PROPERLY DISCONTINUOUS ACTIONS, GROWTH
INDICATORS, AND CONFORMAL MEASURES FOR
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ABSTRACT. Let GG be a connected semisimple real algebraic group. The
class of transverse subgroups of G includes all discrete subgroups of
rank one Lie groups and any subgroups of Anosov or relative Anosov
subgroups. Given a transverse subgroup I', we show that the I'-action
on the Weyl chamber flow space determined by its limit set is properly
discontinuous. This allows us to consider the quotient space and de-
fine Bowen-Margulis-Sullivan measures. We then establish the ergodic
dichotomy for the Weyl chamber flow, in the original spirit of Hopf-
Tsuji-Sullivan. We also introduce the notion of growth indicators and
discuss their properties and roles in the study of conformal measures,
extending the work of Quint. We discuss several applications as well.
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Patterson-Sullivan theory on conformal measures of a discrete subgroup
of a rank one simple real algebraic group G has played a pivotal role in the
study of dynamics on rank one homogeneous spaces. One of the basic results
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due to Sullivan in 1979 is the relation between the support of a conformal
measure and its dimension, which we recall for G = SO°(n, 1), the identity
component of the special orthogonal group SO(n,1). The group SO°(n,1)
is the group of orientation-preserving isometries of the real hyperbolic space
(H™,d). The geometric boundary of H" can be identified with the sphere
S"~1. For a discrete subgroup I' < G, denote by A" C S"~! the conical
set of I', which consists of the endpoints of all geodesic rays in H" which
accumulate modulo I'. Let dr denote the critical exponent of I', which is the
abscissa of convergence of the Poincaré series s — > e~s400) o c H™.
For a given I'-conformal measure v, we denote by m, the Bowen-Margulis-
Sullivan measure on the unit tangent bundle T!(I"\H"), which is a locally
finite measure invariant under the geodesic flow. The following theorem is
often referred to as the Hopf-Tsuji-Sullivan dichotomy (see [44], [20], [43],
[1], [40, Theorem 1.7]).

Theorem 1.1 (Sullivan, [43, Corollaries 4, 20, Theorem 21], see also [,
[13], [40]). LetT' < SO°(n,1), n > 2, be a non-elementary discrete subgroup.
Suppose that there exists a T'-conformal measure v on S*~' of dimension
s> 0.

(1) We have
s> or.

(2) The following are equivalent:

(a) Zyer e—5d(070) — g (resp. Zwer e—sd(or0) 00);

(b) v(A®") =1 (resp. v(A®°") =0);

(c) the geodesic flow on (TH(T'\H"),m,) is completely conservative
and ergodic.
(resp. the geodesic flow on (TH(T\H"),m,) is completely dissi-
pative and non-ergodic.)

In the former case, s = or and v is the unique I'-conformal measure

of dimension op.

The main aim of this paper is to establish an analogous result for a class
of discrete subgroups of a general connected semisimple real algebraic group
G, called O-transverse subgroups. The class of f-transverse subgroups in-
cludes all discrete subgroups of rank one Lie groups, #-Anosov subgroups
and their relative versions. This class is regarded as a generalization of all
rank one discrete subgroups while Anosov subgroups are regarded as higher
rank analogues of convex cocompact subgroups.

We need to introduce some notations to state our results precisely. Let
P < G be a minimal parabolic subgroup with a fixed Langlands decomposi-
tion P = M AN where A is a maximal real split torus of G, M is the maximal
compact subgroup of P commuting with A and N is the unipotent radical of
P. Let g and a respectively denote the Lie algebra of G and A. Fix a positive
Weyl chamber a™ < a so that log N consists of positive root subspaces and
set AT = expa™. We fix a maximal compact subgroup K < G such that the
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Cartan decomposition G = KA1TK holds. We denote by u : G — at the
Cartan projection defined by the condition g € K exp u(g)K for g € G. Let
IT denote the set of all simple roots for (g,a™). As usual, the Weyl group is
the quotient of the normalizer of A in K by the centralizer of A in K. Let
i:a — a denote the opposition involution, that is, i(u) = —Ady,(u) for all
u € a where wq is the longest Weyl element. It induces an involution on 11
which we denote by the same notation i. Throughout the introduction, we
fix a non-empty subset

6 C IL

Let ag = (\pem_gkera and let pg : a — ap be the unique projection, in-
variant under all Weyl elements fixing ag pointwise. Let Py be the standard
parabolic subgroup corresponding to 6 (our convention is that P = Ppy) and
consider the #-boundary:

Fo =G/ Py.

We say that § € Fy and n € Fj) are in general position if the pair (£,7)
belongs to the unique open G-orbit in Fy x Fj) under the diagonal action
of G.

Let I' < G be a discrete subgroup. The following properties of I' are
natural to consider in studying analogues of Theorem for I'-conformal
measures on the f-boundary Fy. Let Ag = Ag(T") denote the #-limit set of
I' in Fy (Definition [5.1]).

Definition 1.2. A discrete subgroup I is said to be @-transverse if

o I'is §-regular, i.e., liminf er a(p(y)) = oo for all a € 6; and
e ['is f-antipodal, i.e., if any two distinct &, n € Agyig) are in general
position.

A f-transverse subgroup I is called non-elementary if #Ag > 3.

Note that the f-transverse property is hereditary: a subgroup of a 6-
transverse subgroup is also f-transverse.

We assume that I' is f-transverse in the rest of the introduction. We
define the f-growth indicator ¥? : ay — [—00,00] as follows: fixing any
norm || - || on ag, if u € ay is non-zero,

i (u) = IIUHELIEIET(? (1.1)

where Tg is the abscissa of convergence of the series > sllie (1)l

yET g (v)eC €
and C C ag ranges over all open cones containing u. Set 1/11@(0) = 0. This
definition is independent of the choice of a norm on ay. For 6 = II, @blg
coincides with Quint’s growth indicator ¢r [36]. For a general 6 C II, we
have:

U opy > r. (1.2)

(Lemma see also Lemma for a precise relation for G simple). We
show that ¢ < 00, and ¢g is a homogeneous, upper semi-continuous and
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concave function. It also follows from (|1.2]) that
{Y >0} =Ly and ¥2 >0 onintLy (1.3)

where Ly = Ly(I') is the 6-limit cone of I' (Theorem [3.3).
Denote by aj = Hom(ag, R) the space of all linear forms on ay. For ¢ € ay,
a Borel probability measure v on Fy is called a (T, 1)-conformal measure if
dysv
dv
where v,v(D) = v(y~1D) for any Borel subset D C Fy and Bg denotes the

ag-valued Busemann map defined in (5.4). We find it convenient to call the
linear form v the dimension of v.
We define the #-conical set of I' as

A" = {ng € Fp: limsupgMyA™ # @} ) (1.4)

where My = K N Py (see Lemma for an equivalent definition). If I' is
f-regular, then A°" C Ay (Proposition .

(&) = P for all v € T and € € F

Definition 1.3. We say ¢ € aj is (I', 0)-proper if 1y o pg : I' = [—¢,00) is a
proper map for some € > 0.

For example, a linear form v € aj which is positive on Ly — {0} is (T', 6)-
proper. For a (I, §)-proper form 1, the critical exponent 0 < dy, = 0y (I") <

oo of the ¢-Poincaré series Py (s) = >, e—s¥(e() ig well-defined and we
have

, 1
by = hltfnsup ;#103;{7 el :p(ua(y)) <t}
— 00

(see Lemma |4.2]).
A linear form 1 € aj is said to be (I, #)-critical if ¢ is tangent to the 6-
growth indicator ¥, i.e., ¢ > ¥ and 1 (u) = ¥ (u) for some u € aj — {0}.

Main theorems. Our main theorems extend Theorem [I.T] to higher rank.

Theorem 1.4. LetI" < G be a Zariski dense 0-transverse subgroup. Suppose
that there exists a (I',v)-conformal measure v on Fy for 1 € aj.

(1) If ¢ is (', 0)-proper, then

> (1.5)
(2) The following are equivalent:
(a) Zyer e~ o (1) = o (resp. Z'yél" e V(M) < 0);
(b) v(A") =1 (resp. v(A§") =0).
In the former case, any (T, 0)-proper 1 is necessarily (I',0)-critical
and v is the unique (I',v)-conformal measure on Fy.

For § =11, Theorem [1.4{(1) was proved by Quint and for a general 6, only
a weaker bound as (8.7) was known [37, Theorem 8.1]. It implies:
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Theorem 1.5. Let ' < G be a Zariski dense 0-transverse subgroup. If there
ezists a (I',1)-conformal measure on Fy for a (I',0)-proper i € ay, then

5y < 1.

Remark 1.6. (1) Canary-Zhang-Zimmer [11] proved the equivalence of
(a) and (b) in Theorem [1.4(2) for § symmetric, that is, = i(6),
and for conformal measures supported on Ay. We mention that
transverse subgroups are sometimes called RA-subgroups (cf. [15]).

(2) For some special class of - Anosov subgroups and for conformal mea-
sures supported on Ag, Theorem Was also proved in [35, Theorem
C]. Although [35, Theorem C] is claimed for general conformal mea-
sures on JFy, its proof works only for measures supported on Ay.

As in the original Hopf-Tsuji-Sullivan dichotomy (T heorem, Theorem
can be extended to the dichotomy on the ergodicity of the Weyl chamber

flow. Recalling the Hopf parametrization F\(fr([2) x a) ~ I'\G/M, a natural
space to consider is the quotient space F\(]—'QQ) X ag) where ,7:6(2) ={(&n) €
Fo x Fig) : & n are in general position} and T" acts on f9(2) X ag from the
left by

V(& mu) = (Y&, u+ BL(v L e)) (1.6)

for all v € I and (&,m,u) € .7-"9(2) x ag. However the I'-action on ]-"9(2) X ag is

)

not properly discontinuous in general; so the quotient space 1“\(]-'9(2 X ap)

is not locally compact.

On the other hand, the restriction of the I'-action on the subspace A§2) X ag

turns out to be properly discontinuous where AéQ) = .7-"(9) N (Mg X Ajgp))
(Theorem [9.1)):
Theorem 1.7 (Properly discontinuous action). Let ' < G be a non-elementary

O-transverse subgroup. Then the I'-action on Aéz) x ag given by (|1.6]) is prop-
erly discontinuous, and hence the quotient space

Qp = F\Aéz) X ag

is a locally compact Hausdorff space on which ag acts by translations from
the right.

Indeed, more strong property of the action will be proved: for a (I, 0)-
proper ¢ € aj, we have a projection Ag) X g — Aé2) x R given by (&,n,u) —

(&,m,¢(u)). The action (|1.6)) descends to the action
V(& m,8) = (v, & m, s+ e(BL(v 1 e))) (1.7)

for all v € T and (&,7,s) € Aé2) x R. We show that the action ((1.7)) is
properly discontinuous, and prove the following (Theorem [9.2)):
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Theorem 1.8. For any (I',0)-proper ¢ € aj, Q, = F\Aéz) x R is a locally
compact Hausdorff space. Moreover, €, is compact if and only if I' is 0-
Anosov.

Furthermore, we have a trivial ker p-bundle €y — €2, so that {2y is home-

omorphic to €2, x ker ¢ (9.13)).
For v € aj, we denote by MZ) the space of all (T, ¢)-conformal measures

supported on Ag. For a pair (v,1;) € MZ X Miﬁgg, we denote by m, .

the associated Bowen-Margulis-Sullivan measure on Qp (see for its
definition).

We expand Theorem[I.4]to the dichotomy on conservativity and ergodicity
of the ag-action on the space (¢, m,,,). See Theorem for a more
elaborate statement.

Theorem 1.9. Let I' < G be a non-elementary 0-transverse subgroup. Let
Y € ay be (I',0)-proper such that Mf; # (. In each of the following comple-
mentary cases, the claims (1) — (4) are equivalent to each other.
The first case:
(1) Z’yef e ¥Ho(M) = oo
(2) For anyv e MY, v(AS") =1
(3) For any (v,1;) € Mf; X Miﬁg, the T'-action on (Ag), v X 1) 18 com-
pletely conservative and ergodic;
(4) For any (v,1) € MZ) X Miizz, the ag-action on (g, m,,,,) is com-
pletely conservative and ergodic.

The second case:

(1) ZWGF e o) < oo;

(2) For any v € MY, v(AL") = 0;

(3) For any (v,1) € MZ} X Mizz, the T-action on (Ag), v X 1) 18 com-
pletely dissipative and non-ergodic;

(4) For any (v,1) € be X Miﬁgg, the ag-action on (p, m, ;) is com-
pletely dissipative and non-ergodic.

Disjoint dimensions phenomenon. Let
Df = {4 € a}; : (T, 0)-proper, 6,,(T') = 1 and Py (1) = 0o} .
This is in fact same as
{1t € a5 : (T, 0)-proper, 3 a (I, ¢)-conformal measure, Py (1) = oo}

when T is a f-transverse subgroup (see Lemma .

Inspired by the entropy drop phenomenon proved by Canary-Zhang-Zimmer
[11, Theorem 4.1] for § = i(0), we deduce from Theorem the following
disjointness of dimensions (Theorem , which turns out to be equivalent
to the entropy drop phenomenon (Corollary :
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Corollary 1.10 (Disjoint dimensions). Let I' < G be a non-elementary 0-
transverse subgroup. For any subgroup Ty < T' with Ag(To) # Ap(T), we
have

DY NDY, = 0.

In the rank one case, this corollary says that if A(T'g) # A(I') and I'o < T'
are of divergence type, that is, their Poincaré series diverge at the critical
exponents, then dr, < dp. We refer to [I1] for a more detailed background
on this phenomenon.

f-Anosov subgroups. A finitely generated subgroup I' < G is a 6-Anosov
subgroup if there exists C' > 0 such that for all v € I,

min a(u(y)) > Chy| = € (1.8)

where |y| denotes the word length of v with respect to a fixed finite gen-
erating set of I' ([29], [18], [22], [23], [24]). All #-Anosov subgroups are
f-transverse and Ag = A°" ([19], [23]). We deduce the following from The-
orem .4

Theorem 1.11. Let I’ < G be a Zariski dense 0-Anosov subgroup. Suppose
that there exists a (I',v)-conformal measure v on Fy for 1 € aj. We have:

(1) The linear form < is (T',0)-proper and ¢ > ¢¥.

(2) The following are equivalent to each other:

(a) Y er e V(M) =00 (resp. > er e V(M) < 0);
(b) v(Ag) =1 (resp. v(Ag) =0);
(c) ¥ is (I, 0)-critical (resp. ¥ is not (I, 0)-critical).

(3) For each (T, 0)-critical ¢ € ay, there exists a unique (I',v)-conformal
measure, say, vy, on Fg, which is necessarily supported on Ag. More-
over the ag-action on (g, My, 1) is completely conservative and
ergodic.

The equivalence (a) < (b) in (2) answers a question asked by Sambarino
[42], Remark 5.10].

Analogue of Ahlfors measure conjecture for §-Anosov groups. We
denote by Leby Lebesgue measure on Fy, which is the unique K-invariant
probability measure on Fy. The following corollary is motivated by the
Ahlfors measure conjecture [2].

Corollary 1.12. IfT" < G is Zariski dense 0-Anosov, then
either Ag = Fyp or Lebg(Ag) = 0.

Moreover, in the former case, 0 is the simple root of a rank one factor, say
Go, of G and I projects to a cocompact lattice of Gy.

See Theorem for a more general version stated for a #-transverse
subgroup.
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Critical forms and conformal measures. We set
T = {4y € a} : ¢ is (I, f)-critical }.

