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Abstract. LetM be a geometrically finite hyperbolic 3-manifold whose
limit set is a round Sierpiński gasket, i.e. M is geometrically finite and
acylindrical with a compact, totally geodesic convex core boundary. In
this paper, we classify orbit closures of the 1-dimensional horocycle flow
on the frame bundle of M. As a result, the closure of a horocycle in M is
a properly immersed submanifold. This extends the work of McMullen-
Mohammadi-Oh where M is further assumed to be convex cocompact.

1. Introduction

Let M be a complete hyperbolic 3-manifold, and let χ ⊂ M be an isometri-
cally immersed copy of R with torsion zero and geodesic curvature 1, referred
to as a 1-dimensional horocycle or simply a horocycle. Shah [14] and Ratner
[13] classified the closure χ ⊂ M in the case Vol(M) < ∞, proving that χ is
a properly immersed submanifold of M. This classification was generalized
to infinite-volume hyperbolic 3-manifolds by McMullen-Mohammadi-Oh in
[9], where they considered convex cocompact hyperbolic 3-manifolds with
round Sierpiński limit sets.

We call M convex cocompact if its convex core core(M) is compact, and
geometrically finite if the unit neighborhood of core(M) has finite volume.

We say that M has a round Sierpiński limit set if the limit set Λ ⊂ Ĉ of the
Kleinian group π1(M) < PSL2(C) is a round Sierpiński gasket, i.e.,

Ĉ− Λ =
∞⋃
i=1

Bi

is a countable union of round open disks Bi ⊂ Ĉ with disjoint closures (see
Figure 1).

A geometrically finite hyperbolic 3-manifold M has a round Sierpiński
limit set if and only if core(M) has a non-empty interior and a compact,
totally geodesic boundary. Moreover, such M is acylindrical1 in the sense
of Thurston [15]. Indeed, as shown by Thurston [15] and McMullen [8,
Corollary 4.3], every geometrically finite, acylindrical hyperbolic 3-manifold
M with compact ∂ core(M) is quasiconformally conjugate to a unique one
with a round Sierpiński limit set.

1A 3-manifold is called acylindrical if its compact core (also called Scott core) has
incompressible boundary and every essential cylinder therin is boundary-parallel.

1



2 DONGRYUL M. KIM AND MINJU LEE

Figure 1. Rough sketch of a round Sierpiński limit set

Convex cocompact hyperbolic 3-manifolds with round Sierpiński limit sets
have been the only known infinite-volume examples where the topological
behavior of closures of horocycles is fully understood [9]. In this paper, we
extend the classification to geometrically finite 3-manifolds:

Theorem 1.1. Let M be a geometrically finite hyperbolic 3-manifold with a
round Sierpiński limit set. For any 1-dimensional horocycle χ ⊂ M, one of
the following holds:

(1) χ = χ is closed.
(2) χ is a 2-dimensional compact horosphere.
(3) χ is a properly immersed 2-manifold, parallel to a totally geodesic

surface S ⊂ M.
(4) χ is the entire 3-manifold M.

Horocycle flows on frame bundles. As in [9], Theorem 1.1 is a con-
sequence of the classification of orbit closures of the horocycle flow on the
frame bundle of M. To be precise, let G = PSL2(C) = Isom+(H3) and
consider the following subgroups:

H = PSL2(R), N =

ß
nz =

Å
1 z
0 1

ã
: z ∈ C

™
,

U = {ns : s ∈ R}, and V = {nis : s ∈ R}.

For a hyperbolic 3-manifold M = Γ\H3 with an associated Kleinian group
Γ < G, we have the identification of its frame bundle FM with Γ\G:

FM = Γ\G.

Then every (oriented) horocycle χ ⊂ M lifts uniquely to a U -orbit xU ⊂ FM
for some x ∈ FM and vice versa.

We denote by

RF+M ⊂ FM
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the set of all frames directed toward core(M) under the frame flow; that is,
their forward trajectories project to geodesic rays in M that remain within
a bounded distance of core(M). For a precise definition, see (3.1). This set
RF+M is U -invariant, and any U -orbit outside RF+M is a properly immersed
copy of R. Hence, interesting dynamics appear only within RF+M. We now
state our classification of U -orbit closures in FM.

Theorem 1.2. Let M be a geometrically finite hyperbolic 3-manifold with a
round Sierpiński limit set. Then for any x ∈ FM, one of the following holds:

(1) xU is closed.
(2) xU = xN which is compact.
(3) xU = xvHv−1 ∩ RF+M for some v ∈ V .
(4) xU = RF+M.

Note that N -orbits and H-orbits in FM project to 2-dimensional horo-
spheres in M and the images of totally geodesic immersions of a hyperbolic
plane into M, respectively. In particular, a compact N -orbit in FM corre-
sponds to a compact horosphere in M, and a closed H-orbit in FM corre-
sponds to a totally geodesic plane in M. Therefore, Theorem 1.1 follows
from Theorem 1.2.

When M is convex cocompact, Thoerem 1.2 was proved by McMullen-
Mohammadi-Oh [9] and (2) does not occur in that case. This was extended
by Lee-Oh [7] to higher-dimensional convex cocompact hyperbolic manifolds
whose convex cores have non-empty interiors and totally geodesic bound-
aries. In their work, they classified orbit closures of any connected, closed
subgroup of SO◦(n, 1) = Isom+(Hn) generated by unipotent elements.

Remark 1.3. We emphasize that U < G is a non-maximal unipotent sub-
group, i.e. U is not a horospherical subgroup of G. This non-maximality
introduces a fundamental difficulty in studying behavior of U -orbits. For
these reasons, manifolds with round Sierpiński limit sets, or equivalently,
convex cores with compact, totally geodesic boundaries, were considered in
[9] and [7] as well as in this paper.

Indeed, the orbit closure of a horospherical subgroup has been classified
for any geometrically finite hyperbolic manifold by Dal’bo [2], Ferte [4], and
Winter [17], without requiring any additional geometric assumption.

On the proof. We briefly outline our strategy. We adapt the idea of
McMullen-Mohammadi-Oh [9], which uses the classification of closures of
geodesic planes to classify closures of horocycles, to our setting. On the
other hand, the presence of cusps poses an obstacle to directly applying the
arguments in [9]. To address this, we incorporate techniques developed by
Dani-Margulis [3] and Shah [14] as well as the specific features of a limit set,
which ensure that every compact horocycle is contained within a compact
horosphere.

Given a horocycle χ ⊂ M, we assume that χ is neither closed nor is its
closure χ a compact horosphere. We then show that its closure χ is a surface
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parallel to a closed geodesic plane or equal to M. Our proof proceeds in two
major steps:

The first step is to prove that, under the given hypothesis, χ contains a
surface in M equidistant from a geodesic plane (Proposition 10.4). This step
relies on the classification of closures of geodesic planes by Benoist-Oh [1].
To achieve this, we consider the following two cases:

(a) χ contains a compact horocycle χ0 ⊂ M;
(b) χ does not contain any compact horocycle in M.

A key observation in handling case (a) is that every compact horocycle
is contained in a compact horosphere due to the specific feature of a limit
set. Using the unipotent blowup developed in ([3], [14]), we scatter χ0

along geodesics or horospheres and deduce that χ contains either a surface
or a compact horosphere (Corollary 8.3). Then employing the expansion
of horospheres, we obtain that χ always contains a surface (Theorem 8.1).
We remark that this is the place where the presence of cusp introduces an
obstruction to directly adapting the arguments in [9].

To address case (b), we utilize the notion of relatively U -minimal sets
introduced in [10]. As shown in [1], horocycles in M exhibit recurrence to
certain compact subsets. Based on the recurrence, we adapt the approach
of [9] to our setting and show that χ is scattered along a geodesic ray or a
horosphere (Lemma 9.7). From this, we deduce that χ contains a surface
(Theorem 9.1).

As the second step, we show that if χ contains a surface in M, then either
χ is entirely contained within the surface, or the surface is scattered along a
horosphere within χ, from which the conclusion follows. In this step, we use
the recurrence properties of horocycles established in [1] and the unipotent
blowup for such horocycles ([10], [9]).

Geodesic planes. As mentioned above, we heavily use Besnoist-Oh’s clas-
sification of closures of geodesic planes [1] to classify closures of horocycles.
For other works classifying closures of geodesic planes in infinite-volume
hyperbolic manifolds, see ([10], [7], [11], [18], [1], [6], [16], [5]).

Open question. It is an open question whether a similar classification of
closures of horocycles holds for a general geometrically finite, acylindrical
hyperbolic 3-manifold.

Structure of the paper. In Section 2 and Section 3, we fix notations and
terminologies used throughout the paper. Section 2 is about subgroups of
PSL2(C), and Section 3 is about Kleinian groups and geometrically finite
3-manifolds. Section 4 is devoted to the recurrence of horocycle flows and
the unipotent blowup lemmas. In Section 5, we explain the expansion of
horospheres and deduce properties of horocycles contained in an expand-
ing sequence of horospheres by applying unipotent blowup. Closed geodesic
planes and the horocycles contained within them are discussed in Section 6.
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In Section 7, we prove Theorem 1.2 for the closure of a horocycle that con-
tains a closed geodesic plane. In Section 8, we classify closures of horocycles
intersecting compact horospheres. The classification of closures of horocy-
cles that do not contain any compact horocycle is addressed in Section 9.
Finally, we prove Theorem 1.2 in Section 10.

Acknowledgements. We thank our advisor, Professor Hee Oh, for intro-
ducing us to this topic, suggesting this problem, and providing invaluable
inspiration, insightful discussions, and many helpful comments on earlier
drafts of this paper.

2. Subgroups of PSL2(C)

In this section, we introduce basic notions and fix notations for subgroups
of PSL2(C) that we use throughout the paper. We mainly use the upper
half-space model for the hyperbolic 3-space H3 = {(z, t) ∈ C × R : t > 0}
whose boundary is the Riemann sphere Ĉ = C ∪ {∞}. We fix a basepoint
o = (0, 1) ∈ H3. The group of orientation-preserving isometries on H3 is
identified with PSL2(C), and its action on H3 extends to a conformal action

of PSL2(C) on Ĉ given by linear fractional transformations. Including the
ones in the introduction, we fix the following notations for subgroups of
PSL2(C):

(2.1)

G := PSL2(C)
K := stabG(o) ∼= PSU(2)

H :=

ßÅ
a b
c d

ã
∈ G : a, b, c, d ∈ R

™
∼= PSL2(R)

A :=

ß
at :=

Å
et/2 0

0 e−t/2

ã
: t ∈ R

™
M := {aiθ =

Å
eiθ/2 0

0 e−iθ/2

ã
: θ ∈ R} ∼= PSU(1) ∼= S1

N :=

ß
nz :=

Å
1 z
0 1

ã
: z ∈ C

™
U :=

ß
us :=

Å
1 s
0 1

ã
: s ∈ R

™
< N

V :=

ß
vs :=

Å
1 is
0 1

ã
: s ∈ R

™
< N

We then have the identification

G/K = H3 and G/MAN = Ĉ

where identity cosetsK ∈ G/K andMAN ∈ G/MAN correspond to o ∈ H3

and ∞ ∈ Ĉ respectively. Moreover, equipping G/K and G/MAN with the
left-multiplications by G, the above identifications are G-equivariant.
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Let R̂ = R∪{∞} ⊂ Ĉ be the standard circle given by the real axis. Then

H is the orientation-preserving stabilizer of R̂ in G. In addition, R̂ is the
boundary of the H2-copy in H3 invariant under H. Observes also that

AU ⊂ H.

Note that A and M commute, and U and V commute. For a subgroup
S < G, we denote by NG(S) < G the subgroup consisting of the normalizers
of S in G. Then

AM ⊂ NG(N), AV ⊂ NG(U), and AU ⊂ NG(V ).

Moreover, for nz ∈ N , we have

a−1
t nzat = nze−t → e as t → +∞.

Throughout the paper, we use the notations at, nz, us, ut, vs, and vt
to represent matrices as defined in (2.1). Abusing notations, we occasion-
ally use an, un, or vn to represent sequences in A, U , or V respectively,
where n serves as an index rather than a matrix value. When sequences
explicitly track the values of matrices, we use sequences in R and nota-
tions in (2.1). For example, we take a sequence tn ∈ R and consider

atn =

Å
etn/2 0

0 e−tn/2

ã
∈ A.

