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Abstract. Let Γ be a Zariski dense discrete subgroup of a connected
semisimple real algebraic group G. Let k = rankG. Let ψΓ : a →
R ∪ {−∞} be the growth indicator function of Γ, first introduced by
Quint. In this paper, we obtain the following pointwise bound of ψΓ:
for all v ∈ a,

ψΓ(v) ≤ min
1≤i≤k

δαiαi(v)

where ∆ = {α1, · · · , αk} is the set of all simple roots of (g, a) and
0 < δαi ≤ ∞ is the critical exponent of Γ associated to αi. When Γ is
∆-Anosov, there are precisely k-number of directions where the equality
is achieved, and the following strict inequality holds for k ≥ 2: for all
v ∈ a− {0},

ψΓ(v) <
1

k

k∑
i=1

δαiαi(v).

We discuss applications for self-joinings of convex cocompact subgroups
in

∏k
i=1 SO(ni, 1) and Hitchin subgroups of PSL(d,R). In particular,

for a Zariski dense Hitchin subgroup Γ < PSL(d,R), we obtain that for
any v = diag(t1, · · · , td) ∈ a+,

ψΓ(v) ≤ min
1≤i≤d−1

(ti − ti+1).
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1. Introduction

Let G be a connected semisimple real algebraic group. We let P =MAN
be a minimal parabolic subgroup of G with a fixed Langlands decomposition,
where A is a maximal real split torus of G, M is the maximal compact
subgroup centralizing A and N is the unipotent radical of P . Let g = LieG,
a = LieA and a+ denote the positive Weyl chamber so that logN consists
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of positive root subspaces. Let K be a maximal compact subgroup so that
the Cartan decomposition G = K(exp a+)K holds. Let µ : G → a+ denote
the Cartan projection map defined by the condition expµ(g) ∈ KgK for
all g ∈ G. Let Γ < G be a Zariski dense discrete subgroup. We denote by
L ⊂ a+ the limit cone of Γ, which is the asymptotic cone of µ(Γ). It is a
convex cone with non-empty interior [1].

Following Quint [25], the growth indicator function ψΓ : a → R ∪ {−∞}
is defined as follows: choose any norm ∥ · ∥ on a. For an open cone C in

a, let τC denote the abscissa of convergence of
∑

γ∈Γ, µ(γ)∈C e
−s∥µ(γ)∥ (that

is, the infimum of the set of s for which the series converges). Now for any
non-zero v ∈ a, let

ψΓ(v) := ∥v∥ inf
v∈C

τC (1.1)

where the infimum is over all open cones C containing v, and let ψΓ(0) = 0.
The definition of ψΓ does not depend on the choice of a norm on a. Note
that ψΓ = −∞ outside L. Quint showed that ψΓ is a concave upper-semi
continuous function satisfying L = {ψΓ ≥ 0} and ψΓ > 0 on the interior
intL.

The main aim of this paper is to present a pointwise bound for the growth
indicator function together with some applications. Throughout the paper,
for any non-negative function f on a+, we denote by

0 ≤ δΓ,f ≤ ∞
or simply, δf , the critical exponent of Γ with respect to f , that is, the

abscissa of convergence of the series
∑

γ∈Γ e
−sf(µ(γ)).

Let
∆ = {α1, · · · , αk}

denote the set of simple roots for (g, a+).

Definition 1.1 (Tent function). Let Γ < G be a Zariski dense discrete
subgroup with δΓ,αi < ∞ for some 1 ≤ i ≤ k. We define a tent function
TΓ : a → [0,∞) by

TΓ(v) := min
1≤i≤k

δΓ,αi · αi(v).

L

Figure 1. Tent on the limit cone

We obtain the following tent property of the growth indicator function:
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Theorem 1.2 (Tent property). For any Zariski dense discrete subgroup
Γ < G such that min1≤i≤k δΓ,αi <∞, we have

ψΓ(v) ≤ TΓ(v) for all v ∈ a.

Moreover, when δΓ,αi < ∞, there exists vi ∈ L − {0} such that ψΓ(vi) =
TΓ(vi) = δΓ,αiαi(vi).

Remark 1.3. (1) Denote by πG the half-sum of all positive roots of
(g, a+) counted with multiplicity. Then for any discrete subgroup
Γ < G, we have ψΓ ≤ 2πG [25, Thm. IV.2.2].

(2) If G has property (T) and Γ is of infinite co-volume, then ψΓ ≤
2πG −Θ where Θ is the half-sum of a maximal strongly orthogonal
system ([26], [21], see also [19, Thm. 7.1]). Our bound in Theorem
1.2 provides a sharper bound for Hitchin subgroups; see Remark 3.5.

For a non-empty subset θ ⊂ ∆, a finitely generated subgroup Γ < G is
called a θ-Anosov subgroup if there exist constants C,C ′ > 0 such that for
all γ ∈ Γ and all αi ∈ θ,

αi(µ(γ)) ≥ C|γ| − C ′ (1.2)

where |γ| denotes the word length of γ with respect to a fixed finite sym-
metric set of generators of Γ. The notion of Anosov subgroups was first
introduced by Labourie for surface groups [17], and was extended to gen-
eral word hyperbolic groups by Guichard-Wienhard [16]. Several equivalent
characterizations have been established, one of which is the above defini-
tion (see [11], [12], [13], [14]). Anosov subgroups are regarded as natural
generalizations of convex cocompact subgroups of rank one groups.

