample is located remotely from either of the
reference samples.
The described experiment is tested with a different number of

new samples and is repeated several times to yield consistent
results. Fig. 13 shows the following mean normalized square
error
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Fig. 13. The mean normalized square error between the distance as function of
the number of new samples.

between the computed distances as a function of the number of
new samples. We observe that the error is relatively small and
decreases as more new samples are available. In addition, we
observe a convergence to a fixed error of small value. This result
demonstrates [15, Theorem 3.2] as it implies accurate approxi-
mation of the distance between two reference samples computed
based on the new samples as proposed in (9), given a sufficient
number of new samples.
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Parametrization of Linear Systems
Using Diffusion Kernels

Ronen Talmon, Member, IEEE, Dan Kushnir, Ronald R. Coifman, Israel Cohen, Senior Member, IEEE, and
Sharon Gannot, Senior Member, IEEE

Abstract—Modeling natural and artificial systems has played
a key role in various applications and has long been a task that
has drawn enormous efforts. In this work, instead of exploring
predefined models, we aim to identify implicitly the system degrees
of freedom. This approach circumvents the dependency of a spe-
cific predefined model for a specific task or system and enables a
generic data-driven method to characterize a system based solely
on its output observations. We claim that each system can be
viewed as a black box controlled by several independent parame-
ters. Moreover, we assume that the perceptual characterization of
the system output is determined by these independent parameters.
Consequently, by recovering the independent controlling parame-
ters, we find in fact a generic model for the system. In this work,
we propose a supervised algorithm to recover the controlling
parameters of natural and artificial linear systems. The proposed
algorithm relies on nonlinear independent component analysis
using diffusion kernels and spectral analysis. Employment of the
proposed algorithm on both synthetic and practical examples has
shown accurate recovery of parameters.

Index Terms—Kernel, linear systems, modeling, multidimen-
sional signal processing, non-parametric estimation, nonlinear
dynamical systems, system identification.

I. INTRODUCTION

M ODELING natural and artificial systems has played a
key role in various applications and has long been a task

that has drawn enormous efforts. Usually a predefined model is
developed for every type of task or system. Then the parame-
ters of that model are estimated based on observations of the
system output. In this work, we take a different approach. In-
stead of exploring predefined models, we aim to identify implic-
itly the system degrees of freedom or modes of variability. This
approach enables to capture the intrinsic geometric structure of
the system. Moreover, it circumvents the dependency of a spe-
cific predefined model for a specific task or system and provides
a generic data-driven method to characterize a system based
solely on its output observations. We claim that each system
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can be viewed as a black box controlled by several independent
parameters. Furthermore, we assume that the perceptual charac-
terization of the system output is determined by these indepen-
dent parameters. Consequently, by recovering the independent
controlling parameters, we find in fact a generic modeling for
the system. Thus, in this work, we aim to recover the control-
ling parameters of natural and artificial systems.

Musical instruments are examples of such systems, as each
musical instrument is controlled by several independent param-
eters. For example, a flute is controlled by covering its holes.
Formally, the parameter space can be written as a -dimensional
binary space , assuming the flute has holes and each
hole can be either open or covered. An important observation is
that the output signal of the flute depends on the blow of air (the
input signal) and the covering of the holes. However, the audible
music, or the music tones, depends only on the covering of the
holes. In other words, the played music depends solely on a fi-
nite set of the instrument’s controlling parameters. Another ex-
ample worth mentioning is a violin. Violin music is determined
by the length of the strings. We note that unlike the control-
ling parameters of the flute, the parameter space of the violin is
continuous, and can be written as , assuming strings of
length . In both examples, by recovering the independent con-
trolling parameters of the musical instrument, we may naturally
characterize the music and identify the played tones.

Recently, Singer and Coifman [1] have proposed a nonlinear
independent component analysis (ICA) method based on diffu-
sion kernels [2]–[7]. They assume that the observable data is a
nonlinear mapping of few independent parameters. Moreover,
the parameters are assumed to realize a specific variability
scheme, described by an Itô process [8], [9]. Based on esti-
mation of the local distortions of the observations, an intrinsic
metric is computed. This metric is invariant to the nonlinear
mapping and conveys the distance between the parameters.
Using this intrinsic metric, a kernel between the observations is
computed, and a spectral ICA [10] is employed. The obtained
spectral decomposition is used to build an inverse mapping of
the observable data into the parametric space.

The spectral embedding proposed in [1] is computed for a
given set of observations. However, in practice, and specifi-
cally in supervised learning tasks, not all the data is available.
Therefore, various extension methods for the spectral decompo-
sition have been explored [4], [11]–[14]. Unfortunately, none of
these methods can be naturally employed in [1] since the metric
used in the kernel relies on estimates of the local distortions of
the parameters in the observable space, which are unavailable.
Kushnir et al. [15] extend [1] and propose an efficient extend-
able spectral ICA algorithm. The authors propose a different in-
trinsic metric between the observations, which depends only on
estimates of the local distortions of just a few reference points.

1053-587X/$26.00 © 2011 IEEE
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The ability to extend the embedding provides an efficient recov-
ering of the independent parameters of observations, which are
not available in advance.