Frame bundle. Denote by FH3 the frame bundle over H3, the space of all
(positively oriented, orthonormal) frames on H3. The induced action of G
on FH3 is transitive, and hence we identify

G = FH3

so that the quotient map G → G/K becomes the basepoint projection
FH3 → H3, and the right-multiplication by A and U give the (geodesic)
frame flow and horocycle flow on FH3, in directions of the first and the
second components of a frame respectively.

For g ∈ G, let

g+ := g(∞) ∈ Ĉ and g− := g(0) ∈ Ĉ.
Via the map G → G/K, the orbit gA projects to the bi-infinite geodesic

gAo ⊂ H3 with endpoints g± ∈ Ĉ. Similarly, the orbit g · {at ∈ A : t ≥ 0}
projects to the geodesic ray in H3 based at go ∈ H3 and toward g+ ∈ Ĉ.
Moreover, noting thatN < G projects to the horizontal planeNo = {(z, 1) ∈
H3 : z ∈ C}, the orbit gNo ⊂ H3 is the horosphere passing through go ∈ H3

and resting at g+ ∈ Ĉ. For each n ∈ N , the frame gn is based at the

horosphere gNo and its first component is toward (gn)+ = g+ ∈ Ĉ.
Finally, Ho ⊂ H3 is the oriented copy of H2 whose boundary is R̂ ⊂ Ĉ

and H corresponds to the set of all frames whose first two components are
restricted to positively oriented frames on the geodesic plane Ho. Hence,
gHo ⊂ H3 is the geodesic plane spanned by the first two components of the
frame g ∈ G and gH is the set of all frames whose first two components
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are restricted to positively oriented frames on gHo. The boundary of the

geodesic plane gHo is the circle gR̂ = {gh+ ∈ Ĉ : h ∈ H}.

3. Hyperbolic 3-manifolds

A discrete subgroup Γ < G is called Kleinian group, and the quotient

M := Γ\H3 is a complete hyperbolic manifold. We denote by Λ ⊂ Ĉ the
limit set of Γ, which is defined as the set of accumulation points of Γo ⊂ H3

in the compactification H3 ∪ Ĉ. When #Λ ≥ 3, Γ is called non-elementary.
In this case, the Γ-action on Λ is minimal and #Λ = ∞.

The convex core of M is defined as

core(M) := Γ\hull(Λ) ⊂ M

where hull(Λ) ⊂ H3 is the convex hull of Λ in H3. We call Γ and M geomet-
rically finite if the unit neighborhood of core(M) has finite volume.

In this paper, we are interested in a geometrically finite Kleinian group Γ
such that Λ is the round Sierpiński gasket. In other words,

Ĉ− Λ =

∞⋃
i=1

Bi

is a countable union of round open disks Bi ⊂ Ĉ with disjoint closures
(Figure 1). It is clear from the definition that Γ is non-elementary, and
moreover Zariski dense in G ∼= SO◦(3, 1). We say that such Γ and M = Γ\H3

have round Sierpiński limit set.
We remark that these conditions imply that M is acylindrical in the sense

of [15], and ∂ core(M) is compact and totally geodesic. Indeed, every geomet-
rically finite, acylindrical hyperbolic 3-manifold M with ∂ core(M) compact
is a quasiconformal deformation of a unique geometrically finite hyperbolic
3-manifold with a round Sierpiński limit set ([15], [8, Corollary 4.3]).

Conical and parabolic limit points. Let Γ < G be a Kleinian group with

the limit set Λ ⊂ Ĉ. A limit point x ∈ Λ is called conical if any geodesic
ray in H3 toward x has an accumulation point in the quotient M = Γ\H3

and parabolic if x is fixed by a parabolic element of Γ, an element conjugate

to

Å
1 1
0 1

ã
. For a parabolic limit point x ∈ Λ, its stabilizer stabΓ(x) in Γ

is virtually abelian, and its rank is called rank of x and is either 1 or 2. A
parabolic limit point x ∈ Λ is called bounded parabolic if the stabΓ(x)-action
Λ− {x} is cocompact.

When Γ is geometrically finite, the limit set Λ is a disjoint union of conical
limit points and bounded parabolic limit points. Moreover, there are finitely
many bounded parabolic limit points x1, · · · , xn ∈ Λ so that

Λ = {conical limit points} ∪
n⋃

i=1

Γxi.

In particular, there are at most countably many parabolic limit points.
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Lemma 3.1. Let Γ < G be geometrically finite with a round Sierpiński limit
set Λ. Then every parabolic limit point is of rank 2.

Proof. Suppose that there exists a parabolic limit point of rank 1, say∞ ∈ Λ
without loss of generality. Since Γ is geometrically finite, ∞ is bounded par-
abolic, and hence stabΓ(∞) acts cocompactly on Λ− {∞}. Since stabΓ(∞)

is virtually conjugate to the subgroup

Å
1 Z
0 1

ã
, there are two parallel lines

L1, L2 ⊂ C such that Λ−{∞} is contained in the region bounded by L1 and

L2. Then there exist two components B1, B2 ⊂ Ĉ − Λ such that L1 ⊂ B1

and L2 ⊂ B2. Since Λ − {∞} is bounded by L1 and L2, B1 ̸= B2. On the
other hand, since L1 and L2 are lines in C, their closures in the Riemann

sphere Ĉ are circles passing through ∞ ∈ Ĉ, and hence B1 ∩ B2 ̸= ∅. This
contradicts the hypothesis that Λ is a round Sierpiński limit set. □

Renormalized frame bundle. Let Γ < G be a Kleinian group and M :=
Γ\G. Since the identification FH3 = G is G-equivariant, this induces the
identification of the frame bundle FM of M with Γ\G:

FM = Γ\G.

Then frame flow and horocycle flow on FH3 descend to FM and they are
given as the right-multiplications of A and U on Γ\G respectively. We
denote by the projection

π : Γ\G → Γ\G/K

which is the basepoint projection FM → M. Throughout the paper, we
denote by [g] ∈ Γ\G the coset Γg for g ∈ G, and we refer to elements of Γ\G
and G as frames in M and H3, respectively.

Interesting dynamics arise in certain subsets of FM. We define the renor-
malized frame bundle over M as

RFM := {[g] ∈ Γ\G : g± ∈ Λ} ⊂ FM.

This is the closed set consisting of all frames in M whose orbits under the
frame flow are based at core(M). It is clear that RFM is AM -invariant. We
also set

(3.1) RF+M := RFM ·N = {[g] ∈ Γ\G : g+ ∈ Λ}
which isMAN -invariant. The projection π|RF+M : RF+M → M is surjective.

Boundary frames. In the rest of the section, let Γ < G be a geometrically
finite Kleinian group with a round Sierpiński limit set, and M := Γ\G. Since
∂ core(M) is totally geodesic and compact, there are finitely many elements
z1, · · · , zn ∈ Γ\G with compact H-orbits so that the set of frames whose
first two components are tangent to ∂ core(M) is equal to

⋃n
i=1 ziH ⊂ Γ\G.

We set

(3.2) BFM :=

n⋃
i=1

ziH
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and call boundary frames. Note that BFM ⊂ RFM and BFM ·H = BFM.
Due to the specific feature of the limit set Λ, we observe the following:

Lemma 3.2. For any x ∈ RF+M,

x ∈ RFM · U or x ∈ BFM · V.

Proof. Let x = [g] ∈ RF+M − RFM · U for g ∈ G. Then for any u ∈ U ,
(gu)− /∈ Λ since (gu)+ = g+ ∈ Λ. This implies that for some component Ω0

of Ĉ−Λ, {(gu)− : u ∈ U} ⊂ Ω0 and g+ ∈ ∂Ω0. Then {g+}∪{(gu)− : u ∈ U}
is the round circle in Ω0 tangent to ∂Ω0 at g+. This implies that for some
v ∈ V , {g+} ∪ {(gvu)− : u ∈ U} = ∂Ω0. Noting that (gv)+ = g+, it follows
that xv = [gv] ∈ BFM. □

Proposition 3.3. [9, Theorem 4.1] Let xn ∈ RFM · U be a sequence such
that xn → y ∈ RFM as n → ∞.

(1) if y ̸∈ BFM, then there exists a sequence un → e in U such that
xnun ∈ RFM for all n ≥ 1. In particular, xnun → y as n → ∞.

(2) if y ∈ BFM, then passing to a subsequence of xn, there exists a
sequence un ∈ U such that xnun ∈ RFM and xnun converges to an
element of BFM as n → ∞, which is potentially different from y.

Proof. This was proved in [9] under an extra assumption that M is convex
cocompact. On the other hand, the proof only uses the fact that Λ is a
round Sierpiński gasket. Therefore, the same proof works verbatim in our
setting. □

Volume of horospheres. Since every parabolic limit point is of rank two
(Lemma 3.1), every compact U -orbit in Γ\G is contained in a compact N -
orbit (Lemma 5.1). This observation is useful in our classification of closures
of horocycles.

Let x ∈ Γ\G be such that xN is compact. We denote by V(x) the volume
of xN with respect to the Haar measure of N . We then have

(3.3) V(xatn) = e−2tV(x) for all t ∈ R, n ∈ N.

For each ξ > 0, we define the following closed subsets of Γ\G:

Fξ(N) := {x ∈ Γ\G : xN is compact and V(x) ≤ ξ}
Fξ := Fξ(N) ·K.

Note that π−1(core(M)) − int(Fξ) is a compact subset of Γ\G, since M is
geometrically finite and every parabolic limit point is of rank 2 (Lemma 3.1).

Cusp neighborhoods. For an (open) horoball h inH3 and ρ ≥ 0, let hρ ⊂ h
be the horoball in h with distance ρ from ∂h . Since M is geometrically finite,
there exists ξM > 0 and finitely many horoballs h1, · · · , hn ⊂ H3 with disjoint
closures so that

(3.4) int(π(FξM)) =
n⋃

i=1

Γh i
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where Γh i ⊂ M is the image of h i under the quotient map H3 → M. Fixing
such ξM > 0 and h i’s, we simply write

H := int(FξM) =

{
x ∈ Γ\G : π(x) ∈

n⋃
i=1

Γh i

}
For ρ ≥ 0, we similarly define

Hρ :=

{
x ∈ Γ\G : π(x) ∈

n⋃
i=1

Γh i
ρ

}
.

Since every parabolic limit point is of rank two (Lemma 3.1), it follows from
(3.3) that

(3.5) Hρ = int(Fe−2ρξM).

We also define

Wρ := RFM− Hρ

which is a compact subset of Γ\G. Note that W0 = RFM− H .

4. Recurrence of horocycle flows and unipotent blowup

Let Γ < G be a geometrically finite Kleinian group with a round Sierpiński
limit set and M = Γ\H3. In this section, we discuss recurrence of horocycle
flows on FM, i.e., U -action on Γ\G. We also collect lemmas concerning
the sequence of non-trivial elements in the double coset space S\G/U that
converges to the identity coset where S = U , N , or H. In [10], they were
referred to as “unipotent blowup”.

Recurrence of horocycle flows. To study the recurrence, we use the
notion of thickness.

Definition 4.1 (Thickness). Let k > 1 and T ⊂ R. We say that

• T is k-thick if

T ∩ ([−ks,−s] ∪ [s, ks]) ̸= ∅ for all s > 0;

• T is k-thick at ∞ if there exists sT ≥ 0 such that

T ∩ ([−ks,−s] ∪ [s, ks]) ̸= ∅ for all s > sT .

Recall from (2.1) that

U =

ß
ut =

Å
1 t
0 1

ã
: t ∈ R

™
and V =

ß
vt =

Å
1 it
0 1

ã
: t ∈ R

™
.

Via the maps ut ↔ t and vt ↔ t, we identify U and V with R and define
the thickness of subsets of U and V as well: T ⊂ U is called k-thick (resp.
k-thick at ∞) if {t ∈ R : ut ∈ T} is k-thick (resp. k-thick at ∞). Similarly,
T ⊂ V is called k-thick (resp. k-thick at ∞) if {t ∈ R : vt ∈ T} is k-thick
(resp. k-thick at ∞).
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We use the term “thickness” for subsets of R, U , and V , with the specific
choice made for convenience in each context. In many cases, we measure
the thickness of the recurrence time for horocycle flows.

Definition 4.2 (Recurrence time). For x ∈ Γ\G and W ⊂ Γ\G, set

TW (x) := {u ∈ U : xu ∈ W}

The following recurrence of horocycle flows was established by McMullen-
Mohammadi-Oh:

Proposition 4.3. [10, Lemma 9.2] There exists kM > 1 depending only on
M such that for all x ∈ RFM, the set TRFM(x) is kM-thick.