For a θ-Anosov subgroup Γ < G, it follows from (1.2) that for some
constant C > 0,

max
αi∈θ

δΓ,αi ≤ C log#S <∞

where S is a fixed finite generating set of Γ. Therefore Theorem 1.2 applies
to any Zariski dense subgroup contained in some θ-Anosov subgroup of G.

For ∆-Anosov subgroups, we obtain the following sharper result:

Theorem 1.4. Let Γ be a Zariski dense ∆-Anosov subgroup of G. The
following hold:

(1) For each 1 ≤ i ≤ k, there exists a unique vi ∈ intL such that
αi(vi) = 1 and ψΓ(vi) = δΓ,αi.

(2) For v ∈ a− {0}, we have ψΓ(v) ≤ TΓ(v) where equality holds if and
only if v = cvi for some 1 ≤ i ≤ k and c > 0.

(3) If k = rankG ≥ 2, then

ψΓ <
1

k

k∑
i=1

δΓ,αiαi.
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When Γ is ∆-Anosov, ψΓ is strictly concave1 in intL by ([28, Thm. A], [23,
Prop. 4.11]). Therefore by the convexity of the unit norm ball {∥v∥ ≤ 1},
there exists a unique unit vector uΓ,∥·∥ ∈ a+, called the direction of maximal
growth, such that ψΓ(uΓ,∥·∥) = max∥v∥=1 ψΓ(v). By [25, Coro. III.1.4], we
have

δΓ,∥·∥ = ψΓ(uΓ,∥·∥). (1.3)

Corollary 1.5. Let k = rankG ≥ 2. Let Γ be a Zariski dense ∆-Anosov
subgroup of G. For any norm ∥ ·∥ on a induced from an inner product which
is non-negative on a+, we have

δΓ,∥·∥ < min
1≤i≤k

δΓ,αi · αi(uΓ,∥·∥).

In view of the above discussion, any upper bound on δΓ,αi for any αi ∈
∆ provides an explicit pointwise upper bound on ψΓ. We discuss some
examples of ∆-Anosov subgroups.

Self-joinings of hyperbolic manifolds. For 1 ≤ i ≤ k, consider the
hyperbolic space (Hni , di), ni ≥ 2, with constant sectional curvature −1,

and let Gi = SO◦(ni, 1) = Isom+(Hni). Let G =
∏k
i=1Gi. Denote by αi

the simple root of gi = LieGi. Then ∆ = {α1, · · · , αk} is the set of simple
roots of g. Via the map v 7→ (α1(v), · · · , αk(v)), we may identify a = Rk
and a+ = {(v1, · · · , vk) ∈ Rk : vi ≥ 0 for all i}.

Let Σ be a countable group and ρi : Σ → Gi be a faithful convex cocom-
pact representation with Zariski dense image for each 1 ≤ i ≤ k. Setting
ρ = (ρ1, · · · , ρk), the self-joining Γρ is defined as the following subgroup of
G:

Γρ =

(
k∏
i=1

ρi

)
(Σ) = {(ρ1(σ), · · · , ρk(σ)) ∈ G : σ ∈ Σ}. (1.4)

We also assume that no two of ρi’s are conjugate, so that Γρ is a Zariski
dense discrete subgroup of G. The hypothesis on ρi’s implies that Γρ is a
∆-Anosov subgroup of G (cf. [16, Thm. 5.15]).

Fix oi ∈ Hni . For each 1 ≤ i ≤ k, denote by 0 < δρi ≤ ∞ the crit-
ical exponent of ρi(Σ), that is, the abscissa of convergence of the series∑

σ∈Σ e
−sdi(ρi(σ)oi,oi). We also denote by Λρi ⊂ Sni−1 the limit set of ρi(Σ),

which is the set of accumulation points of ρi(Σ)oi in the compactification
Hni ∪ Sni−1. These two notions are independent of the choice of oi ∈ Hni .
By Patterson [22] and Sullivan [29], we have

δρi = dimΛρi (1.5)

where dimΛρi is the Hausdorff dimension of Λρi with respect to the spherical
metric dSni−1 . We deduce from Theorem 1.4:

1Since ψΓ is homogeneous, the strict concavity of ψΓ is equivalent to saying that ψΓ(v+
w) > ψΓ(v) + ψΓ(w) for all v, w ∈ intL in different directions
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Corollary 1.6. Let Γρ < G be a Zariski dense subgroup of G =
∏k
i=1 SO

◦(ni, 1),

ni ≥ 2, as defined in (1.4). Assume k ≥ 2. For any v = (v1, · · · , vk) ∈ Rk,
we have

ψΓρ(v) <
1

k

k∑
i=1

dimΛρi · vi.

In particular, we have

δΓρ,∥·∥Euc
<

1

k

(
k∑
i=1

(dimΛρi)
2

)1/2

where ∥ · ∥Euc denotes the standard Euclidean norm on Rk.

