ERGODIC DICHOTOMY FOR SUBSPACE FLOWS
IN HIGHER RANK

DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

ABSTRACT. In this paper, we obtain an ergodic dichotomy for direc-
tional flows, more generally, subspace flows, for a class of discrete sub-
groups of a connected semisimple real algebraic group G, called trans-
verse subgroups. The class of transverse subgroups of G includes all
discrete subgroups of rank one Lie groups, Anosov subgroups and their
relative versions.

Let T' be a Zariski dense O-transverse subgroup for a subset 6 of
simple roots. Let Ly = AgSp be the Levi subgroup associated with 6
where Ay is the central maximal real split torus and Sy is the product
of a semisimple subgroup and a compact torus. There is a canonical I'-
invariant subspace Qg of G /Se on which I acts properly discontinuously.
Setting Qp = F\Qg, we consider the subspace flow given by Aw = exp W
for any linear subspace W < ag. Our main theorem is a Hopf-Tsuji-
Sullivan type dichotomy for the ergodicity of (¢, Aw, m) with respect
to a Bowen-Margulis-Sullivan measure m satisfying a certain hypothesis.

As an application, we obtain the codimension dichotomy for a 6-
Anosov subgroup I' < G: for any subspace W < gy containing a vector
u in the interior of the #-limit cone of ', we have codim W < 2 if and
only if the Aw-action on (¢, m,) is ergodic where m, is the Bowen-
Margulis-Sullivan measure associated with wu.
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1. INTRODUCTION

Let G be a connected semisimple real algebraic group. In this paper, we
prove an ergodic dichotomy for directional flows, more generally, for subspace
flows, for a class of discrete subgroups, called transverse subgroups.

Fix a Cartan decomposition G = K AT K where K is a maximal compact
subgroup of G and AT = expa™ is a positive Weyl chamber of a maximal
split torus A of G. We denote by u : G — a* the Cartan projection defined
by the condition g € K exp u(g)K for g € G. Let II be the set of all simple
roots for (Lie G,a™). Fix a non-empty subset

0 C II.

Let Py be the standard parabolic subgroup corresponding to 6 and consider
the 6-boundary:

Fo =G/ Pp.

Let i = —Ady, : II — II denote the opposition involution where wyq is the
longest Weyl element. We say that two points § € Fy and n € Fjy are
in general position if the pair (£,7) belongs to the unique open G-orbit in
Fo X Fi(g) under the diagonal action of G.

Let I' < G be a Zariski dense discrete subgroup. Let Ag denote the #-limit
set of I, which is the unique I-minimal subset of Fy (Definition . We
say that I' is 0-transverse if it satisfies

o (O-regularity): liminf,er a(u(y)) = oo for all o € 6;
e (0-antipodality): any distinct £, € Agyj(g) are in general position.

The class of #-transverse subgroups includes all discrete subgroups of rank
one Lie groups, 6-Anosov subgroups and their relative versions. Note also
that every subgroup of a f-transverse subgroup is again f-transverse. The
class of transverse subgroups is regarded as a generalization of all rank one
discrete subgroups, while the class of Anosov subgroups is regarded as a
generalization of rank one convex cocompact subgroups.

In the rest of the introduction, we assume that I' is a Zariski dense 6-
transverse subgroup of G. The usual homogeneous space I'\G turns out
to inadequate in studying dynamical properties associated with I' unless
6 = II. We introduce an appropriate substitute of I'\G for a general 6-
transverse subgroup. Consider the Langlands decomposition Py = AySyNyg
where Ay is the maximal split central torus, Sy is an almost direct product
of a semisimple algebraic group and a compact central torus and Ny is the
unipotent radical of Py. The diagonalizable subgroup Ay acts on the quotient
space G /Sy by translations on the right. The left translation action of I" on
G/Sp is in general not properly discontinuous (cf. [2], [21]) unless § =II in
which case Sy is compact. However the action of I' is properly discontinuous
on the following closed Ap-invariant subspace ([20, Thm. 9.1]):

Q= {lg] € G/Sy : 9Py € Ng, guwoP) € Aigg)} =AY x ag
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where A((f) consists of all pairs (§,7) € Ag X Aj) in general position and
ag = log Ay (see (5.2])). Therefore the quotient space

Qp = F\Qg

is a second countable locally compact Hausdorff space equipped with the
right translation action of Ay which is non-wandering. By a subspace flow
on )y, we mean the action of the subgroup Ay = exp W for a non-zero
linear subspace W < ay.

The main goal of this paper is to study the ergodic properties of the sub-
space flows on {2y with respect to Bowen-Margulis-Sullivan measures. The
most essential case turns out to be the action of one-parameter subgroups of
Ay which we call directional flows. We first present the ergodic dichotomy
for directional flows.

Directional flows. Fixing a non-zero vector u € a;, we are interested in
ergodic properties of the action of the one-parameter subgroup

Ay = {aw, = exptu: t € R}

on the space €2y. We say that & € Ay is a u-directional conical point if there
exists g € G such that £ = gPy and [g]a,, € 29 belongs to a compact subset
for some sequence t; — +o00. We denote by A§ the set of all u-directional
conical points, that is,
Ay :={gPy € Np : [g] € Qp,limsup[g|az, # 0}.
t——+o00

See Definition and Lemma for an equivalent definition of A} given
in terms of shadows. It is clear from the definition that Ay is an important
object in the study of the recurrence of A,-orbits. Another important player
in our ergodic dichotomy is the directional -Poincaré series for a linear
form ¢ € ay. To define them, we set 9 := pg o p to be the ag-valued Cartan
projection where py : @ — ay is the unique projection, invariant under all
Weyl elements fixing ay pointwise. The u-directional 1)-Poincaré series is of
the form

(1.1) 3 vl

'YEFu,R

where I'y, g := {y € " : [|ug(v) — Ru|| < R} for a Euclidean norm || - || on
ag and R > 0. In considering these objects, it is natural to restrict to those
linear forms ¢ such that ¢ o yy : I' — [—¢,00) is a proper map for some
e > 0, which we call (T', §)-proper linear forms. A Borel probability measure
v on Fy is called a (T, v)-conformal measure if

drysv
dv

where v,v(D) = v(y~'D) for any Borel subset D C Fy and Bg denotes the
ap-valued Busemann map defined in (2.3). For a (I',6)-proper ¢ € aj, a

(&) = M) for all y € T and € € F
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(T, ¥)-conformal measure can exist only when ¢ > ¥ where % : ay —
{—o0} U0, 0) is the #-growth indicator of T [20, Thm. 7.1].

Here is our main theorem for directional flows, relating the ergodicity
of A,, the divergence of the u-directional Poincaré series and the size of
conformal measures on u-directional conical sets:

Theorem 1.1 (Ergodic dichotomy for directional flows). Let I" be a Zariski
dense O-transverse subgroup of G. Fix a vector u € a;' — {0} and a (T, 0)-
proper linear form ¢ € aj. Let (v,11) be a pair of (I',9)) and (T',¢ o i)-
conformal measures on Ag and Ay respectively, and let m = m(v,v;) denote
the associated Bowen-Margulis-Sullivan measure on Sy (see )

The following conditions (1)-(4) are equivalent. If m is u—balancecﬂ then
(1)-(6) are all equz’valent. Moreover the first cases of (1)-(6) can occur only

when (u) = %( )
max( gg)))) >0 (resp. v(Ay) =0= I/i(A;EZ))));
(V (u))) =1 (resp. v(Ay) =0= Vi(AiEZ))))'
ws m) ] conservatwe (resp. completely dissipative);
u, M) is ergodic (resp. non-ergodic);
5 D el 5 € ~¥e() = oo for some R > 0 (resp. S
oo for all R > 0);

(6) v(A) =1 =wi(Ally) (resp. v(AF) =0 =1i(Afy))).
Remark 1.2. (1) When 6 = II, or equivalently when Sy is compact, The-

orem was obtained for a general Zariski dense discrete subgroup
I' < G by Burger-Landesberg-Lee-Oh [7, Thm. 1.4].

(2) The u-balanced condition is required only for the implication (5) =
(6) in the first case, which takes up the most significant portion of
our proof.

(3) When G is of rank one, this is the classical Hopf-Tsuji-Sullivan di-
chotomy (see [33], [15], [34], [30, Thm. 1.7], etc.).

Q2
>
IJ>IJ>

er, eV <
u,R

Our proof of Theorem is a generalization of the approach of [7] to
a general 6. The main difficulties arise from the non-compactness of Sy
which we overcome using special properties of f-transverse subgroups such
as regularity, anitipodality and the convergence group actions on the limit
sets.

