AHLFORS REGULARITY OF PATTERSON-SULLIVAN
MEASURES OF ANOSOV GROUPS AND APPLICATIONS
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ABSTRACT. For all Zarski dense Anosov subgroups of a semisimple real
algebraic group, we prove that their limit sets are Ahlfors regular for
intrinsic conformal premetrics. As a consequence, we obtain that a
Patterson-Sullivan measure is Ahlfors regular (and hence equal to the
Hausdorff measure) if and only if the associated linear form is symmet-
ric. We also discuss several applications, including analyticity of (p, q)-
Hausdorff dimensions on the Teichmiiller spaces, new upper bounds on
the growth indicator, and L2-spectral properties of associated locally
symmetric manifolds.

1. INTRODUCTION

Let G be a connected semisimple real algebraic group. Let I' < G be
a discrete subgroup. Patterson-Sullivan measures are certain families of
Borel measures on a generalized flag variety, supported on the limit set of I'.
They play a crucial role in the study of dynamics on the associated locally
symmetric space, especially in the counting and equidistribution of I'-orbits
of various geometric objects. The original construction is due to Patterson
and Sullivan for Kleinian groups ([46], [57]), which was generalized by Quint
[51] (see [2] and [13] for earlier works).

Sullivan showed that for convex cocompact Kleinian groups of Isom™ (HZ),
Patterson-Sullivan measures are Ahlfors regular Hausdorff measures on the
limit sets in S*~! [57, Theorem 8]. Since Patterson-Sullivan measures are
constructed from the weighted Dirac measures on an orbit of I' in the sym-
metric space Hy, it is remarkable that they can be given the geometric
characterization purely in terms of the internal metric on the limit set of I'
which is a subset of the boundary 9HZ ~ S"~1.

In recent decades, Anosov subgroups have emerged as a higher rank gen-
eralization of convex cocompact Kleinian groups. Therefore it is natural
to ask when the Patterson-Sullivan measures of Anosov subgroups arise as
Ahlfors regular Hausdorff measures on the limit sets with respect to appro-
priate metrics. The main goal of this paper is to answer this question.

To state our results, fix a Cartan decomposition G = KATK where K
is a maximal compact subgroup and AT is a positive Weyl chamber of a
maximal real split torus A. We denote by X the associated Riemannian
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symmetric space G/K. Let g and a denote the Lie algebras of G and A
respectively, and set a®™ = log A™. Let II denote the set of all simple roots
of (g,a) with respect to the choice of a™.

Fix a non-empty subset 8 of II. Let Py be the standard parabolic subgroup
of G associated with 6. The quotient space

Fo=G/Py

is called the #-boundary, or a generalized flag variety. We denote by Ay the
limit set of T in Fp [3]. For § = II, we omit the subscript 6 from now on;
so P = Py is a minimal parabolic subgroup of G. Set ag = [\ cr_g ker a
and let aj denote the set of all linear forms on ag. We may think of aj as
a subspace of a* via the canonical projection pg : @ — ay . For ¢ € ay,
a ([, )-Patterson-Sullivan measure is a Borel probability measure v on Ay
such that for all v € I and £ € Ay,

drysv
dv

where 8 denotes the Busemann map (see ([2.8])).

A finitely generated subgroup I' < G is called #-Anosov if there exists a
constant C' > 1 such that for all a € 6,

(&) = e?¥Pele)

a(p(7)) > C7'h| = C forallyeT

where | - | is a word metric on I' with respect to a fixed finite generating
set and p : G — a™ is the Cartan projection defined by the condition that
g € K(expp(g))K for all g € G. See ([36], [26], [29], [31], [25], [7], etc.) for
other equivalent definitions of Anosov subgroups.

In the rest of the introduction, let I" be a non—elementaryﬂ f-Anosov sub-
group of G. The space of all Patterson-Sullivan measures of I' is parameter-
ized by the set I1 C aj of all linear forms tangent to the #-growth indicator

¥? (Definition :
Tr={Ype€ay: > %Qa Y(u) = z/)fl(u) for some u € ag — {0}}.

More precisely, for any ¢ € 1, there exists a unique (I',)-Patterson-
Sullivan measure

Vy
and every Patterson-Sullivan measure of I" arises in this way (Theorem 3.4)).
Denote by Ly C a; the 6-limit cone of I', which is the asymptotic cone of
po(p(I")). Then Ft is in bijection with the set {¢) € aj : ¥ > 0 on Ly —
{0}}/ ~, where ¥ ~ 1 if and only if ¥); = ¢- 19 for some ¢ > 0. When the
limit cone Ly has non-empty interior (e.g., when I' is Zariski dense in G),
Z is homeomorphic to R#0~1,

Lthe limit set A has at least three points.
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Ahlfors regularity and Hausdorff measures. Anosov subgroups of a
rank one Lie group G are precisely convex cocompact subgroups. In gen-
eral rank one groups, the unique Patterson-Sullivan measure of I' is Ahlfors
regular and coincides with the Hausdorff measure on A with respect to a
K-invariant sub-Riemannian metric on the boundary 0., X which is defined
in terms of the Gromov product [I8, Theorem 5.4]. Except for the case of
SO(n, 1), this sub-Riemannian metric is not a Riemannian metric.

In this paper, we prove an analogous theorem for a general Anosov sub-
group. Let ¢» € Jp. The #-Anosov property of I' implies that any two
distinct points of Ag are in general position and hence the following defines
a premetri(ﬂ on Ay: for £,m € Ay,

e~ ¥(G(Em) if&#n
(11) dulEm) = {0 el
where G is the a-valued Gromov product (see Deﬁnition. This premetric
turns out to be a correct replacement of the sub-Riemannian metric of the
rank one case.

For s > 0, we denote by 7—[;2 the s-dimensional Hausdorff measure on Ay
with respect to the premetric dy, which is a Borel outer measure . We
write H,, for /H}p It turns out that the metric properties of the Patterson-
Sullivan measure v, depends on the symmetricity of ¥ € aj: 1 is called
symmetric if 1 is invariant under the opposition involution i of a (see )

Our main theorem is as follows:

Theorem 1.1. Let I' be a non-elementary 0-Anosov subgroup of G. Let
Y € I be a symmetric linear form. The Patterson-Sullivan measure vy, is
Ahlfors 1-regular and equal to the one-dimensional Hausdorff measure H.,
up to a constant multiple.

The Ahlfors 1-regularity of v, means that there exists C' > 1 such that
for any £ € Ag and 0 < r < diameter(Ag, dy,),

(1.2) C™hr <wy(By(&,1) < Cr

where By (§,7) = {n € Ag : dy(§,m) < r}.The premetric space (Ag,dy) is
called Ahlfors s-regular for s > 0 if it admits an Ahlfors s-regular Borel mea-
sure (see Definition . Noting that H,y = Hj, for s > 0, the reason that
the Patterson-Sullivan measure is the one-dimensional Hausdorff measure
in the above theorem is due to the normalization of ¢ made by the choice
that 1 is a tangent form, i.e., ¥ € I (see Remark .

Remark 1.2. If ¢ has gradient in the interior of a;, then ¢ can be used to
define a Finsler metric on X and Dey-Kapovich [19, Theorem A] showed
that vy, is the Hausdorff measure, without addressing the Ahlfors regularity
(see Remark. Note that Hausdorff measures need not be Ahlfors-regular

20n a topological space X, a premetric d is a positive definite continuous function
d: X x X — R such that d(z,z) =0 for all z € X.
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in general. Our approach in this paper is different; indeed, we first establish
the Ahlfors regularity of v, and deduce the rest as a consequence of this.

The opposition involution i of a is known to be trivial if and only if G
does not have a simple factor of type A, (n > 2), Dapt1 (n > 2) or Fg
[59, 1.5.1]. When i is non-trivial, the symmetric hypothesis on ¢ cannot be
removed. In fact, we prove the following (Theorem m Theorem see

also Remark :

Theorem 1.3. Let I be a Zariski dense 0-Anosov subgroup of G. For any
non-symmetric 1 € I, the premetric space (Mg, dy) is Ahlfors s-regular for
some 0 < s < 1 but the Patterson-Sullivan measure vy, is not comparabl
to any HS, s > 0.
Critical exponents and Hausdorff dimensions. Denote by Ly C a;
the #-limit cone of I', which is the asymptotic cone of pg(u(I")). For v € aj
which is positive on Ly — {0}, we set
1 Ir: <T
(1.3) 0y := 6y(I") = limsup op#iy €L ¥u(y) < }
T—00 T
The Hausdorff dimension of (Ag, dy) is defined as:
dimy Ag := inf{s > 0: Hj,(Ag) < 0o}.

A natural question is whether dim, Ay is equal to dy.

Theorem 1.4. For any v € aj which is positive on Ly — {0}, we have
dimy Ag = d;;
where ¥ = % In particular, if 1 is symmetric, then dimy Ag = 0.
Remark 1.5. e We remark that for ¢ non-symmetric, dimy Ag is not
equal to dy in general (Proposition [9.10)).
e When G is of rank-one, Theorem is due to Patterson, Sullivan
([46], [57]) and Corlette [18].

Together with a work of Bridgeman-Canary-Labourie-Sambarino [10, Propo-
sition 8.1], Theorem implies that for any 1 non-negative on a, dimy, Ag
changes analytically on #-Anosov representations (Corollary . We de-
scribe one concrete example as follows.

(p, g)-Hausdorff dimension and Teichmiiller space. Let X be a torsion-
free uniform lattice of PSLa(R), and let Teich(X) be the Teichmiiller space:

Teich(X) = {0 : ¥ — PSLa(R) : discrete, faithful representation}/ ~

where the equivalence relation is given by conjugations. It is well-known
that Teich(X) ~ R%~6 where ¢ is the genus of the surface X\H2. For
o € Teich(X), denote by A, C S! x S! the limit set of the self-joining
subgroup (id xo)(X) = {(v,0(y)) : v € X}, which is well-defined up to

3Two measures v1 and v are comparable if C 1y, < v < Cus for some C > 1
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translations. The Hausdorff dimension of A, with respect to a Riemannian
metric on S! x S! is equal to 1 for any o € Teich(3) [32, Theorem 1.1]. For
any pair (p,q) of positive real numbers, consider the premetric on S! x S!
given by
dp,q(§;m) = ds1 (§1,m)Pds1 (§2,1m2)7

for any ¢ = (&1,&) and n = (n1,72) in S! x S!, where dg: is a Riemannian
metric on S!. For a subset S C S! x S!, denote by dim,, ;S the Hausdorff
dimension of S with respect to d,,. Note that on the diagonal of St x S,
dp q is the (p + ¢)-th power of ds1 and hence

L

pt+a

For each o € Teich(X), denote by d,4(c) the critical exponent of the
eis(de]}% (O,’YO)‘quHH% (070(7)0))

dimp’q Aid =

Poincaré series s — >,

Corollary 1.6. Let p,q > 0.
(1) For any o € Teich(X), we have

dimy, g Ay = 9p4(0);
(2) For any o € Teich(X), we have

1
dim, , A, < ——
patle =T

and the equality holds if and only if o = id;
(3) The map
o — dimy 4 Ay

is an analytic function on Teich(X).

Part (2) is an immediate consequence of (1) by the rigidity theorem on
dp,q(0), due to Bishop and Steger [6, Theorem 2] and to Burger [13, Theorem
1(a)]. See Corollary for a more general version on convex cocompact
representations. If we denote by f = f, the o-equivariant homeomorphism
St — S!, then A, = {(z, f(z)) : € S'} and dim,, A, can also be under-

stood as the Hausdorff dimension of Ay, = S with respect to the premetric
d@P,l](w? y) = dgl (x7y)pdS1 (f(x)7 f(y))qv T,y € Sl-

Hausdorff dimension of Ay with respect to a Riemannian met-
ric. We denote by dim Ay the Hausdorff dimension of Ay with respect to
a Riemannian metric on Fy; since all Riemannian metrics on Fy are Lip-
schitz equivalent to each other, this is well-defined. With the exception of
G = S0O°(n,1), dim A is not in general equal to the critical exponent of
I" even in rank one case. See [20] for a discussion on this for the case of
G =SU(n,1).

From Theorem we derive an estimate on dim Ay in terms of critical
exponents. Let x, denote the Tits weight of G associated to a € II as given
in . When G is split over R, x, is simply the fundamental weight
associated to . We prove:
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Theorem 1.7. For any 0-Anosov subgroup I' of G, we have
r(rxlggc 5XO<+X1(Q) <dimAy < 1225( O

Moreover, both the upper and lower bounds are attained by some Anosov
subgroups.

For G = PSL,,(R), we have the set of simple roots given by
ak‘(dia'g(ah”' 7an)):ak_ak+17 1Skén_]~

When G = PSL,(R) and § = {a1}, the lower bound in Theorem [L.7] was ob-
tained by Dey-Kapovich [19], and the upper bound by Pozzetti-Sambarino-
Wienhard [49] (see also [I5]). For some special class of Anosov subgroups,
much sharper bounds are known, see ([24], [48], [49], [32]). Recently, Li-
Pan-Xu proved that for G = PSL3(R), dim A,, coincides with the affinity
exponent of I' [40]. See also ([38], [35]) which show that Ay has Lebesgue
measure zero in higher rank and [37] which shows that dim Ay has a positive
co-dimension for all Zariski dense Anosov subgroups of PSL, (R), n > 3.

The novelty of Theorem [I.7]is that it applies to all #-Anosov subgroups of
any semisimple real algebraic group. Since both upper and lower bounds are
realized by some Anosov subgroups, Theorem [I.7] cannot be improved in this
generality. A Hitchin subgroup of PSL,(R) is the image of a representation
7 : 3 — PSL,(R) of a uniform lattice ¥ < PSLy(R) belonging to the same
connected component as ¢|x in the character variety Hom(X, PSL,,(R))/ ~
where ¢ is the irreducible representation of PSLa(R) into PSL,(R) and the
equivalence is given by conjugations. Hitchin subgroups are II-Anosov,
as was shown by Labourie [36, Theorem 1.4]. For Hitchin subgroups of
PSL,(R), we have dim Ag = 1 by ([36], [I5, Proposition 1.5]) and 6, = 1 for
all a € II by [47, Theorem B]. Hence

dimAy=1=6, forallach.

The upper bound in Theorem is also obtained for Anosov subgroups
of the product of SO°(n,1)’s [32]. For the lower bound, let I' be the im-
age of a uniform lattice ¥ of PSLy(R) under the embedding PSLy(R) —
(PSLOQ(R) IO ) < PSL,(R) where I,,_5 is the (n — 2) x (n — 2) identity

n—2
matrix. Then I' is {a;}-Anosov. On one hand, the limit set Ay, of I' in
Fo, = P(R™) is the projective line, and hence dim A,, = 1. On the other
hand, since (Xa; + Xi(ay))(diag(as, -+ ,a,)) = a1 — an, we have
Oxay +Xi(ay) = 0 = 1 =dimAq,.

Therefore the lower bound in Theorem is achieved for this example.
Growth indicator bounds and L2-spectral properties. The growth
indicator ¥r = %X : @ = RU {—oc0} is a higher rank version of the critical
exponent of I' that captures the growth rate of u(I') in each direction of

a (Definition [.1). This was introduced by Quint [50]. Denote by p the
half-sum of all positive roots of (g,a) counted with multiplicity. Then for
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any discrete subgroup I' < G, ¢r < 2p, and if G has no rank one factor and
Vol(I'\G) = oo, then Quint showed a gap theorem that ¢¥r < 2p — © where
© denotes the half-sum of all roots in a maximal strongly orthogonal system
of (g,a) (53], [45], [38, Theorem 7.1]). We obtain the following bound on
Yr for Anosov subgroups:

Corollary 1.8. For any 0-Anosov subgroup I' of G, we have

(1.4) Yr < dim Ay - I;lelgl(xa + Xi(a)) o7 a.
Recall that X = G/K denotes the associated Riemannian symmetric

space. The size of vy is closely related to the spectral properties of the
locally symmetric manifold I'\X. Let A\o(I'\X) denote the bottom of the
L?-spectrum of T\ X (see (L1.4)). As first introduced by Harish-Chandra
[27], a unitary representation (m,H,) of G is tempered if all of its matrix
coefficients belong to L27(G) for all € > 0, or, equivalently, if 7 is weakly
containedlﬂ in the regular representation L?(G). Hence the temperedness of
the quasi-regular representation L?(I'\G) means that I'\G looks like G from
the L%-viewpoints. If a discrete subgroup I' of G satisfies that 1r < p, then
L?*(T\G) is tempered and A\o(I'\X) = ||p||* as shown in [22, Theorem 1.6]
for TI-Anosov groups and in [41] in general. Moreover, \o(I'\ X) is not an
L?-eigenvalue ([22], [21]). However it is not easy to decide whether ¥ < p
holds or not. We give a criterion on this in terms of dim Ay using Corollary
s

Define

cp:=min{c >0: Z(Xa + Xi(a)) < c-ponat}
ach

We set ci := cyj. Note that 0 < ¢y < ¢ and moreover, if 6 Ni(0) = 0,
cp < ci/2.