In this work, we exploit the nonlinear ICA method to recover
the independent parameters of systems. The main difference and
challenge is that the output of a system heavily depends on the
excitation signal. Thus, it is not solely determined by the con-
trolling parameters, whereas the nonlinear maps discussed in
[1] and [15] are functions of the parameters. For that reason,
we restrict the scope of this work and consider only linear sys-
tems and propose a spectral algorithm based on [1] and [15]
to recover the independent parameters of a system. Based on
Fourier theory, we show that the problem of recovering the pa-
rameters of a linear system can be formulated as a problem of
recovering the parameters of a nonlinear map, which is inde-
pendent of the excitation signal. Consequently, we are able to
present the recovering algorithm as an application of the algo-
rithm presented in [15]. This algorithm is data-driven and not
specifically tailored for a certain task. These attractive features
can make it useful in the design, control, and calibration of a va-
riety of systems. We employ the algorithm on both synthetic and
practical examples. First, we show that the proposed method can
accurately recover the poles of an autoregressive (AR) process.
Next, we utilize the algorithm to retrieve the controlling param-
eters of acoustic channels in practical setups. It is worthwhile
noting that acoustic channels are known to be highly difficult
to model and acquire and play a key role in developing audio
processing applications, e.g., [16]–[23]. In [24], we applied the
proposed algorithm to the problem of source localization in a re-
verberant room using measurements from a single microphone.
Experimental results in a real reverberant environment demon-
strated accurate recovery of the source location.

This paper is organized as follows. In Section II, we formu-
late the problem. In Section III, we present the computation of
a diffusion kernel. In Section IV, the proposed algorithm for re-
covering the independent parameters is presented, including a
synthetic example. Finally, the application to acoustic channels
and experimental results are shown in Section V.

II. PROBLEM FORMULATION

Throughout this paper, vectors are denoted by bold small let-
ters and matrices are denoted by bold capital letters. In addition,
elements in vectors and matrices are written with a superscript
index in parentheses, e.g., the element of a vector is ex-
pressed as .

Let denote a vector of parameters that control a par-
ticular natural or artificial system of interest. We follow Singer
and Coifman [1], and Singer et al. [25], and assume that the con-
trolling parameters evolve in time according to two evolution
regimes: 1) a small fluctuations regime, representing fast natural
changes of the system and 2) perceptual slow system variations.
In the violin example mentioned in the Introduction, a percep-
tual system variation corresponds to setting different lengths of
violin strings. On the other hand, small fluctuations may cor-
respond to different finger placements on the strings aiming to
produce the same tone. As in [1], we model these propagation
regimes by stochastic Itô processes in order to obtain a traceable
derivation.

We restrict the scope of the work and consider only linear
systems. Let be a real-valued input signal, a real-valued

impulse response of a linear system, which varies in time as a
result of the time varying controlling parameter , and the cor-
responding observable output signal. We assume that the input
signal is a zero-mean, wide-sense stationary (WSS) process.
In practice, we only require that the input signal is a quasi-
stationary process (i.e., WSS process in short time intervals),
which is a much weaker assumption that holds for many natural
signals such as speech and music.

We observe the output signal in short-term intervals of
length . We assume the interval length is sufficiently short,
such that in each interval, the linear system can be considered
time-invariant. Consequently, the controlling parameter of the
system in each interval is assumed to be constant. In the flute
example, each time interval may correspond to a different flute
tone, which is configured by a different cover of the flute’s
holes. According to our assumption, the finger placement on
the flute does not vary during the entire short-term interval.
We note that we discard intervals with varying parameters as
it exceeds the scope of this paper and intend to address it in
future work.

Let be the number of time intervals, and let
be the set of the controlling parameters, such

that is the parameter vector controlling the system in the
interval. Let and denote the corresponding input and

output signals in time interval . Thus, the relation between
and is expressed using linear convolution, denoted by , as

where and are discrete time indices.
We assume short-term intervals are available beforehand.

Let denote a subset of training parameters corresponding
to the available intervals. Each training parameter is re-
covered times from different measurements. Unfortunately,
in practice we cannot repeat the measurement with exactly the
same parameter. Thus, for each training parameter , we have
a set of additional intervals of the measured signal with cor-
responding parameters .

With respect to the proposed temporal evolution model of
the controlling parameters, a pair of parameters and , in
time intervals and , convey perceptually different system con-
figurations, e.g., a different cover of the flute holes producing
different tones. On the other hand, for each training interval
, the parameters in the additional intervals are seen as

small perturbations of , e.g., different finger placements pro-
ducing the same tone. See Appendix I for mathematical details
of the temporal evolution of the parameters where we represent
the slow and rapid variation regimes as drift and noise coef-
ficients of a stochastic Itô process. The Itô process modeling
provides a unique solution to the generally ill-posed nonlinear
ICA problem. In addition, it enables to compute the local Jaco-
bian-based distortion metric induced by the nonlinear transfor-
mation that maps the parameter space into the observable space,
as described in Section III.

Our goal in this work is to recover the inaccessible set of con-
trolling parameters given the output signal observations. In
addition, we assume training observations and their corre-
sponding parameters are given beforehand. These training sam-
ples are utilized for the calibration and training of the proposed
recovering algorithm.
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III. DIFFUSION KERNEL

In this section we construct an anisotropic diffusion kernel.
We utilize an approximation of the Euclidean distance in the
parametric space (i.e., the controlling parameters domain) [1],
[15] and build a kernel between the given observations of the
output signal of the linear system of interest.