Note that DIQ C 7}6 (Corollary . For #-Anosov subgroups, we further
have T = Dg, which is again same as the set of all ¥ € aj for which there
exists a (I, 4)-conformal measure supported on Ay (Lemma [12.3)). Using

Sambarino’s parametrization of the space of all conformal measures on Ay
as {0y = 1} 42, Theorem A], we deduce:

Corollary 1.13. For any Zariski dense 6-Anosov subgroup I' < G, we have
a one-to-one correspondence among

(1) the set T of all (T, 0)-critical forms on ap;

(2) the set of all unit vectors in int Ly;

(3) the set of all T'-conformal measures supported on Ag;

(4) the set of all T'-conformal measures on Fy of critical dimensions.

More precisely, for any 1) € 7}9, there exists a unique unit vector wu,, € a;
such that ¥ (uy) = P (uy); moreover uy, € int Ly. There also exists a unique
(T, 9)-conformal measure vy, on Fy, which is necessarily supported on Ag.
Moreover every I'-conformal measure supported on Ay arises in this way.

Corollary 1.14 (Disjoint critical dimensions). For any non-elementary 0-
Anosov subgroups Tg < T' such that Ag(T'g) # Ag(T"), we have

T 07}90 =0 and zp{io < P on int Ly(T).

Indeed, the above two conditions are equivalent to each other by the
vertical tangency of ¥ (Theorem [12.2)).

Remark 1.15. Related dichotomy properties for conformal measures were
studied in [15], [7], [30], [16], [42], [I1], etc. In particular, when I' is II-
Anosov, Theorem [I.T1] Corollaries [I.12] and [I.I3] were proved by Lee-Oh
[30, Theorems 1.3, 1.4]. The papers [15], [42], and [II] study conformal
measures supported on the limit set Ag and the papers [7] and [16] study the
role of directional conical sets in the ergodic behavior of conformal measures.
Our focus on this paper is to address general conformal measures without
restriction on their supports following [30] and to study the relationship
between the dimensions of conformal measures and #-growth indicators so
as to establish an analogue of Sullivan’s theorem (Theorem and the
analogue of the Ahlfors measure conjecture. We also emphasize that the
f-growth indicator is first introduced in our paper. Notably, Theorem
provides a new locally compact Hausdorff space 0y := F\A((f) X ag which
is a non-wandering set for the Weyl chamber flow Ay. This allows us to
define Bowen-Margulis-Sullivan measures as in the rank one setting. Hence
the dynamical properties of the Weyl chamber flow can be studied also in
higher rank, fully recovering the original work of Hopf-Tsuji-Sullivan.

Finally, we mention that there is a plethora of examples of 6-transverse
subgroups which are not #-Anosov. First of all, any subgroup of #-Anosov
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subgroups are f-transverse. For instance, a co-abelian subgroup of a 6-
Anosov subgroup of infinite index is #-transverse but not #-Anosov. The
images of cusped Hitchin representations of geometrically finite Fuchsian
groups by [8] are also f-transverse but not 6-Anosov. Another important
examples are self-joinings of geometrically finite subgroups of rank one Lie
groups, that is, T' = (Hi-cz1 pi)(A) = {(pi(9))i : g € A} where A is a geo-
metrically finite subgroup of a rank one simple real algebraic group Gg and
pi + A — G is a type-preserving isomorphism onto its image p;(A) which
is a geometrically finite subgroup of a rank one simple real algebraic group
G; for each 1 < ¢ < k. It follows from [45, Theorem 3.3] and [14, Theorem
A.4] (see also [47, Theorem 0.1]) that there exists a p;-equivariant home-
omorphism between the limit set of A and the limit set of p;(A) for each
1 <14 < k. This implies that I' is II-transverse.

Organization.

e In section [2, we introduce the notion of convergence of elements of
G to those of Fy and present some basic lemmas which will be used
in the proof of our main theorems.

e In section 3|, we define the #-growth indicator 1/)1‘2 for a f-discrete
subgroup I' < G. Properties of the #-growth indicator and its rela-
tionship with Quint’s growth indicator [36] are also discussed.

e In section 4} we introduce (I',0)-proper linear forms and (I, 0)-
critical linear forms and discuss properties of their critical exponents.

e In section 5] we define the #-limit set and the #-conical set of I". For
f-regular subgroups, we show that the 6-conical set is a subset of
the #-limit set and construct conformal measures supported on the
f-limit set for each ¢ € D{i.

e In section [0 we prove that for f-transverse subgroups, f-shadows
with bounded width have bounded multiplicity, which is one of the
key technical ingredients of our main results.

e In section [/} we show that if " is a f-transverse subgroup, the di-
mension of a '-conformal measure is at least ¥% (Theorem .

e In section[8] we prove the zero-one law for the v-size of the conical set
depending on whether or not the associated Poincaré series converges
at its dimension (Theorem (8.1)).

e In section [0 we prove that a 6-transverse subgroup I' acts prop-

erly discontinuously on A‘(f) x ay and define Bowen-Margulis-Sullivan

measures on the space Qg = F\A§2) X ag. For any (I, §)-proper form

i, we also show that the ¢-twisted I'™-action on Ag?) x R is properly
discontinuous and gives rise to a trivial vector bundle Qy — Q, =

MAY xR,
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e In section we expand the equivalence between dichotomies to
conservativity and ergodicity of the ag-action on €2y, proving Theo-
rem We also explain how to deduce Theorem from Theorems
[7.1] and B11

e In section we discuss several consequences of Theorem in-
cluding disjoint dimension phenomenon.

e Finally, in section we discuss how our theorems are applied for
6-Anosov groups. We also prove Corollary

Acknowledgement. We would like to thank Jean-Frangois Quint for useful
conversations about Lemma [3.13

2. CONVERGENCE IN G U Fy.

In the whole paper, let G be a connected semisimple real algebraic group.
Let P < G be a minimal parabolic subgroup with a fixed Langlands decom-
position P = M AN where A is a maximal real split torus of G, M is the
maximal compact subgroup of P commuting with A and N is the unipotent
radical of P. Let g and a respectively denote the Lie algebras of G and
A. Fix a positive Weyl chamber a* < a so that log N consists of positive
root subspaces and set AT = expat. We fix a maximal compact subgroup
K < @G such that the Cartan decomposition G = K AT K holds. We denote
by

p:G—at
the Cartan projection defined by the condition g € K exp u(g)K for g € G.
Let X = G/K be the associated Riemannian symmetric space, and set
o = [K] € X. Fix a K-invariant norm || - || on g induced from the Killing
form on g and let d denote the Riemannian metric on X induced by || - ||.

Lemma 2.1. [3, Lemma 4.6] For any compact subset Q C G, there exists
C =C(Q) > 0 such that for all g € G,

sup [|u(q1gg2) — p(g)ll < C.
q1,92€Q
Let ® = ®(g, a) denote the set of all roots, @ C ® the set of all positive
roots, and II C @7 the set of all simple roots. We denote by Nk (A) and
Ck(A) the normalizer and centralizer of A in K respectively. Consider the
Weyl group W = Nk (A)/Ck(A). Fix an element

wy € Nk (A)
representing the longest Weyl element so that Ad,, a™ = —a™ and wy 1=
wp. Hence the map
i=—Ady,:a—a

defines an involution of a preserving a™; this is called the opposition invo-
lution. It induces a map ® — @ preserving II, for which we use the same
notation i, such that i(a) o Ady, = —a for all @ € ®. We have

plgh) =i(u(g)) forallgeG. (2.1)
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In the rest of the paper, we fix a non-empty subset § C II. Let Py
denote a standard parabolic subgroup of G corresponding to #; that is, Py is
generated by M A and all root subgroups Uy, a € ®* U [IT — 6] where [IT— 0]
denotes the set of all roots in ® which are Z-linear combinations of II — 6.
Hence P; = P. The subgroup Py is equal to its own normalizer; for g € G,
gPyg~! = Py if and only if g € Py. Let

ap = ﬂ kera, af =apNa’,
acll—-0
Ag =expag, and A} =exp a(';.
Let
Po :a— ayp
denote the projection invariant under w € W fixing ay pointwise.

Let Ly denote the centralizer of Ay; it is a Levi subgroup of Py and
Py = LgNy where Ny = R, (Py) is the unipotent radical of Py. We set
My = KN Py C Ly. We may then write Ly = ApSy where Sy is an almost
direct product of a connected semisimple real algebraic subgroup and a
compact subgroup. Then By = Sy N A is a maximal R-split torus of Sy and
IT — @ is the set of simple roots for (Lie Sy, Lie By). Letting

Bf = {b€ By :alogh) >0 for all a € II — 0},
we have the Cartan decomposition of Sp:
Sy = MyB, Mjy.

Any u € a can be written as u = uy + us for unique u; € ag and us €

log By, and we have pgp(u) = u;. In particular, we have
A= ApBy and AT C AJB.

We denote by aj = Hom(ap,R) the dual space of ag. It can be identified
with the subspace of a* which is pp-invariant: aj = {1 € a* : p opy = ¥ };
so for 61 C 05, we have azl C a;2.

The 6-boundary Fy and convergence to Fy. We set
Fo=G/Py and F=G/P.

Let
o F — Fy
denote the canonical projection map given by gP +— gFy, g € G. We set
&g = [Pg} € Fp. (2.2)

By the Iwasawa decomposition G = KP = KAN, the subgroup K acts
transitively on Fy, and hence

Fo ~ K/My.

We consider the following notion of convergence of a sequence in G to an
element of Fy.
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Definition 2.2. For a sequence g; € G and & € Fy, we write lim; , ¢; =
lim g;o = £ and say g; (or g;o € X) converges to & if

® minaeg o((gi)) — oo; and

o lim; ,o kg, g = £ in Fy for some kg, € K such that g; € kg, ATK.

Points in general position. Let P@+ be the standard parabolic subgroup
of G opposite to Py such that Py N P;r = Lg. We have Pj = woPi(g)wal
and hence
Fiw) = G/ By

In particular, if 6 is symmetric in the sense that 6 = i(6), then Fy = G/P,’.
Let N(f denote the unipotent radical of P9+ . The set N9+ Py is a Zariski open
and dense subset of G. In particular, N;fg N hN(jgg # () for any h € G.
The G-orbit of (Py, P,") is the unique open G-orbit in G/Py x G/P," under
the diagonal G-action.

Definition 2.3. Two elements { € Fyp and 7 € Fp are said to be in
general position if (£,7) € G.(Py,woPyp)) = G.(PQ,P;), ie., & = gP and
n = gwoPg) for some g € G.

We set
fo(2) = {(&,n) € Fo x Fyg) : &, n are in general position}, (2.3)

which is the unique open G-orbit in Fy x Fjg). It follows from the identity
P = NS (Pyn Py) that

(gPs, ) € FS? if and only if g€ N Py, (2.4)

Basic lemmas. We generalize [31, Lemmas 2.9-11] from 6 = II to a general
0 as follows. For subsets S; C G, we often write g = g1g293 € S15253 to
mean that g; € S; for each 4, in addition to g = g1g293.

Lemma 2.4. Consider a sequence g; = k‘iaih;l where k; € K, a; € AT, and
h; € G. Suppose that k; — ko € K, hy — hy € G, and min,cg a(loga;) —
o0, as 1 — oo. Then for any € € hoNa'fg (i.e., & is in general position with
hoPy"), we have

lim g;§ = ko&p.
71— 00

Proof. Since hi_1§ converges to the element h le e N(j & by the hypothesis
and NJ&; C Fy is open, we have h;lé € N;ég for all large <. Hence we can
write hi_1§ = n;&g withn; € N; uniformly bounded. Since mingeg a(loga;) —
oo and n; € N9+ is uniformly bounded, we have ainiai_l — e as 1 — o0.
Therefore the sequence a;h; le = a;nia; ¢y converges to &. Hence we have

lim ;¢ = lim k;(a;h; '€) = ko&p.
1—00 1—00
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Corollary 2.5. If w € Nk(A) is such that mw € N;Pg for some m € My,
then w € My. In particular, if wPy and PQJr are in general position, then
w € My.

Proof. Choose any sequence a; € Ag such that min,ep a(log a;) — oo. Since
mwéy € N0+ &y, we deduce from Lemma that a;mwé&y converges to &y as
i — 00. On the other hand, since w € Ng(A), A C Py and m € My, we
have a;mwéy = mw(w ta;w)é&y = mwéy for all i. Hence mwéy = &. Since
m € My, this implies w&y = & and hence w € Py N K = Mj. O

It turns out that the convergence of g; — & is equivalent to g;p — £ for
any p € X. More generally, we have

Lemma 2.6. If a sequence g; € G converges to §€ € Fyp and p; € X is a
bounded sequence, then

lim g;p; = €.
71— 00

Proof. Let g, € G be such that gio = p;; then ¢, is bounded. Since
limg; = £, we may write g; = kiaiﬁi_l with k;,¢; € K and a; € A" where
mingep a(loga;) — oo, and k& — € as i — oo. Write gigi = Klal(¢))™! €
KATK. Since g) is bounded, lim; ;. min,ecg a(loga,) = oo, by Lemma
Let ¢ € K be a limit of the sequence ¢; := k; 11%,* By passing to a
subsequence, we may assume that ¢; — ¢. Since d(o,p;) = d(g;0, gip;) =
d(o, ai_lqia;o), the sequence hi_l = ai_lqiafi is bounded. Passing to a sub-
sequence, we may assume that h; converges to some hy € GG. Choose any
n e N;—fg N hoN;&;. By Lemma we have

lim aihi_ln =¢ and lim gain = q&.
21— 00 71— 00

Since a;h; ! = gial, it follows that ¢&y = &; so ¢ € K N Py. Hence ¢ =
lim k;&p = lim k[&g. It follows that lim g;p; = &. O

Lemma 2.7. If a sequence g; € G converges to g and a sequence a; € AT
satisfies mingeg a(loga;) — oo as i — 0o, then for any p € X, we have

lim g;a;p = g&e.
1—>00

Proof. By Lemma [2.6] it suffices to consider the case when p = o. Write
gia; = k:z-bié;l with k;, ¢; € K and b; € AT, Since the sequence g; is bounded,
lim; ;0o mingeg a(log b;) = 0o. Let kg be a limit of the sequence k;; without
loss of generality, we may assume that k; converges to kg as i — oo. Then
lim; o gia;0 = ko&p. We may also assume that ¢; converges to some ¢y € K.
Choose & € EON;&; N N;rfg. Then by Lemma as i — 00, 9;a;& — ko&p
and a;& — &. Since g; converges to g, this implies that ko&y = g&y. This
finishes the proof. O
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3. GROWTH INDICATORS

Let I' < G be a Zariski dense discrete subgroup. We set
po =popop:G—af. (3.1)

Definition 3.1. We say that I' is #-discrete if the restriction pg|p : I' — a;
is proper.

The 6-discreteness of I" implies that u(I") is a closed discrete subset of

ay. Indeed, T is f-discrete if and only if the counting measure on ()

weighted with multiplicity is a Radon measure on a(';.

Definition 3.2 (6-growth indicator). For a 6-discrete subgroup I' < G, we
define the f-growth indicator 1% : ay — [—o0, 0] as follows: if u € ay is
non-zero,

i) = |lul| inf ¢ (3.2)

ueC
where C C ag ranges over all open cones containing u, and wlg(O) = 0. Here
—o0o < 7 < oo denotes the abscissa of convergence of the series Pd(s) =

Zvef,ue(v)ec esllhoeMIl | that is,
7‘09 =sup{s e R: Pg(s) =oo} =inf{seR: Pg(s) < ool

This definition is independent of the choice of a norm on ay. For § =11,
we set
Yr = Yr.
The main goal of this section is to establish the following properties of wfe
for a general § C II: for 6 = II, this theorem is due to Quint [36, Theorem
1.1.1].