Let F =
∏k
i=1 Sni−1, which is the Furstenberg boundary of G. The limit

set of Γρ is the set of all accumulation points of an orbit Γρ(o1, · · · , ok):

Λρ =

ß
(ξ1, · · · , ξk) ∈ F :

∃ a sequence σℓ ∈ ∆ s.t. ∀ 1 ≤ i ≤ k,
ξi = limℓ→∞ ρi(σℓ)(oi)

™
. (1.6)

In [15], we showed that

dimΛρ = max
1≤i≤k

dimΛρi (1.7)

where the Hausdorff dimension of Λρ is computed with respect to the Rie-

mannian metric on F given by
»∑

1≤i≤k dSni−1
2. We deduce the following

from Corollary 1.6 and (1.7):

Corollary 1.7 (Gap theorem). For k ≥ 2, we have

δΓρ,∥·∥Euc
<

dimΛρ√
k

.

The trivial bound for δΓρ,∥·∥Euc
is given by δΓρ,∥·∥Euc

≤ mini δρi ≤ dimΛρ.
Hence Corollary (1.7) presents a strong gap for the value of δΓ,∥·∥Euc

from
the trivial bound. This phenomenon is in contrast to the rank one case:
there exist convex cocompact (non-lattice) subgroups Γ of SO◦(n, 1) whose
critical exponents δΓ are arbitrarily close to n − 1 (see e.g., [20, Sec.6] on
the construction of McMullen).

Remark 1.8. Let ρ1, ρ2 be two convex cocompact faithful representations
into SO◦(n, 1) = Isom◦(Hn) and ρ = (ρ1, ρ2). Note that Γρ < SO◦(n, 1) ×
SO◦(n, 1) is Zariski dense if and only if ρ1 and ρ2 are not conjugate by
an element of Isom◦(Hn). Hence Corollary 1.7 can be interpreted as the
following rigidity statement: we have

δΓρ,∥·∥Euc
≤ n− 1√

2
(1.8)

and the equality holds if and only if ρ1(Σ) and ρ2(Σ) are conjugate lattices
of SO◦(n, 1). This particular rigidity statement was recently extended in [3]
even to geometrically finite representations.
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In view of special interests in low dimensional hyperbolic manifolds which
come with huge deformation spaces, we also formulate the following conse-
quence of Corollary 1.5, using the isomorphisms PSL(2,C) ≃ SO◦(3, 1) and
PSL(2,R) ≃ SO◦(2, 1), the characterization of the critical exponent in (1.3),
and the simple fact sup{min(v1, 2v2) : v

2
1 + v22 = 1} = 2√

5
.

Corollary 1.9. Consider the metric on H2×H3 given by d =
»
d2H2 + d2H3.

For any non-elementary convex cocompact subgroup Γ0 < PSL(2,R) and any
non-elementary faithful convex cocompact Zariski dense representation ρ0 :
Γ0 → PSL(2,C), the critical exponent of the group {(γ0, ρ0(γ0)) : γ0 ∈ Γ0}
with respect to d is strictly less than 2√

5
.

Hitchin representations. We discuss applications to Hitchin representa-
tions. In G = PSL(d,R), we have a+ = {v = diag(t1, · · · , td) : t1 ≥ · · · ≥
td,
∑
ti = 0} and αi(v) = ti− ti+1 for 1 ≤ i ≤ d− 1. Let Σ be a torsion-free

uniform lattice of PSL(2,R), and πd denote the d-dimensional irreducible
representation PSL(2,R) → PSL(d,R), which is unique up to conjugation.
A Hitchin representation ρ : Σ → PSL(d,R) is a representation which be-
longs to the same connected component as πd|Σ in the character variety
Hom(Σ,PSL(d,R))/ ∼ where the equivalence is given by conjugations.

We call the image of a Hitchin representation Γ := ρ(Σ) a Hitchin sub-
group of G.

A Hitchin subgroup is known to be a ∆-Anosov subgroup of PSL(d,R)
by Labourie [17]. By the work of Potrie-Sambarino [23, Thm. B] (see also
[24, Coro. 9.4]), a Hitchin subgroup Γ < PSL(d,R) satisfies:

δΓ,αi = 1 for all 1 ≤ i ≤ d− 1. (1.9)

Together with this important result, Theorems 1.2 and 1.4 imply the follow-
ing:

Corollary 1.10. Let d ≥ 3 and Γ < PSL(d,R) be a Zariski dense Hitchin
subgroup of PSL(d,R). Then for any v = diag(t1, · · · , td) ∈ a+,

ψΓ(v) ≤ min
1≤i≤d−1

(ti − ti+1); (1.10)

ψΓ(v) < (t1 − td)/(d− 1). (1.11)

This pointwise bound for ψΓ is sharper than the one from ([26], [21], [19,
Thm. 7.1]), which for instance, for d = 3, gives the upper bound 3

2(t1 − t3)

while the above corollary gives a bound 1
2(t1 − t3).

Remark 1.11. Following [7], for any geometrically finite subgroup Σ <
PSL(2,R), a representation ρ : Σ → PSL(d,R) is called cusped Hitchin
if there exists a positive ρ-equivariant map from the limit set of Σ to the
space F of complete d-dimensional flags. For a cusped Hithin subgroup
Γ < PSL(d,R), i.e., the image of a cusped Hitchin representation of a geo-
metrically finite Σ < PSL(2,R), the inequality

max
1≤i≤d−1

δΓ,αi ≤ 1 (1.12)
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was obtained, with equality only when Σ is a lattice, by Canary, Zhang and
Zimmer [7, Thm. 1.1]. Although Γ is not Anosov when Σ is not convex
cocompact, Theorem 1.2, using (1.12), implies that the pointwise bound
(1.10) ψΓ(v) ≤ min1≤i≤d−1(ti − ti+1), and hence ψΓ(v) ≤ (t1 − td)/(d − 1),
also holds for any Zariski dense cusped Hitchin subgroup Γ of PSL(d,R) as
well.