A. The Observations and Covariance Matrices

Let denote the covariance function of the output signal
, which is defined as [26]

(1)

where denotes mathematical expectation, and is the
covariance of the input signal . Since is a WSS process,

is time invariant, and therefore (1) implies that the time
variations of depend solely on the evolution of the con-
trolling parameters of the linear system. Thus, we obtain a
representation of the observable output signal as a function of
the (dynamics of the) controlling parameters . It is worthwhile
noting, that the same result could be obtained by observing the
short-term power spectral density (PSD) of the output signal.
For simplicity, we prefer to observe the second order statistics
of the signal directly, conveyed by the covariance of the observ-
able signal in the time domain, rather than to use the (“prede-
fined”) Fourier transform.

Let denote the (nonlinear) mapping of the parameter vectors
to the first covariance function elements of the output

signal, given by

(2)

where is a vector of length consisting of the covari-
ance function elements, i.e.,

for .
In the remainder of this paper, we view the covariance func-

tion elements of the linear system output as observations. More-
over, these observations are interpreted as (nonlinear) mappings
of the controlling parameters via the function . In practice, the
covariance elements are not available. However, they can be es-
timated given the output signal as an empiric average of the
cross-multiplication of the output signal in each time interval
separately. In each interval , according to (2), we calculate
elements of the corresponding covariance function
based on the output signal . Let denote the set
of observations, and let denote the subset of ob-
servations corresponding to the training parameters in . Using
this notation we can define to be the nonlinear map
between an unknown parametric manifold and
a corresponding observed data set . This presentation
enables to relax our problem setting to the proposed setting in
[15].

We illustrate the settings by observing the following autore-
gressive (AR) process of order 1

where is a zero-mean white noise with variance, and
is the AR coefficient. Clearly, in this example,

the system is controlled by a single parameter . How-
ever, observing the output signal in the time domain heavily
depends on the random white noise input . Consequently,
the evolution of the controlling parameter may be weakly
emerged in , and hence hard to recover.

Fortunately, we are able to represent the AR process using
convolution with the following infinite AR impulse response

This impulse response demonstrates a nonlinear dependency be-
tween the system and the controlling parameter . The corre-
sponding covariance function of the AR process is given by

(3)

where denotes absolute value. In (3) we represent the covari-
ance function of the observable signal as a (nonlinear) function
of the controlling parameter . We note that should satisfy

in order to get a stable impulse response.
In this work, given the output signal measurements, we es-

timate their covariance function elements. These elements are
viewed as observations of the nonlinear mapping (3). Thus, the
goal in this work is to recover the controlling parameter from
such observations.

Let denote the covariance matrix of size of the
observation , defined by

(4)

It can be shown (see Appendix I for the derivation and mathe-
matical details) that the covariance matrix can be expressed as

(5)

where is the Jacobian matrix of the function , whose ele-
ments are given by , where are first-order partial
derivatives of the coordinate of the mapping with respect
to the parameter , and denotes matrix transpose. The
Jacobian of the function is of key importance to the proposed
algorithm as described in Section IV but unfortunately is un-
available. However, (5) allows to represent via the
accessible covariance matrix of the observations.

We are able to compute the covariance matrices of only the
training observations. Given measurements of the output signal
corresponding to the perturbations of the training samples

, we compute their corresponding observations .
Now, based on the “cloud” of observations , we estimate
the local covariance matrix for each training observation
empirically via

(6)

where .

B. Computation of the Anisotropic Kernel

The proposed parametrization method is based on the com-
putation of an anisotropic diffusion kernel. In order to obtain
recovery of the independent parameters, the computed kernel is
based on the Euclidean distance between the parameters. Un-
fortunately, the parameters are available only via the nonlinear
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observations. In [1], Singer and Coifman showed that the Eu-
clidean distance between two samples in the parametric space
can be approximated by the observations. In this work, we adopt
a similar strategy to approximate the Euclidean distance be-
tween the parameters, as proposed by Kushnir et al. in [15],
which also enables a natural extension.

Let , be two parameter samples, i.e., two system con-
figurations in the parametric space. According to previous nota-
tion, we observe their nonlinear mapping via . Let

and be the mapping of and into
the observable space. It is shown in [15] that a second-order ap-
proximation of the squared Euclidean distance in the parametric
space is given by (see Appendix II)

(7)

We note that the rank of is and therefore a pseudo-
inverse should be computed.

We compute an affinity matrix between the obser-
vations in and the observations in . The affinity is based on
a Gaussian kernel with scale parameter and given by

(8)

We observe the following matrix

(9)

where is a diagonal matrix containing the sum of along
columns, i.e., . It is shown [15] that
corresponds to

(10)

for and , and denotes the de-
terminant of the matrix . Based on [15, Lemma 3.3], is a
Gaussian kernel based on approximation of the Euclidean dis-
tance between the training samples in the parametric space (7).
Moreover, (9) implies that the affinity between the training sam-
ples in is conveyed via the affinity between just the training
samples and all the other samples in . In other words, two
training samples are similar if they are “seen” the same way
by the rest of the samples. This property provides the possi-
bility to naturally extend the kernel to new samples as shown
in Section IV.