Theorem 3.3. Let I' < G be a 0-discrete subgroup.

(1) 92 < oo.
(2) @bl@ s a homogeneous, upper semi-continuous and concave function.

(3) Lo = {W? > 0}, ¥¥ = —occ outside Ly and %% > 0 on int Ly.

Here, £y C a; denotes the #-limit cone of I', which is the asymptotic cone
of 11p(T"):
Lo = {limt;ug(y;) : v € I',t; — 0}. (3.3)
We set £ = Ly, which is the usual limit cone. By [3, Sections 1.2, 4.6],
L is a convex cone with non-empty interior and p(T") is within a bounded
distance from £. We have

L={yYr >0}, and ¢r >0onintL (3.4)

and ¢Yr = —oo outside £ [36l Theorem 1.1.1]. Noting that Ly = pp(L), we
get:

Lemma 3.4. The 0-limit cone Ly is a convex cone in a; with non-empty
interior and pg(I") is within a bounded distance from Lg.
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Y% < 0o and #-critical exponent. In this subsection, we show Theorem
1), that is, 1% does not take +oo-value. This will be achieved by proving

& < o0 (Proposition where

—o0 < 5{2 < 00
denotes the abscissa of convergence of the series s — > e~ sllmoeMII. For
§ = II, we have 0 < 6p = 61+ < oo [36, Theorem 4.2.2]. Since [|ug(g)| <
[u(g)|| for all g € G and hence > e sl < > ver e slreIl for all

s > 0, we have
0 < dop < &2 (3.5)

Lemma 3.5. If I is O-discrete, then
. 1
of = limsup —#log{y € T": [|ug(7)|| < t} € (0,00].
t—o0 t

Proof. For x € ag, we denote by D, the Dirac mass at x. Since Zver D,y

is a Radon measure on a; and 51€ > 0 by (3.5)), it follows from [36, Lemma
3.1.1]. O

For a general discrete subgroup I' < G, 51€ may be infinite (e.g., I' =
I’y x T’y where I'; is an infinite discrete subgroup of G; for both i = 1,2).
Since Tg < 51€ for all cones C in ag, we have

0 0
sup  ¢p(u) < dp.
u€ag,|lul|=1

Hence Theorem (1) follows once we show the that §% < oo for any 6-
discrete subgroup I' < G as in Proposition [3.7]

ker ap

at

Pal(u)Nat

ker ap

FIGURE 1. G =PSL3(R) and 6 = {ay }.

Lemma 3.6. If pg|,+ is a proper map (e.g., G is simple), then
6% < o0

for any discrete subgroup I' < G. In particular, if G is simple, any discrete
subgroup I' < G s O-discrete.
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Proof. First, observe that if G is simple, then the angle between any two
walls of a™ is strictly smaller than 7/2 and hence pgl,+ is a proper map (see
Figure . Now, if pg|.+ is a proper map, then for some constant C' > 1, we
have
-1
C ull < llpa(w)[| < Cflull

for all u € a™. Hence dr < oo implies that
8 < .
O

It follows from the definition of 5I91 that the finiteness of 5? implies the
f-discreteness of I'. Indeed, the converse holds as well from which Theorem

3.3(1) follows.

Proposition 3.7. We have
I' is 0-discrete if and only if 5? < 00.

Proof. Tt suffices to show that the 6-discreteness of I' implies 51‘2 < 0o0. Write
G = 1G9 as an almost direct product of semisimple real algebraic groups
where (g1 is the smallest group such that 6 is contained in the set of simple
roots for (g1,a; = a™ Ng1). Then py(l') C af C af. Since the kernel of
Polu(ry contains p(I'N ({e} x Gz)), the properness hypothesis implies that
' ({e} x G2) is finite. By passing to a subgroup of finite index, we may
assume that I' N ({e} x G2) is trivial. The properness of py|r also implies
that the projection of I' to (G is a discrete subgroup, which we denote by I';.
Since there exists a unique element, say, o(v1) € Gz such that (y1,0(y1)) € T’
for each v; € I'1, we get a faithful representation o : I'y — G, and I is of the
form {(v1,0(71)) : v € I'1}. Since pg(v) = po(n) for v = (y1,0(mn)) €T,
we have
5t = 6.

Hence we may assume without loss of generality that 6 contains at least one
root of each simple factor of G. Since the restriction py : a* N Lie Gy —
ag N Lie Gy is a proper map for each simple factor Gg of G as mentioned
before, it follows that py is a proper map. Hence the claim 5{2 < oo follows
by Lemma [3.6 ([

Concavity of 1/11‘2. The growth indicator @Dlg is clearly a homogeneous and
upper semi-continuous function [36, Lemma 3.1.7]. It is also a concave
function, but its proof requires the following lemma, which is proved in [36),
Proposition 2.3.1] for 6 = II.

Lemma 3.8. Suppose that I' is 0-discrete. Then there exists a map 7 :
I' x I' = I satisfying the following:

(1) there exists k > 0 such that for every 1,72 € T,
1o (m(v1,72)) — o(11) — po(r2)l| < k; and
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(2) for every R > 0, there exists a finite subset H of T such that for
V1,75 72, Y2 € T with [|ug(vi) — pe(vi)Il < R fori = 1,2,

m(v1,72) = (71, 73) = V1 € H and v, € Hrs.

Proof. Since pg is norm-decreasing, (1) follows from [36], Proposition 2.3.1(1)].
By the proof of [36, Proposition 2.3.1(2)], the claim (2) holds if we set H to
be the subset consisting of all elements v € I such that ug(y) < R’ for some
R’ > 0 depending only on R. Since I' is 6-discrete, this subset H is finite,
as desired. (]

Proposition 3.9. If I' is 0-discrete, then 1/11‘2 is concave, and hence there

exists a unique unit vector uie € a; such that
0/, 0 0 0
Yr(up) =  max  ¢p(u) = dp.
|ul|=1,u€ay

Proof. By Lemma the counting measure EveF D,y(v) is of concave
growth (see [36] Section 3.2] for details). It follows from [36, Theorem 3.2.1]
that ¥% is concave. By [36, Corollary 3.1.4, Corollary 3.3.5], the second
claim follows. O

Definition 3.10. A linear form ¢ € a; is said to be tangent to wl‘g (at
u € ay —{0})if ¥ > 9% on a and (u) = ¥ (u).

By the supporting hyperplane theorem, we have the following corollary:

Corollary 3.11. For any u € int Ly, there exists a linear form ¢ € aj
tangent to ¢1€ at u.

Positivity of 1,!)1@. By Lemma we have @bl@ = —oo outside Ly. If © D 0,
then any #-discrete I' is ©-discrete as well. The following lemma shows how
Y2 is related to ¥ from which Theorem (3) follows:

Lemma 3.12. For © D 0, let pg = pylag : 30 — ap by abuse of notation.
For any 0-discrete I' < G, we have

Upopg > YP on ae. (3.6)
In particular,
Ye>00nLy and YL >0 onintLy. (3.7)

Proof. By (3.4) and the homogeneity, it suffices to prove (3.6) for a unit
vector u € Ly. Let v € pgl(u) Nag. Let C C ag be an open cone containing
u. For each € > 0, set

C(v,e) := {w € ag : pp(w) # 0 and HHP&T*IU)” - UH < 5}. (3.8)

Since ||pgp(v)|| = ||ul]] = 1, C(v,e) is an open cone containing v. In the
following, let € > 0 be small enough so that C(v,e) C p, ' (C).
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Then for all s € R, we have

Z e sllke Ml < Z e~ (sllvll=lesDlle (V]

Y€l 1o (v)€C(ve) Y€l pe(v)EC(v,e)
< Z e~ Gllvll=lesDlle (NI
€L, o (v)EC
Hence we have
Telwey < (vl =) 2.
Therefore we have
YR () < 070 < ol (o]l = )7 8.
Taking € — 0 yields that
Yr (v) < 7¢.
Since C C ag is an arbitrary open cone in ag containing u, it follows that
UF (v) < ¥,
and hence (3.6]) is proved. Last claim follows the from and applied
to © =11. O

Comparison between 1/)1‘2 and ¢1@ . Note that the properness of pyl,,
implies the #-discreteness of I" as p(I") is within a bounded distance from L.
The following lemma is to appear in [I7] in a more general context.

Lemma 3.13. If pg|s is a proper map (e.g., G is simple), then for any
© D 0 and for any u € ag,

0 [S)
Yr(u) = max ¢r(v) (3.9)
vEP, (u)
where pyp = pylag by abuse of notation.
Proof. Suppose that pg|s : £L — ap is a proper map. By Lemma it
suffices to consider a unit vector u € Ly with ¥%(u) > 0. Since pa_l(u) NLe
is a compact subset and 1/11@ is upper semi-continuous, we have

awp UBW)=  max ()
vep,  (u) vep, (u)NLe

For all sufficiently small € > 0 and each v € pe_l(u), there exists 0 < g, < ¢
such that
[Vl 760 ey < YR (v) + e (3.10)
where C(v,e,) is as defined in (3.8). Since p,'(u) N Lo is compact, there
exist v1,- - , v, € p(jl(u) such that

Py H(u)N Lo C UC(’U,;,&“UZ.).

i=1
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Take an open cone C C ag containing u such that

n
Py t(uw)N Lo Cpl(C)N Lo C U C(vi, ;).
i=1
This is indeed possible; if not, there is a sequence of unit vectors u; € ay
converging to u as j — oo such that for each j, there exists w; € pgl (uj)NLe
that does not belong to |/ C(v;,&y,). Since pg|r, is proper and the unit
sphere in ay is compact, we may assume that the sequence w; converges to
some w € Lg after passing to a subsequence. Since pp(w;) = u; — u as
Jj — 00, we have pg(w) = u, and hence w € pgl(u) N Leg. It implies that
wj € Ui, C(vj, 4,) for all large j, contradiction.
Since pe(T) is within a bounded distance from Lg (Lemma [3.4), there
are only finitely many elements of pg(I") outside of |J;'_, C(v;,e,,). Hence
for each s > 0, we have

Z e_SHMG(V)” < znz Z e—s||ug('y)||

v€T, g (v)EC i=1 v€l,ue (v)EC(vi,ev,)

re NI

< Zn: > ¢ —s—en) 23

i=1 vel,ue (v)€C(vi,ev,)

Here and afterwards, the notation f(s) < g(s) means that for some uniform
constant C > 1, f(s) < Cg(s) for all s at hand. Since 7§ > ¥(u) > 0 is
positive, it follows that

1 %)
6
e < mlax q”vi”TC(vi,Eui)'

Therefore, together with 0 < &,, < ¢ and (3.10)), we get

( max 11)1@(1))4—6).

vep, ' (u)

1
W) < 7 < = (maxyP(v) +¢) < 7

Since 0 < € < 1 was arbitrary, this proves the claim by Lemma [3.12 O

Example 3.14. We discuss some explicit upper bounds for wlg when G =
PSLg(R). Identify at = {(t1, -+ ,tq) : t1 > -+ > tg,t1 + -+ tg = 0}. Let
a;i(tyy . tg) =t; —tip1 for i =1,2,...,d — 1. Let

d—i d—i
wi = (G 5
where the first ¢ coordinates are %’S and the last d — ¢ coordinates are

—%’s, so that a,;, = Rw; and «a;(w;) = 1. We compute that

d(t1 +"'+tz’)w'
i(d — i) ‘

%

7_5'7“'7_3)7

pai(tlf v 7td) =

and hence

p;il(wi) Nat ={(t1, - ,tg) €a’ 1d(t1 +---+t;) =i(d—1)}.
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For any non-lattice discrete subgroup I' < PSL4(R), we have

Ld/2]
1
er(ty, - ta) < ;(ti —t) =5 Z; (ti — tasr1—i) (3.11)
1< 1=

by ([39], [32], [30, Theorem 7.1]). By Lemma for any discrete non-
lattice subgroups, we get

Ld/2]
, 1
P (w;) < maXZ(t,- —t) -5 Z (ti — tap1—i) (3.12)
1<J i=1
where the maximum is taken over all (¢1,--- ,t4) € at such that d(t1 +- -+

t;) = i(d —1).
For instance, for d = 3, the right hand side is always 3 and hence for each
i=1,2, Pp* < 3y on Ruw;.

Hitchin subgroups. Let ¢ : PSLa(R) — PSL4(R) be the irreducible rep-
resentation, which is unique up to conjugations. A Hitchin subgroup is
the image of a representation 7 : ¥ — PSL4(R) of a non-elementary geo-
metrically finite subgroup ¥ < PSLy(R), which belongs to the same con-
nected component as |y in the character variety Hom(3, PSLy(R))/ ~
where the equivalence is given by conjugations. Hitchin subgroups are II-
transverse, as defined in the introduction, by [8] and hence «;-discrete for
each i = 1,--- ,d — 1. It follows from Lemma that if d,, denotes the
abscissa of convergence of s — Zwer e then

r(wi) < b, - i(w;) = b,

For Hitchin subgroups, it was proved by Potrie and Sambarino [34] for A
cocompact and Canary, Zhang and Zimmer [9] for A geometrically finite
that

do; <1

for all i (see also [35]). Hence maxj<ij<q—1 ¢¥p'(w;) < 1. We get a sharper
bound in the following:
Corollary 3.15. Let I' < PSLy(R) be a Zariski dense Hitchin subgroup.
For eachi=1,---,d—1,

o; _ max(i,d —1i)

r d—1
Proof. For a Zariski dense Hitchin subgroup I' < G, it is shown in [25]
Corollary 1.10] that

a; on ay, — {0}.

Urltn, - ) < ﬁ(tl “tg) for (t,ee- ta) €at —{0}.  (3.13)

Indeed, [25, Corollary 1.10] is stated only for ¥ cocompact. However in view
of [9] mentioned above, this bound holds for a general Hitchin subgroup.
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Hence by Lemma [3.13] we get

. 1
?1 (wl) < ﬁ max (tl — td) (314)
where the maximum is taken over all ¢ > --- > t;4 such that dZ;:l tj =
i(d — i) and Z;l:l t; = 0. Suppose that this maximum is realized at
(t1,--- ,tq). Since t; — tg does not involve any t;, 2 < j < d — 1, we
may assume that to = --- =t; and t;41 = -+ = t4_1, which we denote by
x and y respectively. Since 2321 t; = Z(dgl) and Z?:Hl tj = —l(d;), we
then have
tp =" (G- Dz and tg=-"ED _(d—1—4)y.
Therefore (s
t—tg =20 (= 1)z — (d—1—i)y) (3.15)
d—i

where % >z >y > —%l. It follows from t; > t;11 for all j that 7 2>
x>y > —%. Therefore, for each fixed x, the maximum in (3.15)) is obtained
when y = x. Hence we have

o 1 2i(d—1i) .
() < —— T (95—
v (wi) < d—1 ael—ifd(d—i)/g  d (2= d)z

1 . .
=--1 max(i,d — 7).
O

Remark 3.16. We remark that the 6-discreteness of I' does not necessarily
imply that the map py| is a proper map. For example, let T'y be a Zariski
dense convex cocompact subgroup of SO°(k,1), k > 2, and let o : [y —
SO°(k,1) be a discrete faithful representation such that o(T'g) is Zariski
dense but not convex cocompact. Consider I' = {(g,0(g)) : g € T'v} and
G = SO°(k,1) x SO°(k,1). We may identify a = {(x1,22) € R?} and at =
R>¢ X R>g. Then the limit cone of T is a convex cone of a® containing the
x1-axis; otherwise, o must be convex cocompact. Hence for § = {as} where
ag(x1,x9) = X9, pe_l(O) is the whole x;-axis, and hence py|, is not proper.
On the other hand, the discreteness of o(T'g) is same as 6-discreteness of T.