If G is R-split, then ) .y xo = p [9, Proposition 29], and hence cg = 2.
In general, we have

(1.5) 0<cag <2
by Lemma due to Smilga.

Corollary 1.9. Let I' be a 0-Anosov subgroup such that

dim Ay < #—9
Co
Then L*(T\G) is tempered and \o(T\X) = ||p||?. In particular, the conclu-

: L kG
sion holds for any II-Anosov subgroup with dim A < %

See Remark for a more general statement. Corollary recovers
Sullivan’s theorem [58] in rank one Lie groups (see Remark [11.7) and im-
mediately applies to many examples of Anosov subgroups with limit sets of

Aris weakly contained in a unitary representation o of G if any diagonal matrix coef-
ficients of 7 can be approximated, uniformly on compact sets, by convex combinations of

diagonal matrix coefficients of o.
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low Hausdorff dimensions; for example to all II-Anosov subgroups of higher
rank Lie groups with dim A < 1 such as Hitchin subgroups and the image
of any positive representation into a real split group ([I5, Propositions 1.5
and 11.1]). Although the conclusion of Corollary was already known
for Hitchin subgroups by [33] and [22] relying on the work of [47], we ob-
tain a completely different proof in this paper. Another application is that
the image of a maximal representation of a surface group into Sp,,(R) is
a tempered subgroup of Sp,, (R) for n > 3. Such an image is an {ap}-
Anosov subgroup of Sp,, (R) where «,, is the long simple root of Sp,, (R),
dim A, =1 by [14], and we can directly compute ¢,, < 1 for n > 3.

Since the opposition involution i of PSL,,(R) sends the simple root «; to
ap_; for 1 <7 <n-—1, we also deduce:

Corollary 1.10. Letn > 3. IfI" < PSL,(R) is {a; }-Anosov with dim A,, <
for some i # %, then L*(T'\ PSL,(R)) is tempered and \o(I\X) = | p||?.

This corollary applies to any (1,1, 2)-hyperconvex subgroup whose Gro-
mov boundary is homeomorphic to a circle, since such a subgroup is {aq }-
Anosov with dimA,, = 1 by Pozzetti-Sambarino-Wienhard [48]. It also
applies to the image of a purely hyperbolic Schottky representation of the
free group Fj on k-generators in PSL,, (R) in the sense of Burelle-Treib [12]
by [15, Proposition 11.1].

On the proof of Theorem The key step is to prove that for a sym-
metric ¢ € Ir, the Patterson-Sullivan measure v, is Ahlfors one-regular.
Fix o = [K] € X. The 6-Anosov property of I' implies that I" is a hyper-
bolic group and that the orbit map v — 7o is a quasi-isometric embedding
that continuously extends to a I'-equivariant homeomorphism between the
Gromov boundary OI' and limit set Ag. One key feature of a Gromov hy-
perbolic space is that the Gromov product measures the distance between a
fixed point and a geodesic, up to an additive error. The main philosophy of
our proof is to establish an analogue of this property, by showing that there
is a metric-like function dy on I'o that is closely related to the 1)-Gromov
product 1 o G on the limit set Ag. For 7,72 € T, set

(1.6) dy (710, 720) = P (p(vy '72))-

We prove that d,, satisfies the coarse triangle inequality (Theorem, using
a higher rank Morse lemma due to Kapovich-Leeb-Porti [31]: there exists
D > 0 such that for any v1,7v2,7v3 € I,

(1.7) dy (710,730) < dy(710,720) + dy(720,730) + D.

This allows us to treat d, as a “metric” on I'o. Moreover (I'o,dy) has a
uniform thin-triangle property. That is, there exists 6 > 0 such that for
any &1, 82,83 € I'UOT, the image of the geodesic triangle [£1,&2] U [£2, &3] U
[€3,&1] under the orbit map is J-thin in the dy-metric. On the other hand,
since (I'o,dy) is not a geodesic space in general, the thin-triangle property
does not imply that (I'o,dy) is a Gromov hyperbolic space. Nevertheless,
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investigating fine geometric properties of thin-triangles in (T'o,dy) leads us
to proving that the ¢-Gromov product measures the dy-distance between o
and a geodesic (Proposition . That is, for £ #n € Ay ~ T,

(1.8) $(G(&,m)) = dy(o, [€,n]o) + O(1)

where [£,n]o is the image of a bi-infinite geodesic [{,n] in ' connecting &
and 7 under the orbit map. We also prove that shadows on the Gromov
boundary 9T are comparable to shadows on Ay (Proposition and use it
to establish the compatibility of the dy-balls and shadows in Ay (Theorem
: for all large R > 1 there exists ¢ > 1 such that for any £ € Ay and
v € I" on a geodesic ray in I' toward £ € Ay ~ OI" from the identity e € T,
we have

(1.9) By (&, ¢ le PO  OR(0,70) N Ag C By(€, ce= VM)

where the shadow Opg(0,70) is the set of endpoints of all positive Weyl
chambers based at o passing the Riemannian ball in X of radius R > 0 with
center yo in X. Then the Ahlfors one-regularity of v is deduced by applying
the higher rank version of Sullivan’s shadow lemma (Lemma . While
positivity of Hy(Ag) is a standard consequence of the Ahlfors 1-regularity,
finiteness of H,(Ag) is not immediate since dy, is not a genuine metric. We
rely on the Vitali covering type lemma for the conformal premetric d, on

Ay (Lemma :

Organization.

e In section [2 we review some basic structures of Lie groups and
f-boundaries. The notations set up in this section will be used
throughout the paper.

e In section [3] we recall the classification of Patterson-Sullivan mea-
sures of Anosov subgroups using tangent forms and some basic prop-
erties of Anosov subgroups.

e In section {4 we show that for each ¢ € aj positive on Ly — {0},
the composition 1 o i defines a metric-like function dy on the I'-
orbit I'o. The coarse triangle inequality of dy, (Theorem is a
crucial ingredient of this paper. Its proof makes a heavy use of the
notion of diamonds and the Morse lemma due to Kapovich-Leeb-
Porti (Theorem [4.11]).

e In section |5 we define a conformal premetric dy, on the limit set Ag
and discuss its basic properties.

e Sections [0 and [7] are devoted to the proof of the compatibility be-
tween shadows and dy-balls in the limit set Ag as in .

e In sections [§ and [0 we prove Theorem In section 8] we prove
that for symmetric ¢ € aj, the (I',1)-Patterson-Sullivan measure is
Ahlfors one-regular. In section [0 we prove that Patterson-Sullivan
measures for symmetric linear forms are Hausdorff measures on the
limit set, up to a constant multiple. We also prove Theorem
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e In section[I0] we prove Theorem [I.7]on the estimate of the Hausdorff
dimension of Ay with respect to a Riemannian metric.

e In section we obtain an upper bound on the growth indicator
and discuss its implications on the temperedness of L?(I'\G).

Acknowledgement. We would like to thank Ilia Smilga for providing the
proof of Lemma [10.3

2. BASIC STRUCTURE THEORY OF LIE GROUPS AND #-BOUNDARIES

Throughout the paper, let G be a connected semisimple real algebraic
group, more precisely, G is the identity component G(R)® of the group
of real points of a semisimple algebraic group G defined over R. In this
section, we review some basic facts about the Lie group structure of G.
Let A be a maximal real split torus of G. Let g and a respectively denote
the Lie algebras of G and A. Fix a positive Weyl chamber a™ C a and
set AT = expa™, and a maximal compact subgroup K < G such that the
Cartan decomposition G = KA K holds. Let ® = ®(g,a) denote the set of
all roots and II the set of all simple roots given by the choice of a*. Denote
by Nk (A) and Ck(A) the normalizer and centralizer of A in K respectively.
The Weyl group W is given by Ni(A)/Ck(A). Consider the real vector
space E* = X(A) ®z R where X(A) is the group of all real characters of A.
and let E be its dual. Denote by (,) a VW-invariant inner product on E. We
denote by {wq : a € II} the (restricted) fundamental weights of ® defined
by

(wou 6) _
(B.5) _ o0

where ¢, = 1 if 2a ¢ ® and ¢, = 2 otherwise.
Fix an element wy € Ng(A) of order 2 representing the longest Weyl
element so that Ad,, a™ = —a™. The map

(2.2) i=—Ady, :a—a

(2.1) 2

is called the opposition involution. It induces an involution of ® preserving
I1, for which we use the same notation i, so that i(a) = ao1i for all a € ®.
Henceforth, we fix a non-empty subset 6 of II. Let

ap = ﬂ ker o, ay =apNat,
a€ell-0
_ + _ +
Ag =expag, and A, =expa,.
Let
Po - a— ap

denote the projection invariant under all w € W fixing ay pointwise.
Let Py denote a standard parabolic subgroup of G corresponding to 6;
that is, Py = LgNg where Lg is the centralizer of Ag and Ny is the unipotent
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radical of Py such that log Ny is generated by root subgroups associated to
all positive roots which are not Z-linear combinations of II — 6.

We set My = K N Py = Ck(Ay). The Levi subgroup Ly can be written
as Ly = AySy where Sy is an almost direct product of a connected semisim-
ple real algebraic subgroup and a compact center. Letting By = Sy N A
and By = {b € By : a(logb) > 0 for all @ € Il — 0}, we have the Cartan
decomposition of Sp:

Sy = MyB, Mjy.

Note that A = AygBy and AT C AJ B, . The space aj = Hom(ag,R) can be
identified with the subspace of a* consisting of py-invariant linear forms:

(2.3) ap ={Y € a* :popyg =1}
Hence for 6; C 65, we have
(2.4) ag, C ag,.
When 6 = II, we will omit the subscript. So P = P is a minimal

parabolic subgroup and P = M AN.

Cartan projection. Recall the Cartan decomposition G = K AT K, which
means that for every g € G, there exists a unique element u(g) € a* such
that ¢ € Kexpu(g)K. The map G — a™t given by g — u(g) is called the
Cartan projection. We have

(2.5) p(g™h) =i(u(g)) forallge G,
Let X = G/K be the associated Riemannian symmetric space, and set
o = [K] € X. Fix a K-invariant norm || - || on g and a Riemannian metric d

on X, induced from the Killing form on g; so that

d(go, ho) = [|u(g~" )]

for any g,h € G. For p € X and R > 0, let B(p, R) denote the metric ball
{r € X :d(z,p) < R}.

Lemma 2.1. [3, Lemma 4.6] For any compact subset QQ C G, there exists a
constant C' = Cg > 0 such that for all g € G,

sup |lpu(qrgqe) — p(g)l| < C.
q1,92€Q

We then write

ug::pgo,u:G—>a3'.

In view of ({2.3)), we have 1) o g = 1) o pu for all ¢ € aj.
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The #-boundary Fy. We set
Fo=G/Py and F=G/P.

Let

ot F — Fy
denote the canonical projection map given by gP +— gFy, g € G. We set
(2.6) o = [Pp] € Fo.

By the Iwasawa decomposition G = KP = KAN, the subgroup K acts
transitively on Fy, and hence Fy ~ K /Mjy.

We consider the following notion of convergence of a sequence in G (or in
X) to an element of Fy. For a sequence g; € G, we say g; — oo #-regularly
if mingeg a(p(gi)) — 0o as i — oo.

Definition 2.2. For a sequence g; € G and £ € Fy, we write lim; o ¢g; =
lim g;o = € and say g¢; (or g;o € X) converges to & if

e g; — oo f-regularly; and

o lim; ,oo k;&p = £ in Fy for some k; € K such that g; € k;ATK.

Points in general position. Let P9+ be the standard parabolic subgroup
of G opposite to Py such that Py N P,” = Ly. We have P(f = woPi(g)wal
and hence
Fio) = G/Fy .
For g € G, we set
gy =9Ps and gy := guwoPyp);

as we fix 6 in the entire paper, we write g* = gét for simplicity when
there is no room for confusion. Hence for the identity e € G, (et,e”) =
(Py, Py) = (&, wo&i(p))- The G-orbit of (e, e™) is the unique open G-orbit
in G/Py x G/ P0+ under the diagonal G-action. We set

2 _
(2.7) 7y =195, 95) 19 € G).
Two elements § € Fy and n € Fyp) are said to be in general position (or
antipodal) if (§,7n) € ]:9(2).

Busemann maps and Gromov products. The a-valued Busemann map
B:F X G x G — ais defined as follows: for £ € F and g, h € G,

Belg,h) ==0o(g~ ", &) —a(h™1,¢)

where o(g~!, £) € ais the unique element such that g~k € Kexp(o(g~!,£))N
for any k € K with £ = kP. For (§,g9,h) € Fyp x G x G, we define

(2.8) BE(g,h) = po(Be, (g, h)) for & € w5 (€);
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this is well-defined independent of the choice of &y [51, Lemma 6.1]. We also
have ||Bg(g, h)|| < d(go, ho) for all g, h € G [51], Lemma 8.9]. The Busemann
map has the following properties: for all £ € Fy and ¢y, g2, g3 € G,
(Invariance) B¢(g1,92) = Bhe (9391, 9392);
(Cocycle property)  B2(g1,92) = BL(g1.93) + BL(g3, 92)-

For p,q € X and £ € Fy, we set ﬁg(p, q) == 5?(9, h) where g, h € G satisfies
go =p and ho = q. It is easy to check that this is well-defined.

Definition 2.3. For (§,n) € .7-"0(2) , we define the 6-Gromov product as

G°(&.1) = 5 (LLe,9) + (5 (e, )

where g € G satisfies (g7, 97) = (£,7n). This does not depend on the choice
of g [35, Lemma 9.11].

3. CLASSIFICATION OF PATTERSON-SULLIVAN MEASURES BY TANGENT
FORMS

Let G be a connected semisimple real algebraic group. We fix a non-
empty subset 6 of the set II of all simple roots. Throughout this section, let
I" be a discrete subgroup of G. When I' is 6-Anosov, we have a complete
classification of all linear forms 1 € aj admitting a (I", 1)-Patterson-Sullivan
measure ([39] [55], [35]). The goal of this section is to review this classifica-
tion, in addition to recalling some basic notions such as the limit cone and
the growth indicator of I'. We refer to [35] for more details on this section.

The 6-limit set of I' is defined as follows:

Ay = AQ(F) = {lim'yi eFp: v € F}

where lim~; is defined as in Definition If I' < G is Zariski dense, then
the limit set Ay is the unique I'-minimal subset of Fy ([3, Section 3.6], [51],
Theorem 7.2]). Furthermore, if we set A = Ap, then mp(A) = Ay. For
Y € aj, a Borel probability measure v on Fy is called a (I',9))-conformal
measure if for all v € I" and & € Fy,

dry.v
dv

where v,v(B) = v(y~!B) for any Borel B C Fy. A (T, )-conformal measure
is called a (T, ¢)-Patterson-Sullivan measure if it is supported on Ay.

In order to discuss which linear forms 1 admits a Patterson-Sullivan mea-
sure, we need the definitions of the 6-limit cones and growth indicators.

The 6-limit cone Ly = Lg(I") of I' is defined as the asymptotic cone of
g (L) in ag, that is, u € Ly if and only if u = lim t;ug(~;) for some sequences
t; > 0and v, € I'. If I is Zariski dense, Ly is a convex cone with non-
empty interior by [3, Section 1.2]. Recalling the convention of dropping the
subscript # when 6 = II, we write £ = Ly1. We then have py(L) = Ly.

