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Abstract. In this paper, we study the asymptotic translation lengths
on the sphere complexes of monodromies of a manifold fibered over
the circle. Given a compact mapping torus, we define a cone in the
first cohomology which we call the generalized fibered cone, and show
that every primitive integral element gives a fibration over the circle.
Moreover, we prove that the generalized fibered cone is a rational slice
of Fried’s cone, which is defined as the dual of homological directions,
an analogue of Thurston’s fibered cone.

As a consequence of our description of the generalized fibered cone,
we provide each proper subcone of the generalized fibered cone with a
uniform upper bound for asymptotic translation lengths of monodromies
on sphere complexes of fibers in the proper subcone. Our upper bound is
purely in terms of the dimension of the proper subcone. We also deduce
similar estimates for asymptotic translation lengths of some mapping
classes on finite graphs constructed in the works of Dowdall–Kapovich–
Leininger, measured on associated free-splitting complexes and free-
factor complexes.

Moreover, as an application of our result, we prove that the asymp-
tote for the minimal asymptotic translation length of the genus g han-
dlebody group on the disk complex is 1/g2, the same as the one on the
curve complex.
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1. Introduction

Group actions have been proven to be fruitful in the study of groups. For
instance, Thurston [Thu88] and Bers [Ber78] classified mapping classes of a
closed surface according to the dynamics of their action on the Teichmüller
space. Moreover, Masur–Minsky [MM99, MM00] studied the action of the
mapping class group on the curve complex, and then proved the relative
hyperbolicity of the mapping class group.

In [BSW21], Baik–Shin–Wu studied fibered 3-manifold groups and re-
lated dynamics on the curve complexes. Namely, for a fibered hyperbolic
3-manifold, they showed an estimation for the asymptotic translation lengths
of monodromies in a fibered cone, where the asymptotic translation length
is measured on the curve complex of each fiber.

In this paper, we extend this result from fibered 3-manifold groups to
more general fibered manifold groups. Throughout the paper, we consider
smooth connected compact manifolds and simply call them manifolds. For
a manifold M and a diffeomorphism ϕ : M →M , we consider the mapping
torus N of ϕ. This gives a fibration N → S1 and a flow F on N . As an
analogy of Thurston’s fibered cone, we introduce a cone in the first coho-
mology H1(N) associated to the monodromy ϕ : M → M , which we call
the generalized fibered cone (Definition 2.2). We show that each primitive
integral element in the generalized fibered cone gives a fibration over the
circle with respect to the flow F (Proposition 2.6).

Moreover, we prove the characterization of the generalized fibered cone
as a rational slice of Fried’s cone. In [Fri82], for a flow in the manifold, Fried
introduced the set of so-called homological directions as a subset of the first
homology of the manifold. In the first cohomology, the dual cone of the
set of homological directions is called Fried’s cone, and Fried showed that
every primitive integral element corresponds to a fibration over the circle
with respect to the given flow. We also show that the generalized fibered
cone is the intersection of a rational subspace and Fried’s cone in H1(N) for
the flow F on N (Theorem A).

In our main theorem, we estimate the asymptotic translation lengths of
monodromies coming from the generalized fibered cone, on sphere complexes
of fibers (Theorem B). As an application, we also obtain the precise asymp-
tote of minimal asymptotic translation lengths of pseudo-Anosov handle-
body mapping classes on disk graphs in terms of genera (Theorem C).

1.1. Generalized fibered cone and asymptotic translation lengths.
For a compact manifold M and a diffeomorphism ϕ : M →M , we consider
the mapping torus N of ϕ and define the generalized fibered cone in H1(N)
associated to the monodromy ϕ : M → M (Definition 2.2). We begin with
the following characterization of the generalized fibered cone:

Theorem A (Theorem 2.4). Let ϕ : M → M be a diffeomorphism of a
compact manifold to itself. Let N be the mapping torus of ϕ. Then the
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generalized fibered cone in H1(N) associated to ϕ is the intersection of a
rational subspace and Fried’s cone for the suspension flow given by ϕ in
H1(N).

Hence, one can simply regard the generalized fibered cone in the follow-
ing discussion as a rational slice of Fried’s cone. We are mainly interested
in the asymptotic translation lengths of monodromies on sphere complexes
of fibers. We define the sphere complex as follows, which is a generaliza-
tion of the curve complex of a surface. A sphere in a compact manifold is
called essential if it does not bound a ball or is not isotopic to a boundary
component.

Definition 1.1 (Sphere complex). For a compact manifold M and n ≥ 1, its
sphere complex S(M ;n) is a simplicial complex whose vertices are isotopy
classes of essential embedded spheres Sn ⊆M , and k+ 1 number of isotopy
classes S0, . . . , Sk of spheres form a k-simplex in S(M ;n) if and only if they
can be represented by k + 1 number of disjoint spheres.

Each k-simplex is identified with the standard simplex in Rk+1 spanned
by (1/

√
2)~e1, . . . , (1/

√
2)~ek+1 where ~ei’s are standard unit vectors. Then we

endow the sphere complex S(M ;n) with the induced path metric dS(M ;n).

We note that for a closed surface S, the sphere complex S(S; 1) is the
usual curve complex of S. The 1-skeleton of the curve complex is called the
curve graph which is quasi-isometrically embedded in the curve complex.

Remark 1.2. Throughout the paper, most of our argument on the sphere
complex S(M ;n) does not depend on the exact value of n while interest-
ing cases are with low codimensions. Hence, when we deal with the sphere
complex, we simply use the notation S(M) to mean by the sphere complex
S(M ;n) for some fixed n.

Sphere complexes have played an important role in geometric group the-
ory and algebraic topology. For instance, the connectivity of various sphere
complexes have been obtained and used to show the homological stability
of automorphism groups of free groups in [Hat95].

Similar to the curve complex of a surface, a diffeomorphism M → M
naturally induces the isometry S(M) → S(M). Furthermore, two isotopic
diffeomorphisms onM induce the same isometry on S(M). In this regard, we
come up with a question pertaining to generalizing the dynamical properties
of mapping class groups on curve complexes to the sphere complexes. In
particular, we consider asymptotic translation lengths on sphere complexes.

Definition 1.3 (Asymptotic translation length). Let (Y, d) be a metric
space and f : Y → Y be an isometry. Then its asymptotic translation
length lY(f) on Y is defined as

lY(f) = lim inf
n→∞

d(fn(y), y)

n
for y ∈ Y.
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Throughout the paper, we write 0 ≤ A(x) . B(x) if there is a constant
C > 0 satisfying A(x) ≤ CB(x) for all x. In addition, when we have both
A(x) . B(x) and B(x) . A(x), we write A(x) � B(x). Also, since the first
cohomology with R-coefficients is a finite-dimensional real vector space, we
take any norm ‖·‖ without specifying it. The following is our main theorem.

Theorem B. Let ϕ : M → M be a diffeomorphism of a compact manifold
to itself. Consider the generalized fibered cone of the mapping torus of ϕ,
and let R be an intersection of a d+ 1-dimensional rational subspace and a
proper subcone of the generalized fibered cone. Then we have

(1.1) l(ϕα) . ‖α‖−1−1/d

for all primitive integral element α ∈ R where ϕα is the corresponding mon-
odromy and l(ϕα) is the asymptotic translation length of ϕα on the sphere
complex of the fiber.

Remark 1.4. We simply denote by l(·) the asymptotic translation length
on the sphere complex of the underlying manifold since it is of our primary
interest. Similarly, in Section 6, we denote lFS·(·), lFF ·(·), and lD·(·) for the
asymptotic translation lengths of the induced isometries on the free-splitting
complex, the free-factor complex, and the disk graph respectively.

We deduce similar statements for asymptotic translation lengths on free-
splitting and free-factor complexes of free groups as well. In [DKL15],
Dowdall–Kapovich–Leininger proved that given an expanding irreducible
train track map ψ : G → G which is a homotopy equivalence on a graph
G, there is an open rational cone, called the positive cone, in the first coho-
mology of a (folded) mapping torus of ψ containing the monodromy class.
The positive cone is a free-by-cyclic group version of Thurston’s fibered
cone in the sense that for any primitive integral cohomology class α in the
positive cone, α gives an another expanding irreducible train track map
ψα : Gα → Gα. We note that ψα may not be uniquely determined by α; it
requires more choices to be made to obtain ψα (see [DKL15, Theorem B]
for the precise statement).