4. ON THE PROPER AND CRITICAL LINEAR FORMS

Let T be a #-discrete subgroup of G.

Definition 4.1. A linear form ¢ € aj is called (I, §)-proper if Im(t) o ug) C
[—e,00) and ¢ oy : T' — [—¢, 00) is proper for some & > 0.

Consider the series Py, = Pr given by
Py(s) = Ze*“p(“@('y)). (4.1)
yerl’

The abscissa of convergence of Py, is well-defined for a (I', #)-proper linear
form:



22 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG
Lemma 4.2. If v is (I, 8)-proper, the following dy, = 0, (I") is well-defined
and positive (possibly +00):

0y :=sup{s € R: Py(s) = oo} = inf{s € R: Py(s) < oo} € (0,00]. (4.2)

Moreover,

5, = imsup B €T V0() <1}

t—o00 t

Proof. Since 1 is (T, §)-proper, ¥(pg(7y)) > 0 for all but finitely many v € T.
Hence we may replace Py (s) by the series PJ(S) = D el w(u(7))>0 e 5¥(ko(v)
in proving this claim. Since PJ (s) is a decreasing function of s € R,
Iy := {Py(s) = oo} and Iy := {Py(s) < oo} are disjoing intervals. Since I'
is infinite, 0 € I1, and hence d,, = IinIye [0, 0] is well-defined. To show
0y > 0, fix u € int Ly. Then 9(u) > 0 by Lemma Since ¥2(u) > 0
as well by Theorem (3), we have soi(u) < ¥ (u) for some 0 < sp < o0.
By [36l Lemma 3.1.3], we have Py(sg) = oo, and therefore 6, > s9 > 0.
The last claim follows by [36, Lemma 3.1.1] since the counting measure on
P (pe(T)) is locally finite and dy > 0. O

Hence for a (I, §)-proper form ¢ € a3, 0 < §; < oo is the abscissa of
convergence of Py(s).

Lemma 4.3. We have:
(1) If ¢ > 0 on Ly — {0}, then ¢ is (I, 0)-proper and §y, < co.
(2) If ¢ is (T, 0)-proper, then 1» > 0 on Ly and ¥ > 0 on int Ly.

Proof. If 4 is positive on Ly — {0}, then ¥ > 0 on some open cone C con-
taining Ly — {0}. Then for some ¢ > 1, ¢ |lu|| < 9 (u) < c|lu|| for all u € C.
Since there can be only finitely many points of ug(I") outside C by Lemma
this implies that v is (T',#)-proper. Since 62 < oo by Proposition
we also have 6, < oo.

To prove (2), suppose to the contrary that ¥ (u) < 0 for some u € Ly.
Then there exists an open cone C C Lg so that ¢» < 0 on C — {0}. In
particular, there are infinitely many ~; € I" such that ¥ (ug(7;)) < 0, which
contradicts (I, #)-properness of 1. Therefore, 1 > 0 on Ly. Since ker) is a
hyperplane in ay, it follows ¥ > 0 on int Ly. (]

Critical forms. Analogous to the critical exponent of a discrete subgroup
of a rank one Lie group, we define:

Definition 4.4. A linear form v € aj is (I', #)-critical if it is tangent to wg.

The following lemma can be proved by adapting the proof of [25, Theorem
2.5] replacing ¢r by z,blq
Lemma 4.5. If a (I',0)-proper 1 € aj satisfies oy, < 0o, then 6y is (I',0)-
critical; in particular,

Ui < Gy,
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Proof. Suppose that 0y < oo. By Lemma 4.2} §, > 0. We first claim
P(v) < Syb(v) for all v € int Lg. (4.3)
Fix v € int Ly and € > 0. Since ¢ is (T, 0)-proper, 1(v) > 0 by Lemma

We then consider
vlw) o) <cf;

since 1 (v) > 0, this is a well-defined open cone containing v. Therefore by
the definition of 1/}12, we have

PP (v) < J|vll7e. w)- (4.4)
Observe that for any s > 0,

S el Y ¢S o ) (585 —2)

V€T, 11g (7)ECe (v) V€T, g (7)ECe (v)

< Z oo () (<)

vyel

[wll ol

Ce(v) = {w € ag:Y(w) >0 and

It follows from the definitions of 7'095 ) and ¢, that

0 (51/, o 51/111}(1])
TC.(v) S lvl[v() ™t —e vl —ev(v)’

and hence

9y v Syt (v)

Since € > 0 is arbitrary, we get zﬁlg (v) < dytp(v), proving the claim (4.3).

We now claim that the inequality (4.3)) also holds for any v in the bound-
ary 0Lg. Choose any vy € int Ly. From the concavity of ¢19“ (Theorem ,
we have

Y (vo) + (1 — ) (v) < (tvg + (1 —t)v) forall 0 <t < 1.
Since Ly is convex, tvg + (1 — t)v € int Ly for all 0 < ¢ < 1. As we have
already shown 1/112 < 0% on int Ly, we get
tf(vo) + (1 — )92 (v) < Syab(tvg + (1 —t)v) forall 0 <t < 1.
By sending t — 0T, we get
YP(v) < by Y(v).

Since wle = —oo outside Ly, we have established 1,/11@ < 0y%. Suppose
that ¥ < Syt on a — {0}. Then the abscissa of convergence of the series
8D er e~ %0w¥(1e(1) is strictly less than 1 by [36, Lemma 3.1.3]. However
the abscissa of convergence of this series is equal to 1 by the definition of
dy. Therefore 0,1 is tangent to 1/}1‘2, finishing the proof. O
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Corollary 4.6. A (I',0)-proper linear form v € aj with 6, = 1 is (I',6)-
critical. Moreover, if 1 > 0 on Ly, then v is (T, 0)-critical if and only if
5¢ =1.

Via the identification aj = {¢) € a* : ) = opy}, Lemma implies the
following identity:

Corollary 4.7. If pg|z is a proper map, then

{ €ay:is(T,0)-criticaly = {¢p € a* : ¢p = o py, 1 is (', II)-critical}.
Proof. To show the inclusion D, suppose 1) = 9 o pg and 1) is (', IT)-critical.
Then for any u € ap and any v' € p,'(u), ¥(u) = ¥(©') > ¢r(v') and

hence ¥(u) > ¥2(u) by Lemma Moreover, if ¥ (v) = ¥r(v), then for
u = pp(v), ¥(u) > 9Y(u) > ¢r(v) = ¥(v) = ¥(u) and hence P(u) = ¥{(u )

proving ¢ is (T, 0)- cr1t1cal For the other inclusion C, suppose that 1 > 1{
on a; and ¢(u) = ¢4 (u) for some u € 01+ Then for any veart, P(v) =
Y(pa(v)) > ¥ (pe(v)) > ¢r(v) by Lemma 3.12] Letve pp (u) be such that

¥ (u) = yr(v) given by Lemma [3.13] Then ¢(v) = ¢(u) = ¢¥(u) = ¢r(v);
so ¢ is (I", II)-critical. O

5. LIMIT SET, #-CONICAL SET, AND CONFORMAL MEASURES
Let I' < G be a discrete subgroup.
Definition 5.1 (6-limit set). We define the #-limit set of I' as follows:
Ag = Ag(T) == {limv; € Fy: 7 € T'}
where lim v; is defined as in Definition
This is a [-invariant closed subset of Fy, which may be empty in general.

Set A = Ap. Denote by Lebg the K-invariant probability measure on Fy.
This definition of Ay coincides with that of Benoist:

Lemma 5.2 ([3], [37, Corollary 5.2, Lemma 6.3, Theorem 7.2], [31, Lemma
2.13]). If T is Zariski dense in G, we have the following:
(1) Ap = {£ € Fy: (7i)« Lebg — D¢ for some infinite sequence v; € I'}
where Dg is the Dirac measure at &;
(2) Ag = WB(A);
(3) Ag is the unique I'-minimal subset of Fy.

Definition 5.3 (6-conical set). We define the #-conical set of I' as
A" = {gPy € Fy : limsupPgMgA™ #£ 0} . (5.1)

For § = II, A" = {gP € F : limsupl'gAt # (0} because My = M
commutes with A. Note that the conical set is not contained in the limit
set A in general even for § = II. For example, if G = PSLy(R) x PSL2(R)
and I' = I'y x I'y is a product of two convex cocompact subgroups, then

A = A(T'1) x A(T'2) while A" = (A(T';) x SY) U (S' x A(T9)).
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f-shadows. For ¢ € X and R > 0, let B(q,R) = {z € X : d(z,q) < R}.
For p € X, the 6-shadow O%(p, q) C Fy of B(q, R) viewed from p is defined
as
O%(p,q) ={9Ps € Fy: g € G, go=p, gAToN B(q,R) # 0}  (5.2)
={gPy e Fy: g€ G, go=p, gMgAToN B(q, R) # 0}.
Clearly, for Og(p,q) = O%(p,q), we have

0% (p, q) := me(Or(p, q))-

Lemma 5.4. We have £ € Ag°" if and only if there exist an infinite sequence
v €T and N > 0 such that £ € ), 0% (0, 7:0).

Proof. The direction = is clear. To see the other direction, suppose that
¢ € N, O%(0,7i0) for some N > 0 and an infinite sequence ~; € T', that is,
there exist sequences k; € K and a; — oo in AT such that & = k; Py and the
sequence y; 'k;a; is bounded. By passing to a subsequence, we may assume
k; converges to some k € K. Since £ = k; Py for all i, we have £ = kF.
Since k; Py = kPy and My = Py N K, we have k; = km; for some m; € Mpy.
Since ;" lkmiai =, 1kia2~ is bounded, we have { = kFPy € Ag®". O

We remark that we may replace o by any p € X in the above lemma.
For each N > 0, we set

Aév = {{ € Fy : there exists v; — oo in I' such that £ € ﬂO?V(o,%-o)} .

By Lemma we have

A= Ay (5.3)
N=1

Definition 5.5. For a #-discrete subgroup I', we say that I' is 0-regular if
for any sequence ; — oo in I', we have

min a(pu(y;)) — oo.
agh

Observe that -regularity is same as 6 Ui(f)-regularity by (2.1) and that
not every 6-discrete subgroup is #-regular.

Proposition 5.6. If ' is 0-reqular, then
(1) A" C Ag;
(2) for any compact subset Q@ C G, the union T'Q U Ay is compact; that
18, any infinite sequence has a limit.

Proof. To show (1), let £ € A§°". Then there exist g € G, a sequence v; € T',
m; € My and a; € AT such that £ = g& and d(gm;a;0,7;0) is uniformly
bounded. Since u(y;) — loga; is uniformly bounded by Lemma and
mingep a(pu(y;)) — oo by the #-regularity, we have minyeg a(loga;) — oo
as ¢ — 0o. We may assume that m; converges to some m € My by passing
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to a subsequence. Therefore as i — oo, gm;a;0 — gmé&y = g&p by Lemma
This implies that v;0 — g€ by Lemma Hence &£ € Ay. For (2),
if 4; € T' is an infinite sequence and ¢; € @, then mingep a(p(viq;)) — oo
by the f-regularity of I' and Lemma Hence the claim is now immediate
from Definition 2.2] and Lemma 2.6l O

Conformal measures. The a-valued Busemann map 8 : F x G x G — a
is defined as follows: for £ € F and g,h € G,

Be(g,h) == 0(g™",€) —a(h™,€)
where o(g~!,¢) € a is the unique element such that we have the Iwasawa
decomposition g7k € Kexp(o(g~!,€&))N for any k € K with & = kP. We

define the ap-valued Busemann map (% : Fy x G x G — ap as follows: for
(&,9,h) € Fp x G x G, we set

BE(g,h) == po(Be, (g, b)) for & € my " (€); (5.4)

this is well-defined independent of the choice of &y [37, Lemma 6.1].
The following was shown for § = II in [31, Lemmma 5.7] which directly
implies the statement for general 6 since py is norm-decreasing.

Lemma 5.7. There exists k > 0 such that for any g,h € g and R > 0, we
have

sup  ||BE(g.h) — polg~'h)|| < KR.
EEO%(go,ho)

Following the work of Patterson-Sullivan ([33], [43]) in rank one, Quint
[37] has introduced the notion of conformal measures in general.

Definition 5.8 (Conformal measures). For a linear form ¢ € aj and a
closed subgroup I' < G, a Borel probability measure v on Fy is called a
(T, ¢)-conformal measure if
drysv
dv
Proposition 5.9. Suppose that I is 0-discrete. For any linear form 1 € ay

which is tangent to w{i at an interior direction of a;, there exists a (I',1))-
conformal measure supported on Ag.

(&) = P BEEM) for all v €T and € € Fy.

Proof. For § = II, this was shown by Quint using the concavity of ¢ [37,
Theorem 8.4]. Now that we established the concavity of the #-growth indi-
cator ¢1€ (Proposition , the same proof works for general 6. O

As in the Patterson-Sullivan construction, the conformal measure in the
above proposition can be obtained as a limit of a sequence of certain weighted
counting measures on I'o. The assumption that i is tangent to LZJ? at an
interior direction of a;r is needed to guarantee that the limiting measure is
supported on the limit set Ag. For a #-regular subgroup I', the union T'oU Ay
is a compact space, and hence the assumption that the tangent direction
belongs to int ag is unnecessary. The proof below is an easy adaptation of
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the standard construction of Patterson-Sullivan (see also [26], Section 2], [42,
Section 5], [11]).

Proposition 5.10. Suppose that I' is 0-reqular. For any v € aj such that
op =1 and > r e ¥We) = oo, there exists a (I',v)-conformal measure
supported on Ay.

Proof. By Proposition I'oU Ay is a compact space. Recall that Py (s) =
> ver e~V o) As §;, = 1, Py(s) < oo for s > 1. and hence we may
consider the probability measure on I'o U Ay given by

1
Vys = e 5¥ (o (7)) 5.5
v, Pw@%; (5.5)

Since the space of probability measures on a compact metric space a
weak™ compact space, by passing to a subsequence, as s — 1, vy, ; weakly
converges to a probability measure, say 7y, on I'o U Ag. Since Py (1) = oo,
vy is supported on Ay. It is standard to check that vy is a (I', 1)-conformal
measure. U

6. TRANSVERSE SUBGROUPS AND MULTIPLICITY OF #-SHADOWS

We say that a discrete subgroup I' < G is 8-antipodal if any two distinct
points § # n in Agjg) are in general position, i.e.,

€ =9gFpipy and 1= gwoPyui(e)
for some g € G. Recall that a discrete subgroup I' < G is called #-transverse

if I is both #-regular and #-antipodal. Note that for 61 C 6o, fs-transverse
implies #;-transverse.

Remark 6.1. We may try to define I" to be #-Antipodal if for any (£,7n) €
Ay x Ay such that ng(g) N 771@1) (n) =0, (&,n) is in general position, i.e.,
§ = gPy and n = gwoP;g) for some g € G. While the #-antipodality implies
the #-Antipodality, the converse direction is not true in general; for instance,
any lattice of PSL3(R) is {c }-Antipodal but not {a;, ae}-Antipodal, i.e.,
not {ay }-antipodal, where «;(diag(u1, ug,u3)) = u; — ujq for i = 1,2.

The main aim of this section is to prove the following proposition, which

is the essential reason why the main results of this paper are proved for
f-transverse subgroups.

Proposition 6.2 (Bounded multiplicity of #-shadows). Assume that T" is 0-
transverse. Let ¢ € ay be a (I, §)-proper linear form. Then for any R, D > 0,
there exists ¢ = q(¢, R, D) > 0 such that for any T > 0, the collection of
shadows

{O%(0,70) € Fo: T < $(n()) < T+ D}
have multiplicity at most q.