Remark 1.12. The bound in Corollary 1.10 is stronger than [23, Coro. 1.4]
(also [7, Thm. 1.1] for cusped Hitchin subgroups) in two aspects: first, the
bound for ψΓ given by [23, Coro. 1.4] is weaker than t1−td

d−1 and stated only

for vectors inside a strictly smaller cone than the limit cone (see Remark 3.5
for details).

Remark 1.13. The comparison of ψΓ with the half sum πG of positive roots
is meaningful in view of Sullivan’s theorem that for a convex cocompact
subgroup Γ < SO◦(n, 1), the inequality δΓ ≤ πG = n−1

2 holds if and only if

the bottom of the L2-spectrum on Γ\Hn is given by (n − 1)2/4 and there
exists no positive square-integrable harmonic function on Γ\Hn [30, Thm.
2.21].

Corollaries 1.6 and 1.10 imply that ψΓ ≤ πG in their respective settings
(even with the strict inequality). In recent work [9], these results were used
to show that the quasi-regular representation L2(Γ\G) is tempered and there
exists no positive square-integrable harmonic function on the associated lo-
cally symmetric manifold.

For any discrete subgroup Γ < G, note that δΓ,πG ≤ 2 as follows from
Remark 1.3(1). We propose the following conjecture:

Conjecture 1.14. Let k = rankG ≥ 2. If Γ is a ∆-Anosov subgroup of G,
then

δΓ,πG ≤ 1,

or equivalently ψΓ ≤ πG.

The equivalence is a consequence of [25, Lemma III.1.3].

On the proofs. The proof of Theorem 1.2 consists of two parts: first prove
that each linear form δΓ,αiαi is tangent to ψΓ whenever δΓ,αi <∞ and then
take the minimum! Although taking the minimum seems a trivial step,
the resulting tent function turns out to be quite useful, as discussed above.
The proof of Theorem 1.4 is crucially based on special properties of ψΓ for
∆-Anosov subgroups (see Theorem 3.1).

Organization. In section 2, we prove Theorem 1.2. In section 3, we prove
Theorem 1.4. In section 4, we discuss applications of tent property of ψΓ to
self-joining of hyperbolic manifolds.

Acknowledgements. We would like to thank Marc Burger and Dick Ca-
nary for useful comments and Andres Sambarino for pointing out some re-
dundant rank restriction in our earlier version.
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2. Tent property

Let G be a connected, semisimple real algebraic group of rank k ≥ 1. Let
g denote the Lie algebra of G, and decompose g as g = k⊕ p, where k and p
are the +1 and −1 eigenspaces of a fixed Cartan involution respectively. We
denote by K the maximal compact subgroup of G with Lie algebra k. We
also choose a maximal abelian subalgebra a of p. Let A := exp a. Choosing
a closed positive Weyl chamber a+ of a. Let

∆ = {α1, · · · , αk}

be the set of simple roots (g, a+).
As in the introduction, for g ∈ G, we denote by µ(g) ∈ the unique element

in a+ such that

g ∈ K exp(µ(g))K.

Let Γ < G be a Zariski dense discrete subgroup. We denote by L ⊂ a+

the limit cone of Γ, which is the asymptotic cone of µ(Γ):

L = {lim tiµ(γi) ∈ a+ for some ti → 0 and γi ∈ Γ}.

It is a convex cone with non-empty interior [1]. The growth indicator
function ψΓ : a → R∪{−∞} is defined as in (1.1). It follows easily from the
definition that ψΓ does not depend on the choice of a norm on a.

Quint showed the following:

Theorem 2.1. [25, Thm. IV.2.2] The growth indicator function ψΓ is con-
cave, upper semi-continuous, and satisfies

L = {u ∈ a+ : ψΓ(u) > −∞}.

Moreover, ψΓ(u) is non-negative on L and positive on intL.

Lemma 2.2. [25, Lem. III.1.3] Let F be a continuous function on a+

satisfying F (tu) = tF (u) for all t ≥ 0 and u ∈ a. If F (u) > ψΓ(u) for all
u ∈ a− {0}, then ∑

γ∈Γ
e−F (µ(γ)) <∞.

Moreover, we have δΓ,F < 1.

Proof. Convergence of the series is shown in [25, Lem. III.1.3], and in par-
ticular δΓ,F ≤ 1. To obtain the strict inequality, we claim that there exists
0 < ε < 1 such that

(1− ε)F > ψΓ on a− {0}. (2.1)

Since ψΓ = −∞ outside L and both F and ψΓ are homogeneous functions,
it suffices to prove (2.1) on {∥v∥ = 1, v ∈ L}. Since ψΓ ≥ 0 on L, we

have F > 0 on L − {0}. Hence the claim now follows because ψΓ
F is upper

semi-continuous and thus achieves its maximum on any compact set. □

We denote by a∗ the set of all linear forms on a.
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Definition 2.3. A linear form α ∈ a∗ is called tangent to ψΓ at u ∈ a−{0}
if α ≥ ψΓ and α(u) = ψΓ(u).