Proof. The proposition is stated in [10] for the case when Γ is further as-
sumed to be convex cocompact. On the other hand, their proof only relies
on the fact that Λ is a round Sierpiński gasket. Therefore, the same proof
works in our setting. □

For practical applications, it is desirable for the set W in Definition 4.2
to be compact. Recall that Wρ = RFM − Hρ is compact for all ρ ≥ 0.
When M admits a cusp and hence RFM is not compact, Wρ will replace the
role of RFM in Proposition 4.3. We deduce the following from the work of
Benoist-Oh, where general geometrically finite, acylindrical Kleinian groups
were considered.

Proposition 4.4. [1, Corollary 5.5, Proposition 5.4] Let ξM > 0 and kM > 1
be as in (3.4) and Proposition 4.3 respectively. Then there exists R > 0 such
that the following holds:

(1) for any ρ ≥ 0 and x ∈ Wρ, the set TWρ+R
(x) is 4kM-thick.

(2) for any ρ ≥ 0 and x ∈ Wρ+R, the set TWρ+R
(x) is 4kM-thick at ∞.

(3) for any x ∈ RFM− Fe−2RξM
(N), the set TWR

(x) is 4kM-thick at ∞.

Proof. Let us explain how the statement can be deduced from [1], accounting
for the differences in formulation. In [1, Corollary 5.5, Proposition 5.4], they
considered the set

RFkM :=

ß
x ∈ RFM :

∃ T′ ⊂ TRFM(x) s.t.
e ∈ T′ and T′ · u−1 is k-thick ∀u ∈ T′

™
for each k > 1 and showed that for some R > 0,

(4.1)
TRFkM−HR

(x) is 4k-thick for all x ∈ RFkM− H ;

TRFkM−HR
(x) is 4k-thick at ∞ for all x ∈ RFkM− HR.

Now we take k = kM given by Proposition 4.3. Then for any x ∈ RFM,
e ∈ TRFM(x). Moreover, for any u ∈ TRFM(x), xu ∈ RFM and TRFM(xu) =
TRFM(x) · u−1. Hence, it follows from Proposition 4.3 that TRFM(x) · u−1 is
kM-thick for all u ∈ TRFM(x). This verifies that RFkM = RFM with k = kM
in our setting, and therefore (1) and (2) for ρ = 0 follow from (4.1), noting
that W0 = RFM − H and WR = RFM − HR. In fact, only the fact that
H consists of disjoint horoballs was used in the proof of [1, Corollary 5.5,
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Proposition 5.4]. Hence, we can replace H and HR with deeper horoballs
Hρ ⊂ H and Hρ+R ⊂ HR for arbitrary ρ ≥ 0 in (4.1). Therefore, (1) and (2)
hold for general ρ ≥ 0.

As for item (3), recall that H = int(FξM) and HR = int(Fe−2RξM
) from

the identification we made in (3.5). Hence in terms of FξM , item (2) with
the choice of ρ = 0 translates into the statement that for R > 0 given
in the previous statement, TWR

(x) is 4kM-thick at ∞ for all x ∈ RFM −
int(Fe−2RξM

). In the proof of [1, Proposition 5.4], the condition that x /∈
int(Fe−2RξM

) was used to have that xU is not contained in int(Fe−2RξM
).

However, it is enough to have x /∈ Fe−2RξM
(N) to guarantee that xU is

not contained in Fe−2RξM
. Therefore, the argument therein works and (3)

follows. □

Unipotent blowup: thick sets. The notion of topological limsup will be
repeatedly used throughout the paper. We mainly consider a sequence of
sets parametrized by a subset of R.
Definition 4.5. Let X be a metric space. For T ⊂ R and family of subsets
{Yt ⊂ X : t ∈ T}, we define

lim sup
t∈T,t→∞

Yt :=

ß
x ∈ X :

∃ sequences tn ∈ T and ytn ∈ Ytn
s.t. tn → ∞ and ytn → x as n → ∞.

™
In other words,

(4.2) lim sup
t∈T,t→∞

Yt =
⋂
t0>0

⋃
t∈T,t>t0

Yt.

When T = N or (t0,∞) ⊂ T for some t0 ∈ R, we simply write lim supn→∞ Yn
or lim supt→∞ Yt respectively.

We use the above definition for X = G or X = Γ\G. Note that by (4.2),
the topological limsup is closed. We first record unipotent blowup lemmas
that take thick sets into account.

Lemma 4.6. [1, Lemma 6.1] Let T ⊂ U be k-thick at ∞ for some k > 1.
If gn ∈ G − AN is a sequence such that gn → e, then lim supn→∞ TgnU
contains a sequence ℓn → e in AV − {e}.
Lemma 4.7. [9, Theorem 3.1] Let Tn ⊂ U be a sequence of k-thick sets for
some k > 1. If gn ∈ G − HV is a sequence such that gn → e, then there
exists k′ > 1 depending only on k, and a k′-thick set V0 ⊂ V such that

V0 ⊂ lim sup
n→∞

HgnTn.

Unipotent blowup: polynomials. We now discuss the unipotent blowup
lemma involving some polynomials, which was studied by Dani-Margulis [3]
and Shah [14]. For simplicity, we use the following notations: for z ∈ C−{0}
and s ∈ R,

d(z) =

Å
z−1 0
0 z

ã
∈ AM and v(s) =

Å
1 is
0 1

ã
∈ V.
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Using the notations in (2.1), d(z) = a−2 log |z|a−2i arg(z) and v(s) = vs. We
will consider real polynomials σ, ν ∈ R[t] and d(σ(t))v(ν(t)) ∈ AV , or a
complex polynomial σ ∈ C[t] and d(σ(t)) ∈ AM , for t ∈ R such that σ(t) ̸=
0. The following is the unipotent blowup with polynomials:

Lemma 4.8. [14, Proposition 4.3.2] Let S < G be either U or N . Let
gn ∈ G−NG(S) be a sequence converging to the identity e ∈ G.

(1) If S = U , then there exist polynomials σ, ν ∈ R[t] such that at least
one of them is non-constant, σ(0) = 1, ν(0) = 0, and

d(σ(t))v(ν(t)) ∈ lim sup
n→∞

UgnU for all t ∈ R with σ(t) ̸= 0.

(2) If S = N , then there exists a non-constant polynomial σ ∈ C[t] such
that σ(0) = 1 and

d(σ(t)) ∈ lim sup
n→∞

NgnU for all t ∈ R with σ(t) ̸= 0.

Proof. As our formulation is slightly different from [14, Proposition 4.3.2],
let us explain how we deduce the desired statement. Given a subgroup
S < G which is either U or N and a sequence gn → e in G − NG(S), what
directly follows from [14, Proposition 4.3.2] is that

(1) if S = U , then there exist polynomials σ, ν ∈ R[t] such that at least
one of them is non-constant, σ(0) = 1, ν(0) = 0, and

d(σ(t))v(ν(t)) ∈
⋃
n∈N

UgnU for all t ∈ R with σ(t) ̸= 0.

(2) if S = N , then there exists a non-constant polynomial σ ∈ C[t] such
that σ(0) = 1 and

d(σ(t)) ∈
⋃
n∈N

NgnU for all t ∈ R with σ(t) ̸= 0.

We handle both cases simultaneously by setting

Φ(t) :=

®
d(σ(t))v(ν(t)) if S = U

d(σ(t)) if S = N

for t ∈ R with σ(t) ̸= 0, where σ and ν are polynomials given above.
Then it suffices to deduce that for each t ∈ R with σ(t) ̸= 0,

(4.3) Φ(t) ∈ lim sup
n→∞

SgnU.

Suppose not. Then Φ(t) /∈ lim supn→∞ SgnU for some t ∈ R with σ(t) ̸= 0.

Since Φ(t) ∈
⋃

n∈N SgnU , there exists n ∈ N and sequences sk ∈ S and
uk ∈ U such that

Φ(t) = lim
k→∞

skgnuk.
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Since gn /∈ NG(S), there exists s ∈ S such that gnsg
−1
n /∈ S. Noting that S

and U commute, we have

(4.4) lim
k→∞

sk(gnsg
−1
n )s−1

k = lim
k→∞

(skgnuk)s(skgnuk)
−1 = Φ(t)sΦ(t)−1 ∈ S

since Φ(t) ∈ NG(S).
For some a, b, c, d ∈ C and a sequence ck ∈ C, we write

gnsg
−1
n =

Å
a b
c d

ã
and sk =

Å
1 ck
0 1

ã
for all k ∈ N.

We then have

sk(gnsg
−1
n )s−1

k =

Å
a+ cck b− ack + dck − cc2k

c d− cck

ã
which converges to an element in S by (4.4). This implies c = 0, and hence

sk(gnsg
−1
n )s−1

k =

Å
a b+ ck(d− a)
0 d

ã
.

Again, since this sequence converges to an element in S, we must have a = d,
and hence

sk(gnsg
−1
n )s−1

k =

Å
a b
0 a

ã
for all k ∈ N.

Hence, we now have that the constant sequence sk(gnsg
−1
n )s−1

k converges to
an element of S as k → ∞. In particular,

sk(gnsg
−1
n )s−1

k ∈ S for all k ∈ N.

This implies gnsg
−1
n ∈ S, which is a contradiction. Therefore, (4.3) follows.

□

The following proposition was proved by Dani-Margulis when σ is non-
constant, and by Shah in general:

Proposition 4.9 ([3, Proposition 2.4], [14, Proposition 4.4.3]). Let σ, ν ∈
R[t] be polynomials such that one of them is non-constant. Let t0 ≥ 0 be
such that σ(t) ̸= 0 for all t > t0. Defining a function Φ : (t0,∞) → AV as

(4.5) Φ(t) := d(σ(t))v(ν(t)),

there exists a non-trivial one-parameter subgroup L < AV , and for every
ℓ ∈ L, there exists a function fℓ : (0,∞) → R such that as t → ∞,

t+ fℓ(t) → ∞ and Φ(t)−1Φ(t+ fℓ(t)) → ℓ.

Recalling Definition 4.5, we have:

Corollary 4.10. Let Φ(t) = d(σ(t))v(ν(t)) be as in (4.5). For any Y ⊂
Γ\G, there exists a one-parameter subgroup L < AV such that

lim sup
t→∞

Y Φ(t) is invariant under L.
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Proof. Let X0 := lim supt→∞ Y Φ(t) and x0 ∈ X0 be arbitrary. Then x0 =
limn→∞ ynΦ(tn) for some sequences yn ∈ Y and tn → ∞ as n → ∞. We
then apply Proposition 4.9: let L < AV and {fℓ : ℓ ∈ L} be as in the
proposition associated to Φ(t). Then for every ℓ ∈ L, tn + fℓ(tn) → ∞ and

ynΦ(tn + fℓ(tn)) = ynΦ(tn)(Φ(tn)
−1Φ(tn + fℓ(tn))) → x0ℓ.

This implies that

x0ℓ = lim
n→∞

ynΦ(tn + fℓ(tn)) ∈ X0.

Since x0 ∈ X0 and ℓ ∈ L are arbitrary, we get X0L ⊂ X0, and hence
X0L = X0. □

The following is standard (cf. [14, Lemma 2.2.2]):

Lemma 4.11. If L is a one-parameter subgroup of AV , then either L = V
or L = vAv−1 for some v ∈ V .

5. Expansion of N-orbits

In this section, we discuss some properties of horospheres in a complete
hyperbolic 3-manifold Γ\H3, which correspond to N -orbits in FM = Γ\G.
We begin with the classification of N -orbit closures. The following was
proved by Ferte, and the last claim follows from Lemma 3.1.

Lemma 5.1. [4, Theorem A, Theorem B] Let Γ be a non-elementary Kleinian
group and M = Γ\H3. Let x = [g] ∈ RF+M for g ∈ G.

(1) If g+ is a conical limit point, then

xN = RF+M.

(2) If g+ is a parabolic limit point of rank 1, then xN is closed and not
compact.

(3) If g+ is a parabolic limit point of rank 2, then xN is compact.

In particular, if Γ is geometrically finite with a round Sierpiński limit set,
then for any x ∈ RF+M, either (1) or (3) occurs.

One key feature of horospheres is the expansion along frame flows in
negative time as in the following lemma, which is a consequence of the
equidistribution result due to Winter [17]:

Lemma 5.2. [17, Theorem 6.1] Let Γ < G be a Zariski dense geometrically
finite Kleinian group and M = Γ\H3. Let x ∈ RF+M. For any sequence
tn → +∞ in R and mn ∈ M , we have

lim sup
n→∞

xNmna−tn = RF+M.