As in [AS11], the sphere complex of a 3-manifold with free fundamen-
tal group is related to the free-splitting complex, (which is also the sim-
plicial completion of the Culler–Vogtmann Outer space [Vog18]). More-
over, the barycentric subdivision of the sphere complex with a marked point
has something to do with the free-factor complex, as studied by Hatcher–
Vogtmann [HV98]. The relation between the free-splitting complex and the
free-factor complex was also studied by Kapovich–Rafi [KR14]. Observing
these relations among the sphere complex, the free-splitting complex, and
the free-factor complex, Theorem B has some implications on the dynamics
on free-splitting complexes and free-factor complexes. We deduce analogous
estimates on the asymptotic translation lengths on free-splitting complexes
and free-factor complexes from Theorem B (Corollary 6.5 and Corollary
6.6). Together with ([Hir11], [HK21], [Lau74]), these can be interpreted in
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terms of Out(Fg)-actions of free-splitting and free-factor complexes of the
free group Fg (Remark 6.7).

1.2. Minimal asymptotic translation lengths on disk graphs. An-
other application of our results is related to minimal asymptotic translation
lengths of subgroups of mapping class groups of surfaces. Let Sg be a closed
connected orientable surface of genus g ≥ 2 and denote its mapping class
group by Mod(Sg).

Definition 1.5 (Minimal asymptotic translation length). For a subgroup
H ≤ Mod(Sg) and a metric space Y on which H isometrically acts, the
minimal asymptotic translation length of H on Y is

LY(H) := inf{lY(f) : f ∈ H is pseudo-Anosov}.

Minimal asymptotic translation lengths of some subgroups of mapping
class groups have been studied in the settings of Teichmüller spaces (e.g.
[ALM16], [FLM08], [Hir11], [Pen91]) and curve complexes (e.g. [BS20],
[BSW21], [GT11], [KS19]). On Teichmüller space Tg and curve complex
Cg of Sg, the following asymptotes are known for the whole mapping class
group Mod(Sg) and the Torelli group Ig:

Subgroups Teichmüller spaces Curve complexes

Mod(Sg)
(Penner [Pen91])

LTg(Mod(Sg)) � 1/g
(Gadre-Tsai [GT11])
LCg(Mod(Sg)) � 1/g2

Ig
(Farb-Leininger-Margalit [FLM08])

LTg(Ig) � 1
(Baik-Shin [BS20])
LCg(Ig) � 1/g

We now consider the handlebody group Hg < Mod(Sg). That is, identi-
fying Sg with the boundary ∂Vg of genus g handlebody Vg, the handlebody
group Hg consists of mapping classes of Sg that extends to Vg. Kin–Shin
proved in [KS19] the following asymptote:

(1.2) LCg(Hg) �
1

g2
.

On the other hand, there is a subcomplex of Cg on which the handlebody
group Hg acts, the disk graph, which is defined analogous to the curve
graph:1

Definition 1.6 (Disk graph). Disk graph Dg of the handlebody Vg is a graph
whose vertices are isotopy classes of embedded disks (D2, ∂D2) ⊆ (Vg, ∂Vg)

1One can indeed consider the disk complex, but for simplicity, we consider the disk
graph which is the 1-skeleton of the disk complex.
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such that ∂D2 is essential and two vertices are adjacent if they are repre-
sented by two disjoint disks. We endow the disk graph with a metric so that
each edge is of length 1.

It is clear from the definition that Hg acts on Dg by isometries. Masur–
Schleimer showed that the disk graph Dg is Gromov hyperbolic [MS13].
The inclusion (D2, ∂D2) ⊂ (Vg, ∂Vg) induces an embedding Dg → Cg, and
the image of Dg under this embedding is quasi-convex in Cg as shown by
Masur–Minsky [MM04]. However, the disk graph Dg is distorted in the curve
complex Cg. Indeed, it is not quasi-isometrically embedded [MS13]. Hence it
is not straightforward whether handlebody groups Hg have the same asymp-
tote for the minimal asymptotic translation lengths on disk graphs Dg and
on curve complexes Cg. As an application of Theorem B, we answer the
affirmative:

Theorem C. We have

LDg(Hg) �
1

g2
.

Note that the lower bound of the above asymptote can be deduced from
(1.2).

1.3. Future directions. In [CV86], Culler–Vogtmann introduced the no-
tion of the Outer space CVg which is equipped with a natural action of
Out(Fg). Roughly speaking, CVg is the space of marked metric graph struc-
tures on Fg of volume 1. It has a natural simplicial decomposition in terms
of graphs and the vertices that can be re-interpreted as splittings of Fg as a
free product or HNN extension via Bass–Serre theory [Vog18]. This allows
us to identify the free-splitting complex FSg with the simplicial closure of
CVg as we noted earlier. For a general review on the geometry of Outer
space, one can refer to [Vog15].

According to [HM19], a fully irreducible element in Out(Fg) acts as a hy-
perbolic isometry on FSg which is equivalent to the sphere complex. Hence,
we can say more if we could figure out a lower bound of translation lengths
in Theorem B or Corollary 6.5. To be precise, let φ ∈ Out(Fg) be fully
irreducible and let L be its quasi-axis on FSg. Then L and a geodesic con-
necting x ∈ L and φ(x) pass through coarsely. Noting that the Outer space
can also be defined via sphere systems in a doubled handlebody as intro-
duced in [Hat95], the lower bound for translation lengths on FSg gives a
lower bound for the number of foldings one needs to get φ(x) from x as points
in CVg, by comparing the barycentric subdivision and the dual complex of
FSg. Moreover, it would be possible to make the lower bounds uniform
on a positive cone in [DKL15] if we could further control various sphere
complexes and monodromies from the positive cone. Indeed, if φ ∈ Out(Fg)
further satisfies that Fg oφ Z is word-hyperbolic, monodromies from the
positive cone for φ are fully irreducible by [DKL15].
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Another important remark is that the deductions of Theorem 6.4 from
Theorem B are based on the concrete geometric description of the gen-
eralized fibered cone for doubled handlebody case. However, for general
manifolds other than surfaces and doubled handlebodies, we do not have
a concrete description of the generalized fibered cone. Finding a concrete
geometric description of the generalized fibered cone in more general setting
would lead to many other applications of our approach.

Lastly, Baik–Kin–Shin–Wu conjectured in [BKSW23] that if an element
of the mapping class group of a surface has small asymptotic translation
length on the curve complex, then the element is a normal generator of the
mapping class group. When one considers the action on the Teichmüller
space instead of the curve complex, such a phenomenon was obtained by
Lanier–Margalit [LM22, Theorem 1.2]. One might view our present article
as a beginning step toward an analogous question for Out(Fg), or more
generally, automorphism groups of sphere complexes.

Organization. We define the generalized fibered cone and characterize it
as a rational slice of Fried’s cone in Section 2, proving Theorem A. In Section
3, we prove Theorem B. Section 4 is devoted to the application to minimal
asymptotic translation lengths of handlebody groups on disk graphs (The-
orem C). We provide a construction of a diffeomorphism between doubled
handlebodies from a given folding sequence for a combinatorial map between
graphs in Section 5. In Section 6, we discuss applications to free-splitting
complexes and free-factor complexes of free groups.

Acknowledgements. We greatly appreciate for Sebastian Hensel, Autumn
Kent, Daniel Levitin, Karen Vogtmann, and Nathalie Wahl for many helpful
discussions and comments. We give our special thanks to Camille Horbez for
reading the first version of the draft and suggesting the proof of Corollary
6.6. Finally we thank the anonymous referee for careful reading and many
valuable comments.

The first author was partially supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MSIT) (No.
2020R1C1C1A01006912)

2. Generalized fibered cone and slices of Fried’s cone

Recall that a fibered cone for the surface case is a cone in the first coho-
mology of a fibered hyperbolic 3-manifold such that every primitive integral
cohomology class in the cone corresponds to a fibration over the circle. In
this section, we define a higher-dimensional analogue of the fibered cone,
the generalized fibered cone.