Consider the following dual cone of the limit cone L:
L⋆ := {α ∈ a∗ : α(v) ≥ 0 for all v ∈ L}. (2.2)

Observe that the set of all positive roots is contained in L⋆.
Note that the interior of L⋆ is given as

intL⋆ = {α ∈ a∗ : α(v) > 0 for all v ∈ L − {0}}.
For any α ∈ L⋆, we set

δα = δΓ,α.

Lemma 2.4. If α ∈ intL⋆, then

δα ≤ sup
v∈L−{0}

ψΓ(v)

α(v)
<∞.

Proof. Let κ := supv∈L−{0}
ψΓ(v)
α(v) . Since α > 0 on L − {0}, 0 ≤ κ =

supv∈L−{0}
ψΓ(v)
α(v) < ∞ is well-defined. Since ψΓ < (κ + ε)α on a − {0}

for any ε > 0, we have, by Lemma 2.2, that δ(κ+ε)α < 1. Hence δα < κ+ ε.
Since ε > 0 is arbitrary, we get δα ≤ κ. □

Theorem 2.5. Let Γ < G be a Zariski dense discrete subgroup. For any
non-zero α ∈ L⋆ with δα <∞, the linear form

Tα := δαα

is tangent to ψΓ and δα > 0. In particular, for any subset S ⊂ intL⋆,
ψΓ ≤ inf

α∈S
Tα.

Proof. Fix any norm ∥ · ∥ on a and we use this norm in the definition of ψΓ.
We first claim

ψΓ(v) ≤ δαα(v) for all v ∈ intL. (2.3)

Fix v ∈ intL and ε > 0. We then consider

Cε(v) =
ß
w ∈ a : α(w) > 0 and

∣∣∣∣ ∥w∥α(w)
− ∥v∥
α(v)

∣∣∣∣ < ε

™
;

since α(v) > 0, this is a well-defined open cone containing v. Therefore by
the definition of ψΓ, we have

ψΓ(v) ≤ ∥v∥τCε(v). (2.4)

Observe that for any s ≥ 0,∑
γ∈Γ,µ(γ)∈Cε(v)

e−s∥µ(γ)∥ ≤
∑

γ∈Γ,µ(γ)∈Cε(v)

e
−sα(µ(γ))

Ä ∥v∥
α(v)

−ε
ä

≤
∑
γ∈Γ

e
−sα(µ(γ))

Ä ∥v∥
α(v)

−ε
ä
.
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Since τCε(v) is the abscissa of convergence of the series∑
γ∈Γ,µ(γ)∈Cε(v)

e−s∥µ(γ)∥,

it follows from the definition of δα that

τCε(v) ≤
δα

∥v∥α(v)−1 − ε
=

δαα(v)

∥v∥ − εα(v)
.

Together with (2.4), we have

ψΓ(v) ≤ ∥v∥ δαα(v)

∥v∥ − εα(v)
.

Since ε > 0 is arbitrary, we get

ψΓ(v) ≤ δαα(v).

This proves the claim (2.3).
We now claim that the inequality (2.3) also holds for any v in the bound-

ary ∂L. Choose any v0 ∈ intL. From the concavity of ψΓ, we have

tψΓ(v0) + (1− t)ψΓ(v) ≤ ψΓ(tv0 + (1− t)v) for all 0 < t < 1.

Since L is convex, tv0+(1− t)v ∈ intL for all 0 < t < 1. As we have already
shown ψΓ ≤ Tα on intL, we get

tψΓ(v0) + (1− t)ψΓ(v) ≤ Tα(tv0 + (1− t)v) for all 0 < t < 1.

By sending t→ 0+, we get

ψΓ(v) ≤ Tα(v).

Since ψΓ = −∞ outside L, we have established ψΓ ≤ Tα. It remains to show
that ψΓ(v) = Tα(v) for some v ∈ a − {0}. Suppose not, i.e., ψΓ < δαα on
a− {0}. By Lemma 2.2, the abscissa of convergence of the series∑

γ∈Γ
e−sδαα(µ(γ)) (2.5)

is strictly less than 1. However the abscissa of convergence of the series
(2.5) is equal to 1 by the definition of δα. Therefore we have obtained a
contradiction.

Note that this implies δα > 0 since ψΓ > 0 on intL, which is non-empty
by Zariski density hypothesis by Theorem 2.1. The last part of the theorem
follows from Lemma 2.4. □

Remark 2.6. We also note the following lower bound for ψΓ: let Tℓ ∈ L⋆,
ℓ ∈ I, be a finite collection of linear forms which are tangent to ψΓ at
some vℓ ∈ L − {0}. Then the concavity property of ψΓ implies that for any
v =

∑
ℓ∈I cℓvℓ with cℓ ≥ 0, ∑

ℓ∈I
cℓTℓ(vℓ) ≤ ψΓ(v).
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Proof of Theorem 1.2 Note that ∆ ⊂ L⋆. Hence this follows from Theo-
rem 2.5 by taking the minimum over all simple roots αi ∈ ∆ with δαi <∞.

We also note the following corollary of Theorem 2.5:

Corollary 2.7. Let Γ < G be a Zariski dense discrete subgroup. For any
α ∈ intL⋆, we have

0 < δα = max
v∈L−{0}

ψΓ(v)

α(v)
<∞.

Proof. By Lemma 2.4, δα < ∞. Hence Theorem 2.5 implies ψΓ ≤ δαα and
ψΓ(v) = δαα(v) for some v ̸= 0. This implies the claim. □

By the following theorem, the above corollary applies to α ∈ θ for θ-
Anosov subgroups.