Subspace flows. We now turn to the ergodic dichotomy for general sub-
space flows. Let W be a non-zero linear subspace of ay and set Ay =
{expw : w € W}. The W-conical set of I' is defined as

(1.2) AgV = {gPy € Fp : [g] € Qp, limsup[g](Aw N AT) £ 0}

IThe measure space (X, m) with {as, }-action is called u-balanced if for any bounded
Borel subset O; C X with m(O ) > 0 for s = 1,2, there is C' > 0 such that for all T" > 0,
f m(O1 N O1a¢y)dt < Cfo m(O2 N Ozayy, )dt
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see Definition and Lemma for an equivalent definition of AgV given
in terms of shadows. For R > 0, we set

(1.3) Pwr=A{yel:|uly) - Wl <R}

Theorem 1.3 (Ergodic dichotomy for subspace flows). Let ¥, v, v, m be as
in Theorem . The following (1)-(4) are equivalent. If m is W-balanced
as in Definition[8.9, then (1)-(6) are all equivalent.
(1) max (v(AJ), (A ) > 0 (resp. v(A)) =0 = u(Ay)));
2) max (v(AJ), n(Af))) =1 (resp. v(AJ) =0 = u(A{)));
) (Qg, Aw, m) is conservative (resp. completely dissipative);
) (g, Aw, m) is ergodic (resp. non-ergodic);
5) 2velwr e V(M) = oo for some R > 0 (resp. > el n e~ <
oo for all R > 0);

(6) v(AY) = 1= (Al

(
(3
(4
(

(W
i(0) ) (resp. v(AY) =0= yi(A.( )))
Remark 1.4. When W = ag, a similar dichotomy was obtained in ([23], [§],
[20]). In this case, the W-balanced condition of m is not required in our
proof; see Remark Hence we give a different proof of the ergodicity
criterion for the Ag-action [20, Thm. 1.8].

A special feature of a transverse subgroup is that for any (I',#)-proper
form 1, the projection Qy — Aff) xR given by (£,7n,v) — (&,1,1(v)) induces

a ker ¢-bundle structure of €y over the base space {1y, := F\Agz) x R with
the I'-action given in (j5.8]). In particular, we have

Qg ~ Qy x kerp.

The vector bundle £y — Q,, plays an important role in our proof of Theorem
Indeed, the ker ¢)-bundle Qy — Q; factors through the space Qo :=

F\AéQ) x ag/(W Nker ). Denote by m” the Radon measure on Qe so that
m = m’ ® Lebyrkeryy. The W N ker ¢-bundle (29, m) — (Qyo, m’) enables
us to adapt arguments of Pozzetti-Sambarino [26] in obtaining Theorem
from the ergodic dichotomy of the directional flow A, on Qo for any u € W
such that ¥ (u) > 0

Remark 1.5. We remark that the Zariski dense hypothesis on I' is used
to ensure the non-arithmeticity of the Jordan projection of I'. Namely,
the Zariski density of I' implies that its Jordan projection A(I') generates
a dense subgroup in a [4], and hence the subgroup generated by pg(A(T"))
is dense in ay. This is a key ingredient in the discussion of transitivity
subgroup (Proposition . Therefore, Theorem (and hence Theorem
1.1]) works for a non-Zariski dense #-transverse subgroup I' as well, provided
that pg(A(I')) generates a dense subgroup of ag.
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The case of §-Anosov subgroups. A finitely generated subgroup I' < G
is called 6-Anosov if there exist constants C,C” > 0 such that for all o € 6
and y €T,

a(p(v)) > Cly| = C'

where | -| is a word metric with respect to a fixed finite generating set ([22],
[14], [17], [13]). By the work of Kapovich-Leeb-Porti [17], a f-transverse
subgroup I' < G is 6-Anosov if Ay is equal to the f-conical set Ag®" of I'
(see for definition). If I" is a #-Anosov subgroup, then for each unit
vector u in the interior of the limit cone Ly, there exists a unique linear
form 1, € aj tangent to the growth indicator ng at u and a unique (T, v, )-
conformal measure v, on Ag. Moreover u — v, and u — v, give bijections
among the directions in int Ly, the space of tangent linear forms to w{i,
and the space of I'-conformal measures supported on Ay ([24], [32], [20]).
Let m, = m(vy, yi(u)) denote the Bowen-Margulis-Sullivan measure on g
associated with the pair (vy,14(,)). We deduce the following codimension
dichotomy from Theorem

Theorem 1.6 (Codimension dichotomy). Let I' < G be a Zariski dense -
Anosov subgroup. Let u € int Ly and W < ay be a linear subspace containing
w. The following are equivalent:
(1) codimW <2 (resp. codimW > 3);
(2) vu(AY)) =1 (resp. v, (A})) =0);
(3) (g, Aw,my) is ergodic and conservative (resp. mnon-ergodic and
completely dissipative);
(4) Z'YGFW,R e~ Vulto) = oo for some R > 0 (resp. S
oo for all R >0).

)
W,R

We can view this dichotomy phenomenon depending on codim W as con-
sistent with a classical theorem about random walks in Z? (or Brownian
motions in R?), which are transient if and only if d > 2. Since codim W =
#60 — dim W, we have the following corollary:

Corollary 1.7 (f-rank dichotomy). Let I' < G be a Zariski dense 6-Anosov
subgroup and let u € int Ly. Then #0 < 3 if and only if the directional flow
Ay on (Qg,my,) is ergodic.

For a #-Anosov subgroup I, €y, is a compact metric space ([31] and [9,
Appendix]), and hence Qo is a vector bundle over a compact space €y,
with fiber RImW Noreover, we have the following local mixing result due
to Sambarino [32, Thm. 2.5.2] (see also [10]) that for any fi, fa € CC(QWQ)H

codim W

(1.4) lim ¢ 2 fi(@) fa(wap)dmi, () = mumy, (f1)my, (f2)

t—o00 QWO

2The notation C.(X) for a topological space X means the space of all continuous
functions on X with compact supports.
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where k,, > 0 is a constant depending only on u. In particular, m), satisfies
the u-balanced hypothesis. The key part of our proof lies in establishing the
inequalities (Propositions and that for all large enough R > 0E|

T codim W 1/2 T codim W
(/ t_2dt> < Y el <</ t e dt
1

v€l'w,r 1
Yupo (7)) <OT
for T' > 2 where 6 = 1, (u) > 0. Therefore, >
only if codim W < 2.

Remark 1.8. (1) When 6 = II and dim W = 1, Theorem and hence
Corollary were obtained in [7]; in this case, codim W < 2 trans-
lates into rank G' < 3.

(2) For a general 6, when dimW = 1 and codim W # 2, Sambarino
proved the equivalence (1)-(3) of Theorem using a different ap-
proach [32]; for instance, the directional Poincaré series was not dis-
cussed in his work. This was extended by Pozzetti-Sambarino [26]
for subspace flows, but still under the hypothesis codim W # 2, us-
ing an approach similar to [32]. Thus, Theorem settles the open
case of codim W = 2.

(3) We mention that in ([I8], [19], [26]), the sizes of directional /subspace
conical limit sets were used as a key input in estimating Hausdorff
dimensions of certain subsets of the limit sets.

(4) Theorem|[1.6/and Corollary [1.7]are not true for a general f-transverse
subgroup, e.g., there are discrete subgroups in a rank one Lie group
which are not of divergence type. Consider a normal subgroup I' of
a non-elementary convex cocompact subgroup I'g of a rank one Lie
group G with Tg/T' ~ Z? for d > 0. In this case, by a theorem of
Rees [29, Thm. 4.7], d < 2 if and only if T is of divergence type, i.e.,
its Poincaré series diverges at the critical exponent of I'. Using the
local mixing result [25, Thm. 4.7] which is of the form as with
geodimW/2 renlaced by t%/2 and Corollary the approach of our
paper gives an alternative proof of Rees’ theorem.

(5) Corollaries and reduce the divergence of the u-directional
Poincaré series to the local mixing rate for the A,-flow. For example,
we expect the local mixing rate of relatively 6-Anosov subgroups
to be same as that of Anosov subgroups, which would then imply
Theorem and Corollary for those subgroups.

el n e‘¢u(#9(7)) = oo if and

Examples of ergodic actions on I'\G/Sy. By the work of Guéritaud-
Guichard-Kassel-Wienhard [I3], there are examples of Anosov subgroups
which act properly discontinuously on G /Sy ([13, Coro. 1.10, Coro. 1.11]), in
which case our rank dichotomy theorem can be stated for the one-parameter

3The notation f(T) < g(T) means that there is a constant ¢ > 0 such that f(T) <
cg(T) for all T in a given range.
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subgroup action on I'\G/Sp. We discuss one example where G = SLg4(R).
For2<k<d—-2 let H, = <Ik SLdk(R)) ~ SLg_x(R) where I}, denotes

the (k x k)-identity matrix. Set a;(diag(vi, - ,vq)) = v; — vi41 for 1 <i <
d—1;s0 Il ={a; : 1 <i<d—1} is the set of all simple roots for G. We
have Sy = Hy, for 0 = {1, -+ ,a;}. Let I' < G be a II-Anosov subgroup.
Then I' acts properly discontinuously on SL4(R)/SLg—x(R) by [13, Coro.
1.9, Coro. 1.10] and hence €y is a closed subspace of I'\ SL4(R)/ SLgq_x(R).
Therefore any Radon measure on {2y can be considered as a Radon measure
on I'\ SL4(R)/SL4—_x(R). Then Theorem implies the following:

Corollary 1.9. LetT' < SLy(R) be a Zariski dense I1-Anosov subgroup (e.g.,
Hitchin subgroups). Let 0 = {a1,--- ,ax} for k > 2, and u € int Ly. For
k = 2,3, the Ay-action on (I'\ SL4(R)/ SL4—r(R), my,) is ergodic. Otherwise,
the action is non-ergodic.

We remark that the entire Ag-action on I'\ SL4(R)/SL4—r(R) is ergodic
for all k > 2 by [20].