It is worthwhile to emphasize two points for further insight
on the equivalency between the direct computation of the kernel
between the training samples in (10) and the computation via
new samples in (9). First, [15, Theorem 3.2] claims that the
equivalence between the two alternative computations hold only
for sufficient number of new (randomly distributed) samples.
Second, the role of the Gaussian (or exponentially decaying)
kernel is to discard implicitly from the distance approximation
in (9) new samples that do not lie between the training samples.
See Appendix III for a simulation of the kernel computation in
a simple 2-D example.

Substituting (5) and (6) into (10) yields

This kernel constitutes the key point of the algorithm. The
affinity between the observations is based on an approximation
of the Euclidean distance between the corresponding under-
lying parameters.

IV. FROM THE OBSERVABLE DATA TO THE

LINEAR SYSTEM PARAMETERS

In this section, we propose a supervised algorithm for the
reparametrization of linear systems based on the algorithm pre-
sented in [15]. The recovery of the controlling parameters of
the system relies on the kernel computed in Section III. Based
on the kernel eigendecomposition, the observations are mapped
into a new domain, which corresponds to the parametric domain
up to a monotonic distortion.

A. Inverse Mapping

Let be the normalized graph-Laplacian [27] defined as

where is a diagonal matrix with . It
can be shown that converges to the backward Fokker–Planck
operator on the parametric manifold [6], [28]

where is the density potential , and denotes
the Laplacian operator. Assuming the set is a uniform sam-
pling of the underlying parameter yields constant potential and

. By (Section IV-A), we obtain a convergence of the
graph-Laplacian to the Laplace–Beltrami operator .

There exist eigenfunctions of that are monotonic
functions of the parameters as guaranteed by the Sturm–Liou-
ville theory. These eigenfunctions can be chosen as suggested
in [10]. Thus, they can be used to represent the data in terms
of its independent controlling parameters. For simplicity, we
assume that these eigenvectors correspond to the largest eigen-
values. Let be a map from the observations to the
space spanned by eigenfunctions of , given by

(11)

Ideally, the map can be seen as the inverse map of the non-
linear function up to a monotonic distortion. Unfortunately, in
practice we have the eigenvectors of , which only approximate
the eigenfunctions of .

B. Restriction and Extension Operators

Let be a normalized affinity matrix , and let
, and be the singular values and the

left and right singular vectors of the matrix , where
the singular values are denoted in descending order. The vectors

and form an orthonormal basis
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Fig. 1. A diagram of the parametric and observable space. We illustrate the set
of samples and the mappings.

of and respectively. In addition, we have that and
are the eigenvalues and eigenvectors of . It

implies that establish the reparametrization of the training
observations in . Accordingly, let be an embedding of the
training observations into the space spanned by the eigenvec-
tors, given by

(12)

Clearly, (12) can be considered an approximation of the map
(11). Consequently, it may represent the data in terms of its in-
dependent controlling parameters.

On the other hand, are the eigenvectors of , which
is an affinity matrix between observations in . To cir-
cumvent additional spectral decomposition, the extended eigen-
vectors can be computed via

(13)

Reference [15, Lemma 4.1] implies that and coin-
cide on the training observations. It further implies that
are the extension of to new observations according to a
regularized mean square error criterion. In addition, since
are obtained by the SVD, the extension preserves orthonor-
mality. As a consequence, we conclude that provide
reparametrization of the observations. It is worthwhile noting
that in (13) the extended eigenvector is given by linear
combinations of . Thus, in the case of a large training
set and a small kernel scale, the extended eigenvectors may
accurately approximate the eigenfunctions of as well.

Let be an embedding of the observations onto the eigen-
vectors of , given by

(14)

Consequently, the map approximates the independent pa-
rameters of the linear system corresponding to the observations
up to monotonic distortion. See the illustration of the mapping
in Fig. 1.

In order to obtain an estimate of the parameters, we inter-
polate the training samples according to distances in the em-
bedded space. Let consist of the -nearest training embedded

samples of with the Euclidean metric, and let
be interpolation coefficients between and

, given by

where is set to the minimal distance between and its
nearest neighbor. Thus, an estimate of the parameters is given
by the following weighted sum of the training parameters

(15)

Accordingly, let denote the reparametrization error, de-
fined by

(16)

We note that in the case that the parameters of merely few
training samples are available, we can use them to pinpoint
the embedded samples into the proper scale (from
the scale of the eigenvectors to the scale of the parameters).
For that matter, we replace with the rescaled in the
estimation (15).

C. Setting the Algorithm Parameters

We define an inverse mapping from the parameter space
to the observable space, which approximates the mapping , as
follows:

(17)

where is a set of the neighbors of , and are interpolation
coefficients which are given as

(18)

where is set to the minimal distance between and its
nearest neighbor in the parametric space. In case the parameters
of the training samples are unavailable, we can use the mapping

as approximation of in (18). Let denote the
following validation error:

(19)

which conveys the accuracy of in estimating .
The mean error of (19) is computed for all training samples.