Theorem 2.8 ([11], [13]). If Γ is θ-Anosov, then

θ ⊂ intL⋆.
In particular, if Γ is ∆-Anosov, then

L ⊂ int a+ ∪ {0}. (2.6)

3. Proof of Theorem 1.4

In this section, let

Γ < G be a Zariski dense ∆-Anosov subgroup,

as defined in the introduction (1.2).
By Quint’s duality lemma [27, Lem. 4.3] and the works of Quint [27],

Sambarino [28, Lem. 4.8] and Potrie-Sambarino [23, Prop. 4.6 and 4.11],
which is based on the work [4], we have the following fundamental properties
of Γ:

Theorem 3.1. On intL, ψΓ is analytic, strictly concave, and vertically
tangent on ∂L.

The vertical tangency of ψΓ on ∂L means that there are no linear forms
which are tangent to ψΓ at a point of ∂L.

In the following, we fix a norm on a induced from an inner product ⟨·, ·⟩
which is non-negative on a+, i.e., ⟨u, v⟩ ≥ 0 for all u, v ∈ a+. We denote by
∇ψΓ(u) ∈ a the gradient of ψΓ at u so that d(ψΓ)u(v) = ⟨∇ψΓ(u), v⟩ for all
v ∈ a− {0}.

The following theorem was first observed by Quint for Schottky groups
[27] and is deduced from Theorem 3.1 in general:

Theorem 3.2 ([8, Coro. 7.8] [18, Prop. 4.4]). Let u ∈ intL.
(1) There exists a unique ψu ∈ a∗ which is tangent to ψΓ at u.
(2) We have ψu ∈ intL⋆ and

ψu(·) = ⟨∇ψΓ(u), ·⟩ = d(ψΓ)u. (3.1)
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(3) The map u 7→ ψu induces a bijection between directions in intL and
directions in intL⋆.

(4) We have δψu = 1.

kerα2

kerα1

uα1

uα2uΓ

LL⋆

Figure 2. Limit cone and its dual cone.

We deduce the following from the above two theorems:

Proposition 3.3. Consider the map intL → intL⋆ given by u 7→ αu where

αu :=
ψu

ψΓ(u)
.

(1) The map u 7→ αu is a bijection.
(2) Its inverse map intL⋆ → intL is given by α → uα where uα ∈ intL

is the unique vector such that ∇ψΓ(uα) is perpendicular to kerα and

α(uα) = 1.

We also have

ψΓ(uα) = max
v∈L,α(v)=1

ψΓ(v). (3.2)

Proof. For t > 0, ψtu = ψu and ψΓ(tu) = tψΓ(u); hence αtu = t−1αu.
Therefore (1) follows from Theorem 3.2.

Let α ∈ intL⋆. Let uα ∈ intL be the vector given by the relation αuα = α,

that is, α = ψuα
ψΓ(uα)

. By the definition of ψuα given in (3.1), ∇ψΓ(uα) is

perpendicular to kerα, and

α(uα) =
ψuα(uα)

ψΓ(uα)
=
ψΓ(uα)

ψΓ(uα)
= 1.

To show the uniqueness, suppose that v ∈ intL is a vector such that ∇ψΓ(v)
is parallel to∇ψΓ(uα) and α(v) = 1. The strict concavity of ψΓ on intL as in
Theorem 3.1 implies that v must be parallel to uα. Since α(v) = α(uα) = 1,
it follows that v = uα.

Observe that for any v ∈ L with α(v) = 1, we have

ψΓ(v) ≤ ψuα(v) = ψΓ(uα)α(v) = ψΓ(uα) = ψΓ(uα).

Since α(uα) = 1, this implies (3.2). □
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parallel to kerα parallel to kerα

uα

∇ψΓ(uα)

{ψΓ = ψΓ(uα)}

Figure 3. From α to uα

Theorem 3.4. For any α ∈ intL⋆, we have

δα = ψΓ(uα) and ψuα = δαα.

Proof. The first claim follows from (3.2) and Corollary 2.7. Since ψuα =
ψΓ(uα)α by Proposition 3.3, the first claim implies the second. □

Proof of Theorem 1.4. For (1), we claim that vi := uαi satisfies the
claim. By Proposition 3.3, we have uαi ∈ intL and it satisfies αi(uαi) = 1.
By Lemma 3.4, ψΓ(uαi) = δαi . The uniqueness follows easily from the strict
concavity of ψΓ (Theorem 3.1).

For (2), suppose that for some v ∈ a and 1 ≤ i ≤ k, we have ψΓ(v) =
δαiαi(v). Since ψuαi

= δαiαi is a tangent form to ψΓ at uαi , it follows again

from the strict concavity of ψΓ and the vertical tangency property (Theorem
3.1 that v is parallel to uαi .

By Theorem 1.2, we have

ψΓ(v) ≤ min
1≤i≤k

δαiαi(v) ≤
1

k

∑
1≤i≤k

δαiαi(v). (3.3)

Suppose that ψΓ(v) = 1
k

∑
1≤i≤k δαiαi(v) for some v ̸= 0. It then follows

from (3.3) that

ψΓ(v) = min
1≤i≤k

δαiαi(v) =
1

k

∑
1≤i≤k

δαiαi(v).

It implies that for all 1 ≤ i ≤ k,

ψΓ(v) = δαiαi(v).