(&) = V(B ()
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Growth indicators. We say that I' is #-discrete if the restriction uglr :
r — a; is proper. The 6-discreteness of I' implies that up(I') is a closed
discrete subset of ag. Indeed, T" is #-discrete if and only if the counting

measure on uy(I") weighted with multiplicity is a Radon measure on ag.

Definition 3.1 (6-growth indicator ([50], [35])). For a -discrete subgroup
[ < G, the f-growth indicator 1% : ay — [—00,00] is defined as follows: if
u € ag is non-zero,

(3.1) ¥t (u) = [lull inf 78

where C C ag ranges over all open cones containing u, and 2(0) = 0. Here
—o00 < 7§ < oo denotes the abscissa of convergence of the series Pd(s) =
Z’YEF,MQ(’Y)EC e slreIl As mentioned, we simply write ¢ := Y.

This definition is independent of the choice of a norm on ay. It was proved
in ([0, Theorem 1.1.1], [35, Theorem 3.3]) that

P <00, Lo={yYl >0} and % >0on intLy

where int £y denotes the interior of Ly in the relative topology of ag. More-
over, w{i is upper semi-continuous and concave. When 6 = i(0), it follows
from that wle is i-invariant.

We say a linear form ¢ is tangent to ¥2 (at u € ag — {0}) if ¢ > @
and 9 (u) = ¥ (u). For any u € int Ly, there exists ¢ € a; tangent to e,
at u. Moreover, for any 1 € aj tangent to wl(i at an interior direction of
ay , there exists a (I, 1)-Patterson-Sullivan measure ([51, Theorem 8.4], [35)
Proposition 5.9]).

For 6-Anosov subgroups, we have a more precise classification of Patterson-
Sullivan measures in terms of tangent forms.

Definition 3.2. A finitely generated subgroup I' < G is 6-Anosov if there
exists a constant C' > 1 such that for all a € # and v € I, we have

(32) a(u(y)) = C 'y - C
where | - | denotes a fixed word metric on T

We recall that all #-Anosov subgroups are assumed to be non-elementary
in this paper. Define

(3.3) T = {1 € ajy : ¥ is tangent to 1}

The following theorem can be deduced from [55, Theorem A], [52 Section
4] and [54, Lemma 4.8] (see [35, Theorem 12.2]):

Theorem 3.3. Let I' be a 0-Anosov subgroup. Then
(1) ¢1€ s analytic, strictly concave and vertically tangenﬂ'

51t means that there is no linear form tangent to P at some u € ILy.
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(2) For any ¢ € I, there exists a unique unit vector u = u, € int Ly
such that ¥(u) = YL(u). IfT is Zariski dense, the map ¥ — uy is a
bijection between Fr and {u € int Ly : ||u|| = 1}.

The following theorem was proved in [39, Theorem 1.3 for § = IT and T’
Zariski dense. The general case follows from [55, Theorem A}, [35, Theorem
1.12], and [34, Theorem 1.3, Theorem 9.4].

Theorem 3.4. Let I' be a 0-Anosov subgroup. For any b € I, there
exists a unique (T',1)-Patterson-Sullivan measure on Ay which we denote by
vy = Uy 9. The map

1!1 — Vy
is a surjection from It to the space of all I'-Patterson-Sullivan measures. If
I' is Zariski dense, then the map 1 — vy is bijective. Moreover, if 11 # 12
in Ir, then vy, and vy, are mutually singular to each other.

Remark 3.5. One immediate consequence of the last statement of Theo-
rem [3.4] is that at most one Patterson-Sullivan measure can be a Hausdorff
measure on Ag with respect to a fixed metric (e.g., Riemannian metric).

When ¢ € aj is positive on Ly — {0}, the abscissa of convergence of the

1p-Poincaré series
S Z e~ 5Y(1())

~yel
is a well-defined positive number we denote it by &, [35, Lemma 4.3]. Equiv-

alently, d, is also given by .

Lemma 3.6. [35, Lemma 4.5] If ¢ € aj is positive on Ly — {0}, then
optp € I,

In particular, ¢ € 1 if and only if 6 = 1.

Since pu(g7!) = i(u(g)) for all g € G, we have that T' is §-Anosov if and
only if I" is # Ui(#)-Anosov. If I is §-Anosov, then the canonical projection
map p : Aguip) — Mg is a I'-equivariant homeomorphism. Recalling that aj
can be considered as a subset of a;ui(e) from , we recall the following
which will be of use.

Lemma 3.7. [35, Lemma 9.5] Let T' be a 0-Anosov subgroup. For any
Y € Ir, the measure vy g coincides with the push-forward of vy guie) by p-

Gromov hyperbolic space and quasi-isometry. We collect a few basic
facts about #-Anosov subgroups which will be used repeatedly.

Recall that a geodesic metric spaceﬁ (Z,dyz) is called a Gromov hyperbolic
space if it satisfies a uniformly thin-triangle property, that is, there exists
T > 0 such that for any geodesic triangle in Z, one side of the triangle
is contained in the T-neighborhood of the union of two other sides. We

6that is, there exists a geodesic between any two distinct points.
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denote by 0Z the Gromov boundary of Z, which is the equivalence classes
of geodesic rays. For any z1 # zo € Z U JZ, there may be more than
one geodesic connecting z; and zo. By the notation [z1, 29|, we mean “a”
geodesic in Z connecting z1 to zo. For w € Z, the nearest-point projection
of w to a geodesic [z1, 23] is any point w' € [z1, 22| satisfying dz(w,w’) =
inf{dz(w,z) : z € [21,22]}. This is coarsely well-defined. One can refer
to [11] for basics on Gromov hyperbolic spaces. Recall that d denotes the

Riemannian metric on X = G/K.

Theorem 3.8 ([31, Corollary 1.6], [29, Proposition 5.16, Lemma 5.23], see
also [25]). Let T' be a 0-Anosov subgroup. Fix a word metric dp on T' with
respect to a finite symmetric generating set. We have:
(1) (T',dr) is a Gromov hyperbolic spaaﬂ'
(2) Lo — {0} is contained in the relative interior of aj in ag;
(3) The orbit map (I',dr) — (Lo, d) given by v — ~o is a quasi-isometry,
i.e., there exist Q = Qr > 1 such that for all v1,v2 € T,

Q' -dr(1,72) — Q < d(710,720) < Q - dr(71,72) + Q;

(4) The orbit map T' — To uniquely extends to a T'-equivariant continu-
ous map f : TUOT — ToUAy and f|sr is a homeomorphism onto Ay.
For 0 =i(0), f maps two distinct points of O to points in general
position.

We will henceforth identity OI' and Ag using f. For any £ #n € T'UJT,
note that f([£,n]) = [, n]o is the image of [£,n] under the orbit map.

4. METRIC-LIKE FUNCTIONS ON I'-ORBITS AND DIAMONDS

We fix a non-empty subset § C II. In this section, we assume that 6 is
symmetric, i.e., § =i(f). Recall the notation X = G/K and o = [K] € X.
For a linear form ¢ € ap, define dy, : X x X — R as follows: for g,h € G,

(4.1) dy (g0, ho) := ¢ (u(g~"h)) = Y(ue(g~"h)).
Since the Cartan projection p is bi-K-invariant, d, is a well-defined left
G-invariant function.

The main goal of this section is to prove the following theorem saying
that when I' is 6-Anosov, dy, behaves like a metric, restricted to the I'-orbit
T'o for a proper class of ’s:

Theorem 4.1 (Coarse triangle inequality). Let I be a 0-Anosov subgroup.
Let 4 € ay be such that ¢ > 0 on Lo — {0}. Then there exists a constant
D = Dy, > 0 such that for all v1,7v2,v €T,

dy(7110,720) < dy(710,70) 4+ dy(70,720) + D.
Indeed, we prove Theorem in a greater generality where the orbit I'o

is replaced by the image of a uniformly reqular quasi-isometric embedding
of a geodesic metric space into X.

Tnote that the metric space (I',dr) is clearly a proper geodesic space
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Coarse triangle inequalities for uniformly regular quasi-isometric
embeddings. We set Wy to be the set of all Weyl elements which fix ay
pointwise. We define a closed cone C in a™ to be #-admissible if the following
three conditions hold:

(1) C is i-invariant: i(C) = C;

(2) Wy -C = Uw€W0 Ad,, C is convex;

(3) €N (Upep kera) = {0}

For a f-admissible cone C, we say that an ordered pair (z1, z2) of distinct
points in X is C-regular if for g1, gs € G such that gio = z1 and go0 = xo,
we have

it ge) €C.
In this case, x9 = g20 € 1K (expC)o and hence for some g € g1 K, z; =
g10 = go and x2 € g(expC)o. Note that if (x1,x2) is C-regular, then (x2,21)
is i(C)-regular and hence C-regular by the i-invariance of C.

Definition 4.2. Let (Z,dz) be a metric space and f : Z — X be a map.
For a cone C C a® and a constant B > 0, f is called (C, B)-regular if the
pair (f(z1), f(z2)) is C-regular for all z1,29 € Z with dz(z1,22) > B. We
simply say f is C-regular if it is (C, B)-regular for some B > 0.

Theorem will be deduced as a special case of the following theorem:
we write Cg = py(C).

Theorem 4.3. Let Z be a geodesic metric space and C C a™ a 0-admissible
cone. Let f: Z — X be a C-reqular quasi-isometric embeddingﬂ. If ¢ € ay
is positive on C — {0}, then there exists a constant D = Dy > 0 such that

for all x1, 9,23 € f(Z),
d¢($1,333) < d¢($1,£€2) + d¢(.’E2, :Eg) + D.

We continue to use notation inta’ and int ag for relative interiors in
the topology of a and ay respectively. Unless mentioned otherwise, for any
proper cone C in at (resp. a;), we denote by int C the interior of C in the

relative topology of at (resp. a;“).

Proof of Theorem assuming Theorem Let ¢ € aj be such
that ¢ > 0 on Ly — {0}. We will construct a #-admissible cone C C a™ such
that £ — {0} C intC and % is positive on C — {0}.

Since # = i(6) by hypothesis, it follows from that i, is an involution
preserving L. Since 1 is positive on Ly — {0} and Ly — {0} C inta,
(Theorem (2)), we can choose a closed convex cone Cy C inta U {0}
satisfying

(1) Ly — {0} C int Cy;

8A map f : (Z,dz) — (Y,dy) between metric spaces is called a Q-quasi-isometric
embedding for Q > 1 if for all 21,20 € Z, Qfldz(zl,zg) —Q < dy(f(=1), f(22)) <
Qdz(z1,22) + Q. A map is called a quasi-isometric embedding if it is a Q-quasi-isometric
embedding for some @ > 1.
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(2) i(Co) = Co;
(3) ¥ >0 on Cy— {0}.

We observe that Wy - at is equal to the union of all Weyl chambers
containing a, and hence is a convex cone by [30, Lemma 2.12].

Let a € 6. It follows from that £ Nker o = {0}. Since keraNa™ is
contained in the boundary of Wy -a™, it follows from the convexity of Wy-a™
that Wy - a™ is contained in the half space { > 0}. Hence both inta; and
Wy - L — {0} are contained in the open half-space {&v > 0}. Therefore we
can find a linear form h, € a* such that

(keranat) — {0} C {ha <0} and (CoUWs-L)— {0} C {ha > 0}.

Now set H := () ,cwew, 11a © Ady > 0}, which is clearly a Wj-invariant
convex cone. By our choice of hq, int H contains £ — {0}. Since 6 = i(0)
and hence Wy = Wj), we have that i(H) is also a Wjp-invariant convex cone
whose interior contains £ — {0} = i(£) — {0}.

Define

C=p, (Co)Nat N HNi(H).

By construction, we have CN (UaEG ker a) = {0}. In particular, C is a proper
closed cone in a®. Then intC contains £ — {0}. Since ¢ > 0 on Cy and ) is
pe-invariant, ¢» > 0 on C. Since i(Cy) = Cp, we have i(C) = C. Using the fact
that pg : a = ag is Wy-equivariant, we have that

Wy -C =Wy (p," (Co) Na)YNHNiI(H) =p, " (Co) N (Wp-at)NHNi(H).

Since pgl(Co), Wy - a®, H, and i(H) are convex, it follows that Wy - C is
convex.

Therefore C is f-admissible. Since the orbit map (I',dr) — (X,d), v —
~0, is a quasi-isometric embedding by Theorem (3) and any open cone
containing £ contains pu(T") except for finitely many points, Theorem
follows from Theorem once we prove that the orbit map is a C-regular
embedding, as below. O

Lemma 4.4. Let C C a® be a closed cone such that intC > L — {0}. Then
the orbit map (I',dr) — (X, d) is C-regular.

Proof. Suppose not. Then there exist two sequences {7;},{v/} C T such
that dr(yi,v)) = |y, ' > i and p(y;'y)) & C for all i > 1. Setting

gi = v; 19} € T, we then have that ”/’183” ¢ C for all i > 1. Hence no limit of
1(gi)

menl belongs to int C. On the other hand, since |g;| — oo, we

the sequence

have ||u(gi)|] — oo and hence any limit of the sequence ”ﬁ EZ?;H must belong
to the asymptotic cone of u(T'), that is, £. This yields a contradiction to
the hypothesis £ — {0} C intC. O

The rest of this section is devoted to the proof of Theorem We
begin by recalling the following theorem; in particular, the metric space Z
in Theorem [£.3]is always Gromov hyperbolic.
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Theorem 4.5. [31, Theorem 1.4] Let Z and f : Z — X be as in Theorem
[4.3. Then Z is Gromov hyperbolic. If Z is proper in addition, then f
continuously extends to

f:Z—)XU]:g

where Z = Z U 0Z is the Gromov compactification and f maps two distinct
points in OZ to points in general position.

Diamonds. The notion of diamonds in X, due to Kapovich-Leeb-Porti,
plays a key role in the proof of Theorem [£.3] We fix

a @-admissible cone C C a™

in the following. For a C-regular pair (z1,x2) of points in X, define the
C-cone with the tip at z; containing xo to be

Ve(z1,x2) = gMp(expC)o,

where g = g(r1,22) € G is any element such that 7 = go and zo €
g(expC)o; it is easy to check such g always exists and this definition is
independent of the choice of g. For any h € G, we have hVg(x1,x2) =
Vc(hl'l,hl'g).

Definition 4.6 (Diamonds). For a C-regular pair (z1,z3) of points in X,
the C-diamond with tips at x1 and x5 is defined as

Oc(z1, ) = Ve(z1,22) N Ve(z2, 21).

The C-cones and C-diamonds are convex subsets of X, see [29, Proposi-
tions 2.10 and 2.13]. Note also the equivariance property that for h € G,
hOc(x1,x2) = Oc(hx1, hwa). It follows that for any C-regular pair (zi,x2),
the diamond OQ¢(x1,x2) is of the form h{¢(o,a0) for some a € expC and
h € G. Therefore the following example describes all diamonds up to trans-
lations.

Example 4.7. For a € expC, the diamond O¢(0,a0) can be explicitly

described as follows. First note that as we can take g(o0,a0) = e, we
have Vi(o,a0) = Mpy(expC)o. Recalling that i = — Ad,,, we also have
ao = awgo and o = (awp)(wy a " we)o € awp(expC)o. So we can take

g(ao,0) = awg. Since woMpwy ' = My and wy(expC)wy ' = exp(—C), we
have V¢ (ao,0) = awoMg(exp C)o = aMyexp(—C)o. Therefore

Oc(0,a0) = Mp(exp C)o N aMyexp(—C)o.
See Figure [I]

Lemma 4.8 (Simultaneously nesting property). If (x1,x2) is C-regular, then
for any x € Oc(x1,x2), there exist g € G and a € expC such that

x1 =go, x=gao, x2 € gMy(expC)on ga(MyexpC)o.
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FIGURE 1. Diamond drawn in a

Proof. We may first assume that 1 = o. By the C-regularity of the pair
(z1,22), we have 9 € K(expC)o. By multiplying an element of K to z;
and x9, we may also assume that 1 = o and z2 € (expC)o, and hence
x € Mp(expC)o. We again multiply an element of My to z1,z2 and x if
necessary so that we have 1 = o, o € My(expC)o, and = = ao for some
a € expC. Then it suffices to show that zo = aka’o for some k € My and
a’ € expC. We write z9 = mago for m € My and ag € expC. We then have
o € Ve(z2,0) = magkoMy(exp C)o for some ko € K. Hence we have

ko twy H(woag twy ') € My(expC)K.