Let M be a compact manifold and ϕ : M → M be a diffeomorphism.
Let Zd ∼= H ≤ H1(M) be a free abelian subgroup invariant under ϕ with

the connected free abelian cover M̃ having Deck group H. We fix a lift
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ϕ̃ : M̃ → M̃ of ϕ : M → M . In other words, we have the following
commutative diagram:

Deck group

M̃ M̃

M M

ϕ̃

Deck group H

ϕ

Let N := M ×R /(x, s) ∼ (ϕ(x), s+1) be the mapping torus. We also set

Ñ ′ := M̃ ×R and Ñ := Ñ ′/(x, s) ∼ (ϕ̃(x), s+1) which is the mapping torus
of ϕ̃. The associated flow F := {F t}t∈R on N is given by the projection

of the map (x, s) 7→ (x, s + t) on Ñ ′ at time t ∈ R. We summarize the
relationship among these spaces using the following commutative diagram:

M̃ M̃

M M

ϕ̃

ϕ

mapping torus−−−−−−−−−−−−→

Ñ Ñ ′

N

Z−fold

Deck group Γ

Then Ñ ′ is a Γ := H ⊕ Z cover of N . Here (h, n) ∈ Γ applied to (x, s) ∈ Ñ ′
is (ϕ̃nh(x), s+n). In other words, Γ = H ⊕Z is a quotient of H1(N), hence
its dual Γ∗ = Hom(Γ,Z) is a subgroup of H1(N). Throughout the paper,
we also use the coordinate in Γ∗ dual to Γ. Furthermore, the Γ-action is
restricted to the action on M̃ given by (h, n) · x = ϕ̃nh(x) for x ∈ M̃ . In
this point of view, we sometimes identify (h, n) = ϕ̃nh when we discuss the

action on M̃ . By abusing notations, we use multiplication for the group
operation on H when we consider elements of H as maps, and use addition
when we regard H as a free abelian group.

Now fix a fundamental domain D of the cover M̃ → M . For a map
f : M̃ → M̃ , let us define

Ω(f) := CH {h ∈ H : (h ·D) ∩ f(D) 6= ∅}

where CH{·} denotes a convex hull of {·} in H ⊗R. Using this notation, we
define

Ω :=
⋃
t∈Z

(
−Ω

(
ϕ̃t
)
× {t}

)
⊆ Γ⊗ R .

We then have:

Proposition 2.1. The set Ω is contained in a pair of rational cones whose
intersection with H ⊗ R× {±1} is bounded.
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Proof. Let C be the convex hull of −Ω(ϕ̃) ∪ Ω(ϕ̃−1). Then C is a bounded
polygon because D is compact. Then, because for any n > 0,

Ω(ϕ̃n) = CH{h ∈ H : (h ·D) ∩ ϕ̃n(D) 6= ∅}

= CH

{
h ∈ H :

∃h1 such that (h ·D) ∩ ϕ̃(h1 ·D) 6= ∅,
(h1 ·D) ∩ ϕ̃n−1(D) 6= ∅

}
We have Ω(ϕ̃n) ⊂ (−C) + (−C) + · · ·+ (−C), where the addition is among
n copies of (−C). Here, we use conventions −A = {x ∈ H ⊗ R : −x ∈ A}
and A + B = {a + b : a ∈ A, b ∈ B}. Similarly, Ω(ϕ̃−n) is contained in
the sum of n copies of C. As a consequence, Ω is contained in the set
{(x, t) : x = 0, t = 0 or x/t ∈ C}. �

We denote by Ω̂ ⊂ Γ⊗ R the asymptotic cone of Ω, i.e.,

Ω̂ := {x ∈ Γ⊗ R : x = lim
i→∞

tiwi for some sequences wi ∈ Ω and ti → 0}.

Now we define the generalized fibered cone:

Definition 2.2 (Generalized fibered cone). In the above setting of a diffeo-
morphism ϕ : M →M on a compact manifold M with a choice of a funda-
mental domain, the generalized fibered cone is the dual cone C ⊂ H1(N) of

the asymptotic cone of Ω: for the asymptotic cone Ω̂ of Ω,

C := {α ∈ Γ∗ ⊗ R : sign(t)α(h, t) > 0 for all non-zero (h, t) ∈ Ω̂}
where sign(t) = 1 when t > 0 and sign(t) = −1 when t < 0. In particular,
for any α ∈ C, there exists K > 0 such that for any (h, t) ∈ Ω with |t| > K,
we have sign(t)α(h, t) > 0.

By Proposition 2.1, the generalized fibered cone always has non-empty
interior. Moreover, if Ω ⊂ Γ⊗R is of finite Hausdorff distance to the union
of two cones in Γ ⊗ R centered at the origin, the first one with t ≥ 0 and
second one with t ≤ 0, then C is the intersection of the dual cone of the
first cone and the negative of the dual cone of the second one. Although the
choice of fundamental domain is involved in defining the generalized fibered
cone, it is independent of the choice:

Lemma 2.3. The generalized fibered cone does not depend on the choice of
the fundamental domain D.

Proof. This is due to the fact that the covering M̃ → M is abelian. Let
D and D′ be fundamental domains with compact closures, and fix an H-
equivariant map f : M̃ → M̃ . If (h ·D)∩ f(D) 6= ∅ for h ∈ H, we then have
x1, x2 ∈ D such that h(x1) = f(x2). Since D′ is also a fundamental domain,
there exist h1, h2 ∈ H and x′1, x

′
2 ∈ D′ such that x1 = h1x

′ and x2 = h2x
′
2.

Hence, we have (hh1)(x′1) = (fh2)(x′2). By the equivariance of f and the

fact that H is abelian, we have (h−1
2 h1h)(x′1) = f(x′2). Since both D and

D′ have compact closures, there are only finitely many possible h1 and h2,
depending only on D and D′. This implies that the set Ω(f) obtained using
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D is within bounded Hausdorff distance from the one obtained using D′, and
vice versa. It then follows that the generalized fibered cone is independent
of the choice between D and D′. �

2.1. Generalized fibered cone as the slice of Fried’s cone. Fried
showed in [Fri82] that given a flow on a compact manifold, there exists
a cone in the first cohomology so that a primitive integral element gives a
fibration over the circle with respect to the given flow if and only if it belongs
to the cone. Applying this result to the flow F on N , we obtain the cone,
CF ⊂ H1(N), which we call Fried’s cone. Our generalized fibered cone is
indeed a slice of Fried’s cone.

Theorem 2.4 (Theorem A). We have

C = CF ∩(Γ∗ ⊗ R).

In other words, a primitive integral element α ∈ Γ∗ gives a fibration N → S1

with respect to the flow F if and only if α ∈ C.

To prove this, we first recall the work of Fried [Fri82]: let X be a compact
smooth manifold and φ = (φt)t∈R be a C1-flow on X which is either trans-

verse or tangent to each component of ∂X. Let X̃ be a connected Z-cover
with Deck transformation g : X̃ → X̃ and a lift φ̃ of the flow φ. We denote
by X̃/φ̃ the space of φ̃-flow lines in X̃. The Z-cover X̃ can be compactified

by two points {±∞} so that gnx→ ±∞ as n→ ±∞ for any x ∈ X̃. Fried
gave the following characterization of the cross section of φ in terms of the
behavior of φ̃:

Theorem 2.5. [Fri82, Theorem A] In the above setting, the following are
equivalent:

(1) for any x ∈ X̃, φ̃t(x)→ ±∞ as t→ ±∞.

(2) K := X̃/φ̃ is a cross section of the flow φ in X so that we can identify

X̃ = K×R and have φ̃t(k, s) = (k, s+t) and g(r(k), s) = (k, s+t(k))
where t(k) is the return time of k ∈ K under φ and r(k) = φt(k)(k).

In particular, X is fibered over the circle with fiber K = X̃/φ̃.

Now recall that we have a mapping torus N of M with the monodromy ϕ.
Using the Fried’s result, we show the following proposition, which implies
that C ⊂ CF ∩(Γ∗ ⊗ R). For α ∈ Γ∗, we denote by α⊥ < Γ the subgroup
consisting of elements whose pairing with α is 0.