In the rest of the section, let Γ < G be a geometrically finite Kleinian
group with a round Sierpiński limit set Λ, and M = Γ\H3. Note that both
Lemma 5.1 and Lemma 5.2 apply to M. From the expansion of horospheres
above, the classification of N -invariant subsets follows:
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Proposition 5.3. Let X0 ⊂ RF+M be a closed N -invariant set. Then either
X0 = RF+M, or there exists η > 0 such that X0 ⊂ Fη(N).

Proof. Suppose X0 ̸= RF+M. By Lemma 5.1, for x = [g] ∈ RF+M such
that g+ ∈ Λ is a conical limit point of Γ, the orbit xN ⊂ RF+M is dense.
Therefore, for any x = [g] ∈ X0, we have that g+ ∈ Λ is a parabolic limit
point of Γ. This implies that there are finitely many z1, · · · , zk ∈ RF+M
such that

X0 ⊂
k⋃

i=1

ziNMA.

Suppose to the contrary that X0 ̸⊂ Fn(N) for all n ≥ 1. Then there exists
a sequence xn ∈ X0 − Fn(N) for all n ≥ 1. For each n ≥ 1, write

xn = zinpnmna−tn ∈ zinNMA.

After passing to a subsequence, we may assume that zin = z is constant.
Since V(xn) = e2tnV(zpnmn) = e2tnV(z) by (3.3), we must have tn → +∞
as n → ∞. We then have that X0 contains xnN = zNmna−tn for all n ≥ 1.
Therefore, RF+M ⊂ X0 by Lemma 5.2, which is a contradiction. This proves
the lemma. □

U-orbits in expanding N-orbits. We now consider a sequence of U -orbits
contained in an expanding sequence of N -orbits. We will show that we can
find a vAUv−1-orbit for some v ∈ V in the set of accummulation points of
such U -orbits (Proposition 5.5). We first prove the following lemma:

Lemma 5.4. Let xn ∈ RFM ·U be a sequence such that for any subsequence
{xnj : xnjN is compact}, we have V(xnj ) → ∞. Then for any η > 0, there
exists a neighborhood Oη(N) ⊂ Γ\G of Fη(N) such that RFM − Oη(N) is
compact and Å

lim sup
n→∞

xnU

ã
∩ RFM−Oη(N) ̸= ∅.

In particular, (lim supn→∞ xnU) ∩ RFM− Fη(N) ̸= ∅.

Proof. Let ξM, R > 0 be as in (3.4) and Proposition 4.4, respectively, and
ξ1 := e−2RξM. Given any η > 0, choose s > 0 satisfying e−2sη < 0.5ξ1.

We claim that xnUas ∩RFM−Fξ1(N) ̸= ∅ for all sufficiently large n ≥ 1.
Note that by (3.3),

xnUas ∩ RFM− Fξ1(N) = (xnU ∩ RFM− Fe2sξ1(N))as,

and it suffices to check that xnU∩RFM−Fe2sξ1(N) ̸= ∅. Since xn ∈ RFM·U ,
there exists x̃n ∈ xnU ∩ RFM for each n ≥ 1. If xnN is not compact, then
so is x̃nN , and hence x̃n ̸∈ Fe2sξ1(N) trivially. Hence it suffices to consider
the case that xnN is compact for infinitely many n ≥ 1. If xnN is compact,
then x̃nN is compact as well and V(x̃n) = V(xn), which diverges as n → ∞
by the hypothesis. Hence x̃n ̸∈ Fe2sξ1(N) for all sufficiently large n ≥ 1.
This proves the claim.
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Note that WR = RFM − int(Fξ1) using notations in Proposition 4.4. It
then follows from the above claim and Proposition 4.4(3) that for kM > 1
given in Proposition 4.3 and all sufficiently large n ≥ 1, there exists yn ∈ xnU
such that TWR

(ynas) is 4kM-thick at ∞. In particular,

xnUas ∩WR = ynUas ∩WR = ynasU ∩WR ̸= ∅.

Denote by Oη(N) := int(Fξ1)a
−1
s . From the definition of WR and RFM =

RFM · as, it follows that

(5.1) xnU ∩ RFM−Oη(N) ̸= ∅

for all large enough n ≥ 1. Note that Oη(N) is an open neighborhood of
Fη(N) because

int(Fξ1)a
−1
s ⊃ F0.5ξ1a

−1
s ⊃ F0.5ξ1(N)a−1

s = F0.5e2sξ1(N) ⊃ Fη(N)

by (3.3). Since RFM−Oη(N) = (RFM−int(Fξ1))a
−1
s is compact, the lemma

follows from (5.1). □

We now prove the existence of vAUv−1-orbit for some v ∈ V mentioned
above. Recall that for z ∈ C− {0} and s ∈ R,

d(z) =

Å
z−1 0
0 z

ã
∈ AM and v(s) =

Å
1 is
0 1

ã
∈ V.

Proposition 5.5. Let y ∈ RF+M. Let σ, ν ∈ R[t] be polynomials and set
Φ(t) = d(σ(t))v(ν(t)) for t ∈ R with σ(t) ̸= 0. Suppose that σ is non-
constant and yΦ(t) ∈ RFM · U for all sufficiently large t > 0. Then there
exists v ∈ V such that

lim sup
t→∞

yUΦ(t) contains a vAUv−1-orbit.

Proof. Let X0 := lim supt→∞ yUΦ(t). We first claim that for any η > 0,

(5.2) X0 ∩ RFM− Fη(N) ̸= ∅.

Fix a sequence tn → ∞ and for each n ≥ 1, let xn := yΦ(tn) ∈ RFM · U . If
xnj is a subsequence such that xnjN is compact for all n ≥ 1, then yN is
compact as well, and moreover it follows from (3.3) that

V(xnj ) = V(yd(σ(tnj ))) = |σ(tnj )|4 · V(y).

Since σ is non-constant and limj→∞ tnj = ∞, we have |σ(tnj )| → ∞, from
which we deduce V(xnj ) → ∞ as j → ∞. Therefore, the sequence xn ∈
RFM · U satisfies the condition of Lemma 5.4, and hence for any η > 0,Å

lim sup
n→∞

xnU

ã
∩ RFM− Fη(N) ̸= ∅.

Since Φ(tn) ∈ AV < NG(U),

lim sup
n→∞

yUΦ(tn) = lim sup
n→∞

yΦ(tn)U = lim sup
n→∞

xnU,
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and therefore

X0 ∩ RFM− Fη(N) ⊃
Å
lim sup
n→∞

yUΦ(tn)

ã
∩ RFM− Fη(N) ̸= ∅.

This shows the claim.

Now by Corollary 4.10, X0 is invariant under a one-parameter subgroup
L < AV , and it follows from Lemma 4.11 that either L = V or L = vAv−1

for some v ∈ V . Moreover, since Φ(t) ∈ AV < NG(U), X0 is U -invariant.
Together with the commutativity of U and V , we now have that

X0 is invariant under N = UV or vAUv−1.

Suppose first that X0 is N -invariant. By Proposition 5.3, we have X0 =
RF+M or X0 ⊂ Fη(N) for some η > 0. The latter is forbidden by the claim
(5.2), and hence

X0 = RF+M

in this case. Then X0 is a non-empty AU -invariant set, and therefore X0

contains an AU -orbit as desired.
Now suppose that X0 is invariant under vAUv−1 for some v ∈ V . By

(5.2), we in particular have that X0 is non-empty. Therefore, there exists a
vAUv−1-orbit in X0. This completes the proof. □

6. A closed H-orbit and U-orbits therein

Let Γ < G be a geometrically finite Kleinian group with a round Sierpiński
limit set andM = Γ\H3. We will also employ geometry and dynamics appear
in geodesic planes in M = Γ\H3, or H-orbits in FM = Γ\G. In this section,
we discuss properties of a closed H-orbit and U -orbits therein. Recall that
H < G is a copy of PSL2(R) which is an orientation-preserving stabilizer of

R̂ ⊂ Ĉ, the boundary of H2-copy in H3 invariant under H. The following is
the classification of H-orbit closures by Benoist-Oh:

Theorem 6.1. [1, Theorem 11.10] Let y ∈ RFM. Either

yH is closed or yH = RF+M ·H.

Remark 6.2. We note that Benoist-Oh showed Theorem 6.1 in a more general
setting that M is geometrically finite and acylindrical with ∂ core(M) totally
geodesic.

When yH is closed and y = [g] for g ∈ G, the conjugate Γg := g−1Γg is
the stabilizer of y ∈ Γ\G for the right-multiplication, and the orbit map

ϕ : (H ∩ Γg)\H → Γ\G
(H ∩ Γg)h 7→ yh

is a proper embedding [12, Section 4.2]. Via ϕ, the closed H-orbit xH can be
identified with the unit tangent bundle (H∩Γg)\H of the hyperbolic surface
(H ∩ Γg)\H2. In this regard, we recall the following, which is a special case
of the work of Dal’bo:
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Lemma 6.3. [2, Proposition B] Let ΓH < H be a non-elementary discrete
subgroup with the limit set ΛΓH

. Let y = [h] ∈ ΓH\H be such that h+ ∈ ΛΓH
.

(1) If h+ is a conical limit point of ΓH , then

yU = {z = [ℓ] ∈ ΓH\H : ℓ+ ∈ ΛΓH
}.

(2) If h+ is a parabolic limit point of ΓH , then yU is compact.

In particular, if ΓH is geometrically finite, then for any y = [h] ∈ ΓH\H
with h+ ∈ ΛΓH

, either (1) or (2) occurs.

Note that this is a surface version of Lemma 5.1. Although we can try to
apply Lemma 6.3 to H ∩ Γg < H, the limit set we are interested in is the
limit set Λ of Γ or the limit set g−1Λ of Γg, not the limit set of H ∩ Γg. We
first need to handle this subtlety.

U-orbits in a closed H-orbit. We deduce from the work of Oh-Shah [12]
that in our setting, the limit set ofH∩Γg is precisely equal to the intersection

of the limit set of Γg with the circle R̂ stabilized by H.

Proposition 6.4. Let y = [g] ∈ RFM for some g ∈ G be such that yH is
closed. Then H ∩ Γg < H is a non-elementary geometrically finite subgroup

and its limit set is equal to g−1Λ ∩ R̂.

Proof. It was shown in [12, Theorem 4.7] that H ∩ Γg is a geometrically
finite subgroup of H. Moreover, it is clear that the limit set of H ∩ Γg is

contained in g−1Λ ∩ R̂. Since y ∈ RFM, g−1Λ ∩ R̂ is perfect; otherwise,

g−1Λ∩ R̂ has an isolated point z. Since g−1Λ∩ R̂ ⊂ Ĉ is a circle, this means

that there exists an open segment I ⊂ g−1Λ ∩ R̂ such that I ∩ g−1Λ = {z}.
Since components of Ĉ− g−1Λ are round open disks with mutually disjoint

closures, there exists a component B ⊂ Ĉ− g−1Λ containing I − {z}. This
implies g−1Λ ∩ R̂− {z} ⊂ B, contradicting to y ∈ RFM.

In particular, g−1Λ ∩ R̂ is uncountable, and hence it contains infinitely
many conical limit points of Γg. By [12, Lemma 4.5], all conical limit points

of Γg in g−1Λ ∩ R̂ are conical limit points of H ∩ Γg. Therefore, H ∩ Γg is
non-elementary.

Finally, we show that the limit set of H∩Γg is equal to g−1Λ∩R̂. Without

loss of generality, we may assume that 0 ∈ g−1Λ ∩ R̂ and it suffices to show
that 0 is in the limit set of H ∩ Γg. There are two cases:

• Suppose first that there are sequences ε′n, εn > 0 such that εn, ε
′
n → 0

as n → ∞ and εn,−ε′n /∈ g−1Λ for all n ≥ 1. Then g−1Λ ∩ (−ε′n, εn)
is compact.

We claim that g−1Λ∩(−ε′n, εn) has no isolated point for all n ≥ 1.
Suppose to the contrary that z ∈ g−1Λ∩ (−ε′n, εn) is isolated. Then
for some δ > 0, open segments (z−δ, z) and (z, z+δ) in (−ε′n, εn) are

disjoint from g−1Λ. Since z ∈ g−1Λ and g−1Λ∩R̂ is uncountable, this

implies that there are two distinct components B1, B2 of Ĉ − g−1Λ
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such that (z − δ, z) ⊂ B1 and (z, z + δ) ⊂ B2. On the other hand,
z ∈ B1 ∩B2, which is a contradiction to the hypothesis that Λ, and
hence g−1Λ, is a round Sierpiński limit set.