Then the algorithm parameters are set to minimize this error.
A particular parameter of interest is the kernel scale . As dis-
cussed in [29] and [30], setting the scale conveys a tradeoff
between integration of large number of samples (large scale),
and locality (small scale). We note that this tradeoff emerged in
our empirical testing. In [15], the authors define a more general
map for every sample. However, in practice, we use this map-
ping for setting the parameters in a training stage, where only
the training observations are available. Therefore, for this par-
ticular use, (17) is sufficient.
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Fig. 2. The mean validation error obtained for all training samples as function
of the kernel scale .

The complete description of the proposed method is summa-
rized in Algorithm 1.

Algorithm 1 Reparametrization Algorithm: Training stage:
1) Obtain intervals of the system output corresponding

to (known) training samples of the controlling parameters
.

2) Calculate elements of the covariance function of the
measurements, which constitute training observations

.
3) Given clouds of additional observations corresponding to

perturbations of the training parameters, estimate local co-
variance matrices of the training observations.

4) Compute the affinity matrix according to (10), for an
arbitrary kernel scale .

5) Employ eigenvalue decomposition of and obtain the
eigenvalues and the eigenvectors .

6) Construct the map according to (12) to obtain
reparametrization of the independent controlling pa-
rameters of the training observations.

7) Construct the inverse map according to (17).
8) Find the optimal kernel scale that minimizes (19), by

repeating 4–7 for different scales.
Testing stage:

1) Given a set of new observations corresponding to new
controlling parameters, compute the normalized affinity
matrix according to (8).

2) Calculate as a weighted combination of via (13).
3) Construct the map according to (14) to obtain

reparametrization of the independent controlling pa-
rameters of the new observations.

4) Recover the independent parameters according to (15) and
compute the mean reparametrization error (16).

D. Example: Autoregressive Model

In this section, we recover the parameters of an AR system.
Consider the following AR process of order

(20)

where is a zero-mean white noise with variance , and
are the AR coefficients. Such an AR process is commonly used
in many signal processing applications. In particular, it is widely

used in modeling the human vocal tract in speech recognition
tasks [31], [32].

An AR process can be viewed as a white noise going through
a linear system, where the corresponding transfer function

is given by

(21)

Alternatively, we can express in a canonical form as

(22)

where are the system poles. Consequently, according to
(22), the system is controlled by independent parameters

.
Let be the PSD of the AR process, which is given by

(23)

We observe in (23), that the PSD depends only on the control-
ling parameter . Consequently, the variations of the controlling
parameters are conveyed by the PSD. Now, from (23), we can
express the covariance function of the output signal as

(24)

where denotes the inverse Fourier transform. For sim-
plicity, we omit the explicit expression of the covariance
function. In (24) we represent the covariance of the observable
signal as a (nonlinear) function of the controlling parameter .
We assume that the poles satisfy to maintain
system stability.

Next, we examine the ability of the proposed algo-
rithm to recover the parameters of an AR system of order

. For training, we randomly generate
uniformly distributed training samples in a rectangular

. Each realization repre-
sents a pair of AR poles, i.e., the controlling parameters of an
AR system of order . Let denote the set of training
parameters. For each realization of the 2-poles in , we
create 200 low variance Gaussian perturbations to create a
local “cloud” in the vicinity of , such that

with , and is 2-D zero-mean unit-variance
Gaussian noise.

The training parameters and their clouds are mapped to an
observable space as follows. For each system , we generate
a white Gaussian excitation signal of length
and measure the corresponding output signal . It is worth-
while noting that this experiment was repeated with a uniformly
distributed excitation signal, and similar results were obtained.
Based on the measured output, estimates of elements
of the covariance function are computed. Let
denote the set of observations corresponding to the training pa-
rameters. In addition, based on the observations corre-
sponding to the cloud of points around , the covariance ma-
trix of each training observation is computed as via (6).
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Fig. 3. Scatter plot of the embedded training samples: (a) Color coding according to the values of the first pole and (b) color coding according to
the values of the second pole .

Fig. 4. Scatter plot of the embedded samples: (a) Color coding according to the values of the first pole and (b) color coding according to the values of the
second pole .

In summary, we have a set of training parameters in a 2-D
parametric space, and a corresponding set of observations in
an 8-D observable space. The observations are obtained via a
nonlinear mapping of the controlling parameters,
i.e., .

We follow steps 1–8 in Algorithm 1. Accordingly, we con-
struct a 2-D embedding of via

Next, we determine the proper kernel scaling . Fig. 2 shows
the mean validation error (19) obtained by averaging over all the
training samples as a function of the kernel scale . Accordingly,
we choose the scale , which minimizes the mean error.
In addition, the existence of an optimal scale is derived from
the tradeoff between a small scale for better locality and a large
scale for better sample integration, which is evident from the
curve.

Fig. 3 shows a scatter plot of the embedded training samples
in via , where the color coding corresponds to the values

of the parameters. We observe that an approximate rectangular
shape is retrieved and that the coloring of the points is parallel to
the axes. Hence, it implies that the embedding comprises the in-
dependent controlling parameters of the AR system. Moreover,

and can be interpreted as a reparametrization of
the pair of poles and .