The following lemma is a key ingredient of the proof of Proposition [6.2}
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Lemma 6.3. Assume that I" is O-transverse. For any compact subset ()
of G, there exists Cy = Cy(Q) > 0 such that if y1,72 € I' are such that
QNyQa~ ' Ny@b~tm™ £ 0 for some a,b € AT and m € My, then

min{||ug(v2) — to(v1) — (v "72)Il, lle(11) — po(v2) — po(vs ')} S(GC%

Proof. Since ||po(u)|| < |lpouicey(u)|| for all u € a, it suffices to prove the
lemma for  Ui() in place of §. Therefore we may assume without loss of
generality that i(6) = € by replacing 6 with 6 Ui(0).

We prove by contradiction. Suppose to the contrary that there exist
sequences 4o, 1,4, 42,i € @, ai,bi € AT, m; € My and 71 4,72, € I' such that

q0i = Y1,i 91, CL;1 = Y2, QZ,ib;lm;1§ (6.2)
6 (v2:) — o (i) — po(vis v2.0) |l = 00 (6.3)
l126(11,4) — po(v2,6) — mo(va i)l — oo. (6.4)

By Lemma it follows that all sequences 71 i, V2., M, 1.17% and v, Z-lfyl’i
are unbounded. Without loss of generality, we assume that each of these
sequences tends to infinity. By and Lemma there exists ¢/ =
C’(Q) > 1 such that

Slz}p{Huo(%,z’) — po(ai)ll, llpo(v2:4) — po(bi)ll} < €' (6.5)

As T" is O-regular, as i — oo,

min a(log a;), min a(logb;) — oo.
ach agh
Note that a(logwy'a™ wy) = a(i(loga)) = i(a)(loga) for all @ € A and

all « € ®. Since 6 is symmetric, it follows that

min a(log(wy ta; 'wp)), min a(log(wy 'b; twg)) — co. (6.6)
ach ach

Passing to a subsequence, we may assume that ¢; ; converges to some q; € Q.
We claim that

qrwolp € Ng and grmiwéy € Ay (6.7)
for some my € My and w € Ni(A). By Lemmal5.6, we may also assume that
'71_71-1q07io converges to some & € Ag as i — oo. Since yiilqo,io = ql,iai_lo =

quiwo(wala;lwg)o, it follows from Lemma and that & = qrwp&y.
Therefore

qwoép € Ng.
Since A = ApBy, we may write a; = a1 a2, € A;B; and b; = by ;ba; €
AS B . Using Sy = MyB, My, write

-1
% mibgﬂ' =Mm1,;C;M2; € MQB;_MQ.
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Then
VL2, G20 = quia; 'mib;
= qui(ay b14)(ag; mibys) = quimai(ay by ici)ma,.
By passing to a subsequence, we have w € Ni(A) such that for all ¢ > 1,
d; = w_lai%bl,iqw c AT, (6.8)
Then we have the following:
’71_,1'172,1'@,@' = q1i(myw)d;(w ' ma,) € g1 KATK. (6.9)

Since ’)/l_ﬂ-l"}/gﬂ' — 00, by the f-regularity of I', we have min,ep a(logd;) —
oo. We may assume that m;; = m; € My. By Lemma and Lemma
we get

lim vy v2,iq20 = rmiwép € Ag
1—oo
by passing to a subsequence. Hence the claim is proved.

By the f-antipodal property of I', two distinct points of Ay must be in
general position; hence (6.7)) implies that we must have either
wolp = miwéy or miwéy € Ny &.
First suppose that (mjw)é € N, &. By Corollary this implies that
w € My. As afilbu € Ay, using the commutativity of My and Ay, we get
from that d; = (al_’ilbl,i)(w_lciw). Since d; € AT, afjbu € Ay, and
wle;w € By, it follows that af}bu € A;. Hence

po(di) =logay by = —logay; +logbi; = —pg(ai) + pa(b).  (6.10)

Since [|ug(7y, 192.) — pg(d;)|| is uniformly bounded by and Lemma

(6:10) and (6-5) imply that the sequence [|ug(vy }v2:1) + pto(71) — po(72,4)|
is uniformly bounded. This contradicts (6.3)).
Now suppose the other case that wo&y = miwéy. In this case, we have
wép = my wolp = wo(wy 'my wo)és = wolp

since m1 € My and wg L Mypwo = My by the symmetricity of 8. Hence we
have w € wo(Py N K) = woMy = Mywy, and thus wwo_l € Mpy. Since
ww(;1 € My, we may write using that

1)71

ayiby ey (wwg )

wod; fwyt = (wwy
= (al,ibiil)((wwal)_lc;l(wwal)) € AyBy
Since d; € AT, we have wodi_lwal € AT. It follows that aLibl_’Zl € Ay
Hence we have
po(d; ) = po(log(wod; "wy ")) = log ar; —logbr; = pg(a;) — po(bs). (6.11)

Similarly, (6.9) implies that the sequence |[ug(v,. 1y14) — pe(d )| is uni-
formly bounded. Hence it follows from (6.11]) and (6.5) that the sequence
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107 1714) — to(71.2) + po(72,:) || is uniformly bounded, contradicting (6.4)).
This completes the proof. O

Proof of Proposition Suppose that there exists ¢ € (NI O%(o, v0)
and T < ¢(ug(vi)) < T + D for some distinct v; € I', i = 1,--- , n. Setting
Q = KAgK, let Cy = Cy(Q) be as in Lemma[6.3 Set

D'=D'(¢,.Q,D) :=¢|Co+ D
where ||¢|| is the operator norm of ¢ : a9 — R. Then the following number

q:=#{v €T : d(uo(7)) < D'}
is finite by the (T, #)-properness of ¢. We claim that

n < 2¢;
this proves the proposition. It suffices to show that
max min{¢(uo (71 %)), d(o (v )} < D, (6.12)

as this implies that

n=#{, ot <#Mmrvmr iy €T, d(ue(v)) < D'} < 2.

To prove (6.12)), for each ¢ = 1,--- ,n, there exist k; € K and a; € A"
such that £ = k;&p and d(k;a;0,v;0) < R. Then k; = kym; for some m; €
KNPy = My. Hence we have d(vflk‘lalo, 0) < R and d(y;lklmiaio, 0) < R,
which implies

k1 € QNyQay ' NyiQa; 'm;t.
By Lemma [6.3) we have
0 (i) —ro()—ro(v1 )l < Co or  lpe(v1)—pa(vi)—pe(v; ' n)l < Co.

Suppose first that ||ug(y:) — pe(71) — (37 1) < Co. Now we have

d(po(vr i) = dpo(vi " vi) — (o (i) — po(1))) + dpo(vi) — po(71))
< [|l1Co + (1o (i) — d(pe(71))]
< ||¢|Co+ D =D’

where the last inequality follows from ¢(ug(v1)), ¢(ue(vi)) € [T,T + D].
When |[|pg(71) — po(vi) — pa(; *n1)|| < Co, similarly, we have

$(no(v; ') < |6lCo+ D =D
Therefore ((6.12) follows.
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7. DIMENSIONS OF CONFORMAL MEASURES AND GROWTH INDICATORS

For a general Zariski dense discrete subgroup I' < G, Quint [37, Theorem
8.1] showed that if there exists a (I', ¢)-conformal measure on Fi for ¢ € a*,
then

Y > .
The main aim of this section is to prove the following analogous inequality
for f-transverse subgroups, using Theorem whose key ingredient is the
control on multiplicity of shadows obtained in Proposition [6.2

Theorem 7.1. Let I" be a Zariski dense 0-transverse subgroup of G. If there
exists a (I',1)-conformal measure v on Fy for a (I',0)-proper 1) € ay, then

>l (7.1)

Moreover if zwer e ¥oM) = o0 in addition, then dp =1 and 1 is (I',0)-
critical.

Lemma 7.2 (6-shadow lemma). Let I' < G be a discrete subgroup. Let v
be a (T, v)-conformal measure on Fy for ¢ € aj. Suppose that supp v is not
contained in Foy — EN;PQ for any £ € K. Then we have the following:
(1) for some R = R(v) > 0, we have c := inf,cr v(0%(v0,0)) > 0; and
(2) for allr > R and for all v € T,

ce 1lImre=veM) < 1, (00(0,70)) < ell¥linrg=¥ (ko)) (7.2)

where k> 0 is a constant given in Lemma [5.7
In particular, if T' is Zariski dense, (7.2)) holds for any (I',)-conformal

measure V.

Moreover, if I is a O-transverse subgroup, then (7.2)) holds for any (I',4)-
(2

conformal measure v on Fy such that for anyn € Ay, (suppv,n)NF, ) # 0.
Proof. This lemma was proved in [31, Lemma 7.8] for # = II, and a general
case can be proved verbatim, just replacing P and N by Py and Ny respec-
tively and noting that the projection py : a — ag is a Lipschitz map. We pro-
vide a proof for completeness. To prove (1), suppose not. Then there exist
R; — oo and v; € I such that Z/(O%i (v; 0,0)) < 1/i for all i > 1. We write
the Cartan decomposition ; = kl/-aiﬁi_l € KATK and after passing to a sub-
sequence, we may assume that k; — k" and ¢; — ¢ as i — co. We claim that
N9+P9 C lim sup O%j(a;lo, 0). Let h € N; and write a;h = k;b;n; € KAN.
Since aiha;l is bounded and aiha;I = ki(ba; 1)(amia;1) € KAN, it follows
that both sequences biai_1 and n; are bounded. Hence for all large ¢ > 1,
hn; b ta;o € B(o, R;) and hence hPy = hn; 'b; ' Py € O%i(hnflbi_lo, 0).
Since hn;lb;1 = a;lki, we have hPy € O%i (a;lo, 0), proving the claim.
Since O?ﬁ (v; o,0) = &-O%i (a; 'o,0) and ¢; — ¢, it follows that v(¢N, Pp) =

0. Since N, Py is Zariski open in Fy, it follows that supp v N ¢N, Py = 0.
This is a contradiction to the hypothesis. Hence this proves (1). To see



32 DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

(2), let vy € ' and » > R. By Lemma for all ¢ € O%(y o, 0), we have

182(v"0,0)~po(7)]| < ir. Since v(0%(0,70)) = fppr-100 ¢ "% 0D du(e),
(2) follows from (1).

If I is Zariski dense, then Ay is Zariski dense in Jy and is contained in
supp v. Hence any I'-conformal measure v satisfies the hypothesis.

For the last claim in the statement, letting I' be a f-transverse subgroup
and v a (I',9)-conformal measure such that for any n € Ayq), (§,1) € ]-"(gQ)
for some ¢ € suppwv, it suffices to show that inf,er v(O%(v0,0)) > 0. If
not, there exist R; — oo and v; € I' such that V(O%i (v; o,0)) < 1/i for
all ¢ > 1. Write the Cartan decomposition v; = k:gaiﬁfl € KATK and
assume ¢; — £ € K as i — oo. By the same argument as above, we have
supp v N KN; Py =0. By , this implies that every element of suppv is
not in general position with fwoPg). On the other hand, it follows from
7{1 = Eiwg(wala;lwo)woflkfl for all i > 1 that fwo Pg) = lim; 'y;l € Aip).-
By the hypothesis on supp v, there exists an element of supp v in general
position with fwoF;4). This contradicts supp v N EN; Py = (). This finishes
the proof. O

Theorem 7.3. Let I" be a Zariski dense 0-transverse subgroup of G. If there
ezists a (I',v)-conformal measure v on Fy for a (I',0)-proper ¢ € aj, then

oy < 1.
Proof. For each n € Z, we set

Pyn={vel:n<v¢(u(y) <n+1}

Since ¢ is (I, 0)-proper, (U, .oy,n is a finite subset, and hence can be
ignored in the arguments below. Let v be a (I, 4)-conformal measure. We
fix a sufficiently large R > 0 satisfying the conclusion of Lemma for v.
Since 1 is a (T, §)-proper linear form, by Proposition we have that for
all n € N,

1> Y w(0h(o,y0) > Y e V) > =gy,
YE Y n vET Y.
where the implied constants do not depend on n. It implies
#Lyp < e" for each n > 0.
Therefore, we have (cf. [36, Lemma 3.1.1])

log#{y € I : ¢¥(pp(7)) < N}

0y < lim sup
< hmsupilog Z "t =1. ‘
N—o0 N

0<n<N

Hence the claim follows. O
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Proof of Theorem By Lemma and Theorem we have that
0y < 1 and dy is tangent to ¢f€> and therefore we have
Syt = P

Since ¢ is (T, 9)—proper, 1 >0 on Ly by Lemma and hence 1) > (5¢¢ on
Ly. Therefore ¢ > @Z)F on Ly. Since ¢F = —oo outside of Ly, b > 7/)1“ on
ag. If >° o e %) = 0o in addition, then &, > 1 and hence &, = 1. In
particular, w = 0y is tangent to wr. Therefore this finishes the proof.

8. DIVERGENCE OF POINCARE SERIES AND CONICAL SETS

Let 1 € a}. Denote by MY = Mfw} the collection of all (T', ¢)-conformal
(probability) measures on Fy. We suppose that

MY, # 0.

The main goal of this section is to prove the following theorem and discuss
its applications. Note that we do not assume that 1 is (I", #)-proper in the
following theorem.

Theorem 8. 1 Let I' < G be a Zariski dense O-transverse subgroup. If
dover€ o) = 0o (resp. dover€ () < 00), then v(AL") =1 (resp.
(A°°”) =0) for allv e M9

We make the following simple observation:
Lemma 8.2. Suppose that v(Ag™) > 0 for all v € pr. Then
v(Ag®") =1 forallve be.
Proof. If v(A*") < 1 for some v € I\/If;}, then vp = ﬁylp, for F =
Fo — A", belongs to Mf; and vp(Ag") = 0. O
We will use the following;:

Lemma 8.3 (Kochen-Stone Lemma [28]). Let (Z,v) be a finite measure
space. If {A,} is a sequence of measurable subsets of Z such that

o0 N N

A, NAL
Z v(A,) =00 and 1}\1[11 inf Lom=1 Z]:\;l:l i (; ) < 00 (8.1)
n=1 oo (anl V(An))

then v(limsup,, A,) > 0.

Proof of Theorem Suppose that Zwer e () = 50, By Lemma
it suffices to show that v(Ag°") > 0 for all v € My. Let v € My.
We fix a € 0. Since IT" is f-regular, o € 0 is (I',0)-proper; in particular,
a(up(I")) is a discrete closed subset of [0, 00). Therefore we may enumerate
I' = {y1,72, -} so that a(ug()) < a(pg(yn+1)) for all n € N. Fix a
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sufficiently large R which satisfies the conclusion of Lemma Setting
A, := 0% (0,7,0), we then have

i v(A,) > Ze—zﬁ(ue(v)) = 00

n=1 ~yel'

where the implied constant depends only on R. Since limsup, A, C A",
by Lemma [8.3] it suffices to show that

lim inf Cet X V(A 2 Am) _ . (8.2)
Nzee (2 v(A))

Set Q := KA}K where A}, = {a € A" : ||logal| < R} and Cy = Cp(Q)
be as in Lemma[6.3l Define

Ty :=max{n € N: a(us(m)) < alps(yn)) + [lal|Co}

for each N > 1. Clearly, N < T. Unless mentioned otherwise, all implied
constants in this proof are independent of N. Since I' is #-regular, «/q, is
(T", 0)-proper. Proposition implies that the collection A,, N <n < Ty,
has multiplicity at most ¢ = ¢(«, R, ||a||Cp), and hence

> v(Ay) < q-v(F).
N<n<Tn

Therefore by Lemma we have that for all N > 1,

Ty N Ty

Ze—d)(#e(“/n)) — Ze_'%z’(#e(')’n)) < Z I/(An>

n=1 n=1 n=N-+1
N

L U(Fy) = ¥ o) g=vlie(n)) < cvlno(n)) Z e~V (ro(n))
n=1

with all implied constants independent of N. Therefore we have:

TN N
Z e Yro(m) Z e~ ¥(ro(n)) (8.3)
n=1 n=1

Fix N € N. If A, N A,, # 0 for some n,m < N, then there exist k € K
and mg € My such that d(kA*0,7,0) < R and d(kmgA*o,vnm0) < R. Since
K C Q, it follows that

QN %Qagl N mea;ZImgl # )
for some a,, a,, € AT. Hence, setting

Ey={(n,m):n,m < N and ||tg(yn) — (1o (ym) + t6(v" 1)) |l < Co},
By ={(n,m) :n,m < N and ||g(m) — (o(1) + 1e(7, "vm))ll < Co},
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we get from Lemma [6.3] that
dYoovAnnAR) < Y vA)+ D v(Aw). (8.4)
n,m<N (n,m)eE; (n,m)€E>

For all (n,m) € Ey, we have

(o (V') < alpto(Ym) + 1o (Vm )
= (1o (Ym) + 1o (Vi ) — po(m)) + (po(vm))  (85)
< ][ Co + a(po ().