Then, as we just have seen, this implies that v is parallel to all uαi , 1 ≤ i ≤ k.
When k ≥ 2, this contradicts Theorem 3.2. This proves (3).
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Proof of Corollary 1.5. For simplicity, we omit ∥ · ∥ in the subscript
in this proof, e.g., uΓ = uΓ,∥·∥. Recall that δΓ = ψΓ(uΓ). Since δΓ =
max∥v∥=1 ψΓ(v), [25, Lem. III.3.4], applied to ψΓ, implies that there exists a
tangent form, ψuΓ , to ψΓ at uΓ. By the vertical tangent condition in Theorem
3.1, it follows that uΓ ∈ intL. Moreover, we have∇ψΓ(uΓ) ∈ R>0uΓ [8, Lem.
2.24]. Therefore, by Theorem 3.2(2), there exists c0 > 0 such that

ψuΓ(·) = ⟨c0uΓ, ·⟩. (3.4)

We now claim that

ψΓ(uΓ) < TΓ(uΓ).

Suppose not. Then, by Theorem 1.4, there exist c > 0 and 1 ≤ i ≤ k
such that uΓ = cuαi and hence ψuΓ = ψuαi

= δαiαi. By (3.4), it follows that

αi(·) = ⟨c1uΓ, ·⟩ for some c1 > 0.
Since uΓ ∈ intL, and ⟨, ⟩ is non-negative on a+ by the hypothesis, the

linear form ⟨c1uΓ, ·⟩ is positive on a+ − {0}. On the other hand, the simple
root αi is zero on a wall of a+. Therefore we obtained a contradiction. This
finishes the proof.

We note that in the above proof, the hypothesis that the norm ∥ · ∥ is
induced from an inner product was used to deduce that ψuΓ,∥·∥ is strictly

positive on a+ − {0}.

Remark 3.5. We explain how Theorem 1.4 can be compared with [23,
Coro. 1.4]. Let (a+)⋆ = {α ∈ a∗ : α(v) ≥ 0 for all v ∈ a+} so that

int(a+)⋆ = {α ∈ a∗ : α(v) > 0 for all v ∈ a+ − {0}}.

Recall that [23, Coro. 1.4] concerns the Hitchin representations, but their
argument applied to our Zariski dense Anosov subgroups yields the follow-
ing: For any α ∈ int(a+)⋆, the quantity δα satisfies

δα ≤ 1∑k
i=1 ai

(3.5)

where α =
∑k

i=1(aiδαi)αi; the hypothesis α ∈ int(a+)⋆ is equivalent to α ̸= 0
and ai > 0 for all 1 ≤ i ≤ k.

On the other hand, our Theorem 1.4 says that for all α ∈ intL⋆,

δα = ψΓ(uα) ≤ min
1≤i≤k

δαiαi(uα); (3.6)

this is equivalent to saying that for all v ∈ a, ψΓ(v) ≤ min1≤i≤k δαiαi(v).
Since

1 = α(uα) =

k∑
i=1

aiδαiαi(uα) ≥

(
k∑
i=1

ai

)
min
1≤i≤k

δαiαi(uα) (3.7)

we have

min
1≤i≤k

δαiαi(uα) ≤
1∑k
i=1 ai
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where the equality is strict except for one direction of uα satisfying

δαiαi(uα) = δαjαj(uα) for all i, j = 1, · · · , k.
Therefore our bound (3.6) is sharper than the bound (3.5) in addition to the
point that it applies to the optimal cone intL⋆, while [23, Coro. 1.4] applies
only for α ∈ int(a+)⋆, which is strictly smaller than intL⋆.

Both approaches are based on the observation that the linear forms δαα’s
are tangent to ψΓ for α ∈ ∆, but [23, Coro. 1.4] considers these tangent
forms as points on the boundary of the subset D = {φ ∈ int(a+)⋆ : δφ ≤ 1}
and deduce (3.5) from the convexity of D, whereas we think of the tangent
forms as functions on a and obtain a stronger bound of (3.6) simply by
taking minimum of these tangent forms over α ∈ ∆.

Alternate proof of Theorem 1.4(2). For Anosov subgroups, we present
an alternate proof of

ψΓ ≤ TΓ (3.8)

for k ≤ 3, using the following “strip theorem”:

Theorem 3.6 (Strip theorem). [6, Thm. 6.3] Let Γ be a Zariski dense ∆-
Anosov subgroup of G. Let k = #∆ ≤ 3 and v ∈ intL. For all sufficiently
large R > 0, the abscissa of convergence of the series∑

γ∈Γ,∥µ(γ)−Rv∥≤R

e−sψv(µ(γ))

is equal to 1.

To show the inequality (3.8), we fix v ∈ intL and 1 ≤ i ≤ k. For R > 0,
we write SR := {g ∈ G : ∥µ(g) − Rv∥ < R}. By Theorem 3.6, there exists

R > 0 such that the series DR(s) =
∑

γ∈Γ∩SR
e−sψv(µ(γ)) has the abscissa of

convergence 1. Recalling that αi > 0 on intLΓ, there exists C > 0 so that
for any γ ∈ SR, we have ∥∥∥∥µ(γ)− αi(µ(γ))

αi(v)
v

∥∥∥∥ ≤ C.