This implies k:gl € Mpwp and hence kg € woMy. Since ao € Ve(x9,0) as
well, we now have ao € magwoMpy(expC)o. Then for some k € K, we have

ak € magwoMy exp Cwa1 = maoMy exp(—C).
Hence for some a’ € expC, we have
aka' € magMs.

Looking at G/ Py, we have kPy = a " ‘magMga'~'Py = Py. Therefore k € M,.
Since x9 = mago = aka’o, the claim follows. O

Lemma 4.9. For any C-regular pair (g10, g2o) with g1,92 € G and for any
go € Oc(g10, g20) with g € G,

(4.2) 1o(gr"9) + 1o(g™"g2) = o(gy " g2)-

Proof. By Lemma there exists h € G, a,a,a’ € expC and kk € My
such that gio = ho, go = hao, and gs0 = hkao = haka’o. Without loss of

generality, we may assume h = e in proving (4.2)).
We write

a=aiay € AJBS and o =adjah € AjB,;.
We then have
aka' = askaly(aia}).
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Since askal, € Sy, we can write its Cartan decomposition askal, = mbm’ €
M()B;Mg, and hence

aka' = m(baya))m’.

Let w € W be a Weyl element such that baja) € wATw™!. Since a =
exp p(aka’), we must have baja} = waw~!. Hence we have

/ ~
go0 = aka'o = mwao.

On the other hand, we also have goo = kdo where k € My. This im-
plies mw € Mp; in particular, w € My. Therefore @ = w 'bajajw =
(w™tbw)(a1a}) € By AS, which implies

(4.3) po(loga) = logay + loga) = py(loga) + pg(loga’).

Since

po(gr ') = po(loga), a9 'g2) =pe(loga’), and pg(gy ' g2) = pe(loga),
this finishes the proof. O

As an immediate corollary, we get that dy is additive on each diamond
for any v € ap:

Lemma 4.10 (Additivity of dy on diamonds). Let ¢ € aj. For any C-
reqular pair (x1,x2) and for any x € Oc(x1,x2), we have

dy (21, %) + dy(z, 22) = dy (21, 22).

KLP Morse lemma. The Morse lemma due to Kapovich-Leeb-Porti, which
we will call the KLP Morse lemma, is stated as follows [31, Theorem 5.16,
Corollary 5.28]: the image of an interval in R under a Q-quasi-isometry is
called a Q-quasi-geodesic.

Theorem 4.11 (KLP Morse lemma). Let C,C' C a™ be 0-admissible closed
cones such that int C" contains C — {0}. Let Q,B > 1 be constants. There
exists a constant Dy = Dy(C,C',Q, B) > 0 so that the following holds: let
I C R be an interval and ¢ : I — X a (C, B)-regular Q-quasi-geodesic.

(1) If I = [a,b] with b —a > B, then the image c(I) is contained in the
Dy-neighborhood of the diamond Ocr(c(a), c(b)).

(2) If I = [a,00) for some a € R, then c(I) is contained in the Dy-
neighborhood of the cone gMy(expC')o where g € G is such that
go = c(a) and g* = c¢(c0) € Fy.

(3) IfI =R, then c(I) is contained in the Dy-neighborhood of the parallel
set gMyAo where g € G is such that g& = c(+o00) € Fy.

We note that the above applies for an interval in Z, as any C-reqular quasi-
isometric embedding ¢ : I NZ — X can be extended to a C-regular quasi-
geodesic I — X simply by setting c(t) := c(|[t]) where [t]| is the largest
integer not bigger than t.

As an application of Theorem [£.11] we get the following:
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C/

U(LEG ker o

FIGURE 2. Choice of C' viewed on the unit sphere of a™*

Corollary 4.12. GivenC,C’',Q,B > 1 as in Theorem and ) € ay, there
exists a constant D1 = D1(C,C',Q, B,v) > 0 so that the following holds: let
I C R be an interval and ¢ : I — X a (C, B)-regular Q-quasi-geodesic. Then
foralla <t <bin I, we have

(4.4) |dy (c(a), ¢(b)) — dy(c(a), (b)) — dy(c(t), c(b))] < D

Proof. Suppose that b—a > B. Since c is (C, B)-regular, the pair (c¢(a), c(b))
is C-regular. Applying Theorem we obtain that the image of ¢ : [a, b] —
X lies in the Dg-neighborhood of Q¢/(c(a), c(b)). For each a < t < b, choose

2 € Ocr(c(a), (b)) so that d(z¢,c(t)) < Do. Hence by Lemma [4.10}
(4.5) dy(c(a), z¢) + dy (e, c(b)) = dy(c(a), c(b)).
For each a < t < b, write ¢(t) = g0 and z; = ho for g;,hy € G. We

then have ||u(h; 'g:)|| < Do. By applying Lemma [2.1/ to a compact subset
{g € G:|\u(g)|| < Do}, we have for all a < t < b,

|y (c(a), ze) — dy(c(a), ()| = [ (ulgg ") — nlgg 'ge)l < C
where C > 0 is a uniform constant depending only on v and Dgy. Similarly,
we have |dy (z¢, ¢(b)) — dy(c(t),c(b))] < C. By (4.5)), this implies that
|dy(c(a), ¢(b)) — dy(c(a), c(t)) — dy(c(t), ¢(b))] < 2C.
Setting Dy = 2C + 3||¢||(QB + Q) where ||| is the operator norm of 1,

we have shown that (4.4)) holds whenever b —a > B. If b — a < B, then the
image of ¢([a, b]) has diameter smaller than Q(b —a) + Q < @B + Q. Then

dy(c(tr), clt2)) < [¢[(@B + Q)

for all ¢1,ts € [a,b], and hence the left hand side of (4.4)) is bounded above
by 3||¥|[(QB + Q) < D;. This completes the proof. O

We are ready to give:

Proof of Theorem Let f: Z — X be as in Theorem Let ¥ € a
be such that ¢ > 0 on C—{0}. Choose a #-admissible cone C’ C a* such that
int C' contains C — {0} and such that ¢ > 0 on C’'—{0}. Let a1, 29,23 € f(2)
be a triple of distinct points. We choose z1, 29, 23 € Z such that x; = f(z;)
for ¢ = 1,2,3. Choose geodesics ¢; and ¢y in Z connecting z; to 29 and zo to
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z3 respectively. By Theorem (Z,dz) is Gromov hyperbolic. We denote
by z the nearest-point projection of z3 to a geodesic segment connecting
z1 and z3. Then by the Gromov hyperbolicity of (Z,dz), there exists a
uniform constant & > 0 so that the d-neighborhood of z intersects both
geodesics ¢; and co. We choose two points y1 € ¢; and yo € co which are
d-close to z. We concatenate the segment of ¢; connecting z; and yp, a
geodesic connecting y; and y», and the segment of co connecting yo and z3,
and denote the concatenated path by c. We can parameterize ¢ : [0,b] — Z
so that ¢ is a g-quasi-geodesic for some b > 0 and uniform ¢ > 1 by the
Gromov hyperbolicity of (Z,dz) and the choice of y; and ys.

Since f is a C-regular quasi-isometric embedding, so is f o c. Hence we
get

(4.6) dy (21, 23) < dy (21, f(31)) + dy(f(y1), 23) + Dy
where D is the constant given by Corollary Applying Corollary
to the restriction of f o c to the interval [c™(y1), b] again, we have
(4.7) dy (f(y1), 23) < dy(f(y1), f(y2)) + dy(f(y2), 23) + D1
Since dz(y1,y2) < 20, combining (4.6)) and (4.7)) yields
(4.8) dy(21,23) < dy(21, f(y1)) +dy(f(y2), 23) + Dy
where D] := sup{dy(f(w1), f(w2)) : dz(w1,ws) < 20} + 2D; < 0.
Since f is C-regular and ¢ > 0 on C — {0}, there exists Dy > 0 such that
(4.9) dy (f(w1), f(w2)) = —Ds

for all wy,we € Z; indeed, if f is (C, B)-regular for some B > 0, then

dy(f(wi), f(w2)) > 0 whenever dz(wq, w2) > B, and sup{|dy(f(w1), f(w2))] :
dz(wi,w2) < B} is bounded by a uniform constant depending only on B,
the quasi-isometry constant of f, and ||9||.

Hence applying and Corollary to f(c1), we have
(4.10) dy (21, f(y1)) < dy(z1, f(y1)) + dy(f(91), 22) + D2
<dy(x1,22) + D1 + Ds.

Similarly, we also get
(4.11) dy(f(y2),x3) < dy(x2,23) + D1 + Ds.
Combining , and , we obtain
dy (21, 23) < dy(z1,22) + dy (22, 23) + D] + 2(D1 + Dy).
This completes the proof of Theorem O

We state the following consequence of the KLP Morse lemma applied to
Anosov subgroups:

Theorem 4.13 (Morse lemma for Anosov subgroups). Let 8 =i(0). Let T’
be a 0-Anosov subgroup and f : T'UOT — ToU Ay be the extension of the
orbit map v — yo given in Theorem (4) Then there exist a cone C C a™
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and constants B, Dy > 1 such that for any geodesic [€,n] in T, the following
holds:

(1) If &,n e T and dr(§,m) > B, then f([¢,n]) is contained in the Dy-
neighborhood of the diamond Qc(f(€), f(n)).

(2) If¢ €T andn € I, then f([€,n]) is contained in the Dy-neighborhood
of gMy(expC)o where g € G is such that go =& and gPy = f(n).

(3) If &,m € O, then f([€,n]) is contained in the Dg-neighborhood of
gMyAo where g € G is such that gPy = f(&) and gwoPy = f(n).

Moreover, the cone C can be taken arbitrarily close to L as long as its interior
contains L — {0}.

Proof. Let C C a™ be the f-admissible cone as in the proof of Theorem 4.1
and choose a f-admissible cone C’ C a™ whose interior in a® contains C—{0}.
Then by Lemma and Theorem [3.8(3), the orbit map f|r is a (C, B)-
regular @Q-quasi-isometry between (I',dr) and (I'o,d) for some B,Q > 1.
Let Dy = Dy(C,C’, @, B) be as given by Theorem m

Now note that any geodesic [£,n] in (T, dr) can be written as [£,n] = {~; :
i € I} for an interval I in Z, and ¢ : i — y; is an isometry between I and
[€,m]. Since ¢ := f o is a (C, B)-regular Q-quasi-geodesic, we can apply
Theorem which implies the above claims (1)-(3) where the cone C in
the statement is given by C’ in this proof. Note from the proof of Theorem
that the cone C’ can be taken arbitrarily close to the limit cone £ of T
as long as int C’' contains £ — {0}. O

5. CONFORMAL PREMETRICS ON LIMIT SETS

Let T" be a #-Anosov subgroup of a connected semisimple real algebraic
group G. We assume 6 = i(f) in this section. Fix a linear form ¢ € aj
positive on Ly — {0}. The goal of this section is to define a premetric dy, on
the limit set Ay, which is conformal, almost symmetric, and satisfies almost
triangle inequality with bounded multiplicative error. We also discuss how
this definition can be extended to non-symmetric 8 at the end of the section.

Recall the definition of the Gromov product from Definition The
f-Anosov property of I' implies that any two distinct points in Ay are in
general position: if £ # 7 in Ay, then (§,7n) € ]:0(2) . Therefore the following
premetric on Ay is well-defined:

Definition 5.1. For £, € Ay, we set
e—¥(G° (Em) if&+£n
0 if&=mn.

We first observe the following I'-conformal property of d:

(5.1) dy(&,m) = {

Lemma 5.2. For vy €T and &,n € Ay, we have
1 e i(Bl (e
d¢(7_1£,7_177) — o2 ¥(Be (e)+i(By( ”Y)))ddz(f, n).
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Proof. Let £ # 1, and g € G be such that g* = ¢ and g~ = 7. Then for any
yel,

2G°(v 16,y ) = B ae(er N g) +1(B) 1, (6,77 ))
=26°(&,n) + BL(v, e) +i(BY(v,€))
Now the claim follows from the definition of d. O

Recall that G%(&,n) = 1(G%(n, €)) for all €,1 € Ay. Hence if ¢ is i-invariant,
then d is symmetric. We have the following in general:

Proposition 5.3 (Metric-like properties of d,).
(1) There ezists R = R(v) > 1 such that for all £,m € Ay,

R~y (1,€) < dy(€n) < R dy(n.€).
(2) There exists N = N (1) > 0 such that for all £&1,&2,&3 € Ay,

dy(€1,83) < N(dy(&1,82) +dy(€2,83)).

The second property was obtained in [39, Lemma 6.11] and the same proof
can be repeated for a general # in verbatim. The first property follows from
Lemma below. For x # y in the Gromov boundary JI' and a bi-infinite
geodesic [z,y] in T', we denote by v, € [z,y] the nearest-point projection
of the identity e to [z,y] in (I',dr), that is, 75, € [x,y] is an element such
that dr(e,vzy) = inf{dr(e,g) : g € [z,y]}, which is coarsely well-defined.
Recall the map f : ' U — T'o U Ay from Theorem [3.§|(4). The following
was proved in [39, Lemma 6.6] for # = II and the same proof works for a
general 6:

Lemma 5.4. There exists Ch > 0 such that for any x # y € O,

In particular, for € #n € Ay, we have
16 (&) — G°(n, €)|| < 2C1.

Symmetrization. Consider the following symmetrization of ¥ € aj:

_Urvei
V= € i)

1o (Vary) + (10 (V)
G'(f(@), Fly) -

‘<Cl.

Since we are assuming ¢ = i(¢), we have Y € a} as well. Since Ly is i-
invariant, we have ¢ > 0 on £y — {0}. Lemma implies that dj and dy
are Lipschitz equivalent:

Proposition 5.5. There exists R > 1 such that for any &, 1 € Ay, we have
R™1dy(€,m) < dg(€,) < Ry (&, ).
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Proof. Since G%(n, &) =1(G%(&,n)) for all 7 # £ in Ay, it follows from Lemma
with the constant C; therein that

(G (&m) — DG (& m)| = %W(ge(&,n) = G"(n,6)| < [[¥llC.
It suffices to set R = el?l€1 to finish the proof. O

We also record the following Vitali covering type lemma which is a stan-
dard consequence of Proposition [5.3{2) (cf. [39]): here By(&,r) = {n € A :

dlﬁ(g? ) < T‘}.
Lemma 5.6. [39, Lemma 6.12] There exists Ny = No(¢) > 1 satisfy-
ing the following: for any finite collection By(&1,71),- -+, By(&n,mn) with

& € Ag and r; > 0 fori = 1,--- ,n, there exists a disjoint subcollection
By(&iysiy)s - 5 By(&iys i) such that

n

U gl') Tz

=1

glj 9 NOT’L] )

”C?T

Remark 5.7. Recall that the canonical projection p : Aguijp) — Ag is a
I'-equivariant homeomorphism and that aj; C a;ui(@)‘ Using this homeomor-
phism, we can also define a function d,, on Ag even when 6 is not symmetric,
so that p : (Agui(e), dy) — (Mg, dy) is an isometry:

dy(&,m) = dy(p~(€),p" (1))

for all £, € Ag. In this regard, the above discussion is still valid without
the symmetric hypothesis on 6.

6. COMPATIBILITY OF SHADOWS AND dw—BALLS

As before, let I' be a 6-Anosov subgroup of a connected semisimple real
algebraic group G. We fix a word metric dr on I'. Fix a linear form

V€ ag

which is positive on £ — {0} and 1) = 1) oi. Recall the premetric d,, on I'o
defined in (4.1)) and the conformal premetric dy, on Ay defined by (5.1]).

Lemma 6.1. Both (I'o,dy) and (Ag,dy) are symmetric.
Proof. For g1, g2 € G, we have
dy (910, 920) = P(u(gy ' 92)) = ¥ 0 i(ulg5 ' 91)) = dy(g20, g10).