Therefore, by Lemma [7.2]

Z v(Ap) < Z o~ %o (1))

(n,m)EE (n,m)eE1
< b (ko (Ym)) =% (1o (v 1))
N TN
< Z Z e~ Yo (vm)) o= (ko (77).
m=1 j=1

the last inequality follows because, for each fixed 1 < m < N, the corre-
spondence n ¢ Y17, is one-to-one and when (n,m) € E1, v; = v, 7y for
some j < T, < Ty by (8.5). Similarly, we have

N Tn
Z ) < ZZ@ (ko () o =¥ (10 (75))
(n,m)eEy n=1 j=1
By (8.4), we have
N Ty
Z (A, NAL, <<Zze Ppo(yn)) =t (1o (75))
n,m<N n=1 j=1

(; M(%)) (Ze (o )

2 N 2
< (Z e—%ﬁ(ue(%))) < <Z I/(An)>

n=1 n=1

where we have applied for the second last inequality and Lemma
for the last inequality. Hence is verified, completing the proof of the
first statement.

We now suppose that ZweF e o) < 0. Consider the following in-
creasing sequence

AY =limsup 04 (0,70), N >1.
vyel
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Since AS" = (J AY, it suffices to show v(A)) = 0 for all sufficiently large
N > 1. Since
AN U Oke0)
VEL || (V)I1>t
for any t > 0, we get from Lemma [7.2] that for all ¢ > 0,

v(AY) <« Z e~ Yo (7))
YEL[lpo (V)I1>t

where the implied constant depends only on N. Since Zver e Pe() <
oo implies that lim; 00 Y te*W“"('Y)) = 0, we have v(A)) = 0,

finishing the proof.

We note that in our proof of Theorem [8.I] the Zariski dense hypothesis
was used only to apply the shadow lemma (Lemma . Indeed, using the
last statement of Lemma [7.2] we also obtain the following theorem which
will be used in the proof of Theorem [T1.5]

YEDlpo (1>

Theorem 8.4. Let ' be any 6-transverse subgroup (which may be elemen-
tary). Let v be a (I',v)-conformal measure on Fy such that (suppv —

Ag,m) N }"(52) # 0 for every n € Ay If > ver e~V e(™) = oo (resp.
Z%F e~ Yo () < 00), then v(A") =1 (resp. v(AP") =0).

Proof. Denote by Nﬁ) the set of all (I",1)-conformal measure v on Fy such

that (suppv — Ag,n) N ]-"9(2) # () for every 1 € Ajp). Then the statement of
Lemma h(ilds replacing be with Ni: if ve Ni is such that v(Ag") < 1,

then vp = ml/’p for ' = Fy — A" is also an element of NZ}, and hence

the same proof of Lemma works. Since the shadow lemma (Lemma
applies to any v € wa the same proof of Theorem yields Theorem
8.4 ([

Comparing with ¢r. Quint showed that for a Zariski dense discrete sub-
group I' < G, the existence of a (I, 1)-conformal measure on Fy for 9 € aj
implies the inequality

Y opg+2pn-g >Yr ona, (8.7)

where 2pr1_g is the sum of all positive roots which can be written as Z-linear
combinations of elements of IT — 6 (counted with multiplicity) [37, Theorem

8.1]. For f-transverse subgroups, Theoremand (1.2) imply that the term
2pm—g¢ turns out to be redundant:

Corollary 8.5. Let I' < G be a Zariski dense 0-transverse subgroup and
Y € ay be (I',0)-proper. If there exists a (I',1))-conformal measure v on Fy,
then

Yopg >yYr ona. (8.8)
Moreover, if v(AZP") > 0, then 1 o py is tangent to r.
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Proof. The first statement follows from Theorem and Lemma [3.12] For
the second claim, if v(A§°") > 0, then we have > e~ (Were) (7)) = o by
Theorem If 1 o pg were strictly bigger than «r, then by [36, Lemma
3.1.3] we would have . e~ (Woro) (M) < 0o, Therefore 1 o py must be
tangent to ¢r. O

9. PROPERLY DISCONTINUOUS ACTIONS OF I'

Recall ]:9(2) = {(&,m) € Fyg x Fi(p) : &, n are in general position} and con-
sider the action of G on the space .7-"0(2) X ay defined as

g9-(&mu) = (g€, gn,u+ B9~ e)) (9.1)

for all g € G and (§,n,u) € f9(2) X ag. A discrete subgroup I' < G preserves

the subspace Aéz) X ag where

AP = (Ag x Ayg)) N,

When 6 = II, the Hopf parametrization of G/M gives a G-equivariant
homeomorphism between F?) x a and G /M, and hence any discrete sub-
group I' < GG acts properly discontinuously on F (2) x @ and hence the quotient

space F\A%2 ) xaisa locally compact Hausdorff space. For a general 0, this
is not the case. The aim of this section is to establish the following two
theorems on properly discontinuous actions of f-transverse subgroups.

Theorem 9.1. IfT" is a non-elementary 0-transverse subgroup, the I'-action
on Aé2) X g is properly discontinuous and hence

Qp = F\Aéf) X ag
is a locally compact Hausdorff space.

For a (T, §)-proper form ¢ € aj, consider the I'-action

(€ m,8) = (v€, v, s + (B (v €)) (92)
for all y € I" and (&,7,s) € Aé2) x R.

Theorem 9.2. Let I' be a non-elementary 0-transverse subgroup of G and
@ € ay a (I',0)-proper form. Then the action I' on AéQ) x R given by (9.2)
is properly discontinuous and hence

Q, :=T\AP x R

is a locally compact Hausdorff space. Moreover, 2, is compact if and only
if I' is 0-Anosowv.

Definition 9.3. Let Z be a compact metrizable space with at least 3 points.
An action of a countable group I' on Z by homeomorphisms is called a
convergence group action if for any sequence of distinct elements v, € T,
there exist a subsequence 7v,, and a,b € Z such that as k — o0, Yy, (2)
converges to a for all z € Z — {b}, uniformly on compact subsets.
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We will use the following property of a -transverse subgroup:

Proposition 9.4. [23] Theorem 4.16] For a 0-transverse subgroup T', the
action of I' on Ag is a convergence group action.

It is also proved in [23] that Ay is same as the limit set as the convergence
group action; this also follows from Lemma In particular, if " is non-
elementary, then the ['-action on Ay is minimal.

The following observation is useful to transfer statements from 6 symmet-
ric to general 6.

Lemma 9.5. Suppose that T" is 0-antipodal. For any 61 C 0 C 0Ui(0), the
projection map p : Ng, — Ng, given by gFPy, — gFp, is a I'-equivariant home-
omorphism. In particular, for any (I, ¢)-conformal measure v supported on
Ay, for € ay C ag,, the pull back p*v is a (', ¢)-conformal measure on
Ay, .

Proof. 1t suffices to show that p is injective when #y = Ui(#). Suppose that
§ # 1 € Aguip)- By the f-antipodality of I', £ = gPyuj(9) and 1 = gwoPyuj(g)
for some g € G. Then p(§) = gPy, and p(n) = gwoFy,, and hence p(§) #
p(n), showing that p is injective. O
Lemma 9.6. There exists K > 0 such that for all v > 0 and for all g € G,

sup |82 (e, 9) — po(9)| < mr.
£€04(0.90)

Proof. For § = II, this follow from [31, Lemma 5.7]; let x be the constant
for which this lemma is true for & = II. For ¢ € OY(o, go), choose & €
O, (0, go) C F such that mp(§’) = &. Then

||ﬁ£’(€>g) —u(g)|| < k.
Since 5?(679) = po(Be (e, g)), we have

18 (e, 9) — no(9)) Il = po(Be (e, 9) — ()|l < |1Ber(e, 9) — ()|l < k.
0

Definition 9.7. We say a sequence g; € G converges to & € Fy conically
if g; — & in the sense of Definition [2.2] and there exists R > 0 such that
¢ € O%(o,gio) for all 4 > 1. Note that if v; € T’ converges to £ € Fy
conically, then { € AZ°".

The following lemma is stated in [23, Lemma 5.29] in a different language.
We give a more direct proof.

Lemma 9.8. Let g; € G be a sequence which converges to £ € Fy. Then
the following are equivalent:

(1) The convergence g; — & 1is conical.

(2) For any n € Fyg) such that (§,m) € ]-"(52), the sequence g; *(&,n) is

precompact in ]:9(2) .
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(3) For some n € Fyg) such that (§,n) € .7-"(52), the sequence g; ' (£,m) is

precompact in ]:9(2) .

Proof. The map gLy — (9P, gwoPi(g)) is a G-equivariant homeomorphism
from G/ Ly to .7-"9(2). We first prove (1) = (2). Suppose (1). Then there exist
sequences k; € K and a; — oo in A" such that & = k; Py for all 4 and the
sequence gi_lkiai is bounded. If (&,n) € ]-"(gQ), then § = hPy and n = hwo Py
for some h € G. Since hPy = k; Py, h = k;p;m; for some p; € P and m; € My,
by using Py = PMy. In other words, we have k;” 1hm;1 = p; and hence p; is a
bounded sequence in P since k; and m; are bounded sequences. In particular,
it follows from a; € A" that the sequence a;lpiai is bounded. Therefore
the sequence g; 'hLg = g; 'kipiLg = (g; "kia;)(a; 'pia;) Ly is precompact in
G/ Ly, which is equivalent to saying that g, 1(§ ,m) is precompact, proving
(2). The implication (2) = (3) is clear. Now (3) = (1) follows from Lemma
below applied to the constant sequence (&;,7;) = (&, 7). O

Lemma 9.9. Let g; € G and & € Fy be sequences both converging to some
§ € Fy. Suppose that there exists a sequence n; € Fig) converging to some

n € Fi) such that (§,m) € .7:(52) and the sequence gl-_l(fi,m) s precompact
m .7:9(2). Then there exists R > 0 such that

& € 0%(0,g;0)  for alli > 1.

Proof. Under the identification G/Lg = .7-"0(2) given by gLg = (9P, gwoP(g)),
the hypothesis implies that there exists a sequence h; € G with the limit
h € G so that (&,n;) = hiLg for all i > 1 and (§,n) = hLy. It follows from
the precompactness of g;” L(&,m;) that there exists a sequence £; € Lg such
that g, Lhit; is a bounded sequence.

Since Ly = MyADMy, we can write {; = m;a,m) € MygAMjy, and hence we
have g, lhimiafi is bounded. For each i, let w; € K be a representative of
a Weyl element such that w; 1a;wi € AT. After passing to a subsequence,
we may assume that the sequence m; converges to some m € My and w;
is a constant sequence, say w. We claim that w € Mpy. Denoting by a; =
wlalw € AT,

the sequence g, Lh;miwa; is bounded. (9.3)

Moreover, since min,ecg o(p(g;)) — 0o, we have min,ecg a(loga;) — oo as
i — oo by Lemma Since hiym;wa; = gi(gflhimiwai), gi — &, and
g; Lhimiwa; is a bounded sequence by (9.3), we have as i — oo,

himiwai — 5
by Lemma, On the other hand, by Lemma, we have that as i — oo,

h;m;wa; — hmwPy.
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Hence we have hmwPy = £ = hPy. Since m € My, it follows that
w € KNPy = My.

In particular, & = h;m;wPy for all .

For each i, write h;m;w = k;b;n; € KAN in the Iwasawa decomposition.
We then have & = h;m;wPy = k; Py. Since the sequence h;m;w is convergent
and the product map K x A x N — G is a diffeomorphism, the sequences b;
and n; are bounded. Since a; € AT, the sequence a;lniai is bounded, and
so is the sequence b;a; Ynsa;. On the other hand, implies that

the sequence g;lkibmiai = (g;lk‘iai)(bia;lniai) is bounded. (9.4)

Therefore it follows that g, 'k;a; is bounded. This mean that for some R > 0,
& =kiPye O%(o,gio) for all ¢, as desired. O

The following observation will be useful:

Lemma 9.10. Let I' be a non-elementary 0-transverse subgroup and v; € I’
)

an infinite sequence. Let (§;,7;) € Ay~ be a convergent sequence in AéZ).

If the sequence v;(&;,m;) converges in A((,z), then there exists R > 0 so that
either
& € O%(0,v; o) foralli>1; or

n; € Oil_(ze)(o,fyi_lo) for all i > 1.

In particular, if the sequence ~;(§,m) € AéQ) converges in AéQ) for some
&) € A((f), then ~; ! converges conically either to & or 1.

Proof. Set (€,7) = lim;(&,m) € Ay and (€0,m0) = lim;vi(&,m) € Ay
Since the projections Agyig) — Ag and Agui9) — Ajp) are -equivariant
homeomorphisms by Lemma we also let &', &5, & € Agui(p) be the preim-
ages of &, &, and &; for all # > 1 under the projection Ag;p) — Ay respec-
tively, and similarly 7', 17, 7; € Agui(g) the preimages of 1, 1o, and 7;. Note
that & # 1/, & # i, and & # nl foralli > 1and & — &', 0} — 1, vi&l — &),
and vl — nj as i — 0.

Since the action of I' on Ay j(g) is a convergence group action by Propo-
sition there exist a,b € Aguy(g) such that

Vil Aguicoy— (b} = @ (9.5)

uniformly on compact subsets, after passing to a subsequence. That is, for
any compact subsets Cy C Aguip) — {a} and Cp C Aguig) — {0},

#{vi : CpyNCy # 0} < 0,
or equivalently #{~v; 1. v 1C, N Cy # 0} < oco. Therefore we have, as
1 — 00,
—1
Vi ‘Aeui(e)*{a} —b (9.6)

uniformly on compact subsets.
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We claim that

(a,b) = (m,¢") or (a,b) = (&,n) (9.7)
Suppose £’ # b. Excluding finitely many elements from {£ : ¢ > 1}, we may
assume that {£; 14 > 1} U {{'} is a compact subset of Aguig) — {b}. Hence
(9.5) implies that & = lim; ;£ = a. If ' were not equal to b, then we may
also assume that {n] :4 > 1} U{n'} is a compact subset of Ag;g) — {b} and
hence implies 7, = lim; 7, = a. Since &) # 1], this is a contradiction.
This implies 7 = b. Now suppose that £ = b. Since 1 # £ = b, we have
no = lim; v;n; = a by the above argument. This proves the claim.