An additional 1000 samples are generated from the same
distribution and mapped to the observable space as described
above. Let and denote the sets of all samples in
the parameter and observable spaces, respectively. We construct
the matrix , which measures the affinity between the training
samples and the additional samples. The extended eigenvectors

are calculated, which correspond to the right singular vec-
tors of . We construct a map using the extended eigenvectors
as

In Fig. 4, we illustrate the embedding of the extended sam-
ples. Although the shape of the scatter plot is slightly deformed,
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Fig. 5. The mean validation error obtained for all training samples as a function
of the kernel scale , now with the fourth-order process.

the general rectangular shape is maintained. Moreover, the col-
oring of the samples implies that the embedding of the extended
samples comprises the independent controlling parameters of
the AR system as well. Based on the embedding, the interpo-
lation coefficients are computed. Since the embedding orga-
nizes the points according to the values of the underlying pa-
rameters, the interpolation coefficients are comprised of a no-
tion of affinity between the parameters. Using the interpolation
coefficients, we estimate the parameters via (15). To demon-
strate the ability to recover the parameters from the obtained
reparametrization, we compute the parametrization error (16).
The obtained mean error of the extended samples is

.
We further illustrate the ability to recover the independent

controlling parameters of the system. We extend the AR model
by adding a pair of poles and . Thus, we find
that the fourth-order AR system is still controlled by just two in-
dependent parameters (the additional two poles are determined
by and ). We note that model-based algorithms, such as
the widely used Levinson–Durbin algorithm [26], provide esti-
mates of the four AR coefficients but cannot detect the actual
degrees of freedom.

In Fig. 5, we show the mean validation error (19) as a func-
tion of the kernel scale . Accordingly, the kernel scale for this
experiment is set to . A much larger scale is used in this
experiment compared to the previous one, which results in in-
tegration of more samples. In addition, the mean error values in
this experiment are higher than the mean error values obtained
in Fig. 2.

Figs. 6 and 7 show the same trends as Figs. 3 and 4. We ob-
serve a rectangular shape and color lines parallel to the axes.
Consequently, we obtain that the map captures the actual de-
grees of freedom, i.e., the two independent poles of the system.
In this case, recovering the parameters yields mean error (16)

. We note that the recovering error value is
slightly higher than the mean error achieved in the previous ex-
periment, where the dependency of the observations on the pa-
rameters was less complicated.

V. ACOUSTIC CHANNELS

We demonstrate the recovering of independent parameters of
acoustic channels by first describing the simulation model and
laying out theoretical background. Then, we present some ex-
perimental results.

A. The Image Model

The propagation of a sound wave within an enclosure can
be considered linear if the medium is homogeneous. In this
case, the propagation is governed by the wave equation. Ac-
cordingly, the acoustic channel from a source to a microphone
is obtained by solving the wave equation. However, this solu-
tion can hardly ever be expressed analytically, and therefore,
must be approximated. The most common method for approx-
imating the solution is the Image Method, presented by Allen
and Berkley [33]. This method efficiently computes a finite im-
pulse response (FIR) that approximates the acoustic channel be-
tween a source and a sensor in a rectangular room. To model an
ideal impulse response from a source to a sensor, all possible
sound reflection paths should be resolved. These paths propa-
gate through the room and are reflected after every collision with
the room walls. The energy of the sound in each such propaga-
tion path decreases as a consequence of the sound absorption of
the air and of the walls. To circumvent the calculations of all the
reflections and collisions, the image method is based on simu-
lating virtual sources, called images. These virtual sources are
located beyond the room boundaries, such that the direct propa-
gation path between the virtual source and the microphone, ap-
proximates the reflected path.

Consider a rectangular room with length, width, and height
denoted by , , and . Let the sound source be at a location

, and let the microphone be at a location
. Both vectors are with respect to the origin, which is

located at one of the corners of the room. The relative positions
of the images are computed with respect to the walls at ,

, and can be written as

where is a triplet consisting of binary ele-
ments representing the eight different re-
flection directions. In order to consider all images, let

, where , , and are integer
values between and , where represents the maximal
order of reflection taken into account. Accordingly, let de-
note the position of an image

The corresponding distance between each image and the micro-
phone is given by , and time delay of
arrival of the reflected sound is expressed by .

The finite impulse response can now be written as a superpo-
sition of all attenuated and delayed reflections, given by

(25)
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Fig. 6. Scatter plot of the embedded training samples with the fourth-order case: (a) Color coding according to the values of the first pole and (b) color coding
according to the values of the second pole .

Fig. 7. Scatter plot of the embedded samples with the fourth-order case: (a) Color coding according to the values of the first pole and (b) color coding
according to the values of the second pole .

where ,
, and

are the reflection coefficients of
the six walls. In discrete time simulations, the delays do not
always fall at the sampling instants. However, for simplicity,
we assume band-limited excitation and that the sampling fre-
quency is sufficiently high, such that is approximately
an integer for each delay . See [34] for alternative discrete
simulation. Finally, in order to simulate the signal picked up by
the microphone, the source signal can be convolved with the
corresponding impulse response. For more details regarding
acoustic channel modeling and simulating, we refer the readers
to [35] and the references therein.