Acknowledgements. We would like to thank Blayac-Canary-Zhu-Zimmer
for providing us with the key ingredient of Proposition

2. PRELIMINARIES

Throughout the paper, let G be a connected semisimple real algebraic
group. In this section, we review some basic facts about the Lie group
structure of G, following [20], Sec. 2] which we refer for more details. Let P <
G be a minimal parabolic subgroup with a fixed Langlands decomposition
P = M AN where A is a maximal real split torus of G, M is the maximal
compact subgroup of P commuting with A and N is the unipotent radical
of P. Let g and a respectively denote the Lie algebras of G and A. Fix
a positive Weyl chamber at < a so that log N consists of positive root
subspaces and set AT = expat. We fix a maximal compact subgroup K < G
such that the Cartan decomposition G = K AT K holds. We denote by

p:G —at

the Cartan projection defined by the condition g € K exp u(g)K for g € G.
Let X = G/K be the associated Riemannian symmetric space, and set
o= [K] € X. Fix a K-invariant norm || - || on g and a Riemmanian metric
d on X, induced from the Killing form on g. The Weyl group W is given by
Nk (A)/Ck(A); the quotient of the normalizer of A in K by the centralizer of
Ain K. Oftentimes, we will identify YW with the chosen set of representatives
from Nk (A), and hence treat W as a subset of G.

Lemma 2.1. [3| Lem. 4.6] For any compact subset Q C G, there exists
C = C(Q) > 0 such that for all g € G,

sup |lu(qrgqe) — p(g)l| < C.
q1,92€Q
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Let ® = ®(g, a) denote the set of all roots, @ C P the set of all positive
roots, and II C ®T the set of all simple roots. Fix an element wg € K of
order 2 in the normalizer of A representing the longest Weyl element so that
Ady, 0™ = —a™. The map

i=—Ady,:a—a

is called the opposition involution. It induces an involution ® — ® preserv-
ing II, for which we use the same notation i, such that i(«) o Ad,,, = —a for
all a € ®. We have u(g—!) =i(u(g)) for all g € G.

Henceforth, we fix a non-empty subset § C II. Let Py denote a standard
parabolic subgroup of G corresponding to 8; that is, Py is generated by M A
and all root subgroups U,, where a ranges over all positive roots which are
not Z-linear combinations of IT — 8. Hence Py = P. Let

ag = ﬂ ker o, a;“:agﬁaJr,
acll-0
Ag =expag, and Ag = exp a;.
Let pg : a — ay denote the projection invariant under w € W fixing ay
pointwise. We also write
Lo ::pgou:G%a;.

Definition 2.2. For a discrete subgroup I' < G, its 6-limit cone Ly = Ly(T)
is defined as the the asymptotic cone of uy(I') in ay, that is, u € Ly if and
only if u = limt; g (7;) for some ¢t; — 0 and ~; € I". If T is Zariski dense, Ly
is a convex cone with non-empty interior by [3]. Setting £ = L1, we have
pg(ﬁ) = E@.

We have the Levi-decomposition Py = LgNg where Ly is the centralizer of
Ap and Ny = R, (Fy) is the unipotent radical of Py. We set My = K N Py C
Ly. We may then write Ly = AypSy where Sy is an almost direct product
of a connected semisimple real algebraic subgroup and a compact center.
Letting By = SyN A and B = {b € By : a(logb) > 0 for all a € II — 8}, we
have the Cartan decomposition of Sp:

Sy = Mngr May.

Note that A = AypBg and AT C Ag‘B;. The space a; = Hom(ag,R) can
be identified with the subspace of a* which is pp-invariant: aj = {1 € a* :
1 opg = 1)}; so for 01 C B2, we have ag, C ag,-
The 6-boundary Fy and convergence to Fy. We set

Fo=G/Py and F=G/P.
Let

o F — Fy

denote the canonical projection map given by gP +— gFy, g € G. We set
(2.1) €0 = [Ps] € Fop.
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By the Iwasawa decomposition G = KP = KAN, the subgroup K acts
transitively on Fy, and hence Fy ~ K /Mjy.

We consider the following notion of convergence of a sequence in G to
an element of Fy. For a sequence g; € G, we say g; — oo f-regularly if
mingep a(p(g;)) — 00 as i — oo.

Definition 2.3. For a sequence g; € G and & € Fy, we write lim; , ¢; =
lim g;o = £ and say g; (or g;o € X) converges to & if

e g; — o0 f-regularly; and

o lim; .o ki€ = € in Fy for some k; € K such that g; € k; ATK.

Definition 2.4. The 0-limit set of a discrete subgroup I' can be defined as
follows:

Ag = AQ(F) = {lim% eFyp:v € F}
where lim ; is defined as in Definition If I' is Zariski dense, this is the
unique I-minimal subset of Fy ([3], [28]). If we set A = Ay, then mg(A) = Ay.
Lemma 2.5 ([20, Lem. 2.6-7], see also [24] for § = II). Let g; € G be an
infinite sequence.
(1) If g; converges to & € Fyg and p; € X is a bounded sequence, then

lim g;p; = €.
1—00
(2) If a sequence a; — oo in AT O-reqularly, and g; — g € G, then for
any p € X, we have
lim g;a;p = g&p.
71— 00

Jordan projections. A loxodromic element g € G is of the form g =
hagmh™! for h € G, a, € int AT and m € M; moreover a, € int AT is
uniquely determined. We set

(2.2) Mg) :==logay € a® and y,:=hP€F,
called the Jordan projection and the attracting fixed point of g respectively.

Theorem 2.6. [4] For any Zariski dense subgroup I' < G, the subgroup
generated by {\(7) : v is a lozodromic element of I'} is dense in a.

Busemann maps. The a-valued Busemann map 8 : F x G X G — a is
defined as follows: for £ € F and g, h € G,

Be(g,h) == o(g™",€) —a(h™,€)
where o(g71, £) € ais the unique element such that g~k € K exp(o(g~1,&))N
for any k € K with £ = kP. For (§,g9,h) € Fyp x G x G, we define
(2.3) BE(g.h) = po(Be,(g,h)) for & € w5 (€);

this is well-defined independent of the choice of &y [28, Lem. 6.1]. For
p,q € X and £ € Fy, we set Bg(p, q) = /Bg(g,h) where g,h € G satisfies
go = p and ho = q. It is easy to check this is well-defined.
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Points in general position. Let PJr be the standard parabolic subgroup
of G opposite to Py such that Py N P+ Lg. We have P+ = woPygyw
and hence
Fio) = G/Fy .
For g € G, we set
gg =9gPy and gy := gwoP,p);

as we fix # in the entire paper, we write g*© = g;t for simplicity when
there is no room for confusion. Hence for the identity e € G, (e*,e”) =
(Py, P) = (&, wo&i(g)). The G-orbit of (e*,e™) is the unique open G-orbit
in G/ Pg x G/P, under the diagonal G-action. We set

(2.4) -7:9 = {(99 99 ):g € G}
Two elements { € Fy and n € Fjp) are said to be in general position if
(& n) € ]-'9(2). Since P9+ = LgN(;|r where N(j is the unipotent radical of P,
we have
(2.5) (94 .¢5) € .7:(52) if and only if g € N, Pp.

The following lemma will be useful:

Lemma 2.7. [20, Coro. 2.5] If w € W is such that mw € N, Py for some

m € My, then w € My. In particular, if (wp, wo&;g)) = (wg ey) € ]:(2)
then w € My.

Gromov products. The map g — (¢g7,97) for g € G induces a homeo-

morphism G/Lg ~ .7-"(52). For (&,7n) € .7-"(52), we define the §-Gromov product
as
G%(&m) = B¢(e, 9) + (8" (e, )
where g € G satisfies (g7, g7) = (£,7n). This does not depend on the choice
of g [20, Lem. 9.13].
Although the Gromov product is defined differently in [6], it is same as
ours (see [24, Lem. 3.11, Rmk. 3.13]); hence we have:

Proposition 2.8. [0, Prop. 8.12] There exists ¢ > 1 and ¢ > 0 such that
for all g € G,

MG (g7, 97)) < d(o,9Lgo) < ¢llG% (g7, 97) + ¢
3. CONTINUITY OF SHADOWS

In this section, we recall the definition of #-shadows and prove certain
basic properties. They will be used in later sections but they are of inde-
pendent interests.

For p € X and R > 0, let B(p, R) denote the metric ball {x € X :
d(xz,p) < R}. For ¢ € X, the -shadow O%(q,p) C Fy of B(p, R) viewed
from ¢ is defined as

(3.1) O%(q,p) ={gPs € Fo: g € G, go=gq, gAToN B(p, R) # 0}
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FIGURE 1. Shadows

We also define the #-shadow O%(n, p) C Fy viewed from 7 € Fjg) as follows:

O%(n,p) ={gPp € Fp: g € G, guwoPyp =1, go € B(p, R)}.

For any 7 € Wizel) (1), we have

(3.2) O%(¢,p) = m6(Op(q,p)) and  O%(n,p) = ma(OR (7, p)).
Note that for all g € G and n € X U Fyp),
(3.3) g0%(n,p) = O%(gn. gp).

We define the ag-valued distance ag : X x X — ay by

ag(q,p) = polg~'h)

where ¢ = go and p = ho for g,h € G. The following was shown for § = 11
in [24, Lem. 5.7] which directly implies the statement for general 6 by (3.2]).