The second claim follows similarly since GO0 (¢, ) = i GO0 (1, €) for all
§,m € Foui(p) in general position. O

Shadows play a basic role in studying the metric property of (Ag,dy) in
relation with the geometry of the symmetric space X, as in the original work
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of Sullivan. We recall the definition of shadows in Fy. For p,q € X, the
shadow O%(p, q) of the Riemannian ball B(g, R) viewed from p is defined as

0% (p,q) = {gPs € Fo: g € G, go=p, d(q,9AT0) < R}.

We refer to [34] and [35] for basic properties of these shadows.
The main technical ingredient of this paper is the following theorem which
says that shadows in Ay are comparable with d,-balls.

Theorem 6.2. Let 1 € aj be such that yp > 0 on L — {0} and ¢ = 4 oi.
Then there exist constants ¢, Ry > 0 such that for any R > Ry, there exists
d =y > 0 so that the following holds: for any £ € Ag and any g €T on a
geodesic ray [e,&] in T', we have

(6.1) By (&, ce=9(299)) 0% (0, 90) N Ay C By (€, e dvl90)),

Since the proof of this theorem is quite lengthy, we will prove the first
inclusion in this section and the second inclusion in the next section. The
rest of this section is devoted to the proof of the first inclusion. In view of
Remark we assume that

0 =1(0).
Strictly speaking, dy, is not a metric on the I'-orbit I'o. Nevertheless, we will
still employ terminologies for the metric space on (I'o,dy) for convenience.
For instance, for a subset B C I'o, dy(go, B) = infj,cp dy (g0, ho) and the
R-neighborhood of B is given by {go € I'o : dy (g0, B) < R}, etc.

Two main ingredients of the proof of the first inclusion of are the
following, which allow us to treat (I'o,d,) almost like a Gromov hyperbolic
space:

(1) (I'o,dy,) satisfies a triangle inequality up to an additive error (The-
orem [4.1);

(2) the ¢-Gromov product ¥(G(&,n)) is equal to the premetric dy (o, [€, 7o)
up to an additive error (Proposition [6.7)).

In the rank one case, the property (2) is a well-known consequence of a uni-
form thin-triangle property and the Morse lemma of the rank one symmetric
space. Higher rank symmetric spaces have neither of these properties. Our
proof of (2) is based on the KLP Morse lemma using diamonds as well as a
uniform thin-triangle property of the orbit (I'o,dy).

We begin with the following:

Proposition 6.3. The orbit map (I',dr) — (T'o,dy), v — 7o, is a quasi-
isometry, i.e., there exists QQy > 1 such that for any y1,72 €T,

Q;l ~dr(71,72) — Qp < dy(710,720) < Qy - dr(y1,72) + Q.

In particular, the images of geodesic triangles in I' under the orbit map are
uniformly thin, that is, there exists Ty, > 0 such that for any &1,82,&3 €
['U T, the image [£1,&3]o is contained in the Ty-neighborhood of ([£1, &) U
(2, &3])0 with respect to dy,.
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Proof. The second part follows since (I',dr) is a Gromov hyperbolic space
(Theorem [3.8(1)), and hence it has a uniform thin-triangle property which
is a quasi-isometry invariance. Since the orbit map (I',dr) — (T'o,d) is
a quasi-isometry (Theorem (3)), the first part of the above proposition
follows from the following claim that the identity map (I'o,d) — (I'o,dy) is
a quasi-isometry: there exists Cy > 1 such that for all v1,72 € I', we have

(6.2) C,, 1 d(710,720) — Cyy < dy(710,720) < Cyd(710,720) + Cp.
We can take a cone C whose relative interior in a® contains £ — {0} in a™

such that ¢» > 0 on C — {0}. Hence we can chose C1 > 1 so that

Cil<  min u) <  max u) < C1.
! uec,nun:llb( )_uec,nun:lm )

On the other hand, x(7) € C for all but finitely many vy € I' (Lemma[4.4)),
and hence Co := max{|¢Y(u(y))| : u(y) ¢ C} < oco. If we set C = Cy + Co,
then

CHpM) = C < e(uy) < CluM)ll +C.
Since both d and d, are left I'-invariant, this implies the claim. O

We use the Morse property to obtain that the image of a geodesic ray
under the orbit map has a uniform progression:

Lemma 6.4 (Uniform progression lemma). For any r > 0, there exists
ny > 0 such that for any geodesic ray {~yo = e,y1,72,---} in (I',dp),

dy(0,7i4n0) > dy(0,7i0) + 1
foralli e N and all n > n,.

Proof. Fixr > 0. By Theorem[4.13] there exist a cone C C a* and B, Dy > 0
so that for all n > B and ¢ > 0, the sequence o, 7y10, - -- ,vVi1no0 is contained
in the Dy-neighborhood of the diamond {¢(0, Vitn0) in (X, d). We may also
assume that ¢ > 0 on C — {0} as C can be arbitrarily close to £. For each
i > 0, choose a point z; € O¢(0,7vitn0) which is Dy-close to v;o. Applying
Lemma [4.10, we obtain that

(63) diﬁ(oa ml) + dd)(xiv 7i+n0) = dw(ov 7i+n0)'

Since the orbit map (I',dr) — (I'o, d) is a Qy-quasi-isometry by Proposition
6.3, we get that for all 7 > 0,

(6.4) dy (7i0,7i4n0) = Q' dr (Vi Yitn) — Qu = Qy'n — Qy.

By applying Lemma [2.1] to a compact subset {g € G : ||u(g)|| < Do}, we
have
|dy (0, 2;) — dy(0,70)] < C  and

6.5
(6:5) 14y (@6, Yi1m0) — d(1i0, Yo n0)| < C
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where C depends only on Dy and [|¢|. Putting (6.3), (6.4), and (6.5) to-
gether, we get

dy (0, %i+n0) = dy (0, i) + dy(Ti, Vitno)
> dy(0,7i0) + dy (70, Yigno) — 2C
> dy(0,70) + (Q'n — Qy) — 2C.
Hence setting n, = B + Qy(r + 2C + Q) finishes the proof. O

Lemma 6.5 (Small inscribed triangle). There ezists C > 0 satisfying the
following property: Let [€,n] be a bi-infinite geodesic in (I',dr). If vo is the
nearest-point projection of o to [{,n]o in the dy-metric, i.e., v € [&,n] is
such that dy(0,v0) = dy (o, [§,1]0), then there exist u € [e,&] and v € [e, 7]
so that {uo,vo,vo} has dy-diameter less than C.

Yo

UO o~ >~ V0

o

FicurE 3. Small inscribed triangle

Proof. Recall from Proposition that there exists Ty, > 0 so that every
triangle in T'o, obtained as the image of a geodesic triangle in (I',dr) under
the orbit map, is Tyy-thin in the dy-metric. By the T-thinness of (I'o, dy,), we
have either dy (o, [e,&]o) < Ty, or dy (o, [e,n]o) < Ty. We will assume the
latter case; the other case can be treated similarly. We write [e, n] = {v; }i>o0.
We then can choose j so that j = min{i > 0 : dy(v0,v;0) < Ty, + D} where
D is given in Theorem Let n' = nar, »+3D be the constant from Lemma

If j < n/, then we set u = v = e and note that
(6.:6) dy(v0,0) < dy(y0,v;0) + dy(vjo,0) + D
' <Dy :Tw—{—(n,—Fl)Qw—FQD

where @y is given by Proposition Hence the triangle {uo,vo,v0} =
{0,0,7v0} has dy-diameter at most D;.
Now suppose that j > n/. We claim that

dy (vj—nr0, [§,m]0) > Ty.
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Indeed, otherwise, dy(vj_nr0,7'0) < Ty for some 7' € [, 7], and hence we

have ,
dy(0,7'0) < dy(0,vj_p0) + dy(vj_pr0,7'0)+D

< (dg(0,vj0) — 3Ty—3D) + Ty+D
=dy(0,v0) — 2T —2D
< dy(0,v50) —dy(y0,v50) — Tyy—D
< dy(0,70) = Ty,
where the first and the last inequalities follow from Theorem [£.1] and the

second is from Lemma [6.4] This yields a contradiction to the minimality of
dy(0,v0), proving the claim.

FIGURE 4. Choice of vyo, vjo, vj_,0 and uo

Since the triangle consisting of the sides [£,7]o, [e,&]o, and [e,n]o =
{vio}i>o is Ty-thin, the above claim implies that v;_,s0 lies in the Ty-
neighborhood of [e, {]o. Hence there exists u € [e, £] such that dy,(vj_,s0,u0) <
Ty (see Figure . Since dy (v, vj—pn) < an’ + @y, we have so far obtained

e dy(vo,vj0) < Ty + D;

e dy(vjo,u0) < Qun' + Qy + Ty + D;

o dy(yo,u0) < Qun' + Qy + 2Ty + 3D.
Therefore the triangle {uo,vjo,vo} has dy-diameter at most Dy = Qyn’ +
Qy + 2Ty + 3D. It remains to set C' = max(D1, Da). O

The following was shown for # = II in [39, Lemma 5.7] which directly
implies the statement for general 0:

Lemma 6.6. There exists k£ > 0 such that for any g,h € G and R > 0, we
have

sup [|6£(go, ho) — uo(g~"h)|| < KR.
fGO%(go,hO)

We now prove that the ¥-Gromov product ¥(G(&,7n)) behaves like the
distance dy (o, [£,n]o) up to an additive error:
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Proposition 6.7 (Comparison between 1)-Gromov product and dy;-distance).
There exists Ch > 0 such that for any £ #n € Ag = 0T, we have

[4(G%(€,m)) — dy(o, €, 1]0)| < C1.

Proof. Let v € [£,n] be such that dy(0,70) = dy(o, [§,n]0). Consider geo-
desic rays [e,&] and [e,n] in (T',dr). Let k,¢ € K and h € G be such that
kPy =&, LPy =n, hPy = £ and hwoPy = n. For the constant Dy given by
Theorem [4.13} we have

sup d(uo, kMyAto) < Dy;

u€le,]

(6.7) sup d(vo,{MyAT0) < Dy;
v€[e,n]

sup d(go, hMyAo) < Dy.
g€lém]

Since 7 € [€, n] by the choice, the third inequality implies that d(vyo, hMyAo) <
Dy. We may assume that h satisfies that d(ho,v0) < Dy, by replacing h
with an element of hMyA if necessary.

We first claim that for some uniform R > 0 depending only on I' and %,

&,n € 0%(o,70).
To show the claim, let C' > 0 be the constant given by Lemma|[6.5]and choose
u € [e,§] and v € [e,n] so that the triangle {uo,vo,v0} has dy-diameter
smaller than C' (see Figure [5). Hence, for the constant C’ := Cy(C +
‘

Cy), where Cy is given in (6.2)), the Riemannian diameter of the triangle
{uo,vo,v0} is less than C’. Tt then follows from the first two inequalities of

that
d(yo,kMyAT0) < Do+ C" and d(vyo,lMyAto) < Do+ C'.
Since kPy = £ and Py = n, we have
VRS 09D0+C'(0a70)a

showing the claim with R = Do + C’
Therefore by Lemma we get

162(0,70) = po()| < &R and |5} (0,70) — po(7)|| < KR

Since Bg(o, y0) = Bg(o, ho) + ﬂg(ho, ~vo) and Hﬂg(ho,’yo)H < d(ho,~0) < Dy,
we have

152 (0, ho) — ne(7)|| < &R + Do
and similarly

187 (0, ho) = pg(7)|| < KR + Do,
Recalling the definition G%(¢,n) = %(ﬂg(o, ho) + i(ﬁz(o, ho))), and using
1) =1 oi, we obtain that

[9(G”(€m)) — dy(0.70)] < ]| (xR + Dy),

as desired. ]
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FiGURE 5. The dotted triangle is of diameter less than C
and the gray ball has radius R.

We are now ready to prove the first inclusion in Theorem [6.2] which we
formulate again as follows:

Proposition 6.8. There exist constants ¢, Ry > 0 such that for any £ € Ay
and g € [e,&] in T, we have

(6.8) By (€, ce*299)) € 0%, (0,90) N Ag.

Proof. Let Cy, D > 0 be the constants given by Proposition[6.7/and Theorem
respectively. Recall the constant T, in Proposition [6.3} the image of any
geodesic triangle in (I', dr) under the orbit map, is T-thin in the dy-metric.
We now claim that holds with ¢ := e~ Tu+C1+D)  Fix ¢ € Ay and an
element g € [e,&]. Let n € By (&, ce™9(©99)) that is,

(6.9) W(G°(&,m)) > dy(0,90) + 2Ty + C1 + D.

Let v € [¢,7n] be chosen so that dy(0,70) = dy (o, [£,n]o). By Proposition
we have

dy(0,70) > ¥(¢°(§,m)) - C1.
Hence by ,
(6.10) dy(0,v0) > dy (0, go) + 2Ty + D.

Let ¢’ € [£,n] be such that dy(go, g'0) = dy(go, [£,n]o). By Theorem 4.1] we
also have

dd)(ou ’YO) < ddl(oa g/O) < d¢(0, gO) + dd)(gov [57 7}]0) +D.
Together with (6.10)), this implies

(6.11) dy (g0, [§,nlo) > 2T

Since the triangle [e,&]o U [£,n]o U [e,n]o is Ty-thin in dy-metric, go is
contained in the T-neighborhood of [£,n]o U [e,n]o. Since dy(go, [§,n]o) >
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(MgAto

o

FIGURE 6. go is far from [£, n]o and hence close to [e, n]o; so
n lies in the shadow Og},JrDO(o, go).

2T, by (6.11)), we must have dy(go, [e,n]o) < Ty (see Figure [6). For the
constant 7" := Cy(Ty + Cy) where Cy, is as in (6.2]), we have
d(go, [e,n]o) < T"

With the constant Dy given in Theorem there exists £ € K so that
¢Py = n and [e,n]o is contained in the Dy-neighborhood of ¢MyA*to in the
Riemannian metric d. This implies that

n e O%,JFDO(O, go) N Ag.
This completes the proof with Ry = T" + Dy. O

7. SHADOWS INSIDE BALLS: THE SECOND INCLUSION IN THEOREM

We continue the setup from section @ Hence i(f) = 6 and ¢ € aj is a
linear form such that ¢» > 0 on £ — {0} and ¢ = ¢ oi. In this section, we
prove the second inclusion of Theorem which can be stated as follows:

Proposition 7.1. For any r > 0, there exists ¢ = ¢, > 0 such that for any
€€ Mg and any g € [e,&] in T, we have

O7€<07 go) N A9 C Bw (f) c’e—dw(ong))_

In addition to the coarse triangle inequality of dy, (Theorem and the
uniform progression lemma (Lemma , we will use the property that the
shadows in (I',dr) are comparable to shadows in Ay (Proposition and
that the half-spaces spanned by shadows of balls in (T',dr) stay deeper than
the balls from the viewpoints (see Figure [7] and Lemma .

In the Gromov hyperbolic space (I',dr), for R > 0 and 71,72 € T, the
shadow OL(71,72) is defined as the set of all £ € OI" such that a geodesic
ray [y1,&] intersects the R-ball centered at vo:

Ok(1:72) = {£ € 0T = dr(y2, [, €)) < R}
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Clearly, shadows are I'-equivariant in the sense that for any ~ € I'; we have

YOR(1,72) = OR(y71,772).
The following proposition states that shadows in OI' and shadows in Ag

are compatible via the boundary map f : OT' — Ay: recall that the orbit map
(T',dr) — (To,d) is a Q-quasi-isometry for some @ > 1 (Theorem [3.8(3))
and let Ry := Q + Dy + 1 where Dy is given in Theorem

Proposition 7.2. For any R > Ry, there exists R1, Ro > 0 such that for
any vi,v2 € F;

F(OR,(1,72)) C O%(7110,720) N Ag C F(OF, (71, 72))-

In proving this proposition, we will also need to consider shadows whose
viewpoints are on the boundary Fy. For n € Fy, p € X, and R > 0, the
f-shadow O%(n, p) is defined as follows:

O%(n,p) = {gPy € Fy: g € G, gwoPy = n, d(p,go) < R}.
We will need the following proposition on continuity of shadows:

Proposition 7.3 (Continuity of shadows on viewpoints, [34, Proposition
3.4]). Letpe X, ne€ Fyp and r > 0. If a sequence q; € X converges to n as
i — oo as in Definition then for any 0 < e < r, we have

(7.1) Of_a(n,p) C Of(qi,p) C Of+5(77,p) for all large 1 > 1.