Proposition 2.6. Let α = (·, nα) be any primitive integral class in C. Then
N admits another fibration over the circle respecting the flow F so that the
generator of the first cohomology of the circle pulls back to α, and the fiber
is

Mα = M̃/α⊥.

Moreover, the monodromy ϕα has a lift ϕ̃α on M̃ such that ϕ̃nαα = ϕ̃.
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Here, a fibration over the circle respecting the flow F refers to a fibration
such that the suspension flow is conjugate to the flow F .

Proof. To show the desired fibration, recall the commutative diagram of
coverings:

Ñ Ñ ′ = M̃ × R

N

Z−fold

Deck group Γ=H⊕Z

and the flow F can be lifted to the R-translation flow on Ñ ′ = M̃ × R. We
consider the Z-cover

Ñ ′/α⊥ → N

and denote by F̃ the induced flow on Ñ ′/α⊥, which is the lift of F as well.
The Deck group is generated by (g,m) ∈ H⊕Z such that α(g,m) = 1. Since

the set of F̃-flow lines in Ñ ′/α⊥ is identified with M̃/α⊥, the first statement

follows once we verify that Theorem 2.5(1) holds with X = N , X̃ = Ñ ′/α⊥,

φ = F , and φ̃ = F̃ .
We first claim that any F̃-flow line in Ñ ′/α⊥ does not accumulate. Sup-

pose not. It means that there exist (x, s) ∈ Ñ ′ = M̃ × R and sequences
ti → ±∞ and (hi, ni) ∈ α⊥ < H ⊕ Z such that the sequence

(hi, ni) · (x, s+ ti) = (hiϕ̃
ni(x), s+ ni + ti)

converges in Ñ ′. Hence, the sequence ni is divergent and hiϕ̃
ni(x) converges

in M̃ . In particular, there exists h ∈ H such that hhiϕ̃
ni(D) ∩ D 6= ∅ for

all i. This implies that hhi ∈ −Ω(ϕ̃ni), and therefore (hi, ni) is contained
in a bounded neighborhood of Ω. Since ni is a divergent sequence and
α(hi, ni) = 0, α vanishes at some vector in the asymptotic cone of Ω. This
contradicts α ∈ C.

Now to verify Theorem 2.5(1), let (x, s) ∈ Ñ ′ = M̃ × R. For each t ∈ R,
there exist (ht, nt) ∈ α⊥ and kt ∈ Z such that

(g,m)kt(ht, nt) · (x, s+ t) = (gkthtϕ̃
ktm+nt(x), s+ t+ ktm+ nt)

is contained in a fixed compact subset. By the previous claim, as t → ∞,
we have either kt → ∞ or kt → −∞. After passing to a subsequence, we
may assume that the sequence

(gkthtϕ̃
ktm+nt(x), s+ t+ ktm+ nt)

converges in Ñ ′. This implies that

(2.1)
ktm+ nt

t
→ −1

as t→∞ and for some h ∈ H, we have

hgkthtϕ̃
ktm+nt(D) ∩D 6= ∅
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for all large t > 0. Hence (g,m)kt(ht, nt) = (gktht, ktm + nt) is of bounded
distance from some point (yt, ktm+nt) ∈ −Ω(ϕ̃ktm+nt)×{ktm+nt}. There-
fore,

lim
t→∞

kt
ktm+ nt

= lim
t→∞

α((g,m)kt(ht, nt))

ktm+ nt
= lim

t→∞
α

(
yt

ktm+ nt
, 1

)
.

Since the vector
(

yt
ktm+nt

, 1
)

converges to the vector in the asymptotic cone

of Ω and α ∈ C, we obtain

lim
t→∞

kt
ktm+ nt

> 0.

Together with (2.1), we have that kt → −∞ as t → ∞. Note that the
positivity of t has not been used. Applying the same argument to the case
t → −∞, we conclude that kt → ∓∞ as t → ±∞. Consequently, in the
compactification of Ñ ′/α⊥, each F̃-flow line is from the end (g,m)−∞ to the
end (g,m)∞. This verifies Theorem 2.5(1), showing the first statement of
the proposition.

The last assertion follows from the observation that α(0, 1) = nα, and
hence (g,m)nα(0,−1) ∈ α⊥. �

The converse might be standard to experts, but we present the proof as
follows, completing the proof of Theorem 2.4:

Proposition 2.7. Let α ∈ Γ∗ be a primitive integral class. If N admits a
circle fibration respecting the flow F associated to α, then α ∈ C.

Proof. Again, we consider the Z-cover

Ñ ′/α⊥ → N.

Then from the hypothesis, the flow F admits a cross section that can be
lifted to Ñ ′/α⊥. Recall the commutative diagram:

Ñ Ñ ′ = M̃ × R

N

Z−fold

Deck group Γ=H⊕Z

We also denote by F̃ and F̃ ′ the lifts of the flow F on Ñ ′/α⊥ and Ñ ′

respectively.
Let hn ∈ H, n ∈ Z, be a sequence such that

(hnϕ̃
n ·D) ∩D 6= ∅.

To prove α ∈ C, it suffices to show that the sequence α(hn, n)/n is a positive
for all but finitely many n, and does not accumulate to 0. Fix an element
(g,m) ∈ Γ such that α(g,m) = 1. This acts as a Deck transformation on

Ñ ′/α⊥.
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For each n ∈ Z, let xn ∈ D be such that hnϕ̃
n(xn) ∈ D. Then for each

n ∈ Z, there exists kn ∈ Z and (gn, tn) ∈ α⊥ such that

(g,m)kn(gn, tn)(hn, n) · F̃ ′−n(xn, 0) ∈ Ñ ′

is contained in the fundamental domain for the Γ-action on Ñ ′ containing
D × {0}. Expanding the action, this means that

(gkngnϕ̃
knm+tnhnϕ̃

n(xn), knm+ tn) ∈ Ñ ′

belongs to the Γ-fundamental domain on Ñ ′. In particular, the sequence
knm + tn ∈ Z is bounded. Since hnϕ̃

n(xn) ∈ D for all n ∈ Z, we now

have that the sequence ϕ̃knm+tnhnϕ̃
n(xn) is bounded in M̃ as well. To-

gether with the boundedness of the sequence gkngnϕ̃
knm+tnhnϕ̃

n(xn) ∈ M̃ ,
it follows that the sequence gkngn ∈ H is bounded. Therefore, the sequence
(g,m)kn(gn, tn) = (gkngn, knm+ tn) ∈ Γ is bounded.

Now for each n ∈ Z, let (zn, sn) = (g,m)kn(gn, tn)(hn, n) · F̃ ′−n(xn, 0) ∈
Ñ ′. We then have

(g,m)kn(gn, tn)(hn, n) · (xn, 0) = F̃ ′n(zn, sn) ∈ Ñ ′.

If we denote by α̃′ the 1-form on Ñ ′ induced by α, we have

α((g,m)kn(gn, tn)(hn, n)) =

∫ (zn,sn)

(xn,0)
α̃′ +

∫ F̃ ′n(zn,sn)

(zn,sn)
α̃′.

Since (xn, 0) and (zn, sn) are contained in the fixed fundamental domain

of the Γ-action on Ñ ′,
∫ (zn,sn)

(xn,0) α̃′ is bounded. Moreover, since the return

time for the flow F to the fiber M̃/α⊥ is bounded from below and above by
positive constants, there exist c, c′ > 1 such that

c−1n− c′ ≤ α((g,m)kn(gn, tn)(hn, n)) ≤ cn+ c′ for n ≥ 0

cn− c′ ≤ α((g,m)kn(gn, tn)(hn, n)) ≤ c−1n+ c′ for n < 0.

Since the sequence (g,m)kn(gn, tn) is bounded, this finishes the proof. �

The following lemma will be used later:

Lemma 2.8. [BSW21, Lemma 5.3] Let C0 be a proper subcone of the gen-
eralized fibered cone. There exists C > 0 such that for any primitive integral
element α = (·, nα) ∈ C0 with nα > C, there is some h ∈ H which does not

belong to the Cn
1/d
α -neighborhood of

⋃
a∈α⊥ Ω(a) in H.