Now and imply that

L T e S e e I e (9.8)
uniformly on compact subsets.

Since T' is 6 U i(6)-regular, we may assume that by passing to a subse-
quence, the sequence %'_ 1 converges to some point, say, z = lim; fyi_ 1, in
Agui(py in the sense of Definition We claim that z is either ¢ or 7.
Write v, 1= kibil; !¢ KATK using the Cartan decomposition. By passing
to a subsequence, we may assume that k;, — kg € K and ¢; — {y € K.
Choose € Aguig) — {7y, &o> } in general position with Lowo Pyuig) = lim; v,
which is possible by the f-antipodality and non-elementary hypothesis of I'.
Since T is QUi(6)-regular, by Lemma we have min, g ) a(log b;) — oo.
Hence, by Lemma [2.4] we have

’yi_la: — 2 = koPgUi(g).
Therefore, it follows from that 2 = & or 7).

If lim; vy, ' — ¢, then by Lemma there exists Ry > 0 such that
¢ e O%lhw)(o,’yi_lo) for all i > 1. Otherwise, if lim;~; ' = 7/, then we
apply Lemma, to the sequence (n},&) to obtain Ry > 0 such that 1] €
O%;(e)(o, v, o) for all i > 1. Setting R := max(Ry, R2) and taking the
projections Agyjg) — Ag and Aguip) — Ajg), we have either

& € O%(o,’yi_lo) for all i > 1; or
ni € Oil_(f)(o,'yi_lo) for all i > 1,
completing the proof. O

Proposition 9.11. Let I' be a non-elementary 0-transverse subgroup and
¢ € ay a (I',0)-proper form. Let v; € T be an infinite sequence and

(&,mi) € AéQ) a convergent sequence in Ag). If the sequence v;(&;,m;) € Aég)
2)

converges in A92 , then the sequence gp(ﬁgi (’y;l, e)) is unbounded. In partic-

ular, ﬁg (v L e) is unbounded.
Proof. Let ; € T be an infinite sequence and (§;,7;) € Aff) a convergent

sequence in A§2) such that the sequence ~;(&;,7;) converges in AéQ) as well.
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By Lemma [9.10] there exists R > 0 so that either
& € O%(o,’yi_lo) for all 7 > 1; or
ni € Oi]_(f)(o,'yi_lo) for all 4 > 1.
We consider these two cases separately.

Case A. Suppose that §; € O%(o,%_lo) for all ¢ > 1. By Lemma we
have

sup |18, (e, ") — po(y; )| < o0
1

and hence
sup [o(B¢ (e,7; ") — mo(7; )| < oo.
K

The f-regularity of T' implies pi9(7; ') — oo as i — oo. Since ¢ is (T, 6)-
proper, we have ¢(ug(7; 1)) — oo. Therefore

p(BL (vt e)) = —p(BE(e,7; 1)) = —o0,
as desired.
Case B. Now suppose that n; € Oi}%e)(o,’yi_lo) for all ¢ > 1. Then there

exist a sequence k; € K and a sequence a; — 0o in AT such that n; = ki_Pi(g)
for all ¢ > 1 and the sequence ~;k;a; is bounded. By the hypothesis that the

sequence (&;,7;) converges in A((,z), there exists a bounded sequence h; € G
such that (&;,7;) = hiLg, which means that & = h; Py and n; = hjwoP).
Since n; = hinPi(g) = k‘iPi(g) for each i, we have hjwom/p; = k; for some
m; € Mgy and p; € P, using P;g) = M;(p) P. Since the sequences h;, k;, and
m,, are bounded, the sequence p; € P is bounded as well. This implies that
the sequence a; 1piai is bounded since a; € AT. Hence it follows from the
boundedness of the sequence ~;k;a; = vihjwom,pia; = %-h@-wom;ai(a;lpiai)
that
the sequence g; := fyihiwgméai is bounded.
For each i, set m; = wom;wgl € My. Then
ni = hiwoPygy = hywom;Pygy = himswoPyg), & = hiPy = hym; Py
and
9i = Yihiwornja; = ~yihimwoa,.
Using &; = hym; Py = hym;&y, we have
62; (’7;17 6) = 66152 (6, 72) = Bf/z{z (6, g’L) + Bez& (gu ’7@)
= B%.¢.(e,9i) + B¢, (himiwoa, €)
= B9 (e, 9:) + BY (woas, ) + BL (e, m; ;7).

Since g; and mi_lhi_1 are bounded sequences, the sequences Bgi& (e,g;) and
Bge (e,m;lh;l) are bounded by [31, Lemma 5.1].
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Hence it suffices to show that as i — oo,
‘P(ﬁgg (woa;, e)) — oo. (9.9)
Note that ng (woas, €) = po(Bey (woas, e)) and

Ben (woai, €) = Bey (woaiwy *, e) = i(log a;).

Since the sequences g; = ~y;him;woa; and h;m; are bounded and ~; 1gi =
himgwoa;, we have ||u(y; ') — loga;|| = |u(vi) — i(loga;)|| is uniformly
bounded by Lemma and the identity (2.1). Therefore

Sup lp(ro (i) — (po 0 1)(log a;))| < oo.

It follows from the @-regularity of I' and the (I",0)-properness of ¢ that
o(pe(i)) — oo as i — oo, and hence ¢((pg o i)(loga;)) — oo, implying
(19.9). Therefore, we have go(ﬂg_ (v; ', €e)) — co. This finishes the proof. O

Recall the definition of a #-Anosov subgroup given in the introduction.
Anosov subgroups are word hyperbolic. The notion of a f#-conical set in
[23] is equal to the one we use here for §-Anosov subgroups, by the Morse
property of #-Anosov subgroups obtained in loc. cit.

Theorem 9.12. [23) Theorem 1.1] For a 0-transverse subgroup I', T' is -
Anosov if and only if Ag = Ag°".

Proof of Theorems and Suppose to the contrary that the I'-

action on Aég) X ag is not properly discontinuous. Then there exists a compact

subset @) C A((f) x ag such that v;QNQ # () for an infinite sequence v; € T'. In
particular, there exists a sequence (&, n;,u;) € @ such that v;(&,n:, u;) € Q
for all © > 1. By passing to a subsequence, we may assume that the sequences

(&, mi,ui) and ~;(&, M, u;) converge in QQ C AgQ) x ag. On the other hand,

71(6277717'“@) = (,Ylgzafy’tnlauz + /Bg (7;17 6)) fOI' all ¢ Z 1
which cannot converge by Proposition yielding a contradiction. Hence
Theorem [9.1] follows.

The first part of Theorem follows from Proposition [9.11| as well. Now
suppose that ), is compact. Fix a sequence s; — +oo and let £ € Ay.
Choose any n € Ay so that (§,7) € A((f). Then there exists a sequence ~; €
I such that the sequence (¢, 7, 5:) = (%€, i1, s:-+ (823, ', €))) converges
by passing to a subsequence. Hence the sequence ~;(£,n) is convergent in

Aéz) and go(ﬁg('yi_l, e)) — —oo as i — 0o. By Lemma [9.10} the sequence 7; '

converges to £ or 7 conically as i — oo. If 7, L' 1 conically, then as in the
Case B of the proof of Proposition we must have gp(ﬁg(yfl, e)) — +oo,

which is impossible. Therefore, 7, — £ conically as ¢ — oo, and hence
§ € A§°". Since ¢ is arbitrary, we have Ay = AF°". By Theorem Tis
f-Anosov.
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Suppose that I' is Anosov. By [10, Theorem 1.2}, , < oo, and hence it
follows from Lemma [4.5|that §,¢ is (T, 6)-critical. Hence it is a consequence
of the Holder reparametrization theorem for Anosov subgroups ([0, Propo-
sition 4.1], [12, Theorem 4.15]) that €2, is compact (see also [12, Theorem
3.5]). This finishes the proof.

Bowen-Margulis-Sullivan measures on )y and (),. We will need the
following observations:

Lemma 9.13. If g,¢' € G satisfy (§,m) = (9P, gwoP9y) = (' Po, g'woPyp)),
then

B(e,9) +1(8," (e, 9)) = Be(e, ') + (8" (e, g).-

Proof. The hypothesis on g and ¢’ means that ¢’ = gh for some h € Ly.
Since

Bele,g") +i(B (e, g))
= (B2(e.9) +1(B7(e,9))) + (BB, (e, h) + (B0 by, (e, 7))
it suffices to prove that
./ (0
B, (e.h) +i(B 0, (e, 1)) = 0.
Write h = as where a € Ay and s € Sy. Since pg(A N Sy) =0 and
BPG (6, S) =+ i(ﬁwopi(e) (6, 8)) €AN S97
we have
. (6 ./ (0
B (e, 1) + (Bl (1)) = B, (e,a) +i(Biep, , (e.a)).

On the other hand, by the definition of the Busemann map, Sp(e,a) = loga
and Byu,p(e,a) = Bp(e, woawy ') = Ady, (loga) = —i(loga). Hence

Bp(e,a) +i(Buw,p(e,a)) =loga —i*(loga) = 0,
finishing the proof. (]

Lemma 9.14. Let I' < G be a 0-antipodal subgroup and let v and v; be
measures on Ag and Ayg). If at least one of v and v; is atomless, then v X v;

is supported on .7-"6,(2).

Proof. Replacing 0 by i(6) if necessary, we may assume that v; is atomless.
Since I' is f-antipodal, for each £ € Ay, there exists at most one 1 € Ay

such that (§,n) € Fg — ]-'f). Since v; is atomless, we have

(v x 1) (Mg x Aiggy — Fy)) = /A vi ({n€ Mgy : () ¢ 7P} dv(©) =0

O
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Let ¢ € a;. As 1 can be considered as a linear form on a which is pg-
invariant and hence ¢ o1 is a linear form on a which is p;)-invariant, we
have ¢ oi € ai*(e). For a pair of a (I",1)-conformal measure v on Ag and a

(I'; 9 o i)-conformal measure 145 on A;g), we define a Radon measure dm,,,,

on Aéz) X ag as follows:

(50
dml’#i (67 , 'LL) = €w(6£9(‘379)+1(/8710 (&Q)))dz/(g)dlji(n)du (910)

where g € G is chosen so that (£,1) = (gF, gwoPyg)) and du is the Lebesgue
measure on ag. This definition is independent of the choice of g by Lemma
9.13 The measure dm, ,, is left I'-invariant and right Ap-invariant. For I
f-transverse, we denote by

My, (9.11)
the Ap-invariant Borel measure on 2y induced by m, ,,, which we call the
Bowen-Margulis-Sullivan measure associated to the pair (v,14).

For a (T, 0)-proper form ¢, consider the I'-equivariant projection Aé2) X

ag — AéQ) x R given by (§,n,u) — (&,1,¢(u)). By Theorem this induces
an affine bundle with fiber ker ¢:

Qp — Q; (9.12)

it is a standard fact that such a bundle is indeed a trivial vector bundle and
hence we have a homeomorphism

Qp =~ Q, x ker p =~ Q, x R#IL, (9.13)

We denote by the push-forward of the measure m,,,, on Q, by my,, which
is an R-invariant Radon measure on 2,. Then

My = mf,ui ® Lebkercp- (914)

10. CONSERVATIVITY AND ERGODICITY OF THE ag-ACTION

In this section, we expand the dichotomies in Theorem [8.1] to a criterion
on conservativity and ergodicity of ag-action on the quotient space 2y =

F\Aéz) X ag, or equivalently a criterion on conservativity and ergodicity of

R-action on the quotient space {2, = I‘\A((f) x R, when I' is #-transverse and
¢ is (I',0)-proper form. First of all, this makes sense thanks to Theorems
0.1l and 0.2

We recall the notion of complete conservativity and ergodicity. Let H be
a locally compact unimodular group. We denote by dh the Haar measure on
H. Consider the dynamical system (H, €, \) where 2 is a separable, locally
compact and o-compact topological space on which H acts continuously
and A is a Radon measure which is quasi-invariant by H. A Borel subset
B C Q is called wandering if [, 1g(h.w)dh < oo for p-almost all w € B.
The Hopf decomposition theorem says that {2 can be written as the disjoint
union Q¢ U Qp of H-invariant subsets where {)p is a countable union of
wandering subsets which is maximal in the sense that (¢ does not contain
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any wandering subset of positive measure. If A\(2p) = 0, the system is
called completely conservative. If A\(Q¢) = 0, the system is called completely
dissipative. The dynamical system (H,Q,\) is ergodic if any H-invariant
A-measurable subset is either null or co-null. An ergodic system (H, €2, \)
is either completely conservative or completely dissipative. If (H,Q,\) is
ergodic, H is countable and A is atomless, then it is completely conservative
[21, Theorem 14]. The following is standard [30), Lemma 6.1]:

Lemma 10.1. Suppose that A is H-invariant. Then (H,Q, \) is completely
conservative if and only if for A-a.e. x© € €, there exists a compact subset
B, C Q such that [, 1p,(h.x) dh = oco.

The following theorem implies Theorem [I.9]in the introduction. For ¢ €
ay, we denote by

0 0
My, C My,
the space of all (T, ¢)-conformal measures supported on Agy.

Theorem 10.2. Let I' < G be a non-elementary 0-transverse subgroup. Let
Y € ay be (I',0)-proper such that be # (. Then the following are equivalent
to each other.

(1) Yyere —v(e() = oo (resp. Sere Ve < o0);

(2) For anyv € Me, v(AP") >0 (resp v(A") =0);

(3) For anyv € M%, v(AP") =1 (resp. v(A") =0);

(4) For any (v,1s) € Me X Mi/()iz; the I'-action on (A((f), v X 1) 1S com-
pletely conservative cmd ergodic (resp. completely dissipative and
non-ergodic);

(5) For any (v,1) € MZ X MZSZ?, the ag-action on (g, m,,,,) is com-
pletely conservative and ergodic (resp. completely dissipative and
non-ergodic);

(6) For any (v,v;) € MZ, X Mizz and any (I',0)-proper ¢ € aj, the
R-action on (Qu, my,,) is completely conservative and ergodic (resp.
completely dissipative and non-ergodic).

Proof of Theorem[10.4 Note that aj can be regarded as a subspace of ag ; )

and that ¢ € aj is (T, #)-proper if and only if ¢ oiis (I',i(#))-proper. By

Lemma, we have I'-equivariant homeomorphisms Ag — Aguigy — Aj(p)
i(0)

and hence we can push-forward measures in Mz) to M¢Oi. In particular,

szz # (). The equivalence (1) < (2) < (3) follows from Theorem and
the equivalences (4) < (5) < (6) is immediate from the definition of m,,,,

and my,..

The first case. We will show (3) = (4) = (1), which will then finish the
proof of the first case.



CONFORMAL MEASURES 47

In order to show (3) = (4), assume (3). Consider a pair (v,1;) €
MZ X Miﬁif We first claim that the I' action on (AéQ),u X 1;) is com-
pletely conservative. By the hypothesis (3), for v-a.e. £ € Ay, £ belongs
to Ag°", that is, there exist ¢ € G and sequences v; € I', m; € My and
a; € A" such that & = gPy and the sequence h; := vy;gm;a; is bounded.
Since ’yi_l = gmiaihi_l and I' is f-regular, we have gm;a; — & as i — oo
by Lemmas and By Lemma and the boundedness of the se-
quence h;, it implies that the sequence vy, L converges to £. Since yigm;a; is
bounded, it implies that ~;” L ¢ conically. Hence by Lemma we have
that for any 7 € Ayg) such that (§,7) € Ag2), the sequence v;(£,m) € AéZ) is

precompact and hence there exists a compact subset B¢, C Aé2) such that

vi(&,m) € B¢y foralli > 1. By Lemmam this means that the I" action
on (AgZ), v X 1;) is completely conservative. This implies the ergodicity of

the I'-action on (AéQ), v X vj); this was shown in |27, Lemma 7.6] using an
observation due to Blayac-Canary-Zhu-Zimmer [4].