Lemma 3.1. There exists k£ > 0 such that for any ¢,p € X and R > 0, we
have

sup  ||B¢(q,p) — ag(q,p)l| < KR
£€0%(q,p)

Lemma 3.2. For any compact subset Q C G and R > 0, we have that for
any g € G and h € Q,

O%(h07 gO) - O%—FDQ (07 gO) and O%(gh07 0) C O%—l—DQ (gv O)
where Dg 1= maxpeq d(ho,0).

Proof. Note that d(ao,pao) < d(o,po) for all a € AT and p € P. Let
h € Q and ¢ € O%(ho,go). Then for some k € K and a € A", we have
¢ = hkPy and d(hkao,go) < R. Write hk = ¢p € KP for { € K and
p € P by the Iwasawa decomposition G = KP. Since d({ao,lpao) < D,
we have d({ao, go) < d(fao,lpao) + d(hkao,go) < Dg + R. Therefore £ €
O% +Dg (0, go), proving the first claim. The second claim follows from the

first by (3.3). O
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Lemma 3.3. Let p € X, n € Fyp) and v > 0. If a sequence n; € Fyy)
converges to n € Fig), then for any 0 <e <r, we have

O)_.(ni,p) C O}(n,p) C O, (mi,p) for all large i > 1.

Proof. Note that the first inclusion follows easily from the second inclusion.
Let g € G besuch that gt € OY(n,p), g~ = n and d(go,p) < r. Since n; — n,

we have (g%, n;) € ]:9(2) for all large ¢ > 1, and hence (g7, ;) = (b, h;) for
some h; € G. In particular, g = h;q;n; for g;n; € LyNy = Py. By replacing
h; with h;q;, we may assume that g = h;n;. Since h; — g~, we have
n; — e, and hence n; — e as i — oo. Therefore for all 4 > 1 large enough
so that d(n;o,0) < e, we have d(h;o,p) < d(h;o, hin;0) + d(go,p) < € +r,
and hence g* = hj € 0%, (n;,p). 0

We show that for a fixed p € X and n € F(4), shadows Of(n,p) vary
continuously on a small neighborhood of 7 in G'U Fyg) (see [24, Lem. 5.6]
for 6 =1II):

Proposition 3.4 (Continuity of shadows on viewpoints). Let p € X, n €
Fipy and r > 0. If a sequence g; € X converges to n as i — oo, then for any
0 <e<r, we have

(3.4) Of_.(qi,p) C O%(n,p) C O, (qi,p) for all large i > 1.

Proof. We first prove the second inclusion which requires more delicate ar-
guments. By and the fact that K acts transtively on Fj), we may
assume without loss of generality that n = P = wy and p = o. Write
¢ = klajo with k/ € K and a; € AT using Cartan decomposition. Since
¢ — wy , we have kjwy; — w, and a; — oo i(0)-regularly.

By Lemmam we may assume k; = e without loss of generality. By ,
the claim follows if we replace 6 by any subset containing 6. Therefore we
may assume without loss of generality that a(loga;) is uniformly bounded
for all a € IT —i(6).

Let £ € Of(Pi(g),o), i.e., £ = hPy for some h € G such that d(ho,0) < r
and hwo P9y = Pg). Since Pg) = P M) and wo_lMi(g)wo = My, we may
assume hwy € P by replacing h with hm for some m € My. We need to
show that for some p; € Py such that hp;o = a0, d(p;AT0,0) < &; this then
implies d(hp; A% 0,0) < r+ ¢, and hence ¢ € OY, _(a;0,0).

We start by writing

a;'h = kiain; € KAN, a; = c;d; € AgBy and n; = uv; € (Sp N N)Ny.
As hwy € P and a; € AT, the sequence a; Yhwoa; is bounded. Since
a; thwoa; = (kswo)(wy ta;woai)(a; twy 'njwoa;) € KANT,

it follows that both sequences wg léiwgai and a; lwa lniwoai are bounded.
Since wo_lniwo = (wo_luiwo)(wo_lviwo) € Si(g)Ni—(’—a) and a; € At with

a; — 00 i(#)-regularly, the boundedness of a; 1wa Ln;woa; implies that v; — e
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as i — oo and wu; is bounded. On the other hand, the boundedness of
waléiwoai implies that a; € woaflwalAc for some C' > 0. As a; — o0 i(0)-
regularly, it follows that ¢; € A; and ¢; — oo B-regularly. Moreover, since
max,er—i(g) @(log a;) is uniformly bounded, the sequence d; is bounded.
As dju; € Sp, we may write its Cartan decomposition d;u; = m;bym! €
M(;B;Mg. Since ¢; — oo f-regularly and d;u;, and hence b; € B;, is
uniformly bounded, we have c;b; € AT for all large i > 1. Set p; =
(m;ldmi)_l € Py. Recalling a;lh = k;a;n;, we have hp;o = hn;léflo =
a;0. Moreover, we have
1

1 1

—1~— / —1~— —
pi(cibi)o =n; "a; lmicibimio =n; a Le.diuzo = v; o

using the commutativity of My and Ay as well as the identity m;b;m;, = d;u;.
Since v; — e, we have d(p;(c;b;)o,0) — 0. This proves the second inclusion.

We now prove the first inclusion. Similarly, as in the previous case, we
may assume that ¢; = a;o for a; € AT and n = Py Let n; € 0?__(a;0,0),
i.e., n; = a;k; Py and d(a;k;b;0,0) < r — ¢ for some k; € K and b; € AT, Set
g; = a;k;b;, which is a bounded sequence. We will find n; € Ny such that
(gini)~ = Pyp) and d(gin;0,0) < r from which 1; € O%(n, 0) follows.

We may assume that g; converges to some g € G. Since a; — oo i(6)-
regularly, the boundedness of ¢g; = a;k;b; together with Lemma implies
that b; — oo f-regularly. Since a;k; — Pg) and a;k; = gywo(wy 1bi_ wo)wy LN
gwoPyg) as i — oo by Lemma we have

gwoPyg) = Pyg)-
On the other hand, as i — oo, we have
9i(Po, woPyg)) = g(Pa, woPyg)) = (9Ps, Pyg))-

Hence for all large 7 > 1, g;Fp is in general position with Py and thus we
have a sequence h; € GG such that

(9iPo, P,py) = hi(Pa, woPyg))-

As g;Py = h;Py, we write h; = g;n;¢; for some n; € Ny and ¢; € Ly.
Note that (gin;)~ = h; = P). We now claim that n; — e, from which
d(gin;o,0) < d(g;n;o, g;o) + d(g;o,0) < r follows for all large 1.

Since hi(Pp, woPy9)) = (9:F%, Pio)) — (9P Pyg)) = 9(Po, woPyy)), we
have h;Lg = gin;Lyg — gLg. Since g; — g and n; € Ny, we have n;, — e as
1 — 00. This finishes the proof. O

Lemma 3.5. Let S > 0. For any sequence g; — oo in G 0-regularly,
the product Og(o,gio) X Oge)(gio, 0) is relatively compact in f9(2) for all
sufficiently large © > 1.

Proof. Consider an infinite sequence (£;,7;) € O%(o, gio) x Oig(g) (gio,0). By
the #-regularity of g; — oo, we have g;o — & as i — oo for some & € Fy,
after passing to a subsequence. For each i, we write § = k; Py for k; € K
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such that d(k;a0,g;0) < S for some a; € AT. In particular, a; — oo 6-
regularly. After passing to a subsequence, we may assume that k; — k € K
so that k;a;0 — kPy as i — oo. On the other hand, the boundedness
of d(k;a;o,g;0) < S implies that k;a;o0 — & by Lemma Therefore,
¢ = kP = lim; §;. By passing to a subsequence, we may assume that n; — n

for some 1 € Fjp. Since gio — &, and n; € Oge) (gio,0), it follows from

Proposition that n € O;(g) (&,0). In particular, (§,n) € fég)- 0

4. GROWTH INDICATORS AND CONFORMAL MEASURES ON JFy

Let I' < G be a Zariski dense discrete subgroup. We say that I' is 6-
discrete if the restriction pglp : T' — ag is a proper map. Observe that
I is f-discrete if and only if the counting measure on py(I') weighted with
multiplicity is locally finite i.e., finite on compact subsets. Following Quint’s

notion of growth indicators [27], we have introduced the following in [20]:

Definition 4.1 (#-growth indicator). For a f-discrete subgroup I' < G, we
define the #-growth indicator z/)le i ag — [—00,00] as follows: if u € ag is
non-zero,

(4.1) i (u) = IIUH}}Elng

where C C ag ranges over all open cones containing u, and 1[)191(0) = 0. Here

—o0 < Tg < o0 is the abscissa of convergence of s — > =sllpoe (M,

v€T g (7)€C ©
We showed ([20, Thm. 3.3]):
o Y < 003
° @blq is upper semi-continuous and concave,
o Ly= {%Q >0} = {¢1€ > —o0}, and ¢1€ >0 on int Ly .
Let ¢ € aj. Recall that a (I', ¢))-conformal measure v is a Borel probabil-
ity measure on Fy such that
dry.v
dv
A linear form 1) € aj is said to be tangent to ¢1Q at v € ag — {0} if ¢ > 1/)1@
and 9 (v) = Y4 (v).
Proposition 4.2 ([28, Thm. 8.4], [20, Prop. 5.8]). For any ¢ € aj, which is

tangent to wl(i at an interior direction of a(";, there exists a (I',1)-conformal
measure supported on Ag.