Proof of Proposition Let R > Ry. By the I'-equivariance of f as
well as of shadows, we may assume y; = e and write v = . By applying
Theorem M(Q), we get that for any £ € ' and k € K with kPy = f(&), the
image [e, £]o is contained in the Dy-neighborhood of kMy(expC)o C kMyAto
in the symmetric space (X, d). Since R > Ry = Q + Dy + 1, we can choose
Ry > 0 so that QR1 + @ + Dy < R. Now if £ € Ogl (e,7), and hence [e, €]
intersects the ball {g € T : dr(vy,9) < R1}, then kMyATo intersects the
QR1 + Q + Dg-neighborhood of vo, and hence the R-neighborhood of ~o.
Therefore f(£) € O%(0,~v0). This shows the first inclusion.

To prove the second inclusion, suppose that the claim does not hold for
some R > Ry. Then for each ¢ > 1, there exists v; € I' such that

O%(077i0) N Ag 7—‘ f(OzF(ef}/z))»
in other words, there exists x; € 91 — O} (e, v;) such that f(z;) € 0% (o, 7;0).
By the I'-equivariance of f, it follows that
vtz ¢ OF (vt e) and  f(y; tai) € O%(y; o,0) for all i > 1.

After passing to a subsequence, we may assume that -y, ' & y € ar and

vtz — x as i — oco. By Theorem (4), we deduce v; 'o — f(y) as
i — oo. Applying Proposition to ¢; = 7; o, p=o0and n = f(y), we
have for some € > 0 that

O%(y; '0,0) C O§g+5/2(f(y),0) for all i > 1.
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Since f(v; 'x;) € O%(v; to,0) for all i > 1 and f(v; 'a;) converges to f(x)
as i — 0o, we have

f(l‘) € O%+e(f(y)’0)'
This implies that f(x) is in general position with f(y), i.e., (f(z), f(y)) €
.7:9(2), and in particular f(x) # f(y). On the other hand, since 71-_1:1% ¢
Olr(v;l, e) for all i > 1, the sequence of geodesics [%—1%’%—1] escapes any
large ball centered at e. This implies that two sequences -, L2; and Vi L must

have the same limit, and hence x = y which is a contradiction. Therefore
the claim follows. ([l

The Gromov product in (I',dr) is defined as follows: for o, 8,7y € T,

(2 8)y = 3 (dr(@,7) +dr(B,7) — dr(a, 5))

and for z,y € oI,
(x,y)y = sup liminf(z;, y;)

7/,]_)00
where the supremum is taken over all sequences {z;},{y;} in I' such that
lim; oo 2; = x and limj . y; = y. The Gromov product for a pair of a
point in I' and a point in OI" is defined similarly. The Gromov product
(x,y)y is known to measure distance from v and to a geodesic [z,y] up to
a uniform additive error (see [L1] for basic properties of Gromov hyperbolic
spaces).

FiGure 7. Pictorial description of Lemma

The following lemma says that the half-space spanned by the shadow is
opposite to the light; more precisely, for any € 9I' and v € [e, z], the
half-space spanned by all geodesics connecting x and O}F%(e,y) lies farther
than -, viewed from e:

Lemma 7.4. Given R > 0, there exists r = rg > 0 such that for any
z €0l, v € le,x], and y € O%(e,7), we have

dF('yﬂc,yv [/771']) <r
where v, € [x,y] denotes the nearest-point projection of e to a geodesic
[2,9].
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Proof. Let [e,x] = {7i}i>0. We fix v := 7; and y € OkL(e,7). In terms of
the Gromov product, we have (e,y)y, < R+ /2 for some uniform § > 0
depending only on I'. On the other hand, the hyperbolicity of I" also implies
that we can take § large enough so that

(e,9)y > min{(e, Yay)y, (Vo Y)y} —6/2
and that every geodesic triangle in I' U OT" is §-thin. Therefore

min{(e, Vay)v, (Voy, Y)y} < R+ 0.

First consider the case when (v;,4,y)y < R+ 0. Then for some constant
1 depending on R + §, there exists 7' € [y4,4,y] such that dp(v/,v) < 1.
Consider the geodesic triangle with vertices z,7,v’. Since this triangle is
d-thin and 7., € [x,7'], the é-neighborhood of 7, , intersects [z,~] U [v,7'].
Hence it follows from dr(v,~") < 1 that the (6 + 01)-neighborhood of 7, ,
intersects the geodesic [z,~]. Namely,

dF(%ﬁ,y: [’y,m]) <0+ 61.

Now consider the case that (e,7v;y)y < R+ 6. Since v, is the nearest-
point projection of e to [z,y], there exists a constant d2 depending only on
I' such that the do-neighborhood of v, , intersects both geodesic rays e, x]
and [e,y]. In particular, there exists v € [e, z] such that dr (v, %) < d2.
This implies

(67 ’Yk)’y < (6’ ’Yx,y)’y + dF(’YﬂS,ya ’Yk) <R+d+ 62-

Since both v = v; and ~; lie on the geodesic [e, z], this implies that k& >
i— (R4 0+ 92). Let j be the unique integer such that k+ R+ 0+ 02 < j <
k+ R+ 6+ 02+ 1. Note that since k > ¢ — (R+ d + d2), we have j > i, and
hence v; € [y,z]. Then

dr (e, [7,2]) < dr(yey, ;)
< dF(’Yz,y/Yk) + dF<7k>7j)
<0+ (j—k)<R+0+25+1.

Therefore it remains to set r = R+ § + 01 + 262 + 1. O

Now we are ready to prove:

Proof of Proposition Let £ € Ay = OI' and g € [e,¢] in I'. Fix
r >0, and let n € 0%(0,go) N Ay distinct from &. We will continue to use
the convention of identifying Ay and OT" in this proof. As in Lemma [7.4] we
let ¢, be the nearest-point projection of e to a bi-infinite geodesic [£,7] in
(T',dr). By Proposition there exists R > 0, depending only on r, such
that 7 € OL(e, g). Write the geodesic ray [e, €] as a sequence {gy}x>0 with
go = e. Since g € [e, €] by the hypothesis, we have g; = g for some i > 0.
Then for rg > 0 given in Lemma there exists j > ¢ such that

dr(Vem» 95) < TR-
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Let nqy > 0 and D > 0 be given by Lemma (uniform progression
lemma) and Theorem (coarse triangle inequality) respectively. We then

have
d¢(07 gj0> > d¢(07 9i—nq 0) +1

> d¢(07 gO) - dlll(gi—rnoa gO) - D+ I

Since g = gi, we have dy,(gi—n,0, g0) < Qy(n1 + 1) where Q) is the constant
in Proposition Hence we deduce by setting D’ := Qy(n1 + 1) + D that

dw(oa gjO) > dTZJ(Oa gO) - D

On the other hand, applying the coarse triangle inequality (Theorem {4.1))
again, we have

dy(0,gj0) < dy(0,7n0) + dy (Ve 0, gj0) + D-

Since dr (e, 95) < TR, we have dy(7¢.,0, gj0) < Qy(rr + 1) by Proposition
[6.3] and hence

dy(0,7e0) > dy(0,90) — D' — Qy(rg + 1) — D.
Since we have [1(G%(&, 1)) — dy (0,7 ,0)| < ||1||C1 with Cy given by Lemma
¥(G"(€,m) > dy(0,90) — D' = Qu(rr +1) = D — [ C1.
Setting ¢ := eP'TQuIRTDHFDHIVICE e have
dy(&m) < dem 09,
Hence 1) € By (&, e 9(99°)) as desired. O

Comparing Gromov products.

Lemma 7.5. Let ¢ € aj be such that ¢ > 0 on L — {0}. Then there exists
¢ > 0, depending only on 1, such that for all z,y € OT,

Q7' (2,9)e — c S V(G (f(2), f®))) < Q- (z,y)e + ¢
where QJ; is as given in Proposition .

Proof. Let x # y € OI' and set v, , € I' the nearest-point projection of e to
[z,y] in (T, dr). By Lemmal5.4] we have

(G (F(2). f)) — Do (1zg))] < O
where C is given in Lemma [5.4] As in the proof of Proposition

DG (f(2), F (1)) = (G (f(x), F(y))] < [[4l|Cr.

Since
Q7' -dr(e,vay) — Qp < P(o(Vay)) < Qy - dr(e,vzy) +Q
by Proposition with Q; > 1 therein, we now have that
Q1+ deles ) — ¢ < HE@ (@), FB) < Q- drles ) +¢

where ¢’ := Qz + C1(1+ [|¢]]). Since (T',dr) is Gromov hyperbolic, we have
that |(x, y)e —dr(e, 7z,y)| is uniformly bounded. Hence the claim follows. [
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8. AHLFORS REGULARITY OF PATTERSON-SULLIVAN MEASURES

As before, let I' be a 6-Anosov subgroup of a connected semisimple real
algebraic group G. Recall from Theorem that the space of I'-Patterson-
Sullivan measures on Ay is parameterized by the set

T = {3 € ajy : ¥ is tangent to %}
We continue to use the notation vy, for the unique (I, 1)-Patterson-Sullivan
measure on Ag. Recall that dy, is the premetric on Ag defined by dy(&,n) =

e VGEM) for all € # nin Ag and By (&, 1) = {n € Ay : dy(€,m) < r}.
The Ahlfors regularity is an important notion in fractal geometry:

Definition 8.1. A premetric space (Z, d) is called Ahlfors s-regular if there
exist a Borel measure v on Z and C > 1 so that for all z € Z and r €
[0,diam Z),

C™r* <v(B(z,1)) < Cr®
where B(z,7) = {w € Z : d(z,w) < r}. Such a measure v is also called
Ahlfors s-regular.

The goal of this section is to deduce the following from Theorem

Theorem 8.2. For any symmetric ¢ € I, the measure vy, is Ahlfors one-
reqular on (Mg, dy).

Remark 8.3. When I' is a convex cocompact subgroup of G = SO°(n, 1),
I is a singleton consisting of the critical exponent dp (more precisely, the
multiplication by or on R), and the metric ds. is the dp-power of a K-
invariant Riemannian metric on S"~'. Hence Theorem is equivalent to
Sullivan’s theorem [57, Theorem 7] that the Patterson-Sullivan measure of
a Riemannian ball of radius r is comparable to 7.

We use the higher rank version of Sullivan’s shadow lemma. The following
is a special case of [35, Lemma 7.2]:

Lemma 8.4 (Shadow lemma). Let I' < G be a non-elementary 6-Anosov
subgroup. For all large enough R > 0, there exists co = co(v), R) > 1 such
that for all v € T,

Cale—w(ue(v)) < vy (0%(0,70)) < coe Ve (M)

Proof of Theorem By Lemma and Remark it suffices to
consider the case of § =i(#). Let ¢ and Ry be the constants as in Theorem
Fix £ € Ag and 0 < r < diam(Ag, dy). Write the geodesic ray [e,&] as
{Vk}xk>0 in (I',dr). Setting

(8.1) i =iy == max{k : r < ce”dw(MmO)Y,
Theorem [6.2] implies that for any R > Ry,
By(&,r) C By(&,ce”®>7%9) € O% (0, vi0).
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By Lemma we get
(82) vy(By(é,r)) < o™ (010),
By the coarse triangle inequality of dy, (Theorem , we have
dy(0,7%i410) < dy(0,7i0) + dy (70, vit10) + D

where D is as in loc. cit. Since dy(7i0,vi+10) < 2Qy with Qy in Proposition
[6.3] we have

d¢(07 7i+10) < d¢(07 '71'0) + D'
where D' = D 4 2Q)y. This implies

Ce—D'e—dw(O»’Yz'O) < Ce_d¢(0»7i+10) <r

where the last inequality follows from the definition of i = 4, in (8.1)). Hence
we deduce from (8.2) that

vp(By(&,7)) < (coe” [c) - .
Now let ¢/ = ¢f; > 0 be given by Theorem and set
(8.3) j = jp:=min{k : eI < 1.
By Theorem [6.2] we have
O%(0,7j0) N Ag C By (&, e 42%%) € By(&,7),
and hence applying Lemma [8.4] yields
¢y em W ON) < vy (By(&,7)).
By the minimality of j = j,. as defined in and the coarse triangle
inequality of dy (Theorem [1.1)), we have
r < e dv(07-10) < /oD o=dy(0,7;0)+dy (vj-10:7;0)
Recalling that dy(vj—10,7j0) < 2Qy and D’ = D + 2Q, we have

o )
r< CleDe dy (0,750)

and hence

(codeP ) tor < vy (By(€,7)).

Therefore the theorem is proved with ¢; = max(coeD/c_l, coc’eP /). (]

9. HAUSDORFF MEASURES ON LIMIT SETS

Let I' < G be a 6-Anosov subgroup where GG is a connected semisimple
real algebraic group. For a linear form ¢ € aj which is positive on £ — {0},
consider the associated conformal premetric dy, on Ag. For s > 0, we denote
by Hy, the associated Hausdorff measure of dimension s, that is, for any
subset B C Ag, let

e—0

)

9.1) H5(B) := lim inf diam,, U;)? : B C | |U;, supdiam,, U; < e
P P ! P
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where diamy U = supg ¢/ dy (&, n). This is an outer measure which induces
a Borel measure on Ay (see [23], [19, Appendix A]). For s = 1, we simply
write H,, for H}z} Recall that 91 is the space of all linear forms tangent

to the growth indicator @b{i. In this section, we first deduce the following
two theorems from Theorem Together with Theorem they imply
Theorems [1.1] and We also prove Theorem

Theorem 9.1. For any symmetricy € I, the associated Patterson-Sullivan
measure vy, coincides with the one-dimensional Hausdorff measure Hy,, up
to a constant multiple. In other words, Hy is the unique (I',))-conformal
measure on Ng (up to a constant multiple).

We also show that the symmetric hypothesis is necessary:

Theorem 9.2. If 1 € It is not symmetric and I' is Zariski dense, then vy,
is not comparable to Hy, for any s > 0.

Remark 9.3. If ¢ € aj is positive on £ — {0}, then 649 € Fr. Since
Hs,p = Hiw, Theorem says that if ¢ is symmetric in addition,

(9.2) ’prw = s,y up to a constant multiple.

Remark 9.4. For a special class of symmetric ¢ whose gradient lies in the
interior of a;, Dey-Kapovich [19, Corollary 4.8] showed that (I'o,dy) is a
Gromov hyperbolic space and they proved Theorem [0.1] relying upon the
work of Coornaert [I7] which gives the positivity and finiteness of #,, for
the Gromov hyperbolic space. In our generality, (I'o,d,) is not even a metric
space, and hence their approach cannot be extended.

The main work is to establish the positivity and the finiteness of H,, and
the key ingredient is the Ahlfors regular property of vy, obtained in Theorem
For example, positivity of H, is a standard consequence of the Ahlfors
regularity of (Ag, dy). However, we cannot conclude finiteness of H,;, directly
from Ahlfors regularity due to the lack of the triangle inequality.

Proposition 9.5 (Positivity). For any symmetric 1 € I, we have
Hy (Ag) > 0.

Proof. Fix € > 0 and a countable cover {U; };cn such that diam,, U; < e for
all ¢ € N. For each ¢ € N, we choose ; € U;. By Theorem [8.2] we have

D diamy U; > C " vy(By(&, diamy, Uy))
€N €N

Uien By (&, diamy, U;), it follows that ), diamy U; > C - vy(Ag)
Since {U; }ien is an arbitrary countable cover, it follows that H, - (Ag)
Since € > 0 is arbitrary and C' is independent of € > 0, we have H(Ag)
0.

where the constant C' > 0 depends only on . Since Ay C ey Us
>

C
C.
C.

>

O
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Proposition 9.6 (Finiteness). For any symmetric ¥ € Jp, we have
7‘[¢(A9) < Q.