It then follows that

DR(s) =
∑

γ∈Γ∩SR

e−sψv(µ(γ)) ≪
∑

γ∈Γ∩SR

e
−sαi(µ(γ))

αi(v)
ψΓ(v) ≤

∑
γ∈Γ

e
−sαi(µ(γ))

αi(v)
ψΓ(v).

Since the series
∑

γ∈Γ e
−sαi(µ(γ))

αi(v)
ψΓ(v) is finite whenever s > αi(v)

ψΓ(v)
δαi , we have

1 ≤ αi(v)
ψΓ(v)

δαi . Hence

ψΓ(v) ≤ δαiαi(v).

Since v ∈ intL and 1 ≤ i ≤ k are arbitrary, we get

ψΓ ≤ TΓ on intL.
By the concavity of ψΓ, this implies ψΓ ≤ TΓ on L as well (see the proof of
Theorem 2.5). Since ψΓ = −∞ outside L, (3.8) follows.
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4. Applications to self-joinings

We consider the case when G =
∏k
i=1 SO

◦(ni, 1), ni ≥ 2, and ρi : Σ →
SO◦(ni, 1) is a faithful convex cocompact representation with Zariski dense
image. We let Γρ < G be the subgroup defined as in (1.4). The hypothesis
on ρi’s implies that Γρ is ∆-Anosov. We assume

k ≥ 2 and Γρ is Zariski dense in G

in the entire section.

Proof of Corollaries 1.6 and 1.7. Corollary 1.6 follows since δαi = δρi =
dimΛρi . For Corollary 1.7, note that we have

δΓρ,∥·∥Euc
<

1

k

(
k∑
i=1

(dimΛρi)
2

)1/2

≤ 1

k

Å
k max
1≤i≤k

(dimΛρi)
2

ã1/2
=

1√
k

max
1≤i≤k

dimΛρi .

On the other hand, we showed in [15],

dimΛρ = max
i

Λρi .

Hence

δΓρ,∥·∥Euc
<

1√
k
dimΛρ.

Critical exponent with respect to the L1-metric. Set δL1 := δ∑k
i=1 αi

,

which is the critical exponent of Γρ for the L1-metric
∑k

i=1 di on X =∏k
i=1Hni . We deduce the following from Corollary 1.6, whose special case

when k = 2 and dimΛρi = 1 was proved by Bishop and Steger [2]:

Corollary 4.1. We have

δL1 <
dimΛρ
k

. (4.1)

Proof. Noting α :=
∑k

i=1 αi ∈ intL⋆, write uα = (u1, · · · , uk) ∈ intL.
Lemma 3.4 and Corollary 1.6 imply

δL1 = ψΓ(uα) <
1

k

k∑
i=1

dimΛρiui ≤
maxi dimΛρi

k

k∑
i=1

ui.

Since α(uα) =
∑

1≤i≤k ui = 1 by Lemma 3.3(2) and maxi dimΛρi = dimΛρ
by [15], we get the desired inequality. □
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Geodesic stretching between two hyperbolic manifolds. When k =
2, the limit cone L of Γρ can also be described as

L := {(v1, v2) ∈ R2
≥0 : d−v1 ≤ v2 ≤ d+v1}

where d+ and d− are respectively the maximal and minimal geodesic stretch-
ing constants of ρ2 relative to ρ1:

d+(ρ1, ρ2) = sup
σ∈Σ−{e}

ℓ2(σ)

ℓ1(σ)
and d−(ρ1, ρ2) = inf

σ∈Σ−{e}

ℓ2(σ)

ℓ1(σ)

where ℓi(σ) denotes the length of the closed geodesic in the hyperbolic man-
ifold ρi(∆)\Hni corresponding to ρi(σ) (cf. [5], [1]).

Thurston [31] showed that the maximal geodesic stretching constant is
always strictly bigger than 1 for finite-area hyperbolic surfaces. (See also
[10]). Theorem 1.4 implies the following corollary; this was already observed
by Burger [5, Thm. 1 and its Coro.] and generalizes a theorem of Thurston
[31, Thm. 3.1]:

Corollary 4.2. We have

d−(ρ1, ρ2) <
dimΛρ1
dimΛρ2

< d+(ρ1, ρ2).

Proof. By Theorem 1.4,

ψΓ ≤ min(δ1α1, δ2α2). (4.2)

By Theorem 3.4, we have ψΓ(uα1) = δ1α1(uα1). Hence

δ1α1(uα1) ≤ min(δ1α1(uα1), δ2α2(uα1)),

which implies δ1α1(uα1) ≤ δ2α2(uα1). Therefore,

δ1
δ2

≤ α2(uα1)

α1(uα1)
.

Similarly, we have δ2α2(uα2) ≤ min(δ1α1(uα2), δ2α2(uα2)), and hence

α2(uα2)

α1(uα2)
≤ δ1
δ2
.

Since dimΛρi = δi for i = 1, 2 by Patterson [22] and Sullivan [29], we now
have

α2(uα2)

α1(uα2)
≤ dimΛρ1

dimΛρ2
≤ α2(uα1)

α1(uα1)
.

Since uα1 , uα2 ∈ intL, d−(ρ1, ρ2) <
α2(uα2 )

α1(uα2 )
and

α2(uα1 )

α1(uα1 )
< d+(ρ1, ρ2). It

completes the proof. □
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[26] J.-F. Quint. Propriété de Kazhdan et sous-groupes discrets de covolume infini.
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