In order to approximate channels in typical rooms, we
usually need to take into account delayed reflections ranging
between 0.1 and 2 seconds. For example, sampling frequency

16 kHz corresponds to impulse responses of length
ranging between 1600 and 32 000. Consequently, typical im-
pulse responses consist of thousands of taps. In other words,

each impulse response can be expressed as a vector ,
in a high-dimensional space. However, the presentation of the
finite impulse response in (25) implies that the acoustic channel
between a source and a microphone inside a rectangular room
is controlled by a set of parameters: 1) the six reflection
coefficients of the walls ; 2) the location of the source ;
and 3) the location of the microphone . It is worthwhile
noting, that the dependency between the impulse response of an
acoustic channel and the controlling parameters, as conveyed
in (25), is highly nonlinear. Therefore, the task of recovering
the controlling parameters from measurements of the signal
picked up in the microphone, is challenging.

Particular parameters of interest are the source coordinates.
Locating the source is a problem that has drawn enormous
research efforts in the last few decades [36]–[38]. Usually,
a beamformer based on microphone array measurements is
implemented [39]–[43]. In this work, we show how to recover
the source location based on measurements from a single
microphone relying on training.
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Fig. 8. Scatter plot of the embedding : (a) Color coding according to the values of the azimuth angle and (b) color coding according to the values of the
elevation angle.

B. Experimental Results

In this section, we examine the ability of the proposed method
to recover the controlling parameters of acoustic channels, sim-
ulated using the image method, as described in Section V-A.

In the first experiment, we recover the reflection coefficients
of two walls. We start by generating training channels.
We equally distribute 300 reflection coefficients of two walls

in the range , creating a 2-D grid. The other
four coefficients are set to 0.15. Then we simulate a room of size

. We place a microphone at ,
and a source at , distant 3 m from the microphone and
at the same altitude. The azimuth angle of the direction of arrival
of the direct sound propagating from source to the microphone
is , and the elevation angle is 0. Let denote
the 2 controlling parameters of the acoustic channel of order

, and let denote the set of parameters on the grid. For
each parameter , we create low variance Gaussian
perturbations to create a local “cloud” in the vicinity of .
Now, using the image method, we simulate
acoustic channels, where each channel corresponds to .

The training channels and their clouds are mapped to an ob-
servable space as follows. For each parameter vector , we
generate a white Gaussian excitation signal of length
24 000 and measure the output signal , of going through
the corresponding acoustic channel . Based on the measured
output, the first elements of the covariance function
are calculated. Let denote the set of observations
corresponding to the training parameters. In addition, based on
the observations corresponding to the cloud of parameters
around , the covariance matrix of each training sample
is computed.

Now, an additional 325 pairs of reflection coefficients are
generated in the same range and mapped to the observable space
as described above. Let and denote the sets of all
samples in both the parameter and observable spaces.

In summary, we have a set of parameter vectors
of a 2-D reflection coefficients space, and a corresponding set
of observations in 24-D observable space. The observations
are obtained via a nonlinear mapping of the re-
flection coefficients, i.e., . In this case, the nonlin-

earity conveys the relation between the reflection coefficients
and the acoustic channel, combined with the relation between
the acoustic channel and the observation.

According to Algorithm 1, and similarly to the construction
in Section IV-D, we obtain a 2-D embedding of via

using . This kernel scale was chosen such that it brings
the validation error to a minimum. Fig. 8 shows a scatter plot of
the embedded training samples, where the color coding corre-
sponds to the values of the parameters and . We observe
that the samples are organized on a rectangular grid. In addi-
tion, the coloring of the samples is parallel to the axes. Hence,
the embedding represents the two reflection coefficients.

By constructing the matrix , the extended eigenvectors
are calculated. Thus, we obtain embedding of the entire obser-
vation set via

In Fig. 9, we scatter plot the embedded samples. From the
coloring of the samples, we conclude that the extended em-
bedding captures the independent controlling parameters. The
recovering of the reflection coefficients based on interpolating
the training samples according to the distance in the embedded
space (15) yields a mean error of .

In the second experiment, we test the ability of the proposed
method to recover the location of the source. We simulate the
same room dimensions and location of the microphone. We uni-
formly distribute 300 source locations on a sector of a
sphere around the microphone. The sphere radius is 3 m, the
sector azimuth and elevation angles range between . There-
fore, we have approximately one source per 1 in both look di-
rections. In this experiment, the independent controlling param-
eter is a pair of azimuth and elevation angles. The rest of the
experiment is performed similarly to the first experiment.

Fig. 10 shows a scatter plot of the embedded training samples,
where the color coding corresponds to the parameters . It
implies that both the azimuth and elevation angles are accurately
recovered. The scatter plot takes the shape of a rectangular grid
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Fig. 9. Scatter plot of the extended embedding (a) Color coding according to the values of the azimuth angle (b) Color coding according to the values of the
elevation angle.

Fig. 10. Scatter plot of : (a) The color coding according to the azimuth angle and (b) the color coding according to the elevation angle.

where, according to the coloring, each axis represents either the
azimuth or the elevation angle.

In Fig. 11, we present the embedding of the additional points.
From the coloring of the points, we conclude that the extended
embedding captures the independent controlling parameters, as
the coloring scheme is maintained. In this case, recovering the
original parameters yields a mean error . This
result is of particular interest since we accurately recover the
direction of arrival of a random source in a room based on ob-
servations from a single microphone and training.