Proof. Let N = N(v¢) and Ny = Ny(¢)) be the constants given in Proposition
and Lemma [5.6| respectively. Fix ¢ > 0. Since Ay is compact, we have
a finite cover Ag by U;_; By(&i, gxy;) for some finite set &1, &, € Ay.
Applying the Vitali covering type lemma (Lemma, there exists a disjoint
subcollection By (&, 55, )s > By (&in, 3xw, ) such that

k
Ag C U Bd}(&j: ﬁ)
j=1
Since diamy, By (&, 57) < € for each 1 < j < k by Proposition (2), we
have

k
Hye(Ag) < Zdiamw By (&, 55) < ke
j=1
Applying Theorem [8:2] we obtain that for some constant C' > 0 depending
only on 1,

k k
ke <C Y vp(Byl&iy anmg)) = Cvw | U Bl o) | < Crvulde) =C
j=1 j=1
where the equality follows from the disjointness. This implies H,, -(Ag) < C.
Since ¢ is arbitrary, we have H,(Ag) < C. ([l

Hence Hy, is a non-trivial measure on Ag. It is also (I', 1)-conformal:

Lemma 9.7 (Conformality). For any symmetric ¥ € Ir, we have
dysHy

_ W(Bem)
O =

forally €T and & € Ay.

Proof. Since dy is invariant under the I'-equivariant homeomorphism p :
Aguipy — Ay by the definition of dy, (Remark |5.7), the measure (Hy, Ag) is
the push-forward of the Hausdorff measure (Hy,, Aguig)) via p. Therefore it
suffices to prove this lemma assuming that 6 = i(#). We simply write 8 = 8
in this proof to ease the notations.

Fix y € T and £ € Ay. Let U C Ay be a small open neighborhood of £.
To estimate 7. Hy(U) in terms of Hy(U), we fix € > 0 and take any cover
{Ui}ien of U such that diamy, U; < ¢ and that U NU; # () for all i € N.

For simplicity, we write s¢ g(y) := SUDye B, (¢,R) e¥(Bnle7) By Lemma
and Proposition with N = N(¢) > 0 therein, we have that for each
i>1,

diam,, 77 IU; < sup e¥(Bn(e)) diamy, U; < s¢ g () diamy, U;
ney;
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where R, = R.(U) = N - (diamy U + €). We then have for & := s¢ g_(7)e,
Hy (v 10) < Z diamy, v 1U; < s¢.p.(7) Z diamy, U;.
‘€N ‘€N
Since {U; };cn is an arbitrary countable open cover of U, the above inequality
implies
Hyz(y7'U) < se.r (V) Hy e (U).

Taking ¢ — 0, we have § = s¢ g.(v)e — 0 and R. — Ry := N - diam, U.
Therefore

(9.3) Hy(v7U) < sy (N Hy(U).
Applying (9.3)) after replacing U with y~'U, and ~ by 7!, we have
(94)  Hy(U) =Hs(y(y7'U)) < sym1gr (7 D H(y7U).

If we set ¢ = sup;ey, e¥Be(er™) | then for any 7 € Bw(v_lf,RﬁY—q]), it
follows from Lemma [5.2] that

dy(&,vm) < edy(v7'€,m) < cRy-1p.

-1y

This implies

— -1
S’y_lg’Rv*lU(’}/ 1) = 87111p 617[}(671(67"/ ))
neBy (v &R —1y)
S Sup ew(ﬁ’Y_l’I(e;yil)) et Sup ed}(ﬂ"(’yve))
n€By (& el —1y) n€By(§,cR —1y)

Hence we obtain from (9.4) that

Hy(U) < sup e*w(ﬁn(eﬁ))%w (v 'U).
nEBw(é,CR,Y,lU)

Together with (9.3]), we deduce
mf v < U)o e,
neBy(€cR,1y) Hy(U) ™ yeBy(e.re)

Now shrinking U — £, we have Ry, R,-1y — 0 and hence the both sides in

the above inequality converge to e¥(P<(¢7) | by the continuity of the Buse-
mann map S,(e,7y) on the n-variable. Therefore

dyx /Hw
de
as desired. O

Proof of Theorem [9.1f By Propositions and we have Hy(Ag) €

(&) = e¥Pele)

(0,00). Moreover, it follows from Lemma [9.7| that m%d, is a (I, %)-

Patterson-Sullivan measure. Since there exists a unique (I',v)-Patterson-
Sullivan measure on Ay (Theorem , this completes the proof. O
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Proof of Theorem (9.2l By Lemma we may assume 6 = i(6). Since

Y # 1 oi, two linear forms ¢ and ¢ are not proportional. Since dy and

dy are bi-Lipschitz by Proposition pr is in the same measure class as
B .

H ¥ for all s > 0. Hence it follows from Theorem (see also Remark

that H;,(Ag) = 0 or oo if s # &;. Now it suffices to show that vy is not

5 _ _
comparable to ’wa. Since 9 and ¢ are not proportional, ¢ and 4,1 are two
different forms tangent to ¢1€- By Theorem it follows that v, is mutually

6 —
singular to Vs i Since the latter is proportional to H 1;’ by Theorem

6, —
vy, is singular to ‘H J}w and hence singular to Hw‘b as well. This finishes the
proof. ([l

Remark 9.8. In fact, without Zariski dense hypothesis, it was shown in [55)],
Theorem A] that for 1,12 € I, vy, and vy, are mutually singular unless
Y1 = 19 on Ly. Hence Theorem holds provided that ¢ and 1 oi are not
identical on Ly.

Critical exponents and Hausdorff dimensions. The Hausdorff dimen-
sion of Ay with respect to dy, is defined as

dimy, Ag == inf{s > 0: Hy,(Ag) = 0} = sup{s > 0: Hj,(Ag) = oo}.
As a corollary of Theorem we obtain the following (Theorem [1.4)):
Corollary 9.9. For any 1 € aj positive on L — {0}, we have
(5@ = dimy, Ag

where ¢ = LJFQwOi.

Proof. By Proposition

to 61751/_) (see Remark [9.3]), we have ”Hfi’j (Ag) € (0,00), which implies
dim, Ag = 51[). This shows the claim. O

we have dimy, Ag = dim; Ag. Applying Theorem

For 1 non-symmetric, dim,, Ag is not in general equal to dy:
Proposition 9.10. For v € aj positive on L — {0}, we have
(57; < (5¢.
If T is Zariski dense, then the equality holds if and only if ¥ = oi.

Proof. As before, we may assume 6 = i(f). Suppose that ¢ # 1) oi. Note
that 6y = dy0i and hence both 6,1 and 6, (1) oi) are tangent to the f-growth
indicator ¥ ([33, Theorem 2.5], [35, Lemma 4.5]). We then have ¢ < 5,9
and wfe < dy(1 oi). Hence wIQ < §y1. Since 5@15 is tangent to @bfe, it follows
that 51[] < 51/,.

Now suppose that I' is Zariski dense and that i) # ¢ oi. By Theorem
there exists a unique unit vector u = ug,y € int Ly such that ¢1Q (u) =

Sy (u). Since ¥ is i-invariant, it implies that ¥¥(i(u)) = 6, (¢ 0i)(i(u)). On
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the other hand, u # i(u) by Theorem Hence the inequality 1,!)1‘2 < Oytp
and zp{l < 0y (¢ 0oi) cannot become equalities simultaneously at the same
vector. This implies that wfl < 0y and hence d; < dy. O

By Corollary and Proposition [9.10] we obtain:

Corollary 9.11. Let I' be Zariski dense in G. For any ¢ € 1, we have
dimy Ag < 1 and the equality holds if and only if 1 is symmetric.

We now prove the Ahlfors regularity of (Ag,dy) for general ¢ € Jr:

Theorem 9.12. Let ' be a 0-Anosov subgroup. For any ¢ € I, the
premetric space (Mg, dy) is Ahlfors s-reqular for some 0 < s < 1. Moreover
if I is Zariski dense, we have s = 1 if and only if 1 is symmetric.

Proof. Let ¢ € Jp. By Proposition the identity map (Ag,dy) —
(Ag,dy) is bi-Lipschitz. Noting that ;1 € It by Lemma we denote by
Vi=Us g the (I, 6,;1)-Patterson-Sullivan measure on Ag. By Theorem
for any £ € Ag and r € [0,diam;; Ag), we have

(9.5) clr < V(B%d;(ﬁ,r)) <ecr.

for some constant ¢ > 1 depending only on . Since B%?ﬁ(g’ r‘;«/?) = By &)
and the identity map (Ag,dy) — (Ag, dy;) is bi-Lipschitz by Proposition
(9.5) implies that for some C' > 1 depending only on v, we have

C71r% < u(By(€,r)) < Crdo.

Recall 6, = 1 for ¢ € I (Lemma 3.6). Hence d,; < 1 for ¢ non-symmetric
and I" Zariski dense by Proposition This finishes the proof. ([

Analyticity of Hausdorff dimensions. For a hyperbolic group X, a rep-
resentation o : 3 — G is called #-Anosov if o has a finite kernel and its
image o(X) is a 6-Anosov subgroup of G. For a given ¢ € aj which is
non-negative on a;, the v-critical exponents d,(c(X)) vary analytically on
analytic families of #-Anosov representations o in the variety Hom(3, G) by
Bridgeman-Canary-Labourie-Sambarino [10, Proposition 8.1] (see also [16,
Section 4.4]). Hence the following is an immediate consequence of Corollary
9.9

Corollary 9.13. Let X be a non—elementargﬂ hyperbolic group and 1 € ay be
non-negative on ag'. Let D C Hom(X, G) be an analytic family of 0-Anosov
representations. Then

o dimy Ag(0(3))

s analytic on D.

9A hyperbolic group is non-elementary if its Gromov boundary has at least three points.
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(p, 9)-Hausdorff dimensions. Let ¥ be a non-elementary convex cocom-
pact subgroup of SO°(n,1) = Isom™(H"), n > 2. Let CC(X) denote the
space

{o:3 = SO°(n, 1) : convex cocompact, faithful representation}/ ~

where the equivalence relation is given by conjugations. As in the introduc-
tion, for o € CC(X), we denote by A, C S*! x S*~1 the limit set of the
self-joining subgroup ¥, := (id xo)(X) < SO°(n,1) x SO°(n,1), which is
well-defined up to translations. The Hausdorff dimension of A, with respect
to a Riemannian metric on S*! x S»~! is equal to max (dim Ay, dim Aa(z))7
where Ay C S"7! and A,y C S"! are limit sets of ¥ and () respec-
tively and Hausdorff dimensions are computed with respect to a Riemannian
metric on S”! [32, Theorem 1.1].

For a pair (p,q) of positive real numbers, let dp, be the premetric on
S"=1 x S*~1 defined as

dpq(&,m) = dgn—1(&1,m1)Pdgn-1(£2,12)*

where & = (£1,&),m = (m1,m2) € S* ! x S"! and dgn—1 is a Riemannian
metric on S”~!. We also denote by dim, , the Hausdorff dimension with
respect to dp 4. Let 6, 4(0) denote the critical exponent of the series

5 Z e~ 5(pdun (0,70)+qdun (0,0(7)0))
yEX

We deduce the following:

Corollary 9.14. Let 3 be a non-elementary convex cocompact subgroup of
SO°(n,1), n > 2. Let p,q be positive real numbers.

(1) For any o € CC(X), we have
dimp 4 Ay = 0p 4(0).

(2) For any o € CC(X), we have

—1
. p q
A, <
dlmnq - <d1m Ay + dim AJ(E))

and the equality holds if and only if p = id.
(3) Moreover the map

o — dimy 4 Ay
is an analytic function on any analytic subfamily of CC(X). In par-
ticular, for n = 2,3, it is analytic on CC(X).
Proof. Identifying the Cartan subspace a of SO°(n, 1) x SO°(n,1) with R?
and at with ]RQZO, consider the linear form ¥ € a* defined by ¥(u1,us) =

puy + qug. Since dgn-1(€,m) = e 9N is a SO(n)-invariant metric and
hence a Riemannian metric where G is the Gromov product on Sr1 ~
OH", we have dy = d, 4, where dy is defined in . Since the opposition
involution i is trivial for SO°(n, 1) xSO°(n, 1), the linear form ¥ is symmetric
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and hence the claims (1) and (3) respectively follow from Corollary
and Corollary applied to any analytic subfamily of {(id xo) : ¥ —
SO°(n,1) x SO°(n,1) : ¢ € CC(X)}. For n = 2,3, CC(X) is known to
be analytic (cf. [5], [43l Theorem 10.8], [28]). Hence the last claim of (3)
follows. Claim (2) follows from (1) and the following Theorem O

The following theorem is due to Bishop-Steger [6, Theorem 2| for n = 2
and to Burger [I3, Theorem 1(a)] in general. We denote by dx the criti-
cal exponent of X, the abscissa of convergence of the Poincaré series s —

Z s e—sdHn(o,"/o)'
Y

Theorem 9.15. For each 0 € CC(X), we have

—1
p q
4] < | =
paQ(U) —= (52 + 50—(2)>

and the equality holds if and only if o = id.

Proof. We explain how to deduce this from [I3, Theorem 1(a)]. We again
identify the Cartan subspace a of SO°(n,1) x SO°(n,1) with R?. For each
i = 1,2, denote by d; the a;-critical exponent of ¥, = (id xo)(X) where
a; : a = R, (ug,u2) = u;. Then 61 = ds and d2 = Jp(x). If we set
af 1= d;a;, then (504 = 1 for each i = 1,2 and hence Burger’s theorem [I3],
Theorem 1(a)| implies that the critical exponent of any convex combination

of o/ and o} is at most one and is equal to one only when o = id.

Since
D q ./

(P a)at e (2 g)
paataas (51+52> Z+g AL

is a convex combination of ) and o, we get

]

q ./

3 a1+5 a2
where U := 2L5—2
5 te;

-1 -1
p q p q
(9.6) 5p,q(0') = Opai+qaz = ((51 + 52) 5\1/0 < (51 + 52)
and the equality holds if and only if ¢ = id. O

Remark 9.16. We remark that in Corollary [9.14] the hypothesis p,q > 0
was imposed to be able to consider all o € CC(X). If we replace CC(X) by
a subset D C CC(X), then Corollary holds for any p,q € R such that
pu1 + quz > 0 for all non-zero (u1,u2) € L(X,) and all o € D.

10. HAUSDORFF DIMENSIONS WITH RESPECT TO RIEMANNIAN METRICS

Let G be a connected semisimple real algebraic group. As before, let
be a non-empty subset of the set IT of simple roots of (g,a). We denote by

dim Ay
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the Hausdorff dimension of Ay with respect to a Riemannian metric drjem
on Fy. As any two Riemannian metrics are bi-Lipschitz, dim Ay is well-
defined independent of the choice of a Riemannian metric. In this section,
we present an estimate on dim Agy.

Tits representations and the sum of Tits weights. Let G be the
semisimple algebraic group defined over R such that G = G(R)°. There
exists an exact sequence G —5 G —=p G where G and G are respectively
simply connected and adjoint semisimple R-groups and p and p are central
R-isogenies ([8], [44, Proposition 1.4.11]).

Recall that for a € II, w, denotes the (restricted) fundamental weight
associated to a as defined in . The first part of the following theorem
immediately follows as a special case of a theorem of Tits [60], and the
second part is remarked in [3] and proved in [56].

Theorem 10.1 ([60, Theorem 7.2}, [0, Lemma 2.13]). For each o € II,
there exists an irreducible R-representation py : G- GL(V,) whose highest
(restricted) weight x o is equal to kowe for some positive integer ko and whose
highest weight space is one-dimensional. Moreover, all weights of pa, are Xa,
Xa — @ and weights of the form xo — a — Eﬁen ngB with ng non-negative
integers.

For each « € TI, we fix once and for all a representation jo : G — GL(V,)
as in Theorem with minimal k. Since p and p are central isogenies and
p(G(R)) = G, the representation p, induces a projective representation

(10.1) pa : G = PGL(V,,)

where V,, = V4(R). Since the restriction of o to G(R) and p, induce the
same representation of the Lie algebra g to gl(V,), their restricted weights
are the same. We call

(10.2) po and  xq

the Tits representation and the Tits weight associated to a respectively.