By the above claim, g−1Λ ∩ (−ε′n, εn) is perfect for all n ≥ 1. In
particular, g−1Λ ∩ (−ε′n, εn) is uncountable, and hence contains a
conical limit point of Γg for all n ≥ 1. Since εn, ε

′
n → 0 as n → ∞,

this implies that there is a sequence of conical limit points of Γg in

g−1Λ ∩ R̂ that converges to 0. Since every conical limit point of Γg

is a conical limit point of H ∩ Γg [12, Lemma 4.5], it follows that 0
is a limit point of H ∩ Γg, as desired.

• Otherwise, there exists δ > 0 such that at least one of the segments

[−δ, 0] or [0, δ] is contained in g−1Λ ∩ R̂. This implies that there is

a sequence of conical limit points of Γg in g−1Λ ∩ R̂ that converges
to 0. As in the previous case, it follows that 0 is a limit point of
H ∩ Γg.

In any case, 0 is a limit point of H ∩ Γg, finishing the proof. □

We are now able to apply Lemma 6.3 to H ∩Γg and obtain the following:

Corollary 6.5. Let y ∈ RFM be such that yH is closed. Let z = [gz] ∈
yH ∩ RF+M for gz ∈ G.

• If g+z is a conical limit point of Γ, then

zU = yH ∩ RF+M.

• Otherwise, zU is compact.

In particular, for any y ∈ BFM, we have yU = yH.

Proof. We first prove the claim for z = y. Let g ∈ G be such that y = [g].
By Proposition 6.4, H ∩ Γg < H is a non-elementary geometrically finite

subgroup and its limit set is equal to g−1Λ∩R̂. Since e+ = ∞ ∈ g−1Λ∩R̂, we
can apply Lemma 6.3 to the identity coset [e] ∈ (H ∩Γg)\H. As mentioned
in the proof of Proposition 6.4, e+ is a conical limit point of H ∩ Γg if and
only if g+ is a conical limit point of Γ by [12, Lemma 4.5]. Hence, applying
Lemma 6.3, we obtain the following dichotomy:

• if g+ is a conical limit point of Γ, then

(6.1) [e]U = {z = [ℓ] ∈ (H ∩ Γg)\H : ℓ+ ∈ g−1Λ ∩ R̂}.

• otherwise, [e]U is compact.

Since ϕ([e]U) = yU and the right hand side of (6.1) has the image yH ∩
RF+M under ϕ, the claim follows for y.

Now let z ∈ yH ∩RF+M be arbitrary. Since yH meets RFM, there exists
u ∈ U such that zu ∈ RFM. We then have that zuH = yH is closed, and
hence the above claim applies to zu. Since zuU = zU , this finishes the
proof. □
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The following AU -minimality is a direct consequence of Proposition 6.4:

Corollary 6.6. Let y ∈ RFM be such that yH is closed. For any z ∈
yH ∩ RF+M,

zAU = yH ∩ RF+M.

Proof. We first prove the claim for z = y. Let g ∈ G be such that y = [g].
By Proposition 6.4, H ∩Γg < H is non-elementary and geometrically finite,

and its limit set is g−1Λ∩ R̂. Since g+ ∈ Λ, e+ = ∞ is contained in the limit
set of H ∩ Γg. As H ∩ Γg is non-elementary, it acts minimally on its limit
set, and hence

(H ∩ Γg)e+ = g−1Λ ∩ R̂.

Since R̂ = H/AU , the above identity is equivalent to the following identity
in (H ∩ Γg)\H:

[e]AU = {[h] ∈ (H ∩ Γg)\H : h+ ∈ g−1Λ ∩ R̂}.

As in the proof of Corollary 6.5, taking ϕ implies the claim for y. The claim
for general z ∈ yH ∩RF+M can be deduced by the same argument as in the
proof of Corollary 6.5. □

Expansion of U-orbits within a closed H-orbit. In the rest of this
section, we discuss expanding behaviors of compact U -orbits in a closed H-
orbit. The following may be standard, and can be shown by arguments in
the proof Proposition 5.3:

Lemma 6.7. Let ΓH < H be a non-elementary geometrically finite subgroup
with the limit set ΛΓH

. Let yn ∈ ΓH\H be a sequence such that ynU is
compact for all n ≥ 1 and the length of ynU with respect to the Haar measure
of U diverges as n → ∞. Then

lim sup
n→∞

ynU = {[h] ∈ ΓH\H : h+ ∈ ΛΓH
}.

Proof. We sketch the argument. Since ΓH is geometrically finite, there are
finitely many elements z1, · · · , zk ∈ ΓH\H such that all compact U -orbits

are contained in the union
⋃k

i=1 ziUA. After passing to a subsequence, we
may assume that yn ∈ z1UA for all n ≥ 1, and hence there exists a sequence
tn ∈ R such that ynU = z1Uatn for all n ≥ 1. Since the length of ynU
diverges, we must have tn → −∞ as n → ∞, by the scaling property of the
U -Haar measure along the geodesic flow, which is similar to (3.3). Then the
equidistribution result of Winter [17, Theorem 6.1] applies and finishes the
proof as in Proposition 5.3. □

We now obtain the following expansion of compact U -orbits within a
closed H-orbit:
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Lemma 6.8. Let y ∈ RFM be such that yH is closed. Let ηn ∈ R be a
sequence such that ηn → ∞ as n → ∞. Let yn ∈ yH be a sequence such
that ynU is compact and yn /∈ Fηn(N) for all n ≥ 1. Then

lim sup
n→∞

ynU = yH ∩ RF+M.

Proof. Let g ∈ G be such that y = [g] ∈ Γ\G and let Γg := g−1Γg be its
stabilizer. By Proposition 6.4, H ∩ Γg is a non-elementary geometrically

finite subgroup of H and its limit set is g−1Λ∩ R̂. Recall that the orbit map

ϕ : (H ∩ Γg)\H → Γ\G
(H ∩ Γg)h 7→ yh

is a proper embedding [12, Section 4.2].
For each n ≥ 1, let zn ∈ (H ∩ Γg)\H be such that ϕ(zn) = yn. Since

ynU is compact and ϕ is proper, znU ⊂ (H ∩ Γg)\H is compact as well.
Since yn ̸∈ Fηn(N) and ηn → ∞, the length of ynU diverges as n → ∞, and
hence the length of znU does so. We now apply Lemma 6.7 to the sequence

zn ∈ (H ∩ Γg)\H. Since the limit set of H ∩ Γg < H is g−1Λ ∩ R̂, it follows
from Lemma 6.7 that

lim sup
n→∞

znU = {[h] ∈ (H ∩ Γg)\H : h+ ∈ g−1Λ ∩ R̂}.

Therefore, applying ϕ finishes the proof. □

7. A U-orbit closure containing a closed H-orbit

Let Γ < G be a geometrically finite Kleinian group with a round Sierpiński
limit set and M = Γ\H3. The goal of this section is to classify a U -orbit
closure X = xU in the case when X contains a closed H-orbit meeting RFM.

Theorem 7.1. Let x ∈ RFM and X = xU . Suppose that there exists
y ∈ RFM such that yH is closed and yH ∩ RF+M ⊂ X. Then either

X = yH ∩ RF+M or X = RF+M.

Recall the notion of boundary frames from (3.2). We first make the
following observation on the dichotomy of closed H-orbits:

Lemma 7.2. Let y ∈ Γ\G be such that yH is closed. Then either

yH ⊂ BFM or yH ∩ BFM · V = ∅.

Proof. Suppose that the closed H-orbit yH intersects BFM · V . We then
have y0 ∈ yH, z ∈ BFM, and v ∈ V such that

y0 = zv.

For t > 0, we have y0at = zat(a
−1
t vat). Since zat belongs to a compact set

BFM, there exists a sequence tn → ∞ as n → ∞ so that zatn converges to
a point in BFM. We denote by z0 ∈ BFM its limit. Since a−1

t vat → e as
t → ∞,

y0atn = zatn(a
−1
tn vatn) → z0 ∈ BFM.
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On the other hand, y0atn ∈ yH and yH is closed, and hence z0 ∈ yH as
well. Since BFM is H-invariant, we have

yH = z0H ⊂ BFM.

This finishes the proof. □

The following is the key lemma of this section:

Lemma 7.3. Let y ∈ RFM be such that yH is closed. Let vn ∈ V be a
sequence such that vn → ∞ as n → ∞. Suppose that yHvn ∩ RFM · U ̸= ∅
for all n ≥ 1. Then

lim sup
n→∞

(yHvn ∩ RF+M) = RF+M.

Proof. For simplicity, we set Y := yH ∩ RF+M which is AU -invariant and
X0 := lim supn→∞ Y vn. Then the lemma is equivalent to X0 = RF+M.

Since Y is AU -invariant and U and V commute,

X0 = lim sup
n→∞

Y vn(v
−1
n Avn)U.

Since V = lim supn→∞ v−1
n Avn and N = V U , we have that

X0 = X0 ·N.

By (4.2), X0 is closed as well. Now it follows from Proposition 5.3 that
either

(7.1) X0 = RF+M or X0 ⊂ Fη(N) for some η > 0.

We apply Lemma 5.4 to finish the proof, by finding a sequence yn ∈ Y such
that ynvn ∈ Y vn satisfies the condition therein. By Lemma 7.2, there are
two cases:

yH ⊂ BFM or yH ∩ BFM · V = ∅.
Suppose first that yH ⊂ BFM. In this case, for each n ≥ 1, we choose any

element yn ∈ yH such that ynvn ∈ RFM ·U , which exists by the hypothesis.
This in particular implies yn ∈ RF+M as well, and hence yn ∈ Y . Since
yn ∈ BFM, ynH is compact, and hence ynvnN = ynN is not compact for all
n ≥ 1 by Lemma 5.1. Therefore, the sequence ynvn ∈ RFM · U satisfies the
condition in Lemma 5.4.

We now consider the case that yH ∩ BFM · V = ∅. In this case, we fix
any sequence tn > 0 such that tn → ∞ as n → ∞, and set yn := ya−1

tn ∈ Y

for each n ≥ 1, where atn =

Å
etn/2 0

0 e−tn/2

ã
. Since Y ∩ BFM · V = ∅, we

also have that ynvn /∈ BFM · V , and hence ynvn ∈ RFM · U for all n ≥ 1 by
Lemma 3.2. If ynvnN = ynN is compact, then

V(ynvn) = V(ya−1
tn vn) = e2tnV(y).

Since tn → ∞ as n → ∞, the sequence ynvn ∈ RFM · U also satisfies the
condition in Lemma 5.4.
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In any case, we obtain a sequence ynvn ∈ Y vn∩RFM ·U to which Lemma
5.4 applies. Therefore, we have for any η > 0 thatÅ

lim sup
n→∞

ynvnU

ã
∩ RFM− Fη(N) ̸= ∅.

Since ynvnU ⊂ Y vnU = Y vn, this implies that

X0∩RFM−Fη(N) =

Å
lim sup
n→∞

Y vnU

ã
∩RFM−Fη(N) ̸= ∅ for any η > 0.

Together with (7.1), we must have

X0 = RF+M,

completing the proof. □

A closed H-orbit in BFM. To prove Theorem 7.1, we first consider the
case when the U -orbit closure contains an H-orbit in BFM ⊂ RFM.

Proposition 7.4. Let x ∈ RFM and X = xU . Suppose that there exists
y ∈ BFM such that yH ⊂ X. Then either

X = yH or X = RF+M.

Proof. Note that y ∈ BFM implies that yH is closed. Since y ∈ X, there
exists a sequence xn ∈ xU ⊂ RFM · U such that xn → y as n → ∞. By
Proposition 3.3(2), after passing to a subsequence, there exists a sequence
un ∈ U such that xnun ∈ RFM and xnun → y0 for some y0 ∈ BFM.
Replacing xn with xnun, we assume that xn ∈ RFM and xn → y0.

Then there exists a sequence gn ∈ G such that gn → e and xn = y0gn
for all n ≥ 1. After passing to a subsequence, gn ∈ HV for all n ≥ 1 or
gn /∈ HV for all n ≥ 1.

If gn ∈ HV for all n ≥ 1, we write gn = hnvn for some hn ∈ H and
vn ∈ V , and hence

X = xnU = y0gnU = y0hnvnU = y0hnUvn for all n ≥ 1.

Since y0hnU ⊂ y0H and y0H is compact as y0 ∈ BFM, it follows from
Corollary 6.5 that y0hnU = y0H. Therefore,

X = y0Hvn for all n ≥ 1.