Proof. The definition of generalized fibered cone implies that Ω is contained
in a Hausdorff neighborhood of the dual cone of C0. Let α be a primitive
integral element in C0, b = (x1, . . . , xd, y) ∈ α⊥, and p ∈ Ω(b). Then Propo-
sition 2.1 implies d(±Ω(ϕ̃y), 0) ≤ Ay + C for some A,C > 0. Furthermore,
the fact that Ω is contained in a Hausdorff neighborhood of C0 implies that
x := (x1, . . . , xd) satisfies d(x,−Ω(ϕ̃y)) ≥ A′y−C ′ for some A′, C ′ > 0. This
observation implies the same statement as [BSW21, Lemma 5.1]. Together
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with the fact that the covolume of the projection of α⊥ onto H is & |nα|
(cf. [BSW21, Lemma 5.2]), the same proof as in [BSW21, Lemma 5.3] works
and gives the desired statement. �

3. Asymptotic translation lengths on sphere complexes

Now we prove the main theorem:

Theorem B. Let ϕ : M → M be a diffeomorphism of a compact manifold
to itself. Consider the generalized fibered cone of the mapping torus of ϕ,
and let R be an intersection of a d+ 1-dimensional rational subspace and a
proper subcone of the generalized fibered cone. Then we have

(1.1) l(ϕα) . ‖α‖−1−1/d

for all primitive integral element α ∈ R where ϕα is the corresponding mon-
odromy and l(ϕα) is the asymptotic translation length of ϕα on the sphere
complex of the fiber.

We deduce it from the following weaker version:

Theorem 3.1. Let ϕ : M →M be a diffeomorphism of a compact manifold
to itself. Consider the generalized fibered cone of the mapping torus of ϕ,
and let R be an intersection of a d+ 1-dimensional rational subspace and a
proper subcone of the generalized fibered cone. Then there exist finitely many
hyperplanes R1, · · · , Rk, disjoint from the cohomology class corresponding to
ϕ, such that

l(ϕα) . ‖α‖−1−1/d

for all primitive integral element α ∈ R −
⋃k
i=1Ri where ϕα is the corre-

sponding monodromy.

Proof. By Lemma 2.8, there exists C > 0 depending on R such that for any
primitive integral element α = (·, nα) ∈ R in coordinates of Γ∗ = (H ⊕ Z)∗

with nα > C, there exists h ∈ H such that the Cn
1/d
α -neighborhood of h in

H is disjoint from
⋃
a∈α⊥ Ω(a). In particular, h is disjoint from

⋃
a∈α⊥ Ω(a)

and hence

(3.1) (h ·D) ∩ (α⊥ ·D) = ∅
We claim that we can choose c > 0 small enough so that for any such α

and h above, we have

(3.2)

((
hϕ̃

⌊
cn

1/d
α

⌋)
·D
)
∩ (α⊥ ·D) = ∅.

See Figure 1 for the pictorial description of the claim.
Let c > 0 be a constant. We prove the claim by showing that we can take

c small enough so that for any α and h as above, we have

(3.3) h ·D ∩
(
α⊥ϕ̃

−
⌊
cn

1/d
α

⌋)
·D = ∅.
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Ω(a1)

Cn
1/d
α

Ω(a2)

ϕ̃ hϕ̃

⌊
cn

1/d
α

⌋

H ⊗ R

h

Figure 1. Description of Γ ⊗ R. The subspace H ⊗ R is
illustrated as a horizontal plane. a1, a2 ∈ α⊥ and the dotted
regions are Ω(a1) and Ω(a2). The ball centered at h is of

radius Cn
1/d
α in Γ⊗R. The constant c is chosen appropriately

so that hϕ̃

⌊
cn

1/d
α

⌋
belongs to the ball.

Fix such α and h, and suppose that

(3.4) h ·D ∩
(
aϕ̃
−
⌊
cn

1/d
α

⌋)
·D 6= ∅

for some a ∈ α⊥. Writing a = xϕ̃m for some x ∈ H and m ∈ Z, we have(
x−1h ·D

)
∩
(
ϕ̃
m−

⌊
cn

1/d
α

⌋
·D
)
6= ∅.

Then there exists y ∈ ϕ̃−
⌊
cn

1/d
α

⌋
·D such that ϕ̃my ∈ x−1h ·D. We can also

choose h1 ∈ H such that y ∈ h1 ·D. This implies that(
x−1h ·D

)
∩ (ϕ̃mh1 ·D) 6= ∅ and (h1 ·D) ∩

(
ϕ̃
−
⌊
cn

1/d
α

⌋
·D
)
6= ∅.

In particular, h−1
1 x−1h ∈ Ω(ϕ̃m) and h1 ∈ Ω

(
ϕ̃
−
⌊
cn

1/d
α

⌋)
. Therefore, we

have

h ∈ xΩ(ϕ̃m)Ω

(
ϕ̃
−
⌊
cn

1/d
α

⌋)
.

Since xΩ(ϕ̃m) = Ω(a) and the diameter of Ω

(
ϕ̃
−
⌊
cn

1/d
α

⌋)
is less than c0cn

1/d
α

for some constant c0 > 0 depending only on R by Proposition 2.1, we now

have that h is contained in the c0cn
1/d
α -neighborhood of Ω(a) in H. On the

other hand, h was chosen so that the Cn
1/d
α -neighborhood of h is disjoint

from
⋃
a∈α⊥ Ω(a). Consequently, if we choose c < C/c0, then (3.4) cannot

happen, and hence such c satisfies (3.2), proving the claim.
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Now fix c > 0 satisfying (3.2). Since R is contained in a proper subcone
of the generalized fibered cone, the set {w ∈ Ω : α(w) = 0 for some α ∈ R}
is finite. Denote by w1, · · · , wk its elements and set Ri := {α ∈ Γ∗ ⊗ R :
α(wi) = 0} for i = 1, · · · , k. As a result, we have finitely many hyperplanes
R1, · · · , Rk ⊂ Γ∗ ⊗ R such that for any primitive integral element α ∈ R −⋃k
i=1Ri, we have α⊥∩Ω = {0}. Since the cohomology class corresponding to

ϕ is the dual of (0, 1) ∈ Γ, the hyperplanes R1, · · · , Rk are disjoint from this

cohomology class. This implies that for any α ∈ R−
⋃k
i=1Ri and non-trivial

a ∈ α⊥, we have (a ·D) ∩D = ∅. Indeed, if a = (x,m) in the coordinate of
Γ = H ⊕ Z, then (a ·D) ∩D 6= ∅ implies

(x−1 ·D) ∩ (ϕ̃m ·D) 6= ∅.
Hence, x−1 ∈ Ω(ϕ̃m), and therefore

a = (x,m) ∈ −Ω(ϕ̃m)× {m} ⊂ Ω

which is a contradiction.
Now let α ∈ R −

⋃k
i=1Ri with nα > C, and h ∈ H be the element

given by Lemma 2.8. We choose embedded spheres S1 and S2 in D and
h · D respectively. Since the translate of D by any non-trivial element of
α⊥ is disjoint from D as observed in the previous paragraph, S1 and S2

are injected to the fiber Mα = M̃/α⊥, and hence are vertices of the sphere
complex S(Mα). Abusing notations, we also denote by S1 and S2 their
images in Mα. By (3.1), S1 and S2 are disjoint in Mα, and therefore they
represent adjacent vertices in S(Mα). Now it follows from Proposition 2.6
and (3.2) that

dS(Mα)

(
S2, ϕ

nα·
⌊
cn

1/d
α

⌋
α (S2)

)
≤ dS(Mα)(S2, S1) + dS(Mα)

(
S1, ϕ

nα·
⌊
cn

1/d
α

⌋
α (S2)

)

= 1 + dS(Mα)

(
S1, ϕ

⌊
cn

1/d
α

⌋
(S2)

)
= 2.

Therefore, we can estimate the asymptotic translation length of ϕα as
follows:

l(ϕα) ≤ lim sup
m→∞

dS(Mα)

(
S2, ϕ

nα·
⌊
cn

1/d
α

⌋
·m

α (S2)

)
nα ·

⌊
cn

1/d
α

⌋
·m

≤ 2

nα ·
⌊
cn

1/d
α

⌋ .
Since nα is comparable to ‖α‖ for α ∈ R, this completes the proof of the
estimate. �

Proof of Theorem B. By Theorem 3.1, we have finitely many hyperplanes

R1, · · · , Rk so that the desired inequality (1.1) holds on R−
⋃k
i=1Ri.