(&) = PN for all v € T and € € Fp.

Recall that I' is called 0-transverse, if
o I' is O-regular, i.e., liminf,cr a(u(y)) = oo for all a € #; and
e [' is 0-antipodal, i.e., any distinct §,m € Agyg) are in general posi-
tion.
Recall also that ¢ € aj is (I', 6)-proper if ¢ o g|r is a proper map into
[—€,00) for some £ > 0.
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Theorem 4.3 ([28, Thm. 8.1] for § = II, [20, Thm. 7.1] in general). Let
I’ be a Zariski dense O-transverse subgroup of G. If there exists a (I',)-
conformal measure v on Fy for a (I',0)-proper 1 € aj), then

¥ = g
Moreover, if Z%F e Vo) = oo in addition, then the abscissa of conver-
gence of s — zwer e=5%e(M) s equal to one.

Shadow lemma. The following is an analog of Sullivan’s shadow lemma
for I'-conformal measures on Fy which was proved in [20, Lem. 7.2].

Lemma 4.4 (Shadow lemma). Let v be a (T',v)-conformal measure on Fy.
We have the following:
(1) for some R = R(v) > 0, we have ¢ := inf,cr v(0%(v0,0)) > 0; and
(2) for allr > R and for all v € T,
(4.2) ce 1lmre=ve™) < 1, (00 (0, 70)) < ell¥linrg=¥ (ko))

where K > 0 is a constant given in Lemma 3.1

If T is a O-transverse subgroup with #MNg > 3 (which is not necessarily
Zariski dense), then (4.2) holds for any (T',)-conformal measure supported
on Ny.

5. DIRECTIONAL RECURRENCE FOR TRANSVERSE SUBGROUPS

In this section, we suppose that I' is a Zariski dense #-transverse subgroup
unless mentioned otherwise. The I'-action on G /Sy by left translations is not
properly discontinuous in general, but there is a closed subspace Qo CG /S
on which I' acts properly discontinuously.

We first describe a parametrization of G/Sy as f9(2) X ag, which can be
thought as a generalized Hopf-parametrization. For g € G, let

9] = (97,97 B0 (e.9)) € Fy” x ay.
Consider the action of G on the space .7-'(52) X ag by
(5.1) 9.(&,m,b) = (g€ gn, b+ BL(g ™" e))

where g € G and (§,7,b) € .7-"9(2) X ag. Then the map G — }"g) X ag given by
g — [g] factors through G/Sy and defines a G-equivariant homeomorphism
G/Sg ~ ]:9(2) X ag.

The subgroup Ay acts on G/Sy on the right by [g]a := [ga] for g € G and
a € Ap; this is well-defined as Ay commutes with Sy. The corresponding

Agp-action on .7-"9(2) X ag is given by
(&mn,b).a = (&n,b+loga)

for a € Ap and (&,m,b) € ]:9(2) x ag. For 6 = II, this homeomorphism is
called the Hopf parametrization of G/M.
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Set A((f) = (Ag x Ajp)) N .7:(52), and define
(5.2) Qo = A§2) X g
which is a closed left I'-invariant and right Ag-invariant subspace of .7-"9(2) X ag.

Theorem 5.1. [20, Thm. 9.1] If T is O-transverse, then I' acts properly
discontinuously on Qg and hence

Qp := F\Qg
is a second countable locally compact Hausdorff space.
By [3], the set {(y,,y,-1) € A® ;4 €T loxodromic} is dense in A®) (see

(2.2) for the notation y,). Hence the projection {(mg(y), 7i(p)(yy-1) € Ag2) :

v € I loxodromic} is dense in Aéz). This implies that €y is a non-wandering

set for Ay, that is, for any open subset O C €y, the intersection O N Oa; is
non-empty for some sequence a; € Ay going to oc.
Fix u € a; — {0} and set

at, = exptu  for t € R.

We describe the recurrent dynamics of a one-parameter subgroup A, =
{aw, : t € R} on Qy. That is, we describe for a given compact subset
Qo C g, when Qgay, comes back to Qg and what the intersection Qpa,NQo
looks like for ¢ large enough. This is equivalent to studying Qas, N I'Q for
a compact subset Q C Qg C G/Sp. Difficulties arise because Sy is not
compact, and the #-transverse hypothesis on I' is crucial in the following
discussions.

We will need the following lemma more than once: note that the product
AJ By is generally not contained in AT.

Lemma 5.2. Suppose that d; € AgBé|r and v; € T' are infinite sequences
such that v;hym;d; is bounded for some bounded sequences h; € G with
h;P € A and m; € My. Then after passing to a subsequence, for all i > 1,

di € wATw™  for some w € W N M,.

Proof. By passing to a subsequence, there exists w € W such that d; =
we;w™ L for some ¢; € AT. We will show that w € My. We may also assume
that as ¢ — oo, hy =& h € G and m; =& m € My. The f-regularity o
T implies that v, ' — oo 6 U i(6)-regularly. Since hf := ~yhimwecw™" is
bounded, it follows that ¢; — oo in AT 6 Ui(6)-regularly as well by Lemma

By Lemma (1)—(2), we have that 4; 'h/ converges to a point in Aguico)
and hym;wc;w™" — hmw Py ;g) as i — co. Therefore, we have himw Py;g) €
Aguip)-  Since hPyuipy € Aguiey by the hypothesis, it follows from the
6 U i(¢)-antipodality of I' that either wPy ;) = m_ngui(g) or wPp i)
is in general position with mflpgui(g). In the former case, by consider-
ing the projection to Fy, we get wPy = m 1Py and hence w € My as
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desired. It remains to show that the latter case does not happen. The lat-
ter case would mean that wP;) is in general position with m~1Py = Py.
By Lemma this implies w € woM;g) = Mowo. Writing d; = a;b; €
AgB;r and w = mowg with mg € My N Ni(A), we get ¢; = wldyw =
wo_laiwo(wo_lmalbimgwo) S Ai(g)(si(g) N A) = Ai(G)Bi(G)- As ¢ € At C
A;EG)B;(Fa)v we must have w, Laiwg € Ai—b)’ which is a contradiction since
a; € AZ. This finishes the proof. O

Proposition 5.3. Let Q C Qy be a compact subset and u € aj —{0}. There
are positive constants C; = C1(Q),Ca = C2(Q) and R = R(Q) such that if
[h] € QN YQa—yy, for some h € G, v €T and t > 0, then the following hold:

(1) llpoly) —tul < Cr;
(2) (hF,h™) € 0%(0,70) x O (70, 0);
(3) G/ (h*, h7)| < Co.

Proof. Let Q' C G be a compact subset such that Q'My = Q' and Q C
Q'Syp/Sp.

To prove (1), suppose not. Then there exist sequences ; € T', h; € G and
a sequence t; — +o0o such that ||ug(y;) — tiul| > ¢ and [h] € Q N ViQa_t
for all ¢ > 1. By replacing h; by an element in h;Sy, we may assume that
hi € @ and there exist h, € Q" and s; € Sp such that h;s;a, = Vil
Since Q C Qg, we have h;Py € Ag. By replacing h; with an element of
hiMy, we may assume that h;P € A as well. Since t; — +00, v; — o0 in
I'. Writing s; = m;bym/) € MgB;Mg in the Cartan decomposition of Sy,
we have h;m;as,bim), = v;h,. By Lemma by passing to a subsequence,
there exists w € W N My such that as;,b; = we;w ™! for some ¢; € AT. Since
ci = ag,u(whw) € AT N AgBy, It follows that

po(ci) = po(logci) = tiu.

Since hymjwe;w™ ml = ~;hl, we get that the sequence ||ug(vi) — po(ci)||
is uniformly bounded by Lemma Hence ||po(yi) — tiu| is uniformly
bounded, yielding a contradiction.