Since X already contains a closed H-orbit yH, we must have vn = e and

X = y0H = yH

in this case.
Now consider the case that gn /∈ HV for all n ≥ 1. Let kM > 1 and R > 0

as in Proposition 4.3 and Proposition 4.4 respectively. Let ρ > 0 be such
that xn → y0 in Wρ. Then by Proposition 4.4(1), the set Tn := TWρ+R

(xn)
is 4kM-thick. Applying Lemma 4.7 to gn ∈ G −HV and Tn ⊂ U , we have
an unbounded subset V0 ⊂ V such that

V0 ⊂ lim sup
n→∞

HgnTn.
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In particular, for any v ∈ V0, there exist sequences hn ∈ H and un ∈ Tn such
that hngnun → v as n → ∞. Since y0H is compact, y0h

−1
n ∈ y0H converges

to some element, say y1 ∈ y0H. Then for each n ≥ 1,

y0h
−1
n (hngnun) = xnun ∈ X ∩Wρ+R

and hence taking n → ∞, we have y1v ∈ X ∩Wρ+R. Therefore,

(7.2) y0Hv = y1Uv = y1vU ⊂ X

where the first equality is due to Corollary 6.5. Moreover, since y1v ∈
Wρ+R ⊂ RFM and y1v ∈ y0Hv, we in particular have that y0Hv∩RFM·U ̸=
∅. Since this holds for any v ∈ V0 and V0 ⊂ V is unbounded, we take any
sequence vn → ∞ in V0 and apply Lemma 7.3 to conclude that

lim sup
n→∞

(y0Hvn ∩ RF+M) = RF+M.

Since y0HV0 ⊂ X as in (7.2), this implies

X = RF+M,

as desired. □

A closed H-orbit outside BFM. We next turn to the case that yH is
disjoint from BFM. Unlike the case that the H-orbit is contained in BFM,
yH can contain a compact U -orbit. The proof of the following lemma is
similar to that of Lemma 5.4:

Lemma 7.5. Let xn ∈ RFM be a sequence converging to y ∈ RFM such
that the A-orbit yA is compact. Let kM > 1 be as in Proposition 4.3. Then
for any η > 0, there exists a neighborhood Oη(N) ⊂ Γ\G of Fη(N) such that
RFM−Oη(N) is compact and

TRFM−Oη(N)(xn) = {u ∈ U : xnu ∈ RFM−Oη(N)}
is 4kM-thick for all sufficiently large n ≥ 1.

Proof. Let R > 0 be the constant as in Proposition 4.4. We choose ρ ≥ 0
and set ξ := e−2ρξM such that

yA ⊂ W2ρ ⊂ int(Wρ) = int(RFM− int(Fξ))

which is possible by the compactness of yA.
We set ξ1 := e−2Rξ = e−2(ρ+R)ξM. Let η > 0 be arbitrary and fix s > 0

such that e−2sη < 0.5ξ1. We set Oη(N) := int(Fξ1)a
−1
s , which is an open

neighborhood of Fη(N) since

int(Fξ1)a
−1
s ⊃ F0.5ξ1a

−1
s ⊃ F0.5ξ1(N)a−1

s = F0.5e2sξ1(N) ⊃ Fη(N).

Moreover, RFM−Oη(N) = (RFM− int(Fξ1))a
−1
s is compact.

To see the thickness, note that for u ∈ U ,

xnu ∈ RFM−Oη(N) ⇔ xnu ∈ RFM− int(Fξ1)a
−1
s

⇔ (xnas)(a
−1
s uas) ∈ RFM− int(Fξ1)

⇔ a−1
s uas ∈ TWρ+R

(xnas)
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since Wρ+R = RFM− int(Fξ1). Observing that a−1
s

Å
1 t
0 1

ã
as =

Å
1 te−s

0 1

ã
for all t ∈ R, it suffices to show that TWρ+R

(xnas) is 4kM-thick.
On the other hand, since yA is contained in the open subset int(Wρ) ⊂

RFM, it follows from xnas → yas that xnas ∈ Wρ for all large n ≥ 1.
Therefore, TWρ+R

(xnas) is 4kM-thick by Proposition 4.4(1). This completes
the proof. □

Recall that vt =

Å
1 it
0 1

ã
∈ V for t ∈ R.

Lemma 7.6. Let x ∈ RF+M and X = xU . Let y ∈ RFM be such that yH
is closed. Let I ⊂ R be a compact subset. Suppose that for any η > 0, there
exist tη ∈ I and yη ∈ yH ∩RF+M such that yηvtη ∈ X −Fη(N). Then there
exists TI ∈ I such that

(yH ∩ RF+M)vTI
⊂ X.

Proof. Since U and V commute and X is U -invariant, yηUvtη ⊂ X for all

η > 0. Hence, if yη0U = yH ∩ RF+M for some η0 > 0, setting TI := tη0
verifies the claim.

We now assume that yηU ̸= yH ∩RF+M for all η > 0. By Corollary 6.5,

yηU ̸= yH ∩ RF+M implies that yηU is compact for all η > 0. Since I is
compact, there exists a sequence ηn > 0 such that ηn → ∞ and tn := tηn ∈ I
converges to some TI ∈ I as n → ∞. Since yηnvtn ̸∈ Fη(N), or equivalently
yηn ̸∈ Fη(N), we have

lim sup
n→∞

yηnU = yH ∩ RF+M

by Lemma 6.8. Since vtn → vTI
as n → ∞, this implies

lim sup
n→∞

yηnvtnU = lim sup
n→∞

yηnUvtn = (yH ∩ RF+M)vTI
.

Since X is a closed U -invariant set and yηnvtn ∈ X for all n ≥ 1, it follows
that

(yH ∩ RF+M)vTI
⊂ X,

as desired. □

We now classify the U -orbit closure containing a closed H-orbit outside
of BFM.

Proposition 7.7. Let x ∈ RFM and X = xU . Suppose that there exists
y ∈ RFM−BFM such that yH is closed and yH ∩RF+M ⊂ X. Then either

X = yH ∩ RF+M or X = RF+M.

Proof. By Proposition 6.4, there exists a compact A-orbit in yH. Hence,
by replacing y with an element of yH, we may assume that yA is compact.
Note that we still have y ∈ RFM−BFM after the replacement due to Lemma
7.2.
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Since y ∈ X, there exists a sequence xn ∈ xU such that xn → y as
n → ∞. Since y ̸∈ BFM, by Proposition 3.3(1), we may further assume that
xn ∈ RFM by modifying xn ∈ xU , without changing y.

We next write xn = ygn for some sequence gn ∈ G such that gn → e as
n → ∞. After passing to a subsequence, gn ∈ HV for all n ≥ 1 or gn /∈ HV
for all n ≥ 1. Suppose first that gn ∈ HV for all n ≥ 1. For each n ≥ 1,
write gn = hnvn for some hn ∈ H and vn ∈ V . We then have

X = xnU = yhnUvn for all n ≥ 1.

Note that yhn ∈ yH ∩RF+M and hence either yhnU is compact or yhnU =
yH ∩ RF+M by Corollary 6.5. Since yH ∩ RF+M ⊂ X by hypothesis,
necessarily vn = e and X = yH ∩ RF+M in this case.

Now consider the case that gn ̸∈ HV for all n ≥ 1. Let kM > 1 be given in
Proposition 4.3 and k′ > 1 the constant given in Lemma 4.7 but associated
to k = 4kM instead of kM.

We claim that for every η > 0 and r > 0,

∃tη,r ∈ [−k′r,−r] ∪ [r, k′r] and yη,r ∈ yH ∩ RF+M

such that yη,rvtη,r ∈ X − Fη(N).

Let us verify the claim. Fix arbitrary η, r > 0 and let Oη(N) be the open
set in Lemma 7.5 associated to η > 0. Then Tn := TRFM−Oη(N)(xn) is 4kM-
thick for all sufficiently large n ≥ 1 by Lemma 7.5. Next, apply Lemma 4.7
to obtain a k′-thick set V0 ⊂ V with k′ = k′(4kM) such that

V0 ⊂ lim sup
n→∞

HgnTn.

Since V0 is k
′-thick, we can find tη,r ∈ [−k′r,−r]∪[r, k′r] such that vtη,r ∈ V0.

Hence, there exist sequences hn ∈ H, un ∈ Tn such that hngnun → vtη,r as
n → ∞. Note that

(yh−1
n )(hngnun) = xnun ∈ X ∩ RFM−Oη(N) for all n ≥ 1.

Since RFM−Oη(N) is compact, xnun is convergent after passing to a subse-
quence, and so is yh−1

n , to some element yη,r ∈ yH. Since Oη(N) is a neigh-
borhood of Fη(N), taking the limit n → ∞, we obtain yη,rvtη,r ∈ X−Fη(N).
Since X ⊂ RF+M, we have yη,r ∈ RF+M and the claim follows.

Fixing r > 0 and by varying η > 0, we apply Lemma 7.6 to the compact
set [−k′r,−r]∪ [r, k′r]. The previous claim and Lemma 7.6 imply that there
exists Tr ∈ [−k′r,−r] ∪ [r, k′r] such that

(7.3) (yH ∩ RF+M)vTr ⊂ X

Repeating this for increasing values of r > 0, we obtain a sequence |Tr| → ∞.
Since y /∈ BFM, we in particular have y /∈ BFM · V by Lemma 7.2. This

implies that yvTr /∈ BFM · V for all r > 0. Since y ∈ RFM, we have
yvTr ∈ RF+M, and hence yvTr ∈ RFM · U by Lemma 3.2. In particular,

yHvTr ∩ RFM · U ̸= ∅ for all r > 0.
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Since vTr → ∞ as r → ∞, it follows from Lemma 7.3 that

lim sup
r→∞

(yHvTr ∩ RF+M) = RF+M.

Together with (7.3), X = RF+M. This finishes the proof. □

Proof of Theorem 7.1. Let x ∈ RFM and X = xU . Suppose that there
exists y ∈ RFM such that yH is closed and yH ∩ RF+M ⊂ X. If y ∈
RFM−BFM, then the claim follows from Proposition 7.7. If y ∈ BFM, then
X = yH or X = RF+M by Proposition 7.4. Since yH ⊂ BFM ⊂ RFM in
this case, this completes the proof. □

8. A U-orbit closure meeting a compact N-orbit

Let Γ < G be a geometrically finite Kleinian group with a round Sierpiński
limit set and M = Γ\H3. The goal of the section is to prove the following
dichotomy for U -orbit closures meeting compact N -orbits.

Theorem 8.1. Let x ∈ RF+M and X := xU . Suppose that X meets a
compact N -orbit. Then one of the following holds:

(1) xN is compact.
(2) X contains a vAUv−1-orbit for some v ∈ V .

The proof is based on unipotent blowup involving polynomials. Recall
that for z ∈ C− {0} and s ∈ R,

d(z) =

Å
z−1 0
0 z

ã
∈ AM and v(s) =

Å
1 is
0 1

ã
∈ V.

Lemma 8.2. Let x ∈ RF+M and X := xU . Suppose that there exists y ∈ X
such that yN is compact. Then one of the following holds:

(1) xN is compact.
(2) there exist polynomials σ, ν ∈ R[t] such that at least one of them is

non-constant, σ(0) = 1, ν(0) = 0, and

yUΦ(t) ⊂ X for all t ∈ R s.t. σ(t) ̸= 0

where Φ(t) = d(σ(t))v(ν(t)).

Proof. Since y ∈ X, there exists a sequence xn ∈ xU such that xn → y
as n → ∞. We may write xn = ygn for some sequence gn → e in G.
After passing to a subsequence, we have either gn ∈ NG(U) for all n ≥ 1 or
gn /∈ NG(U) for all n ≥ 1.

Suppose first that gn ∈ NG(U) for all n ≥ 1. Then for each n ≥ 1,

xU = ygnU = yUgn,

and hence there exists un ∈ U such that x = yungn. Since yun ∈ yN and
yN is compact, after passing to a subsequence, we may assume that yun
converges to some z ∈ yN . It then follows from gn → e that x = z, and
therefore

xN = zN = yN is compact.
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Now assume that gn ̸∈ NG(U) for all n ≥ 1. Applying Lemma 4.8(1) with
S = U , we obtain polynomials σ, ν ∈ R[t] such that at least one of them is
non-constant, σ(0) = 1, ν(0) = 0, and

(8.1) Φ(t) = d(σ(t))v(ν(t)) ⊂ lim sup
n→∞

UgnU for all t ∈ R s.t. σ(t) ̸= 0.