Now for each Ri, choose a primitive integral element αi ∈ Ri ∩ R. By
Proposition 2.6, this corresponds to a fibrationN → S1 with the monodromy
ϕαi and the fiber Mαi = M̃/α⊥i , with respect to the flow F . We now apply
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Theorem 3.1 to ϕαi : Mαi → Mαi . Since its mapping torus is also N and
the associated flow is F as well, the generalized fibered cone for ϕαi , which
is equal to Fried’s cone for F in H1(N) by Theorem 2.4, is the same as the
generalized fibered cone for the original diffeomorphism ϕ : M → M . In
particular, R is still an intersection of a d+ 1-dimensional rational subspace
and a proper subcone of the generalized fibered cone for ϕαi . Hence, we can
apply Theorem 3.1 to ϕαi : Mαi → Mαi and get finitely many hyperplanes

R
(i)
1 , · · · , R(i)

ni so that αi /∈
⋃ni
j=1R

(i)
j and (1.1) holds on R−

⋃ni
j=1R

(i)
j . Since

αi ∈ Ri while αi is disjoint from
⋃ni
j=1R

(i)
j , the intersection Ri ∩ R(i)

j is a

codimension 2 subspaces in H1(N).
By the above argument, we now have finitely many codimension 2 sub-

spaces Ri ∩ R(i)
j , i = 1, · · · , k and j = 1, · · · , ni, so that (1.1) holds on

R−
⋃k
i=1

⋃ni
j=1Ri∩R

(i)
j . By proceeding the above argument inductively, we

finally obtain finitely many one-dimensional subspaces L1, · · · , L` in H1(N)

such that (1.1) holds on R −
⋃`
i=1 Li. Since there are only finitely many

primitive integral elements in
⋃`
i=1 Li, this completes the proof. �

4. Minimal translation lengths of Handlebody groups

Recall that we denote by Hg and Dg the handlebody group and the disk
graph of a closed connected orientable surface of genus g respectively. In
this section, we prove:

Theorem C. We have

LDg(Hg) �
1

g2
.

Proof. We first deduce the lower bound from [GT11]. Recall that the in-
clusion (D2, ∂D2) ⊆ (Vg, ∂Vg) induces a map from the vertices of Dg to the
vertices of Cg. Moreover, two non-isotopic disjoint disks in Vg have non-
isotopic disjoint boundary as noted in [Hen18, Lemma 2.3]. This implies
that the above map on vertices indeed gives the graph embedding Dg → Cg.
In other words, the disk graph Dg is a subgraph of the curve graph of ∂Vg,
and therefore

LCg(Hg) ≤ LDg(Hg)
for all g ≥ 2. Since LCg(Mod(Sg)) � 1/g2 as proved by Gadre–Tsai [GT11]
and LCg(Hg) ≥ LCg(Mod(Sg)), the lower bound follows.

To prove the upper bound, we apply our main argument together with
a similar construction as in [Hir11, Section 6]. We begin with a genus 2
handlebody V2 and a Torelli pseudo-Anosov ϕ ∈ H2. Such an element ϕ
indeed exists: consider a separating curve b ⊂ ∂V2 which bounds a disk
in V2 as in Figure 2. Taking any pseudo-Anosov ϕ0 ∈ H2, two separating
curves b and ϕn0b fill ∂V2 for large enough n ∈ N by [MM99], and they
bound disks in V2. Therefore, ϕ can be obtained by Thurston’s construction
[Thu88] or Penner’s construction [Pen88] applied to the pair b and ϕn0b.
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a

b

Figure 2. A handlebody of genus 2

Now consider the homomorphism H1(∂V2) → Z given by the algebraic
intersection number with [a] ∈ H1(∂V2) in Figure 2. This induce Z-covers

Ṽ → V2 and ∂Ṽ → ∂V2 as in Figure 3. Since ϕ ∈ H2 is Torelli, it can be
lifted to both covers.

z

Figure 3. Cyclic cover Ṽ

Let N be the mapping torus of ∂V2 with the monodromy ϕ. Since ϕ is
pseudo-Anosov, N is hyperbolic [Thu98]. Using the Z-cover above, we can
consider the generalized fibered cone C ⊂ H1(N) which is two-dimensional.
For each primitive integral α ∈ C, we know from Proposition 2.6 that there
is a fibration N → S1 with the monodromy ϕα and the fiber Sα which is the
quotient of ∂V . By [Hir11], it follows that ϕα extends to the corresponding

quotient of Ṽ which is a handlebody.
Let R ⊂ C be a two-dimensional proper subcone. For all but finitely

many primitive integral element α ∈ R, as in the proof of Theorem 3.1, we
can choose an element h in the Deck group and kα ∈ N comparable to ‖α‖2
so that the curve z in Figure 3 and its translate h · z inject into the fiber
Sα, and moreover z has the image disjoint from images of both h · z and
ϕkαα (h · z) in the quotient Sα. We identify them with their images in Sα.
Note that z, h · z, and ϕkαα (h · z) bound disks in the handlebody. By [Hen18,
Lemma 2.2], z and h · z bound disjoint disks and similarly z and ϕkαα (h · z)
bound disjoint disks. Hence h ·z and ϕkαα (h ·z) represent vertices in the disk
graph with distance at most 2. Since ‖α‖ is comparable to the genus gα of
Sα, we conclude

lDgα (ϕα) .
1

g2
α
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for all primitive integral α ∈ R. Since N is hyperbolic, ϕα is pseudo-Anosov
by [Thu98]. Since the monodromy ϕ we started from is on the genus 2
surface, it is a simple computation using Thurston norm that all but finitely
many natural numbers arise as gα for primitive integral α ∈ R (e.g. [Hir11,
Proposition 6.10]). This completes the proof. �

5. Folding sequences of graph maps and (doubled) handlebodies

The results in this section are not completely new and follow from work
of various authors. For instance, see [Lau74], [HV04], [Luf78]. Nevertheless,
we provide a direct construction of the relevant diffeomorphisms for the sake
of the readers.

Let G be a finite connected graph and ψ : G→ G a homotopy equivalence.
We assume that f is combinatorial, that is, f maps vertices to vertices and
edges to non-trivial edge-paths. The goal of this section is to provide one
way of lifting a combinatorial homotopy equivalence of a graph to a diffeo-
morphism of a doubled handlebody and one of a handlebody. This liftings
are obviously not unique and may come from other kinds of constructions.

Denoting by V (·) the set of vertices, ψ : G→ G gives a subdivision G∆ of
G by setting V (G∆) to be a union of V (G) and the preimage of V (G) under
ψ. The graph G∆ is topologically identical to G. Then ψ is a composition

G
i−→ G∆

φ−→ G where i : G → G∆ is a subdivision map and φ : G∆ → G
is defined by φ(e) = ψ(i−1(e)) for an edge e of G∆. From the construction,
φ is a graph map that sends an edge to an edge. By [Sta83], there is a
finite sequence of foldings (or, folding sequence) so that φ is a composition
of those foldings. Here, folding on a graph is identifying two edges with a
common endpoint. For details, see [DKL15] and [Sta83].

In this section, we explicitly construct a 3-manifold MG from G and a
diffeomorphism ϕ : MG →MG from a folding sequence of ψ : G→ G. More
precisely, we fix a folding sequence

G
i−→ G∆ = G0

ψ0−→ G1
ψ1−→ · · · ψn−−→ Gn+1 = G∆ ↪→ G

where ψi : Gi → Gi+1 is a folding, and then construct a diffeomorphism
ϕi : MGi →MGi+1 associated to ψi, with a canonical identification of MG∆

and MG. As a result, composition of ϕi’s gives the desired diffeomorphism
ϕ : MG →MG. That is,

(5.1)

MG MG

MG0 · · · MGn+1

ϕ

ϕ0 ϕn
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Note here that a folding sequence for ψ may not be unique; what we con-
struct is a diffeomorphism ϕ : MG →MG respecting a fixed folding sequence
for ψ. Throughout the paper, graph is finite and connected.