To prove (2), suppose not. Then there exist sequences h; € @, v; € I and
t; > 0 such that [h;] € QNy;Qa_t,., and b ¢ OY(o,~;0) or hy ¢ O;(G) (vi0,0)
for all « > 1. As before, we may assume h; € @', h;P € A and for some
h; € @ and s; € Sy, we have h;s;jar,, = vih}. If v; were a bounded sequence,
0%(0,7;0) — Fp and O;(e)(o,%'o) — Fi(p) as i — o0, which cannot be the
case by the hypothesis on hli. Hence v; — oo in I'. As in the proof of Item
(1), there exist w € WN My, b; € B;r, m;,m, € My and ¢; € AT such that

1

-1, 7/ /
himywe,w™ " my; = vihy;
and ag;u,b; = we;w™ . Then we have hym;wPy = h;Py and hymwe; =

yihlm! w. Since him)tw € @', it follows that

0 .
hi € O%,(hio,yi0) foralli>1
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where Ry = 1 + max,ecqQ/ug/uw, 4(qo,0) > 0. On the other hand, we have

1

/ — -1
himiwwo = yihim!~ wwo (woci wy ),

1

which is a bounded sequence. Since 'yihimi wwalPi(g) = himiwwo_lPi(g) =

hiwo P9y, we have
h; € Oié? (yihbo,0) for all i > 1.
Therefore, by Lemma we have
(R, hy) € OQRO( 0,7i0) X 012(2)(%0, o) foralli>1,

17"
yielding a contradiction.
To prove (3), as before, we may assume h € Q' and h = yhia_¢s for
some h; € Q' and s € Sy. Then we have

Bhi(e,h) = Bhi(e,7) + B (h1_17 e) + B2 (e, arus)
B (en) = 8,0 (e.7) + B () + B (e arus).
Since 8%, (e, a_ius) + i(ﬁe@(e, a_ws)) = G%et,e”) =0, we deduce that
GO (W, 17) = B (e) + (87 (1) + Bl (b e) + (87 (7 e)),
Observe that [|%, (hite) + (51(6)(h1 .e))|| < 2maxgeqr d(go,0). Since
(h*,h™) € O%(0,70) x Oiéa) (v0,0) by Item (2), it follows from Lemma
that
180+ (e.7) — (Yl < 5B and (8,2 (v, €))) — iy (v )| < 6 R

Since 1g(7) = (i) (7)), we get |84+ (e,7) + (B (e,7))]| < 2R, and
hence

IG°(h*, h7)| < 2R+ Qm%xd(qo, 0).
qeQ’
This finishes the proof. ([

Directional conical sets. A point £ € Fy is called a #-conical point of I"
if and only if there exist R > 0 and a sequence ; — oo in ' such that £ €
O%(o,’yio), that is, & = k; Py for some k; € K such that d(k;A"o,v;0) < R,
for all ¢ > 1. Using the identification Fyp = K /My, the f-conical set of T is
equal to

(5.3) A" = {kMy € Fy: k € K and limsupTkMyA™ #£ 0} .

For r > 0, we set
Lupi={v €T :|uo(y) — Rul <r}.

Definition 5.4 (Directional conical sets). For u € aj — {0}, we say £ € Fy
is a u-directional conical point of I' if there exist R, > 0 and a sequence
vi — oo in I'y » such that for all ¢ > 1,

5 € O?{(O7 ’Yio)v
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that is, £ = k; Py for some k; € K such that d(k;A%o,v;0) < R. In other
words, the u-directional conical set is given by
(5.4)

Ay ={kMy € Fy: k € K and limsup F;},kMgAJr # () for some r > 0}.

We note that 'y = {y € T : [|(g) () — Ri(u)| <7}

Clearly, Ay C AS" for all u € af — {0} and A} = () if u ¢ L. These
notions of conical and directional conical sets can be defined for any discrete
subgroup. On the other hand, for #-transverse subgroups, these notions can
also be defined in terms of recurrence of Ay and A,-actions on €2y respec-
tively: we emphasize that for a sequence g; € G, the sequence [g;] € Qp is
relatively compact if and only if there exists s; € Sy (which is not necessarily
bounded) such that the sequence g;s; is bounded in G.

Lemma 5.5 (Conical points and recurrence). Let I' be 0-transverse. Then

(1) & € A" if and only if £ = gPy for some g € G such that l9] € Qo
and ~y;lgla; is relatively compact in Qg for infinite sequences v; € T
and a; € A;r.

(2) £ € Ay if and only if § = gPy for some g € G such that [g] € Qg and
vilglat,u is relatively compact in Qo for infinite sequences v; € T' and
t; > 0.

Proof. Item (1): Let £ € A" so there exist k € K, v; € I', m; € My
and ¢; € AT so that ¢ = kPy and ~;km;c; is a bounded sequence in G.
By the #-regularity of I', we have AS°" C Ay [20, Prop. 5.6(1)], and hence
kt = kPy € Ay. Since Ajg) is Zariski dense and kNgwoP;g) is a Zariski
open subset of Fj), we have (kn)~ € Aj(g) for some n € Ny. Since (kn)* =
kt = ¢, we have [kn] € Qg. Note that vknmic; = (vikmiei)(c;

i
n; = m;lnmi € Ny is a bounded sequence. Since ¢; € A", the sequence
c; ln;ci is bounded as well and hence ~;knm;c; is bounded. Write ¢; = b;a; €

B; A;’; so the sequence ~;(knm;b;)a; is contained in some compact subset of
G and m;b; € Sp. Since the map g — [g] € Qp is continuous, and hence the
image of a compact subset is compact, the sequence v;[knla; = [y;knm;b;a;]

/
n;c;) where

is relatively compact in Qg, as desired.

Conversely, suppose that £ = gPy for some g € G such that [g] € Qp and
vilgla; is relatively compact for infinite sequences ; € I' and a; € A;. We
can replace ¢ with an element in gMpy so that gP € A. Since the sequence
vilglai = [yiga;] is relatively compact, there exists a bounded sequence h; €
G such that for all i > 1, [h] = 7i[gla; € Qp, that is, ga;s; = ~; 'h; for
some s; € Sp. Writing the Cartan decomposition s; = m;b;m;, € MgB;ng,
we have gmiaibim; =7, lhi. Since the sequence vy;gm;a;b; = him;_l is
bounded, it follows from Lemma that a;b; = we;w™! for some w € WN
My and ¢; € AT, after passing to a subsequence. Hence we have gm;wec; =
v 1him;*1w, which implies that & = gPy € O%(go,'y; o) for all i where
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R =1+ max; d(h;0,0). By Lemma we have £ € O%er(go O)(o,fyiflo) for
all ¢ > 1, completing the proof.

Item (2): Let £ € Ay. Then { = kP for some k € K and y;km;a; is a
bounded sequence in G for some infinite sequences ~; € 1";;, m; € My and
a;j € AT. Since £ = kPy € A and Ay C A" C Ay by the O-regularity of T
[20, Prop. 5.6(1)], we have k™ € Ay. As in the proof of Item (1) above, there
exists n € Ny so that (kn)~ € Ayg) and v;knm;a; is bounded. In particular,
[k:n] € Qg.

Since y;knm;a; is a bounded sequence in G and v, © € I'y,, we have
a; = ag;ub; for some t; > 0 and a bounded sequence b; € A by Lemma .
Hence the sequence vy;knmjaz,, is bounded as well. Therefore, v;[kn]at,, =

1

[viknmiay,,) is relatively compact in Q. Since (kn)™ = kT = £, this shows
the only if direction in (2).

To show the converse implication, suppose that the sequence ~;[g]a,, is
contained in some compact subset @Q of €2y which we also assume contains [g].
Since [g] € @ N ’yi_lQa,tiu, it follows from Proposition that ’yl-_l ey
and gt = gPy € O%(o,vi_lo) for all i > 1 where C1 = C1(Q) and R = R(Q)
are given in Proposition Therefore, g7 € Aj. (]

Theorem 5.6. Let I' < G be a Zariski dense discrete subgroup. Let u €
a; — {0} and ¢ € a}) be (I, )-proper. Suppose that Zveru . e V() < 5o
for all r > 0. For any (I',¢)-conformal measure v on Fy, we have

v(Ag) =0

Proof. For each r > 0, we set Ag, = limsup,cr, | 0?(0,70). In other words,
¢ € Ay, if and only if there exists a sequence 7; — oo in I'y, such that
¢ € 0%o,70) for all i > 1. Then AY = |J,-, Ag,. Let v be a (T',¢)-
conformal measure on Fy. Since
o C U 0%0,~v0)  for all t > 0,
YELw,rs[lo (V][>
it follows from Lemma [£4] that
(5.5) v(Ag,) < Z e Vo) for all ¢ > 0.
VELu,rsllo (V11>

Since Z'YGFM,T e o)) < o0, taking t — oo in (5.5) implies I/(Agvr) =0.
Therefore, v(Ay) = limsup,_,o v(Af,) = 0. O
Bowen-Margulis-Sullivan measures on (9. We may identify aj with
{¢p € a* : popg = 1p}. Hence for ¢ € aj, we have poi € ai*(e). For a pair
of a (I', ¥)-conformal measure v on Ay and a (I", 1) oi)-conformal measure v4

on Aj), we define a Radon measure dm,,,, on AéQ) X ag as follows:

(5.6) . (€,m,b) = ¥ EM) du (&) du; (n)db
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where db is the Lebesgue measure on ay. It is easy to check that m,, ,, is left
I-invariant, and hence induces a Ag-invariant Radon measure on {2y which
we denote by

(5.7) My -
We call it the Bowen-Margulis-Sullivan measure associated with the pair
(v, 11).

Bowen-Margulis-Sullivan measures on ;. Let ¢ € aj be a (I',0)-
proper form. We remark that this implies that ¢ > 0 on £y and ¥ > 0 on

int Ly [20, Lem. 4.3]. Consider the I'-action on (~2¢ = A((f) x R given by
(5.8) v-(€m,8) = (v€, v, s +9(BE(y T €))

for y €T and (&,n,s) € A((f) x R.

Theorem 5.7. [20, Thm. 9.2] IfT" is Zariski dense §-transverse and 1 € aj

is (T, 0)-proper, then T' acts properly discontinuously on Qw and hence
(5.9) Qy :=T\Qy
is a second countable locally compact Hausdorff space.