Let p denote the half-sum of all positive roots for (g,a) counted with
multiplicity: 2p = > g+ (dim g*)a. In terms of the restricted fundamental
weights w,, we then have

(10.3) p= Z CaWa

where ¢, = dimg® if 2« is not a root, and ¢, = %(dimga + 2dim g2%)
otherwise (cf. [9]). If G is split over R, we have xo = wq, for all @ € II
and hence ) .y Xa = p. In general, we do not have this identity, which
motivates the following definition:

Definition 10.2. Define ¢y to be the minimum number ¢ > 0 such that

> (Xa + Xi@) <c-p ona'.
acl
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We also set ¢ := cqy.

It is easy to check that 0 < ¢y < ¢, and moreover if § Ni(#) = (), then
cg < 5§. By our choice of the Tits representation of G, note that cg depends
only on the Lie algebra g; hence we sometimes write cq = c¢4. The proof of
the following lemma was provided by I. Smilga:

Lemma 10.3. We have ) .y Xa < p, and hence
Cg < 2.

Proof. Let gc be the complexification of g = Lie G and § be a Cartan sub-
algebra of gc containing a. Since a C h, we have a natural restriction map
m: h* — a*. Recall the restricted fundamental weights wy, - - - ,ws defined in
(2.1) where s = dim a; they form a basis of a*. We denote by w1, - - ,w, the
fundamental weights of (gc, ) where r = dim b, which were chosen compat-
ibly with w;’s so that m sends each @w; to some linear combination ), ¢; jw;
where c;; are non-negative integers. They form a basis of h*.

Set pc = Y ;_; @i, which is equal to the half-sum of all positive roots of

(8¢, ). Then
p=mlpc) = Zdiwi

where d; = Zj ¢j; € N. For the Tits weights x; = rijw; for i@ = 1,--- s,
recall that k; is the smallest positive integer x such that xw; is proximal,
that is, its highest weight space is one-dimensional. In view of the Killing
form, we may consider a* as a subset of h*. We have the following facts:
e a representation with the highest weight x € h* is proximal if and
only if x actually lies in a* [I, Theorem 6.3];
e each coefficient k; is either 1 or 2 [4, Section 2.3].

We now claim that x; < d; for all 1 <4 < s; this implies that ), x; =
> kiwi < p. This is clear if k; = 1, since d; > 1. So suppose that x; = 2
and let us show that d; > 2. Then x; = 2w; lies in a* and is an integral
weight; hence it is equal to some linear combination Zj c¢jw; with non-
negative integer coefficients c¢;. Moreover the sum Zj ¢; cannot exceed 2,
because 7 has to map Zj ¢j@wj to 2w;, and it maps each @; to some non-zero
sum of the wy’s. So we are left with three cases:

(a) 2w; = w; for some j;
(b) 2w; = w;j + @y, for some distinct j and k;
(¢) 2w; = 2w; for some j.

We can rule out case (c), because then w; = w; would be proximal which
contradicts k; = 2. In case (a), we get that ¢;; = 2 and hence d; is at least 2.
In case (b), applying 7 on both sides, we necessarily have m(w;) = 7(wy) =

wi, 80 ¢j; = ¢; = 1 and hence d; is also at least 2. O
The bound on cg can be improved in certain cases. For example, for
g =s0(n,1), n > 2, we have Il = {a}, p = "T_la and Xq = wo = §; hence

_ 2
Cg = =1
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Riemannian metric on Fy. For each a € II, we denote by V! the highest
weight space of p, and by V= its unique complementary A-invariant sub-
space in V,,. Then the map g € G+ (pa(9)Vy )acs factors through a proper
immersion

(10.4) Fo = [ P(Va).

a€cl

Let (-,-)o be a K-invariant inner product on V,, with respect to which
A is symmetric, so that V! is perpendicular to V,=. We denote by || - ||lo
the norm on V, induced by (-, ). We also use the notation || - || for a
bi-pe (K )-invariant norm on GL(V,). The angle Z(E, F') between a line E
and a subspace F' is defined as minimum of all angles between all non-zero
v € E and non-zero w € F.

We write gVt := pa(9)Vyh and gV~ = pa(g)V,y for g € G and o € 11,
Up to a Lipschitz equivalence, the Riemannian distance dgjem on Fg = G/ Py
satisfies that for all g1, g2 € G,

dRiem(glpﬁa 92P9) = \/Z Sin2 Z(glvoz+7 92va+)'
acl

The Gromov product G on F?) can be expressed in terms of angles be-
tween appropriate subspaces as follows:

Lemma 10.4 ([51, Lemma 6.4], [39, Lemma 3.11]). For (¢,n) € F®), we
have that for any o € 11,

2xa(G(&,m)) = —logsin Z(gV,", gV)
where g € G is such that £ = gP and n = gwoP.

We then have the following estimates on the Riemannian distance using
Gromov products and Tits weights:

Lemma 10.5. There exists a constant C' > 0 such that for all g € G,

1/2
dRiem(gPG,ngPQ) Z C (Z €—4xa(g(9P,gw0P))> X
acl

Proof. We first note that for each « € II, woV,” C V=; to see this, recall
that V.= is the sum of all weight subspaces of V,, whose weight is not equal
to Xa. On the other hand, woV," is a weight space with the weight given
by Xa © Ady, = —Xa ©1. Since —x, 0i(a™) < 0 while y,(a™) > 0, we have
X © Ady, # Xa, which shows woV," C V<.

Therefore for all g € G,

sin® Z(gV,t, Vi) < sin® Z(gVh, gwoVy)
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Hence, up to a Lipschitz constant, we have that for all g € G,

dRriem (9P, gwoPp) = \/Z sin® Z(gVa", gwoVa)
agh

> > sin? Z(gVa', Vi)
a€el

1/2
= (Z 6—4Xa(g(nggwoP)))

acl
where the last equality follows from Lemma [10.4 O
Lower bounds. In the rest of this section, we assume that
I' is a 6-Anosov subgroup of G.

Since the Tits weights {x. : o € 0} form a basis of aj, each linear form
Y € aj can be uniquely written as ¥ = Y g kp.aXa With Ky o € R. We
consider the following height of 1):

Ko 1= Z Ky €R
aecl

ael

Denote by Egy the collection of all linear forms which are non-negative
linear combinations of {x, : @ € #}. That is,

10.5 Ey :={Y€a):ryq>0forall acb}.
9 ’[lj7

Since xo > 0 on int ag for all a € 6, each non-zero 1 € Ey is positive on
inta,. Since £y — {0} C inta) by Theorem (2), each non-zero ¢ € Ey
is positive on Ly — {0} and hence we have the corresponding conformal
premetric dy on Ag discussed in section @

Lemma 10.6. For any non-zero i € Egy, the identity map (Ag, dRiem) —
(Mg, dy) is bi-Hélder. More precisely, we have for some c1,co > 0 so that

¢1 - dpiem(€,1)™ < dy(€0) < €2 dpien (€, )™/ for all €1 € Ag
where 11 > 0 is defined in ((10.6)).

Proof. By [10, Theorem 6.1], there exists ¢, hp > 0 such that drjem(&,n) <
ce mrEmne for all € #n e Ag ~ O'. Together with Lemma this implies
the first inequality with

(10.6) Dy = h;lQJ).

For each £ # n € Ay, there exists g € G such that £ = gFPy and n = gwo Py
(Theorem [3.8(4)). By Lemma we have that for each a € 6, up to a
Lipschitz constant,

1/2
(10.7)  driem(&,7) > (Ze“‘xwwﬂgwo”)) > ¢~ 2xa(G(sPgwoP)),
acl
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Recalling
day, (§,m) = e~ 2Xa(G(gP,gwoP))

and writing ¢ = Y <y Fy.aXa € Eg, since all ky o are non-negative, ([10.7)
implies

o o R
dy(&m) = [[ doxa (&) 72 < [] driem(&m) ™7 = driem(&,m) 2
acl aecl
up to a Lipschitz constant. Hence the second inequality follows. ([l

Remark 10.7. Since dy and dj are bi-Lipschitz (Proposition , Propo-
sition and the above lemma imply that there exist ¢, R > 0 such that
for any ¢ € Ap and g € [e,€] in T, the shadow O%(o, go) N Ay contains the

. . . —-2-dy(0,90)
Riemannian ball of center £ and of radius ce "+ .

Theorem 10.8. For any non-zero ¢ € Ey, we have

rryy - dimy Ag > dim Ay > %ﬂ - dimy, Ag.

In particular,

o 51/‘} > dim Ag > % . (5@.

Proof. It follows from Lemma and a standard property of Hausdorff
dimension that we get

L8 AR dimw Ag 2 dim Ag 2 % . dimd, Ag.
Since dimy Ag = d,; by Corollary the claim follows. O

Applying Theorem to each x,, a € 0, we obtain the following uniform
lower bound on the Hausdorff dimension of all non-elementary 6-Anosov
subgroups:

Corollary 10.9. We have

dim Ay > maxd o
0 = ach XOL+X1(04)

Example 10.10. For G = PSL,(R), we have IT = {ay,--- ,a—1} where
a; : diag(ag, -+ ,ap) = @ — Git1.

Let 1 <p <n-—1. Since Xap 18 equal to the fundamental weight w, which
is given by wp(diag(ai, - ,an)) = a1 + --- + ap, we deduce from Corollary
that for all non-elementary a,-Anosov subgroups of PSL,,(R), we have

dim Aap 2 6wp+wn—p‘
When p = 1, this lower bound is obtained in [19, Theorem 10.1].

The following upper bound in Proposition [10.11| was obtained in ([49,
Theorem B, [15, Theorem 1.2]) for G = PSL,(R) and 6 is a singleton.
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Proposition 10.11. We have

dim Ay < maxd,.
ach
Proof. Via the proper immersion of Fy into [], .oP(Va) as discussed in
(10.4), we may consider the following metric on Fy: for g1, 92 € G,

d]'—e (91P9,92P0) = %125{ dIP’(Va)(glva+’g2Va+)

where dp(y,) is the metric on P(V,,) given by dp(y,)(v1,v2) = sin Z(v1, va).
Then dz, is Lipschitz equivalent to the Riemannian metric on Fy and hence
we can use dr, to compute dim Ag.

Fix a € 6 and consider the Tits representation (pq, Vy). We write V,, =
R" and PGL(V,) = PGL,_(R) by fixing a basis. We denote by S, the
simple root of PGL,,, (R) given by f; o(diag(uy, - - ,up,)) = u1 — ug. Since
the highest weight of p, is xo and the second highest weight is x, — a by
Theorem [10.1], we have that for all v € T,

(10.8) Bra(p(pa())) = alp(y))-

Since I" is an {a}-Anosov subgroup of G, there exists C' > 1 such that for
all v € T, a(u(v)) > C~y| = O, and hence B1o(1t(pa(y))) > C | = C.
Therefore po(T') is a {81, }-Anosov subgroup of PGL,,, (R).

We denote by f, : OI' = P(V,,) the p,(I')-equivariant embedding obtained
as the extension of the orbit map of po(I') (Theorem [3.8(4)). It is shown
in [49] Proposition 3.5, Proposition 3.8] that there exists a constant C,, > 0
such that for each v € T', there exists a ball B, () of radius Cpe ™1 ((Pa ()
in P(V,,) so that for any x € OI" such that v € [e,z] in T", we have f,(z) €
Ba(7y). In particular, for every k > 1, the collection

{Ba(7) :v €T, |yl =k}
covers the limit set of p,(I") in P(V,,). Hence Ay is covered by the collection

{HBQ(V):VGF,WI Zk‘}

a€cl

via the immersion Fyp — [[,cqP(Va). Since [[,cq Ba(7y) has dr,-diameter
at most

max C, e Pretpa()) < Ce=minaco a(u(v))
acl -

where C' = max,c9 C, by (10.8]), we have that for each s > 0, the s-
dimensional Hausdorff measure H*(Ay) with respect to dg, satisfies

H?(Ap) < limsup C? Z e~ Minacq a(u(v))
k—o00 .
veL,|v|=k

Therefore, denoting by dmin,.,« the abscissa of convergence of the series
S Ever e~ sminaeo a(n(v) if ¢ > Omingcgar We have H*(Ap) = 0 and hence

dim AH < 6mina€g a-
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On the other hand, we have

?;9 TF ) < § g aminaco ) < §°§ (mse(ur),

a€cl yel vyel a€el yel

The first inequality implies max,ecgda < Omin,coo and the second gives
Omingepa < MaXqep 0o Hence dmin, oo = MaXqep 0o, Which completes the
proof. O

Theorem [1.7]is a combination of Corollary and Proposition [10.11

11. GROWTH INDICATOR BOUNDS AND APPLICATIONS TO THE
L2-SPECTRUM

As before, let I' < G be a 6-Anosov subgroup where G is a connected
semisimple real algebraic group. In this final section, we deduce bounds on
the growth indicator 1% : ag — [0,00) U{—0c0} of " (see Deﬁnition from
Corollary Recall Tits weights x., a € II, of G from . We have
the following (Corollary :

Corollary 11.1. We have

(11.1) IO < dim Ay - min(xo + Xia))-
Moreover,
(11.2) Yr < dim Ay - meig(xa + Xi(a))-

Proof. For any linear form v € a;ui(e) positive on Ly ;9) — {0}, the scaled
linear from dy is tangent to the growth indicator (Lemma . Hence it

follows from Corollary that for each a € 6, we have
oui(0 .
PO < Oxatxie) © (Xa + Xi(a)) < dimAg - (Xa + Xi(w))  OR agui(s)-

Therefore taking minimum among « € # finishes the proof of (11.1)).
By [35, Lemma 3.12], we have

Yr < ngi(e) © Paui(g) On a.

Hence by (|11.1]), we have
Yr < dimAg - fglé?(xcv + Xi(a)) © Poui(6)-

Since the linear form xa + Xj(a) € a;ui(e) 18 pgui(g)-invariant for each a € 6,

(11.2) follows. O
Observing

. 1
glelg(xa + Xi(a)) < %0 042639 Xo + Xi(a)s
Corollary implies the following:
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Corollary 11.2. For any 0-Anosov subgroup of G, we have
(11.3) Yr <

copdim Ay
#6
Remark 11.3. We remark that our proof shows that % in the above corollary

can be replaced by the minimum ¢ > 0 such that mina,eg(Xa + Xi(a)) < ¢ p
on the limit cone L.

Define the real number A\g(I'\X) € [0, 00) as follows:
fF\X |lgrad f||% d Vol

Jrvx [f1?d Vol
This number is equal to the bottom of the L2-spectrum of I'\X of the

Laplace-Beltrami operator [58, Theorem 2.2]. The following was proved in
[22, Theorem 1.6] for II-Anosov subgroups and in [41], Corollary 3] in general:

(11.4) Ao(T\X) ::inf{ . f € C(D\X), f;éo}.

Theorem 11.4. If I' < G is a torsion-free discrete subgroup of G with
Yr < p, then L2(T\G) is tempered and \o(T\X) = ||pl|?.

Applying Theorem we obtain the following (Corollary from
([1.3).

Corollary 11.5. Let I' be a torsion-free 8-Anosov subgroup. If dim Ay <
f—f, then L2(T\G) is tempered and \o(T\X) = ||p||?.

Moreover ) is not an L?-eigenvalue ([22], [21], see also [61), Corollary 5.2]
for the absence of any principal joint L2-eigenvalues as well).

Remark 11.6. Indeed, it is shown in [41l Theorem 11] that if ¢r < (2 — %)p
for some p > 1, then L?(I'\G) is strongly LP*¢-integrable for all € > 0, that
is, for a dense subset of vectors, the associated matrix coefficients belong to
LPTE(@G). Hence if dim Ay < (2 — %)f—:’, we obtain that L?(I'\G) is strongly
LP+e_integrable for all € > 0.

Remark 11.7. Using that cqg = % for G = SO°(n, 1), Corollary says
that for a Zariski dense convex cocompact I' < SO°(n,1), if dimA < ”7_1,

then L?(I'\ SO°(n,1)) is tempered and Ao(I'\H") = %, as shown by
Sullivan [58, Theorem 2.21].
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