5.1. Doubled handlebody. For a graph G, we construct a corresponding
doubled handlebody MG as follows: we first replace each vertex of G with
S3 and each edge of G with S2 × I, where I is a compact interval. Then
attachment of an edge to a vertex amounts to drilling out a 3-ball D3 from
S3 and then gluing S2× I along one component of its boundary, as depicted
in Figure 4.

S3

S2 × I

Figure 4. The gluing corresponding to an edge attached to
a vertex.

Figure 5 demonstrates two examples of induced 3-manifolds. Note that
Figure 5b will be used again in order to describe a folding map on MG.
Furthermore, there is a map P : MG → G which sends the S3 corresponding
to each vertex to the vertex itself, and sends S2 × I to the corresponding
edge by projection to the second component. It is easy to see that P induces
an isomorphism between fundamental groups.

∼= S3

(a)

(b)

Figure 5. 3-manifolds obtained from the graphs. Light ver-
tices in the graphs correspond to the dotted regions. Dark
vertices in the graphs correspond to the outermost regions in
the right figures. Edges of the graphs correspond the hatched
regions diffeomorphic to S2 × I.
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For each of such foldings ψi : Gi → Gi+1, let vertex v of Gi be the vertex
on which the two edges to be folded are attached. Then the corresponding
part in MGi is described in Figure 5b. Denote by S, S1 and S2 each part of
the 3-manifold, induced from v and other two vertices, respectively. In other
words, S is the outermost region in Figure 5b, and S1 and S2 are dotted
ones.

To get the folding on MGi , we extract some pieces as follows:

(1) We drill out a solid cylinder D2 × I ⊆ S2 × I from each of the two
S2 × I corresponding to an edge to be folded.

(2) Next, in S1, we delete a small 3-ball D3 whose boundary contains
S1∩(D2×∂I) where D2×I is the cylinder removed in (1). Similarly,
we drill out a small 3-ball in S2.

(3) Finally we delete a cylinder D2× I in S that connects two cylinders
removed in (1).

The union of deleted pieces is a 3-ball. As a result, we obtain MGi \D3 as
in Figure 6a.

To “fold” the manifold according to the folding of two edges in the graph,
we make two corresponding S2 × I’s be contained in a single new S2 × I.
Note that (S2×I)\(D2×I) has an annular face ∂D2×I. Gluing two copies
of them onto two opposite faces of S1 × I × I, it results in S2 × I. In this
regard, we glue S1 × I × I as indicated by patterns in Figure 6b. Then two
copies of (S2 × I) \ (D2 × I) corresponding to two edges get into a single
S2 × I, representing the “folding” of the manifold according to the folding
of the edges.

(3) Drilled out D2 × I (1) Drilled out D2 × I

(2) Drilled out D3

(a) MGi \D3: Hatched region indicates
the empty space where a 3-ball is re-
moved.

(b) Gluing S1×I×I: Dots on two annuli
indicate how they are glued. Hatched re-
gions are empty spaces.

Figure 6. Folding of MGi

So far, we have seen how we “fold” the manifold by gluing S2 × I × I.
After gluing as in Figure 6b, the remaining boundary is S2: one annular
face of S2 × I × I not glued and two 2-disks on the boundary of removed
3-balls in (3) of Figure 6a. See figure 7.

Hence, we can glue a 3-ball along this boundary diffeomorphic to S2. Glu-
ing the 3-ball in this way represents the identifying endpoints of two folded
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Figure 7. Empty (hatched) region in Figure 6b

edges (Figure 4). This whole procedure defines a map on MGi corresponding
to folding two edges on the graph. Moreover, adding the solid torus as in
Figure 6b and then gluing a 3-ball along the boundary in Figure 7 is just an
adding a 3-ball to one in Figure 6a. Consequently, we get a diffeomorphism
ϕi : MGi →MGi+1 by folding two S2 × I into one S2 × I.

Now as in (5.1), we define ϕ : MG → MG to be a composition of maps
ϕi : MGi → MGi+1 . Since each folding map ϕi : MGi → MGi+1 is a dif-
feomorphism, ϕ : MG → MG is the desired diffeomorphism respecting the
folding sequence of ψ : G→ G. As a consequence, we now have:

Proposition 5.1. Let G be a finite connected graph and ψ : G → G be a
combinatorial homotopy equivalence. There is a doubled handlebody MG, a
map P : MG → G which induces an isomorphism on fundamental groups,
and a diffeomorphism ϕ : MG →MG such that P ◦ ϕ and ψ ◦ P induces the
same map on π1.

Note that the choice of diffeomorphism ϕ is defined up to isotopy. In each
of discussion in the next section, for a folding sequence of ψ : G → G, we
make a choice of specific diffeomorphism ϕ : MG → MG constructed in the
above way to consider its generalized fibered cone.

5.2. Handlebody. We can also carry out the construction above with “half”
of every pieces. More precisely, for a graph G, we get pieces by assigning
each vertex to a 3-ball and each edge to a solid cylinder D2 × I where
I = [0, 1]. Then for each D2 × I, we attach D2 × {0} to the ball assigned
to the corresponding endpoint and similarly attach D2 × {1} to the ball
corresponding to the other endpoint. Now we get the handlebody HG with
genus rankπ1(G). See Figure 8.

D3

D2 × I

Figure 8. Attachment of 3-balls and solid cylinders accord-
ing to a graph

Now it remains to get a diffeomorphism corresponding to a folding on G
(or G∆). To get the folding on the handlebody, we just proceed as in the
previous subsection with half of the pieces. First, we remove (half-disk)× I
from each D2× I, assigned to an edge supposed to be folded. Here, we take
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the half-disk in D2 so that the diameter of the half-disk is contained in ∂D2.
We similarly eliminate (half-disk) × I from the 3-ball corresponding to the
common endpoint of the edges to be folded. We also remove a small half-ball
from each of two balls corresponding to vertices supposed to be identified
via the folding on G (or G∆). See Figure 9.

(a) Hatched region is where the removed
pieces were attached.

(b) Removed (half-disk)× I

Figure 9. Drilling out from 3-balls and solid cylinders

Then gluing (half of S1)× I × I along some of its faces onto the removed
regions, we finally get a handlebody removed a half-ball. See Figure 10.

1 2 3 2 3

1
= (half of S1)× I × I

Figure 10. Attaching (half of S1) × I × I to the removed
region. The hatched region is empty due to the previous elim-
ination, and the numbers indicate the way of gluing. Lines
just stand for marking which part it comes from in Figure 9,
so there is no membrane or wall within the hatched region.

Gluing the half-ball as in Figure 11 again, we finally get the desired folding
on the handlebody, and it is indeed a diffeomorphism.

Figure 11. Regluing the half-ball. Left one is a result of the
gluing in Figure 10. The hatched regions are 2-dimensional
faces that two pieces are glued.

Hence, as a consequence, we have:

Proposition 5.2. Let G be a finite connected graph and ψ : G → G be
a combinatorial homotopy equivalence. There is a handlebody HG, a map
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P : HG → G which induces an isomorphism on fundamental groups, and a
diffeomorphism ϕ : HG → HG such that P ◦ ϕ and ψ ◦ P induces the same
map on π1.

6. Free-splitting complexes and free-factor complexes

An immediate consequence of Theorem B and Proposition 5.1 is the fol-
lowing:

Corollary 6.1. Let G be a finite connected graph and ψ : G → G be a
combinatorial homotopy equivalence. Let MG be the doubled handlebody and
ϕ : MG →MG the induced diffeomorphism in Proposition 5.1. Let N be the
mapping torus of ϕ. Let R be an intersection of a d+1-dimensional rational
subspace and a proper subcone of the generalized fibered cone for ϕ. Then

l(ϕα) . ‖α‖−1−1/d

for all primitive integral element α ∈ R, where ϕα is the monodromy of the
fibration N → S1 corresponding to α, l(ϕα) is the asymptotic translation
length on the sphere complex of the fiber Mα, and ‖·‖ be any norm on H1(N).

6.1. Positive cone. We can obtain more results when we look at certain
subcones of the generalized fibered cone.

Definition 6.2 (Train track map). Let G be a finite connected graph, and
consider a combinatorial homotopy equivalence ψ : G → G. The map ψ :
G→ G is called a train track map if for each edge e and n ≥ 1 the restriction
ψn|e of ψn to e is an immersion, i.e. no back-tracking condition holds.