The map Aé2) X g — Aéz) xR given by (§,7n,v) — (&,7n,1(v)) is a principal

ker ¢-bundle which is trivial since ker is a vector space. Therefore it
induces a ker ¥-equivariant homeomorphism between

(5.10) Qp >~ Qy x ker 1.
Let
(5.11) my,,

be the Radon measure on €2, induced from the I'-invariant measure on Q¢:

dm?, (&,n, 5) == e 9" EMdy (&) (n)ds.
We then have
my,, = mq,ﬁl,i ® Lebyerqp -

6. DIRECTIONAL CONICAL SETS AND DIRECTIONAL POINCARE SERIES

Let I' < G be a Zariski dense #-transverse subgroup. We fix
u € af — {0} and a (T, §)-proper ¢ € aj.

We also fix a pair v,v; of (I',¢) and (T',9 o i)-conformal measures on Ay
and Aj(g) respectively. Denote by m = m,,, and m = m,,,, the associated
Bowen-Margulis-Sullivan measures on €y and €y respectively. The goal
of this section is to prove the following theorem whose main part is the
implication (1) = (2) in the first case.

Theorem 6.1. Suppose that m is u-balanced. The following are equivalent:

(1) Zwel“u N e~ ¥o™M) = oo for some r > 0;



ERGODIC DICHOTOMY 23
(2) v(AY) = 1= u(AG).
Similarly, the following are also equivalent:
(1) Zverw e V() < 0o for all v > 0;

(2) v(A§) =0 =u(Aly)).

Remark 6.2. When . e ¥e() = oo, there exists at most one (I, 1))-
conformal measure on Fy ([20, Thm. 1.5]). Furthermore, the existence of a
(T, ¢)-conformal measure on Ay implies the existence of (I, 1 o i)-conformal
measure on Ay as well. Indeed, it follows from [20, Thm. 7.1] that 6y =
1 where d, is the abscissa of the convergence of the Poincaré series s
> ver e~ ¥ In particular, dy0i = dy = 1. By [8] and [20, Lem. 9.5],
there exists a (', o i)-conformal measure v; on Aj) which is the unique
(I, ¢ oi)-conformal measure on Fg), since - e~ W0 () = o0 as well.
For simplicity, we set for all t € R
ar = Ay, = exp tu.

The following proposition is the key ingredient of the proof of Theorem [6.1}
Proposition 6.3. Suppose that Zvepwe_w(“"m) = oo for some r > 0.
Set § = (u) > (ﬁ

(1) For any compact subset Q C Qq, there exists 1 = 7(Q) > 0 such that

for any T > 1, we have
2

T T
/ / Z m(QNvQa—_tNvY' Qa_;—s)dtds < Z e~ Y(ke(7))
0o Jo

vy er YE  w,r
P(pe (7)) <6T

(2) For any r > 0, there exists a compact subset Q' = Q'(r) C Qo such
that for any T > 1,

T
/ Z m(Q' NyQ ay)dt > Z e~ ¥(ro(7))
0

'YGF 'YGFu,'r
P(po (7)) <oT

To prove this proposition, we relate the integrals on the left hand sides
to shadows and apply the shadow lemma. Together with results obtained in
section [5], the following proposition on the multiplicity bound on shadows
for transverse subgroups is crucial.

Proposition 6.4. [20, Prop. 6.2] For any R,D > 0, there exists q =
q(¢, R, D) > 0 such that for any T > 0, the collection of shadows

{O%(0.70) € Fo : T < y(up(v)) < T + D}
has multiplicity at most q.

4The positivity of § is because Zweru N e~ ¥reM) = 56 and 1 is (T, 6)-proper.
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Lemma 6.5. Let Q C Qy be a compact subset. For any t > 1, we have
m(Q NyQa_y) < e~ ¥(ro())

where the implied constant is independent of t.

Proof. There exists ¢g = ¢o(Q) > 0 such that if QN Qa # 0 for some a € Ay,
then || logal| < ¢o. By Proposition [5.3|2)-(3) and Lemma we have for
large enough R > 0 that

m(Q NyQa_y)

< o Tamau (€m0 N au(dn(my
O% (0,70) X O;ée) (y0,0)

ag

< / g (& meV T EM du()du ()
O%(o,’yo)XOé )('yo,o)

< v(O%(o, ’YO))Vi(Oiég) (v0,0)).
By Lemma [£.4], we have
M(Q NYQa—) < v(0%(0,70)) < e Vo),
(]
The following is immediate from Proposition [5.3{(1).

Lemma 6.6. Let Q C Qg be a compact subset. If QNyQa_; Ny Qa_y—s # 0
for some v,y €T and t,s > 0, then we have

(1) l[po(y) — tull ||Ma(’71_17’) = sull, lro(7') = (t + s)ull < C1;
(2) (o) +¥(po(v—7)) < ¥(po(v)) + 3C |||
where C1 = C1(Q) is given by Proposition (1)
Proof of Proposition (1) Let Q C Qg be a compact subset. Fix

s,t > 0. For v, € T such that Q NvQa—_t Ny Qa—_i_s # 0, it follows from
Lemma [6.5] that

M(Q NYQa—y N Qa_s_s) < e V(1)
By Lemma [6.6{2), we have 1(ug(7)) + ¥ (ua(v™19")) < ¥(po(+)) + 3C1 ||

and hence

M(QNYQa_y NV Qays) < e~ V(o(1) =1 (e(v1")
Since we also have ||po () —tu, ||po(y 1) —sul| < Cy by Lemmawhere
(1 is given in Proposition (1), we deduce by replacing v~ '+ with 4 that

> mQNyQa— Ny Qayy)

v,y er

< Z e~ Yo (7)) Z e~V (ko())

Y€y, cq Y€l 0y
(e (7)) E€(St—c,dt+c) P(pe(§))€(ds—c,ds5+c)
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where ¢ := Cy[¢]].
We observe that if ¥(ug(y)) € (6t — ¢, 6t + ¢) for some ¢t € [0,T], then
U (pp(y)) < 6T 4 c. Hence we have

T
/ 3 ) N a3 e,
0

’YEFu,Cl ’YEFu,Cl
¥ (1o (7)) €(dt—c,dt+c) P(po(v))<6T+c

Similarly we also have

T
/ ) ) | gy« Y e,
0

'AYEFu,Cl 'AYGFu,Cl
P(po(9))€(8s—c,ds+c) Y(peo(¥))<6T+c

Therefore, we have

T T
/ / Z m(QMQa_" Qa_y_)dtds < Z e Ve ()
0 70 o yer V€W, ¢y
V(o (7)) <0T+c
Since
'YEFu,Cl 'Yeru,Cl
ST <tp(pg(7))<0T+c 0T <tp(pg (7)) <0T+e

for large R = R(v) by Lemmal[4.4)and Proposition|[6.4] setting r(Q) = C1(Q)
completes the proof. O

Lemma 6.7. For any R > 0, there exists 0 < fp < oo such that any
i@ .
(61) € User ()15 Oh(0.70) X O (v0,0) satisfies |G (€. m)]| < Lr.

Proof. Suppose not. Then there exist sequences 7; — oo in I" and (&;,7;) €
0% (0,7;0) x Oi]ge)(yio, 0) such that ||G%(&;,m:)|| — oo as i — oo. We may
assume that & — £ and n; — n by passing to subsequences. As y; — o0
f-regularly, Lemma implies that (£,n) € ]:éz). Since ||G?(&,m)| —
1G9 (€, 7)|| < oo, this is a contradiction. O

Lemma 6.8. Let u € a;’ —{0}. For any r,R > 0, there exists a compact
subset Q = Q(r, R) C Qg such that for any

cme U (0%0,70) x O (v0,0)) N AP,
YE w,r,
le (N>R

there exists v € ag and t > 0 such that
(fv m, U) €Q and (f? m, U)a[t—l,t+l] - ’VQ
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Proof. Let (£,m) € (0%(0,70) x O}S{Q) (vo0,0)) N A((f) for some v € 'y, with
llg(7)]] > €r. Then there exists k € K such that £ = kP and d(kago,v0) <
R for some ag € AT. Write ag = ab € A B

By Lemma we have ||u(y) — logag| < D for some D = D(R), and
hence ||pug(v) —logal| < D. We also obtain from y € 'y, that ||u(y) —tul| <
r for some ¢t > 0 and hence we have ||tu —log a|| < D+ r. Therefore, we have

d(kag,bo,v0) < d(kag,bo, kago) + d(kago, o)
(6.1) = d(a,0, ao) + d(kago, y0)
<D+r+R.
We also note that
ltu + log b — log ag|| = ||tw — logal|| < D + .
Hence there exists @ € A such that
|loga| < D+7r and agwbac AT
Let go € G such that (goPy, gowoPis)) = (§,n). Since (§,n) € 0% (0,70) x
O;ge) (v0,0) and ||ug(7)|| > £r, we have |G%(&,7)|| < £r. By Proposition
we can replace gg by an element of gyLg so that we may assume that
d(0,900) < | G°(&, )| + ¢ < clr+C.
Since § = kPy = goFy, we have gy ke Py. We write the Iwasawa decompo-
sition
9o 'k = man € KAN.
Then we have m = go_lkﬁ_ld_l € Ppn~ta=! = Py. In particular, we have
m € PpNK = My. We let g = gom. Since m € My C Lg, we still have
(9Py, gwoPyg)) = (§,m) and d(o, go) = d(o,go0) < clr + . Moreover, we
have g1k = an € P. Now for s € [t — 1,t + 1], we have
d(gbagy,0, kbay,0) < d(gbasy,o, gbaw,0) + d(gbas,o, kbay,0)
< 1+ d(gbag,0, gbay,ao) + d(gbag,ao, kbas,ao) + d(kbay,ao, kbag,o)
=1+ 2d(o, ao) + d(gbat,ao, kbat,ao).
Since g7'k € P and bag,a € AT, we get d(gbas,ao, kbas,ao) < d(go, ko) =
d(go,0) < clp + . Together with ||logall < D + r, we have
d(gbasyo, kbay,0) <1+2(D+ 1)+ clr+c.
Since d(kbaty,0,7v0) < D + 1+ R, we finally have
d(gbasy0,70) <1+3(D+71)+ R+ clg+c.