To show the implication (4) = (1), fixing a pair (v,1;) € be X Miézz, we
will show that the complete conservativity of the I'-action on (A((f), v X 1)
implies (1). Since (T, Agz)’ v X 14) is completely conservative, it follows from

Lemma [10.1 that for v x y-a.e. (&,n) € Aéz), there exists a compact subset

By C A((;) and a sequence v; € I' such that v;(§,n) € By for all i.
In particular, after passing to a subsequence, we have that the sequence
vi(§,m) is convergent in Ag2)
conically. In particular, either £ € Ag®" or n € A

.ByLemma Wehave7;1—>£0r'y;1—>n

lc(c’@”) , and therefore

max{v(Ag>"), ri(AfR)} > 0.
In either case, it follows from Theorem [8.1] that
30 = 37 oo () = o,

yel vel’
Now (1) follows.

The second case. From the first case, we have the following equivalences
for the second case:
(1) = (2) & (3) = (4) & (5) < (6).

We finish the proof by showing (1) = (4). Assume (1) and fix (v,14) €
MZ) X M;,Ezz We first show that the I'-action on (Aéz), v X 1) is completely
dissipative. We write the Hopf decomposition Aéz) = Qo UQp and suppose
to the contrary that (v x 15)(Q¢) > 0. By applying Lemma to the

restriction (v x 14)|q,, we deduce that there exists a Borel subset Q C AéQ)
with (v x 14)(©2) > 0 such that for any (£,7) € €, there exist a compact
subset B¢,y C € and a sequence ; € I' such that v;(§,n) € B, for all
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1. Hence after passing to a subsequence, the sequence ~; I£ ,m) is convergent
in Q C A((}z)) and therefore it follows from Lemma [9.10 that ~;” L cor
~v; 1 — n conically. Since (v x 14)(Q) > 0, it implies
max{v(Ag>"), ri(AfG)} > 0.

In either case, it follows from Theorem [8.1] that

Z e~ Yo (v) — Z e~ WD) (M) =

vyel yel’
which contradicts (1). Therefore, (v x 14)(€2¢) = 0 and hence the I'-action

2) o e

on (A,”,v x 15) is completely dissipative.

(2)

Now it remains to show that the I'-action on (A, v x 1) is non-ergodic.
Suppose not. Fixing a (I',#)-proper ¢ € aj, we then have that the system
(R, Qy,, mf,,) is ergodic and completely dissipative. Since any such system
for the action R is isomorphic to the translation action on R with respect to
the Lebesgue measure, it follows that (v x z/i)]ASf) has an atom, say (£o,70) €

A((f). By the ergodicity of (F,A((f),l/ x vi), (v X )|, 2 is supported on
0

the single I'-orbit I'(§p, 7). Since v and v; also have atoms on &y and 79
respectively, we have

(Téo x Tg) N AYY € T(€o, 00)-
Since I' is #-antipodal,

P& C Tyoéo U {mpy}

where Ty, is the stabilizer of 1 in I" and ny is the image of 79 under the I'-
equivariant homeomorphism A;y) — Ay obtained in Lemma In addition,
the I'-equivariance of A;g) — Ay implies that I'y, = F% and hence

T C Tyyéo U {mo}- (10.1)

Since the I'-action on Ay is a convergence group action (Proposition ,
Ay is perfect and equal to the set of all accumulation points of I'§g. On the
other hand, L'y is an elementary subgroup and hence F%EO accumulates at
most two points in Ay ([46], [5]). Therefore, we obtain a contradiction and
hence the I'-action on (Aff)7 v x 1) is non-ergodic. This proves (1) = (4) in
the second case.

Remark 10.3. We remark that our proof of Theorem works as long as T’
is non-elementary (see also Theorem . The Zariski dense hypothesis was
used to apply the shadow lemma (Lemma and the I'-minimality of Ay
(Lemma. On the other hand, as stated in Lemma the shadow lemma
also holds for a non-elementary #-transverse subgroup I' and I'-conformal
measures on Ag. Moreover, the 6-limit set of a f-transverse subgroup is same
as its limit set as a convergence group acting on the 6-limit set [23] Lemma
4.20] (see also the proof of Lemma . Hence I acts minimally on Ay by
the non-elementary assumption. These observations make all the proofs in
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this paper work for non-elementary 6-transverse subgroups and conformal
measures on #-limit sets, without the Zariski dense hypothesis.

Proof of Theorem Theorem implies Theorem |1.4{1). Theorem
[1.42) follows from Theorem and the following corollary.

Corollary 10.4. Let I' be a Zariski dense 0-transverse subgroup. If 1 € aj
is (T, 0)-proper with M?p # 0 and Evel“ e ¥o() = o, then #Mz) =1.

Proof. By Theorem and the hypothesis on ¢, we have §,, = 1. By Propo-
sition for a f-transverse subgroup I', there exists a (I",1)-conformal
measure on JFy;g), and is supported on Ag jg). Moreover it is unique by
[11]. It then follows from Lemma that there exists a unique (I",1))-
conformal measure on Fy as well. O

11. LEBESGUE MEASURES OF CONICAL SETS AND DISJOINT DIMENSIONS
In this section, we discuss some of consequences of Theorem
Lebesgue measure of conical sets.

Theorem 11.1. If I' < G is a Zariski dense 0-transverse subgroup, then
Ag=Fy or Leby(Ag°") = 0.
Moreover, in the former case, 0 is the simple root of a rank one factor of G.

We need the following proposition for the second claim of the above the-
orem.

Proposition 11.2. Suppose that ' is O-antipodal and that Ag = Fy. Then
0 consists of the simple root of a rank one factor of G.

Proof. We write G as the almost direct product of simple real algebraic
groups G = G1---Gp,. Let n be an index such that 6 contains a simple
root of G,. Denoting by 7, : G — G, the canonical projection, m,(FPp) is
a proper parabolic subgroup of G,, and the limit set of 7, (") in G, /7, (Pp)
is equal to all of G, /m,(FPy). Suppose that the rank of G, is at least 2. Fix
kPyuice) € Aguip) for some k € K. Let w be a Weyl element given by Lemma
below such that w ¢ ng;rPQ U Py. Noting that ’woN‘;Ui(e)PQUi(Q)MG -
woPeJrPg = woNngPg, we have

w ¢ woNy ;g PoviceyMo U Paui(e) Mo- (11.1)

Since F = K/M and kMy € Fy = K/My = Ay, we may choose m € My

such that kwmP € Ap, and hence kwm Py gy € Aguig)- Then by ,
wm ¢ wONg—Bi(g)PGUi(e) U Pyui(e)-

The condition that wm ¢ Py ;) implies that kwm Py N kPyuigy = 0.

Also, by Corollary the condition that wm ¢ wONGJ[Ji(G)Pgui(,g) implies

that (kwmPauie), kPauie)) & G-(Paui(e), woPaui()), that is, kwmPyy) is
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not in general position with Py;). This yields a contradiction to the Ui(6)-
antipodality of I'. Therefore for any n such that # contains a simple root of
G, the rank of G, must be one. If there are n # n’ with this property, the
map v — (mn(y), T (7)) must be a discrete subgroup of G, G, (because
of the f-regularity property) with full limit set G,,/mn(FPy) X Gy /7 (Pp).
However this yields a contradiction to the #-antipodal property, because the
product of two rank one geometric boundaries does not have the antipodal
property. Therefore 8 must be a singleton, proving the claim. (Il

We now prove the following lemma which was used in the above proof.

Lemma 11.3. If G has a connected normal subgroup Gy, of rank at least 2
and 6 C Il contains a simple root of Gy, then we can find a representative
of a Weyl element w € Ng(A) such that w ¢ woN, Py U Py.

Proof. By replacing € with the intersection of  and the set of simple roots of
G, we may assume without loss of generality that G = G,. Since the rank
of G is at least 2, we can find a representative w € N (A) of a Weyl element
such that Adw(aj) is equal to neither a; nor —a;Za). If w were contained

in PpN K = My, w would commute with ay and hence Ad,, ( ;) = ai.
Therefore w ¢ Py. On the other hand, if w € woN Py, then wy Lw e My by
Corollary E and hence Ady(af) = Ady,(ag) = ajze) which contradicts

our choice of w. Hence w ¢ woN, T Py. O

Proof of Theorem Note that Leby is a (I", 2popy)-conformal measure
where p is the half sum of all positive roots of (g,a™) [37, Lemma 6.3]. If
Ay # Fp, Lebg(AgP") < Lebg(Ay) < 1 as Fy— Ay is a non-empty open subset.
Therefore Lebg(A§°") = 0 by Theorem The second claim follows from
Proposition [11.2

Disjoint dimensions and entropy drop. Recall from the introduction
that

DY = {y € a} : (T, 0)-proper, 0y = 1,Py(1) = oo}.
Lemma 11.4. For a Zariski dense 0-transverse I', we have
DY = {4 € a}y : (T, 0)-proper, 3 a (T, 1))-conformal measure, Py(1) = oo} .

Proof. The inclusion C follows from Proposition[5.10} If there exists a (', ¢)-
conformal measure on Fy for (I', §)-proper ¢, then §;, < 1 by Theorem [7.3] .
If 6y < 1, Py(1) < co. Hence this implies the inclusion D.

Note that any subgroup of a #-transverse subgroup of G is again a 6-
transverse subgroup.

Theorem 11.5 (Disjoint dimensions). Let I' < G be a non-elementary 0-
transverse subgroup. For any subgroup Ty < T' with Ag(To) # Ap(T), we
have

DN DY, = 0.
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Proof. Let ¢ € qu. By Proposition there exists a (I, v)-conformal
measure v on Ap(I'). By Theorem (Theorem B.4), v(AP"(T)) = 1.
While v is also a (I'g, ¥)-conformal measure, since Ag(I'g) # Ag(I") and hence
Ap(T") — Ap(To) is a non-empty open subset of Ay(T"), we have v(AP"(T'y)) <
1. Again by Theorem (Theorem , Z'yel“o e Y1) < oo, Hence
V¢ quo, finishing the proof. O

This turns out to be equivalent to the entropy drop phenomenon which
is proved by Canary-Zhang-Zimmer [I1, Theorem 4.1] for § = i(6):

Corollary 11.6 (Entropy drop). LetI' < G be a non-elementary 6-transverse
subgroup. Let T'g < T' be a subgroup such that Ag(Io) # Ag(I'). If 9 € aj
with 6y (I') < 0o and 3_ cr, e o)V () = oo, then

6y (Lo) < Gy(T).

Proof. Suppose that 6,(I') < oo; this implies that 1 is (I', #)-proper. Let
T'p < T be a non-elementary subgroup such that Zﬂ/ero e 0uT0)Y(ke(M) = oo
and 5w(ro> = 5¢(F). If we set ¢ = 5w(r) VRS (5¢<F0) -1, then (5¢(F) =
64(L'o) = 1. Since 0o = > e~ ?re(7) < > ver e W) we have ¢ €
DN DIQO. By Theorem this implies that Ag(Ty) = Ag(T"), proving the
corollary. O

12. CONFORMAL MEASURES FOR 6-ANOSOV SUBGROUPS
Note that I" is §-Anosov if and only if T' is § Ui(#)-Anosov by ({2.1)).

Proposition 12.1 ([19], [23] Theorem 1.1}). IfT' is 0-Anosov, then

(1) T is O-regular;
(2) Lo — {0} Cintay;
(3) -antipodal.

Therefore a 6-Anosov subgroup is f-transverse. We remark that a stronger
antipodality is known for 6-Anosov subgroups: if I' is -Anosov and OI'
denotes the Gromov boundary of I', then there exists a pair of I'-equivariant
homeomorphisms fy : O' — Ay and fig) : OI' — Ay such that if & #
n € 9T, then fp(§) and fip)(n) are in general position. Our definition of
f-antipodality does not require existence of such homeomorphisms.

Sambarino [42], Theorem A] showed that if I' is #-Anosov, then the set
{p € a5 : 6y = 1} is analytic and is equal to the boundary of a strictly
convex subset {1 € aj : 0 < §y, < 1}. By the duality lemma ([38, Section
4], 41, Lemma 4.8]), we then deduce the following property of the §-growth
indicator:

Theorem 12.2. IfT" is 0-Anosov, then ¢1€ 1s strictly concave and vertically
tangent.
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The vertical tangency means that if % (u) = 1 (u) for some (I, §)-critical
form ¥ and u # 0, then u € int Ly. Recall

T = {4y € a}: ¢ is (I, H)-critical}.
Lemma 12.3. If T is 8-Anosov, then
T = {¢ € aj : (T, 0)-proper, 5, = 1} = DY.

Proof. The second identity is proved in [42, Section 5.9]. It suffices to prove
the inclusion C in the first equality due to Corollary Suppose that
Y € ap is tangent to 1#191. By the vertical tangency property of wIQ of a 0-
Anosov subgroup (Theorem , ¥ > % on 9Ly. It follows that ¢ > 0 on
Ly. Hence by the second claim in Corollary @, oy = 1. ([

Lemma 12.4. IfT" is a non-elementary 0-Anosov subgroup and there exists
a (I, v)-conformal measure on Fy for 1 € aj, then ¢ is (I', 0)-proper.

Proof. 1f 3 cp e Y1) < oo, then it implies that #{y € T : ¢¥(ug(y)) <
T'} is finite for any T' > 0. Therefore ¢ is (I, 6)-proper. If 3 e~ ¥e(7) =

oo, then v(Ay) = 1 by Theorem This implies that lim sup % log #{v €
I (ug(y)) < T} < oo by [42, Theorem A]. Therefore, 9 is (I", #)-proper
in either case. [l

Proof of Theorem .11l Let I' be Zariski dense #-Anosov. Note that a
0-Anosov group is f-transverse. Hence (1) follows from Theorem since
¥ is (', 0)-proper by Lemma

Since Ag = Ag°" (Proposition(12.1)), (a) < (b) in (2) follows from Theorem
The equivalence (b) < (c) follows from Lemma and Sambarino’s
parametrization of the space of all conformal measures on Ag as {dy, = 1},
together with (1) shown above. For (3), let ¢ be a (T, #)-critical form. By
Lemma and Proposition there exists a (I, ¢)-conformal measure
vy on Ag, which is the unique (I', 1)-conformal measure on Ag by [42, The-
orem A] (see also Corollary . Since } . o e~ Y1) = oo, by Theorem
any (I",1)-conformal measure on Fy is supported on Ay. Moreover, by
Theorem the ag-action on (Qg, m,, oy »oi) 18 completely conservative and
ergodic. This finishes the proof.

Proof of Corollary Since a #-Anosov subgroup is #-transverse and
Ag = Ag°" (Theorem , we deduce from Theorem that either Ay =
Fp or Lebg(Ag) = 0. In the former case, 0 is the simple root of a rank one
factor Gy of G with Fy = Ay by Proposition the projection of I' to G
is a convex cocompact subgroup with full limit set, and hence a cocompact
lattice of Gj.

Corollary follows from Theorem and Lemma
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Proof of Corollary By Theorem and Lemma [12.3] it remains
to prove the second part. Since I'g < I', we have @ZJ?O < 1/Jf€. Suppose that

1/11@0 (u) = ¢%(u) for some u in the interior of Ly(T'). Then there exists a

tangent form v to ¥ at u by Corollary Since 1/1120 < ¥ and 1/11‘20 (u) =
w{i(u), 1) is also tangent to w{io at u. Hence ¢ € 7}9 N ’7}?0, contradicting the

first part.
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