Let t ∈ R be such that σ(t) ̸= 0. By (8.1), there exist sequences ûn, u
′
n ∈ U

such that ûngnu
′
n → Φ(t) as n → ∞, after passing to a subsequence. Observe

that
yû−1

n (ûngnu
′
n) = xnu

′
n ∈ X for all n ≥ 1.

Since yN is compact, passing to a subsequence, there exists yt ∈ yU such
that yû−1

n → yt as n → ∞. This implies

ytΦ(t) ∈ X.

Since yU is a U -minimal subset of a compact N -orbit yN , it follows from
Φ(t) ∈ AV < NG(U) that

yUΦ(t) = ytUΦ(t) = ytΦ(t)U ⊂ X.

Therefore, (2) holds. □

As a corollary, we obtain:

Corollary 8.3. Let x ∈ RF+M, and X = xU . Suppose that X meets a
compact N -orbit. Then one of the following holds:

(1) xN is compact.
(2) for any y ∈ X,

yN is compact =⇒ yN ⊂ X.

(3) X contains a vAUv−1-orbit for some v ∈ V .

Proof. Assume that (1) and (2) do not hold. We will prove that (3) is the
case. Since (2) does not hold, there exists y ∈ X such that yN is compact
and yN ̸⊂ X. We then apply Lemma 8.2: Lemma 8.2(1) cannot occur by
our assumption, and hence there exist polynomials σ, ν ∈ R[t] such that at
least one of them is non-constant, σ(0) = 1, ν(0) = 0, and

(8.2) yUΦ(t) ⊂ X for all t ∈ R s.t. σ(t) ̸= 0

where Φ(t) = d(σ(t))v(ν(t)).

We claim that σ is non-constant. Suppose not and let

X1 := lim sup
t→∞

yUΦ(t) ⊂ X.

Since σ(0) = 1, Φ(t) ∈ V and hence yUΦ(t) ⊂ yN . Since yN is compact,
we have X1 ̸= ∅. Applying Corollary 4.10 to Y := yU , it follows that X1 is
invariant under a one-parameter subgroup L < AV . By Lemma 4.11, either
L = vAv−1 for some v ∈ V or L = V . Since X1 ⊂ yN and yN is compact,
we must have L = V . Together with the U -invariance of X1, we have

X1 = yN.
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This contradicts yN ̸⊂ X, and the claim follows.

To finish the proof, suppose first that yΦ(t) ∈ RFM · U for all suffi-
ciently large t > 0. Then by Proposition 5.5, lim supt→∞ yUΦ(t) contains a
vAUv−1-orbit for some v ∈ V , and therefore (3) holds due to (8.2).

Otherwise, yΦ(t) ∈ BFM · V for some t ∈ R by Lemma 3.2. Since Φ(t) ∈
AV , we have y = zv−1 for some z ∈ BFM and v ∈ V . Since zH is a compact
H-orbit, we have from Corollary 6.5 that

yU = zUv−1 = zHv−1 = zv−1(vHv−1).

Therefore,

zv−1(vAUv−1) ⊂ zv−1(vHv−1) = yU ⊂ X,

and hence (3) holds, completing the proof. □

We prove one more lemma.

Lemma 8.4. Let x ∈ RF+M and X := xU . Suppose that there exists y ∈ X
such that yN is compact. Then one of the following holds:

(1) xN is compact.
(2) there exists a non-constant polynomial σ ∈ C[t] with σ(0) = 1 so

that for any t ∈ R satisfying σ(t) ̸= 0, there exists yt ∈ yN such that

ytd(σ(t)) ∈ X.

Proof. Since y ∈ X, there exists a sequence xn ∈ xU such that xn → y as
n → ∞. We may write xn = ygn for some sequence gn → e in G. After
passing to a subsequence, we may assume that either gn ∈ NG(N) for all
n ≥ 1 or gn /∈ NG(N) for all n ≥ 1.

If gn ∈ NG(N) for all n ≥ 1, then

x ∈ xnU = ygnU ⊂ ygnN = yNgn for all n ≥ 1.

Since yN is compact and gn → e, this implies that xN is compact, and (1)
follows.

Now assume gn ̸∈ NG(N) for all n ≥ 1. Applying Lemma 4.8(2) with
S = N , we obtain a non-constant polynomial σ ∈ C[t] with σ(0) = 1
satisfying

(8.3) d(σ(t)) ∈ lim sup
n→∞

NgnU for all t ∈ R s.t. σ(t) ̸= 0.

Let t ∈ R be such that σ(t) ̸= 0. By (8.3), there exist sequences pn ∈ N and
un ∈ U such that pngnun → d(σ(t)) as n → ∞. Since yN is compact, after
passing to a subsequence, yp−1

n converges to some yt ∈ yN . We then have

ytd(σ(t)) = lim
n→∞

yp−1
n (pngnun) = lim

n→∞
xnun ∈ X.

Therefore, (2) holds. □

Remark 8.5. We remark that proofs of Lemma 8.2 and Lemma 8.4 work for
a general Kleinian group Γ < G.
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Proof of Theorem 8.1. Suppose that xN is not compact. By Corollary
8.3, it suffices to consider the case Corollary 8.3(2) that any compact N -
orbit meeting X is contained in X. Assume that we are in such a case. By
the hypothesis, there exists y ∈ X such that yN is compact. Since xN is
not compact, it follows from Lemma 8.4 that we can find a non-constant
polynomial σ ∈ C[t] such that for all t ∈ R satisfying σ(t) ̸= 0, we have for
some yt ∈ yN that

ytd(σ(t)) ∈ X.

Note that d(σ(t)) ∈ NG(N) and hence

ytd(σ(t))N = ytNd(σ(t)) = yNd(σ(t))

is a compact N -orbit meeting X. Therefore, it follows from the hypothesis
that

yNd(σ(t)) ⊂ X.

Since σ ∈ C[t] is non-constant, we have |σ(t)| → ∞ as t → ∞ in R. Hence
X = RF+M by Lemma 5.2. In particular, X contains a vAUv−1-orbit for
some v ∈ V . This finishes the proof. □

9. A U-orbit closure without any compact U-orbit

Let Γ < G be a geometrically finite Kleinian group with a round Sierpiński
limit set and M = Γ\H3. In this section, we consider an orbit closure xU
without any compact U -orbit. The following is the main theorem of this
section:

Theorem 9.1. Let x ∈ RFM and X := xU . Suppose that X does not
contain any compact U -orbit. Then one of the following holds:

(1) there exists a compact N -orbit in X.
(2) there exists a vAUv−1-orbit in X for some v ∈ V .

To prove Theorem 9.1, we recall the notion of relatively minimal sets,
introduced in [10]:

Definition 9.2. Let W ⊂ Γ\G. A closed subset Y ⊂ Γ\G is called U -
minimal relative to W if Y ∩W ̸= ∅ and yU = Y for all y ∈ Y ∩W .

Note that a relatively U -minimal set is U -invariant. If W is compact,
then any closed U -invariant set Y ⊂ Γ\G such that Y ∩W ̸= ∅ contains a
U -minimal set relative to W .

Given two closed subsets in Γ\G, we collect elements of G that deliver
one subset to the other.

Definition 9.3. For any closed subsets Y1, Y2 ⊂ Γ\G, We define

D(Y1, Y2) := {g ∈ G : Y1g ∩ Y2 ̸= ∅}.

Note that for x ∈ Γ\G and a closed subset Y ⊂ Γ\G,

TY (x) = D({x}, Y ) ∩ U.
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Lemma 9.4. Let Y1, Y2 ⊂ Γ\G be closed subsets and S1, S2 < G.

(1) If one of Yi (i = 1, 2) is compact, then D(Y1, Y2) is closed.
(2) If YiSi = Yi for i = 1, 2, then D(Y1, Y2) = S1D(Y1, Y2)S2.

The proof of Lemma 9.4 is rather straightforward and will be omitted.

Lemma 9.5. Let Y1, Y2 ⊂ Γ\G be closed U -invariant sets and W ⊂ Γ\G a
compact subset. Suppose that Y1 is U -minimal relative to W . Then

D(Y1 ∩W,Y2) ∩NG(U) = {g ∈ NG(U) : Y1g ⊂ Y2}.

In particular, D(Y1 ∩W,Y1) ∩NG(U) is a closed subsemigroup of NG(U).

Proof. The hypothesis that Y1 is U -minimal relative to W implies that Y1 ⊃
Y1 ∩W ̸= ∅, and hence {g ∈ NG(U) : Y1g ⊂ Y2} ⊂ D(Y1 ∩W,Y2) ∩NG(U).

Conversely, let g ∈ D(Y1 ∩W,Y2) ∩NG(U). Then y1g = y2 for some y1 ∈
Y1 ∩W and y2 ∈ Y2. Since Y1 is U -minimal relative to W and g ∈ NG(U),
we have

Y1g = y1Ug = y1gU = y2U ⊂ Y2.

Hence, the reverse inclusion follows. The last assertion is straightforward.
□

We will use the following lemma:

Lemma 9.6. [1, Lemma 8.2] Let Y ⊂ Γ\G be a U -minimal set relative to a
compact subset W ⊂ Γ\G and y ∈ Y ∩W . If TY ∩W (y) is unbounded, then
there exists a sequence un → ∞ in U such that yun → y as n → ∞.

An analogue of the following proposition was proved in [10, Theorem 9.4]
when Γ is further assumed to be convex cocompact:

Lemma 9.7. Let Y ⊂ Γ\G be a U -minimal set relative to a compact subset
W ⊂ Γ\G. Suppose that Y is not a compact U -orbit, and that TW (y) is k-
thick at ∞ for some y ∈ Y ∩W and k > 1. Then there exists a one-parameter
subsemigroup L+ < AV such that

Y L+ ⊂ Y.

Proof. Since Y ∩W is compact, D(Y ∩W,Y ) is closed by Lemma 9.4(1). We
claim that there exists a non-trivial element in D(Y ∩W,Y )∩AV arbitrarily
close to e. Since AV < NG(U) is closed and

D(Y ∩W,Y ) ∩NG(U) = {g ∈ NG(U) : Y g ⊂ Y } < NG(U)

is a closed subsemigroup by Lemma 9.5, the lemma follows from the claim.

Let y ∈ Y ∩ W be such that TW (y) is k-thick at ∞. Since yU ⊂ Y ,
TY ∩W (y) = TW (y) is unbounded. By Lemma 9.6, there exists a sequence
un → ∞ in U such that yun → y as n → ∞. We can write yun = ygn for
some sequence gn → e in G as n → ∞. We in particular have

(9.1) gn ∈ D(Y ∩W,Y ).
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We first observe that gn /∈ U for all but finitely many n ≥ 1. Since
yU = Y and Y is not a compact U -orbit, yU is not compact. Hence, if
gn ∈ U , then it follows from yung

−1
n = y that un = gn. Since un → ∞ and

gn → e as n → ∞, this is possible only for finitely many n ≥ 1.
We now construct a non-trivial sequence ℓn → e in D(Y ∩W,Y ) ∩ AV ,

which completes the proof as mentioned above. After passing to a subse-
quence, either gn ∈ AN for all n ≥ 1 or gn /∈ AN for all n ≥ 1. First,
consider the case that gn ∈ AN for all n ≥ 1. Since N = V U , there exists a
sequence ûn → e in U such that gnûn ∈ AV for all n ≥ 1, and gnûn → e in
particular. By the above observation, gnûn ̸= e for all large enough n ≥ 1.
By (9.1) and Lemma 9.4(2), we have gnûn ∈ D(Y ∩ W,Y ) for all n ≥ 1.
Therefore, we take ℓn = gnûn in this case.

Now assume that gn /∈ AN for all n ≥ 1. Let

T := TW (y)−1.

For any u ∈ T and n ∈ N, we have

yu−1 ∈ Y ∩W and yu−1(ugn) = ygn ∈ Y.

This implies Tgn ⊂ D(Y ∩W,Y ) for all n ≥ 1. By Lemma 9.4(2),

TgnU ⊂ D(Y ∩W,Y ) for all n ≥ 1.

Since TW (y) is k-thick at ∞, T ⊂ U is so. By Lemma 4.6, lim supn→∞ TgnU
contains a sequence ℓn → e in AV − {e} as n → ∞. Since D(Y ∩W,Y ) is
closed, lim supn→∞ TgnU ⊂ D(Y ∩W,Y ). Therefore, ℓn ∈ D(Y ∩W,Y )∩AV
is the desired sequence, finishing the proof. □

Remark 9.8. We remark that Lemma 9.6 and Lemma 9.7 hold for more gen-
eral geometrically finite, acylindrical hyperbolic 3-manifolds, as the original
statement of Lemma 9.6 in [1] was proved in such a setting. The proof of
Lemma 9.7 works verbatim as long as Lemma 9.6 holds.