• A train track map is irreducible if its transition matrix is irreducible.
• A train track map ψ is said to be expanding if the length of ψn(e)

diverges as n→∞ for each edge e.

Remark 6.3. As above, some literature defines the train track map to be
a homotopy equivalence. For instance, see [DKL15, Definition 2.11]. In
contrast, the train track map has also been defined as a map that is not
necessarily a homotopy equivalence. For example, see [DKL17, Section 2.1].

LetG be a finite connected graph and ψ : G→ G an expanding irreducible
train track map. According to [DKL15, DKL17], there is a proper subcone
of a component of the symmetrized BNS-invariant Σs, called positive cone
and denoted by A, containing the cohomology class corresponding to ψ. In
the positive cone, each primitive integral class α corresponds to a fibration of
the (folded) mapping torus of ψ : G→ G over the circle whose monodromy
map ψα : Gα → Gα is an expanding irreducible train track map.

By picking the fold in Section 5 to correspond to the folds in the folded
mapping torus of ψ, let ϕ : MG → MG be a diffeomorphism of a doubled
handlebody MG constructed in Section 5. Let N be the mapping torus of ϕ
and C be the generalized fibered cone of ϕ.
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Theorem 6.4. Let ψ : G→ G be an expanding irreducible train track map
and ϕ : MG → MG be an induced map on the doubled handlebody MG in
Section 5. Let R be an intersection of a d+ 1-dimensional rational subspace
and a proper subcone of the generalized fibered cone of ϕ. Then we have

l(ϕα) . g−1−1/d
α

for all primitive integral element α ∈ R∩A, where ϕα is the monodromy of
the fibration N → S1 corresponding to α, l(ϕα) is the asymptotic translation
length on the sphere complex of the fiber Mα, and gα = rankπ1(Gα).

Proof. From Corollary 6.1, we have already seen that

(6.1) l(ϕα) . ‖α‖−1−1/d

for a norm ‖·‖ on H1(N ;R), where N is the mapping torus of ϕ : MG →MG.
Now it remains to see how ‖α‖ is related to gα. Since all norms on H1(N ;R),
a finite-dimensional R-vector space, are equivalent, we are free to choose the
norm ‖·‖.

In this line of thought, we introduce the Alexander norm on H1(N ;R)
in a similar spirit of [DKL15] to rewrite (6.1) in terms of the genus of each
fiber. Similar to the Thurston norm, the Alexander norm ball is the dual of
Newton polytope of the Alexander polynomial ∆. For details, see [McM02].

Denote ‖α‖A the Alexander norm of α. As in [DKL15], it follows from
[McM02, Theorem 4.1] together with [But07, Theorem 3.1] that

‖α‖A = gα − 1

when α belongs to the cone on the open faces of the Alexander norm ball.
This equality is obtained in the following way (cf. [McM02, Theorem 4.1]):
Let α(∆) be the Laurant polynomial induced by α and ∆. Writing ∆ as the
sum of distinct terms, there is only one summand which yields the highest
degree term in α(∆) and similarly for the lowest degree term, since α is inside
the cone. It means that degα(∆) is exactly the difference of the highest and
the lowest degrees of induced terms from the summand of ∆. On the other
hand, the difference equals to ‖α‖A, and thus degα(∆) = ‖α‖A. Combining
with the fact that gα = 1 + degα(∆), we conclude the above equality.

Even if α is not contained in the cone on an open face, ‖α‖A has something
to do with gα. As one can see in the previous argument, the assumption
of belonging to the cone is only for showing degα(∆) = ‖α‖A. Instead, if
the assumption does not hold, then there can be two distinct summands
of ∆ deducing the highest (or the lowest) degree terms in α(∆) and thus
cancellation may occur. As such, we obtain degα(∆) ≤ ‖α‖A rather than
the equality. Then again from gα = 1 + degα(∆), we now conclude

‖α‖A ≥ gα − 1.

Going back to the estimation (6.1), we can now relate ‖α‖ (or ‖α‖A) and
gα by ‖α‖A ≥ gα− 1, regardless of the position of α relative to the cones on
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the open faces of the Alexander norm ball. Consequently, we conclude that

l(ϕα) . g−1−1/d
α

as desired. �

Note here that the proper subcone A depends on the choice of a folding
sequence of ψ. However, our argument does not depend on which folding
sequence we choose. Indeed, the estimate in Theorem 6.4 holds for any
choice of a folding sequence.

6.2. Free-splitting and free-factor complexes. The free-splitting com-
plex FSK of a group K is a simplicial complex consisting of free splittings
of K. More precisely, its vertices are equivalence classes of free splittings of
K whose corresponding graph of groups have a single edge, and two vertices
are connected by an edge of length 1 if they are represented by free splittings
with a common refinement. For instance, two free splittings A ∗ (B ∗C) and
(A ∗B) ∗C are connected by an edge. For higher dimensional simplices and
the equivalence relation among free splittings, see [KR14].

We continue the discussion from the previous subsection. As in [AS11],
the sphere complex of the fiber Mα is equivalent to the free splitting complex
of its fundamental group. Accordingly we can restate Corollary 6.1 and
Theorem 6.4 in terms of free-splitting complexes as follows. We simply
write FSg the free-splitting complex of the free group Fg of rank g:

Corollary 6.5. Let ψ : G → G be an expanding irreducible train track
map and ϕ : MG → MG be the induced map on the doubled handlebody
MG in Proposition 5.1. Let N be the mapping torus of ϕ. Let R be an
intersection of a d + 1-dimensional rational subspace and a proper subcone
of the generalized fibered cone of ϕ. Then

lFSπ1(Mα)
(ϕα) . ‖α‖−1−1/d

for all primitive integral element α ∈ R, where ϕα is the monodromy of the
fibration N → S1 corresponding to α with the fiber Mα and ‖·‖ be any norm
on H1(N).

Moreover,

lFSgα (ϕα) . g−1−1/d
α

for all primitive integral element α ∈ R ∩A where gα = rankπ1(Gα).

Similar to the free-splitting complex, the free-factor complex FFg of Fg
is a simplicial complex whose vertices are conjugacy classes of proper free
factors of Fg, and k+ 1 vertices form a k-simplex if they can be represented
by proper free factors A0 ≤ A1 ≤ · · · ≤ Ak of Fg. Again, we set all edges of
the free-factor complex to be of length 1.

As in [KR14], there is a coarsely Out(Fg)-equivariant (coarseness indepen-
dent of g) Lipschitz map Ψ from the vertices of the free-splitting complex
to the vertices of the free-factor complex. Hence, the following analogous
result for the free-factor complex is deduced from Corollary 6.5:
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Corollary 6.6. Let ψ : G → G be an expanding irreducible train track
map and ϕ : MG → MG be the induced map on the doubled handlebody
MG in Proposition 5.1. Let N be the mapping torus of ϕ. Let R be an
intersection of a d + 1-dimensional rational subspace and a proper subcone
of the generalized fibered cone of ϕ. Then

lFFgα (ϕα) . g−1−1/d
α

for all primitive integral element α ∈ R ∩ A where ϕα is the monodromy
of the fibration N → S1 corresponding to α with the fiber Mα and gα =
rankπ1(Gα).

For more relations among complexes defined on a free group, one can refer
to [GH22] and [KL09].

Remark 6.7. It was studied by Hironaka [Hir11] and Hensel–Kielak [HK21]
that when monodromies in a given Thurston’s fibered cone can be extended
to associated handlebodies. Indeed, in [HK21], they proved that for any
free group automorphism f : Fg → Fg, there are infinitely many pseudo-
Anosov ϕ ∈ Hg such that every monodromy in Thurston’s fibered cone con-
taining ϕ extends to the associated handlebody. Also, Laudenbach [Lau74]
showed that for a doubled handlebody Mg of genus g, the natural surjection
Mod(Mg) → Out(Fg) has the kernel acting trivially on the sphere complex
of Mg. Together with these results, Corollary 6.5 and Corollary 6.6 can be
interpreted in terms of asymptotic translation lengths of Out(Fg)-elements.
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