VI. CONCLUSION

We proposed a general algorithm for reparametrization of
linear systems using diffusion kernels. The proposed algorithm
is based on recent developments of spectral and nonlinear
independent component analysis techniques, anisotropic ker-
nels, and classical results from statistical signal processing and
Fourier analysis. We claim that each system can be viewed as
a black box controlled by several independent parameters. By
recovering these parameters, we reveal the actual degrees of

freedom of the system and obtain its intrinsic modeling. These
attractive features are extremely useful for system design,
control, and calibration. We employed the proposed algorithm
on both synthetic and practical examples. We showed that
the proposed method can accurately recover the poles of an
autoregressive process and retrieve the controlling parameters
of acoustic channels. Acoustic channels are a fundamental
component in front-end speech processing applications, such
as speech dereverberation, source localization, and echo can-
cellation. Therefore, the parametrization of acoustic channels is
highly important, especially since acoustic channels are known
to be challenging to model and acquire.

The characterization of processes (e.g., an AR process) is of
particular interest since it opens the door for intrinsic modeling
of audio signals. As described in the paper, we can view any
audio signal as a product of artificial or natural (e.g., human
vocal tract) musical instruments. Thus, by capturing the instru-
ment’s intrinsic geometric structure, we are able to provide per-
ceptual analysis. For future work, we aim to explore this new
lead in order to obtain characterization of, for example, different
music tones, various instruments, speech phonemes, or different
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Fig. 11. Scatter plot of : (a) The color coding according to the azimuth angle and (b) the color coding according to the elevation angle.

speakers. Such features may enable us to naturally cluster, clas-
sify, or even filter music genres, speakers, phonemes, and other
similar tasks which are challenging to perform using existing
tools.

APPENDIX I
TEMPORAL EVOLUTION MODEL OF THE

CONTROLLING PARAMETERS

Following Singer and Coifman [1], we assume that the con-
trolling parameters evolve according to a stochastic differential
equation. Specifically, the parameters are described as indepen-
dent Itó processes [8], [9], given by

(26)

where and are unknown drift and noise coeffi-
cients, and are independent white noises ( are Brownian
motions). As described in Section II, this implies that the con-
trolling parameters evolve according to two regimes: 1) small
fluctuation regime conveyed by Brownian motion and the noise
coefficients and 2) slow system variations dependent on the
drift coefficients .

From 2), we have that the controlling parameters are observed
via the nonlinear map . The observed elements
satisfy the stochastic dynamics given by the Itô lemma [8], [9]

(27)

where and are first- and second-order partial derivatives
of the coordinate of the mapping with respect to .

From (4), using (27), we obtain

(28)

In matrix form, we can express (28) by the Jacobian matrix of
the function as

where is a diagonal matrix with . The matrix
can be assumed to be the identity matrix , by applying a
change of variables on (26) such that

where is a vector of ones of length . In this case, using the
Itô lemma, we obtain

APPENDIX II
EUCLIDEAN DISTANCES ON THE PARAMETRIC MANIFOLD

We briefly review the derivation of the approximation of the
Euclidean distance in the parametric space from [15]. Let

be two parameter vectors (i.e., two system configurations
in the parametric space). According to previous notation, we
observe the nonlinear mapping . Let and

be the mapping of and into the observable space.
Define to be the inverse map of . Each coordinate
of at can be approximated by a Taylor series at the
middle point , denoting :

(29)
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where is the first order derivatives of with respect to ,
and are the second order derivatives of with respect to

and . Similarly to (29), we approximate at

(30)

By the definition of the norm, we have

(31)

Substituting (29) and (30) into (31) yields

(32)

and in matrix form

(33)

It is shown in [15] that

(34)

where is the Jacobian of . Substituting (34) into (33) yields a
second-order approximation of the squared Euclidean distance
in the parametric space (7)

APPENDIX III
AN EXAMPLE OF THE ANISOTROPIC KERNEL COMPUTATION

We present a simple 2-D simulation to illustrate the equiva-
lence of computing the kernel between two reference samples
directly (10) and via new samples (9). In this example, we as-
sume no mapping between the parameters and the observations,
i.e., the nonlinear map is the identity map. As a result, the Jaco-
bian is a unit matrix. We fix two reference samples at
and and generate random new samples ,

Fig. 12. Scatter plot of the new samples .

uniformly distributed in the unit square. We continue by com-
puting the kernel between and in two ways. Direct
computation according to (10) yields

(35)

and computation based on the new samples according to (9)
implies

(36)

with , and

for . We fix the kernel scale to .
Fig. 12 depicts a scatter plot of the new samples.

The color coding of each sample is set according to
, which can be seen as the weight of the

sample in the summation (36). As seen, only new samples
which lie approximately in the middle between and
obtain high values and therefore are taken into account in (36).
For these points . We note
that this result is obtained due to the Gaussian kernel, which
significantly attenuates the value of the summation term in (36)
in case the new sample is located remotely from either of the
reference samples.

The described experiment is tested with a different number of
new samples and is repeated several times to yield consistent
results. Fig. 13 shows the following mean normalized square
error
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Fig. 13. The mean normalized square error between the distance as function of
the number of new samples.

between the computed distances as a function of the number of
new samples. We observe that the error is relatively small and
decreases as more new samples are available. In addition, we
observe a convergence to a fixed error of small value. This result
demonstrates [15, Theorem 3.2] as it implies accurate approxi-
mation of the distance between two reference samples computed
based on the new samples as proposed in (9), given a sufficient
number of new samples.
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