Proof of Theorem 9.1. Let kM > 1 and R, ξM > 0 be constants as in
Proposition 4.3, Proposition 4.4, and (3.4) respectively. Since x ∈ RFM,
there exists ρ > 0 such that x ∈ Wρ+R. We simply write W := Wρ+R which

is compact. Since X = xU is U -invariant and X ∩ W ̸= ∅, there exists a
U -minimal set Y ⊂ X relative to W .

Since Y cannot be a compact U -orbit and TW (y) is 4kM-thick at ∞ for
any y ∈ Y ∩W by Proposition 4.4(2), it follows from Lemma 9.7 that there
exists a one-parameter subsemigroup L+ < AV such that Y L+ ⊂ Y .

We claim that one of the following holds:

(a) Y contains a compact N -orbit.
(b) there exist y0 ∈ Y and v0 ∈ V such that y0v0 ∈ BFM and

y0v0Hv−1
0 ⊂ Y.

(c) there exists a sequence ℓn → ∞ in L+ such that

lim sup
n→∞

Y ℓn ̸= ∅.
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Suppose first that there exists z ∈ Y such that zN is compact. Since
zU ⊂ Y ⊂ X and X does not contain any compact U -orbit, zU is not
compact. This implies

zN = zU ⊂ Y,

from which (a) follows.
Now assume that

(9.2) zN is not compact for all z ∈ Y.

Fix y ∈ Y ∩ W and let g ∈ G be such that y = [g]. Let L < AV be the
one-parameter subgroup containing L+. By Lemma 4.11, L = vAv−1 for
some v ∈ V or L = V . Suppose first that L = vAv−1 for some v ∈ V . There
are two possible cases:

• Suppose that yvU∩RFM = ∅. By Lemma 3.2, we have yv ∈ BFM·V ,
and hence yv0 ∈ BFM for some v0 ∈ V . Recalling that BFM ⊂ RFM
is a union of finitely many compact H-orbits,

(9.3) yv0H = yv0U = yUv0 = Y v0

since yv0H is U -minimal by Corollary 6.5. Therefore, (b) follows in
this case.

• Suppose that yvU ∩RFM ̸= ∅. Then we have either (gvU)− ⊂ Λ or

(gvU)− meets both Λ and Ĉ − Λ. In any case, there exists u ∈ U
such that (guv)− = (gvu)− ∈ Λ is conical. Hence, we can find a
sequence tn → ∞ such that

(9.4) the sequence yuva−tn converges.

By Lemma 5.1, (guv)+ = g+ is conical as well, since yN is not
compact. We then have that for some sequence sn → ∞,

(9.5) the sequence yuvasn converges.

Writing A+ := {at ∈ A : t ≥ 0}, there are two subcases:
– if L+ = vA+v−1, set ℓn = vasnv

−1 ∈ L+. Then by (9.5), the
sequence

yuℓn = yu(vasnv
−1)

converges.
– if L+ = v(A+)−1v−1, set ℓn = va−tnv

−1 ∈ L+. Then by (9.4)
the sequence

yuℓn = yu(va−tnv
−1)

converges.
Since yu ∈ Y , we have lim supn→∞ Y ℓn ̸= ∅. Since ℓn ∈ L+ diverges,
this shows (c).

Next, suppose L = V . There are two cases:
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• if Y ∩ BFM · V ̸= ∅, then y0v0 ∈ BFM for some y0 ∈ Y and v0 ∈ V .
Recalling that BFM ⊂ RFM is a union of finitely many compact
H-orbits,

y0v0H = y0v0U = y0Uv0 ⊂ Y v0

since y0v0H is U -minimal by Corollary 6.5 and Y = yU is U -
invariant. Therefore, (b) follows in this case.

• if Y ∩BFM ·V = ∅, then Y v ⊂ RFM ·U for all v ∈ V by Lemma 3.2.
Choose any sequence ℓn → ∞ in L+ < V . Then by the U -invariance
of Y , there exists a sequence yn ∈ Y such that ynℓn ∈ RFM for all
n ≥ 1. By the hypothesis (9.2), ynℓnN = ynN is not compact for all
n ≥ 1. We then have that

ynℓn ∈ RFM− Fe−2RξM
(N) for all n ≥ 1.

By Proposition 4.4(3),

ynℓnU ∩WR ̸= ∅ for all n ≥ 1

where WR = RFM − int(Fe−2RξM
). Since ynℓnU ⊂ Y ℓn and WR

is compact, it follows that lim supn→∞ Y ℓn ̸= ∅, and therefore (c)
holds.

To finish the proof, it suffices to consider the case (c) of the claim that
for some sequence ℓn → ∞ in L+, we have lim supn→∞ Y ℓn ̸= ∅. Let
y0 ∈ lim supn→∞ Y ℓn and take a sequence yn ∈ Y such that ynℓn → y0 as
n → ∞. Then for any ℓ ∈ L, we have ℓnℓ ∈ L+ for all large enough n ≥ 1,
and hence

ynℓnℓ ∈ Y L+ ⊂ Y.

Taking the limit n → ∞, this implies y0ℓ ∈ Y . Since ℓ ∈ L is arbitrary, we
have y0L ⊂ Y , and hence

y0LU ⊂ Y.

Again, L = vAv−1 for some v ∈ V or L = V by Lemma 4.11. If L = vAv−1

for some v ∈ V , then y0vAUv−1 ⊂ Y . If L = V , then y0N ⊂ Y . By Lemma
5.1, we have either y0N = RF+M or y0N is compact. Since y0N ⊂ X, this
completes the proof. □

10. The classification

In this last section, we prove our classification of U -orbit closures. We
restate Theorem 1.2 below:

Theorem 10.1. Let M = Γ\H3 be a geometrically finite hyperbolic 3-
manifold with a round Sierpiński limit set. Then for any x ∈ FM, one
of the following holds:

(1) xU is closed.
(2) xU = xN which is compact.
(3) xU = xvHv−1 ∩ RF+M for some v ∈ V .
(4) xU = RF+M.
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In the rest of the section, let M and Γ be as in Theorem 10.1. As observed
in Theorem 9.1 and Theorem 8.1, it sometimes happen that a U -orbit closure
contains a vAUv−1-orbit for some v ∈ V . In this regard, we investigate AU -
orbit closures further.

AU-orbit closures. Using the classification of H-orbit closures (Theorem
6.1), we obtain the following:

Lemma 10.2. For any x ∈ RF+M, there exist y ∈ RF+M and v ∈ V such
that yv ∈ RFM, yvH is closed, and

yvHv−1 ∩ RF+M ⊂ xAU.

Proof. Suppose first that x ∈ RFM · U . We take u ∈ U so that xu ∈ RFM.
Recall K = PSU(2) from (2.1) and let KH = H ∩ K. Since H = AUKH

and KH is compact, we have

xAUKH = xH = xuH.

By Theorem 6.1, either xuH is closed or xuH = RF+M ·H.

• If xuH is closed, then

xAU ∩ (xuH ∩ RF+M) ̸= ∅
since KH < H. By the AU -minimality of xuH ∩ RF+M (Corollary
6.6), this proves the claim with y = xu ∈ RFM and v = e.

• Otherwise, we have

xAUKH = RF+M ·H.

Let y ∈ BFM. Then yH ⊂ RFM is closed. Hence

xAU ∩ yH ̸= ∅,
from which we can deduce the claim as above.

Now suppose that x /∈ RFM ·U . By Lemma 3.2, x ∈ BFM · V , and hence
xv ∈ BFM for some v ∈ V . We then have xvH ⊂ RFM and xvH is compact.
This implies that xvH is U -minimal by Corollary 6.5, and hence

xAU ⊃ xU = xvUv−1 = xvHv−1.

Setting y = x, this finishes the proof. □

Corollary 10.3. For any x ∈ RF+M and v0 ∈ V , there exist y ∈ RF+M
and v ∈ V such that yv ∈ RFM, yvH is closed, and

yvHv−1 ∩ RF+M ⊂ xv0AUv−1
0 .

Proof. By Lemma 10.2, there exists y′ ∈ RF+M and v′ ∈ V such that
y′v′ ∈ RFM, y′v′H is closed, and

y′v′Hv′−1 ∩ RF+M ⊂ xv0AU.

This implies that

y′v−1
0 (v0v

′Hv′−1v−1
0 ) ∩ RF+M ⊂ xv0AUv−1

0 .
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We set y = y′v−1
0 ∈ RF+M and v = v0v

′ ∈ V . Then yv = y′v′ ∈ RFM
and yvH = y′v′H is closed. Moreover, the above inclusion is rewritten as
follows:

yvHv−1 ∩ RF+M ⊂ xv0AUv−1
0 .

This completes the proof. □

We now show the intermediate classification of U -orbit closures based on
results from Section 8 and Section 9 as follows:

Proposition 10.4. Let x ∈ RF+M. Then one of the following holds:

(1) xU is closed.
(2) xU = xN which is compact.
(3) there exist y ∈ RF+M and v ∈ V such that yv ∈ RFM, yvH is

closed, and

yvHv−1 ∩ RF+M ⊂ xU.

Proof. We first note that xN is compact or xN = RF+M by Lemma 5.1.
This implies that if xU = xN , and hence xN is closed, then xN is compact.
Therefore, it suffices to show that if xU is neither xU nor xN , then (3)
holds.

Suppose that xU is neither xU nor xN . If x ∈ BFM · V , then xv ∈
BFM ⊂ RFM for some v ∈ V , and hence xvH is a compact U -minimal set
by Corollary 6.5. Therefore,

xvH = xvU = xUv,

from which (3) follows.
Now assume that x /∈ BFM · V . By Lemma 3.2, x ∈ RFM · U and hence

we may assume that x ∈ RFM by replacing x with an element of xU . We
claim that xU contains a v0AUv−1

0 -orbit for some v0 ∈ V . Once we show
the claim, we apply Corollary 10.3 and (3) follows, finishing the proof.

To see the claim, first consider the case that xU does not contain any
compact U -orbit. By Theorem 9.1, xU contains a v0AUv−1

0 -orbit for some

v0 ∈ V or a compact N -orbit. In the former case, we are done. If xU
contains a compact N -orbit, it follows from Theorem 8.1 that xU contains
a v0AUv−1

0 -orbit for some v0 ∈ V or xN is compact. On the other hand,

since xU is neither xU nor xN , xN cannot be compact. Indeed, if xN were
compact, then xU is either compact or dense in xN , which is not the case
here. Therefore, the claim follows.

Now suppose that xU contains a compact U -orbit, say yU . If g ∈ G
is such that y = [g], then g+ is a parabolic limit point, and hence yN is
compact by Lemma 5.1. Hence xU meets a compact N -orbit and the claim
follows from Theorem 8.1 as above. This finishes the proof. □

Combined with the results from Section 7, we now complete the classifi-
cation.



38 DONGRYUL M. KIM AND MINJU LEE

Proof of Theorem 10.1. Let x ∈ FM. If x /∈ RF+M, then it is easy to see

that xU is closed, noting that the Γ-action on H3 ∪ Ĉ is a non-elementary
convergence action with the limit set Λ.

Hence, we assume that x ∈ RF+M. Suppose first that x ∈ BFM ·V . Then
xv ∈ BFM for some v ∈ V , and hence

xU = xvUv−1 = xvHv−1

since xvH ⊂ BFM ⊂ RFM is a compact U -minimal set by Corollary 6.5.
Therefore, (3) follows in this case.

It remains to consider the case x /∈ BFM · V . By Lemma 3.2, we have
x ∈ RFM ·U . By Proposition 10.4, it suffices to consider the case that there
exist y ∈ RF+M and v ∈ V such that yv ∈ RFM, yvH is closed, and

yvHv−1 ∩ RF+M ⊂ xU.

Since x /∈ BFM · V , xv /∈ BFM · V and hence xv ∈ RFM · U by Lemma 3.2.
Replacing x with an element of xU , we may assume that xv ∈ RFM.

If yv ∈ BFM, then

yvH = yvH ∩ RF+M ⊂ xvU.

By Proposition 7.4, this implies that either

xUv = xvU = yvH or xUv = RF+M.

In any case, (3) or (4) follows.
If yv /∈ BFM, it then follows from Proposition 7.7 that either

xUv = yvH ∩ RF+M or xUv = RF+M.

Again, (3) or (4) follows in either case. This completes the proof. □
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