Weset R =14+3(D+7)+R+clr+c and Q := {[h] € Qp : d(ho,0) < R’}
which is a compact subset of Q.

Now the image of g under the projection G — ]:9(2) X ay is of the form
(&,m,v) for some v € ag. Since b € Sy, the product gb also projects to
the same element (£,7n,v). It follows from d(o,g0) < ¢fr + ¢ < R’ that
(€,m,v) € Q. Moreover, since d(y 'gbas,0,0) < R for all s € [t — 1,t + 1],
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we have v71(£,1,v)as, € Q and hence (&, 7, v)ap_14+1) C Q. This finishes
the proof. O

Lemma 6.9. Suppose that r, R > 0 and that Z'yEFu,7- e V(") = 0. Let
Q = Q(r,R) be given in Lemma . Let T > 0 and let v € 'y, be such
that ||pe()|| > ¢r and Cil|¥]] + 0 < Y(ue(y)) < 6T — Ci||9|| — & where
Cy = C1(Q) is given by Proposition (1) Then for Q' = QA2 C Qq, for
any (&,m) € (0%(0,70) x Oil;(ig) (v0,0)) N AéQ), we have

T
/ / 1o/mmara_, (€,m,b)dbdt > 2 Vol(Ags)
0 ag

where Ago = {a € Ay : || logal < 2}.

Proof. By Lemma there exist v € ag and ¢y > 0 such that (§,n,v) € Q
and (&,7,v)aj—14+1) C YQ. In other words, (§,7,v) € Q@ NyQa—; for all
t € [to — 1,to +1]. Since [|ug(7y) — toul| < C1 by Proposition [5.3|(1), we have
[(pg(y)) — tod| < Cil|¢]]. In particular, we have [to — 1,to + 1] C [0,7] by
the hypothesis.

We set Q' := QApo which is a compact subset of Q. We then have for
each t € [to — 1,to + 1] that

/A Lormora, (€7, 0)b)db > /A Lo ((€, 7, v)bag)db > Vol(Ag )
0 0,2

where the last inequality follows from (&, 7n,v)a; € vQ. Therefore, we have

T T
| [ temeudenbadi= [ [ tgmgu (.o
0 ap 0 Ag

to+1
> / / Lomora, ((€,17,0)b)dbdt
t Ag

0—1
> 2 VOI(AQ’Q)
as desired. O
Proof of Proposition|6.3)(2). Fix R > max(R(v), R(v:)) where R(v), R(v;)
are defined in Lemma Let Q" = Q(r,R)Ap2 where Q(r, R) is given in

Lemma [6.8] so that Q' satisfies the conclusion of Lemmal[6.9] For any v € T
and t > 0, we have

m(Q' NyQ'a_)
= / ( / HQ’MQ'a_t(fa%b)db) (@ EM) dy (&) dus(n)
F§

ag

> / | ( / mmmt(s,n,b)db) e EDN dy(€)dia().
O%(o,’yo) X Ogg) (y0,0) ap
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By Lemma [6.9} if v € Tz, [luo(v)[| > €r and C1l[¢] + 0 < 9(ue(7)) <
0T — C||Y|| — 6 where Cy = C1(Q), then

T
/0 A(Q N AQla_)dt

> 2Vol(4s;) | G My (g)du ()
O%(o,’yo) X O}y) (y0,0)

> 2 Vol(A(;,Q)e*”w”ZRV(O%(o, ’yo))ui(Oilge) (v0,0))

where the last inequality follows from ||G?(¢,7)| < fr. By Lemma we
conclude

T
/ m(Q' NYQ a_y)dt > e Vo)),
0
For each T' > 1, we define

Pr={y el : oM > lr, Crl¢ll + 6 < ¢ (po(y)) < 6T — (Cil|9][ + 6)}-

Since #{7 € I : [|ug(v)|| < €r} and #{y € T : ¥(us(v)) < C1|¥|| + 0} are
finite, we have

T T
| Ta@n@aniz [ w@niQad

~erl V€T, »NI'r
> Y et
YELw,»rNCr
S 3 oo (7).
YE u,r

P(pe (7)) <6T—(C1 |9 +6)

By Lemma [4.4] and Proposition |6.4

Z e VM) « Z v(0%(0,70)) < 1.
'}’eru,r WEF’U‘,T
T —(Crl[Y[[+6)<tp(po (7)) <6T T —(Celbll+0) <t (1o (7)) <6T

Therefore, we obtain

T
/ dom@ NAQa)dt> > e ™),
0

vel’ YED Y r
Y(pe(y))<oT

We will apply the following version of Borel-Cantelli lemma.

Lemma 6.10. [I, Lem. 2] Let (2, M) be a finite Borel measure space and
{P,:t >0} CQ be such that (t,w) — 1p,(w) is measurable. Suppose that

(1) fy° M(Py)dt = oo, and
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(2) for all large enough T,

/OT /OT M(P; N P,)dtds < (/OT M(Pt)dt)

where the implied constant is independent of T .

M <{w eN: /Ooo 1p,(w)dt = oo}) > 0.

Proposition 6.11. Suppose that m is u-balanced. If
for some r > 0, then

v(A§) >0 and wn(Aly) > 0.

Proof. Let Q C Qg be a compact subset with m(Q) > 0. Let r = r(Q) > 1
be large enough so that > . e ¥(e(1) = 50 and that Proposition (1)

holds. Let Q' = Q'(r) be a compact subset of Qg given by Proposition|6.3(2).
Replacing Q" with a larger compact subset if necessary, we may assume that

m(Q’) > 0.

Since m is u-balanced, we have for 7' > 1 thatl)]

T T
62 [ X aQniQegi= [ n@nQad

~vel el

2

Then we have

(o) — o0

’YGFu,'r

with the implied constant independent of T'. Since we already have

T T
/ / Z m(Q NyQa—¢ Ny Qa_i—s)dtds < Z o~ ¥(a(7))
0 0

’Y,’Y’EF 'Yeru,'r
P(po(v))<oT
and .
T vt / SO R(Q N AQa )
Y€ u,r O yer
¥(po(v))<6T
by Proposition it follows from (6.2)) that
(6.3)
2
T [T T
/ / Z m(QMNyQa—_Ny' Qa_;_s)dtds < / Z m(Q NyQa—)dt
0 0 v,y er 0 ~yel'

By abusing notation, for a subset U C €y, we denote by [U] the image of
U under the projection 0y — Qp, i.e., [U] = T\T'U. We set M = m||g; which
is a finite Borel measure. We let P, = [QNT'Qa_¢] for ¢t > 0. Since #{y € T":
Qa_tNyQa—_; # 0} is bounded by a universal constant independent of ¢, we

5The notation f(T) =< g(T) means that f(T) < g(T) and g(T) < f(T).
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have M(F;) =< > . m(Q N yQa—;) with the implied constant independent
of t. Noting that > cp e~ ¥e(1) = oo, it follows from Proposition (2)
that -
/ M(P;)dt = oo
0

and hence the condition (1) in Lemma is satisfied.
The following is a rephrase of (6.3)):

/OT /OT M(P; N Ppys)dsdt < (/OT M(B)dt)

T T T T
/ / M(P; N Py)dsdt = 2/ / M(P; N P,)dsdt
0 0 0 t

T pT
< 2/ / M(PthtJrS)det
0 0

2

< (/TM(Pt)dt> ,
0

showing that the condition (2) in Lemma is satisfied.
Hence, by Lemma [6.10, we have

M ({6 n o @) [ nig 6 oade =oc} ) >0,

In other words, there exists a subset Qo C @ such that m(Qp) > 0 and
for all (&,n,v) € Qo, there exist sequences «; € I" and t; — oo such that
v, M€, v)ay, € Q for all i > 1. Hence we have

(& mn,v) e QNviQa_y, foralli>1,
which implies { € Ay by Lemma
Now we conclude that for all (§,n,v) € Qo, £ € Ay. Since m(Qo) > 0 and
m is equivalent to the product measure v ® 15 @ db, it follows that v(Ag) > 0
as desired. Since m is A,-invariant, the u-balanced condition remains same
after changing the sign of 1. Then the same argument with the negative T'
gives ui(A;Eg))) > 0. O

2

It implies

Lemma 6.12. We have either
v(Ay) =0 or v(Ay) =1

Proof. Suppose that v(Aj) > 0. Then by Theorem we must have
Z'Yerun' e %) = oo for some 7 > 0. This implies that v is the unique
(T, ¢)-conformal measure on Fy ([§], [20, Thm. 1.5]). On the other hand, if
0 <v(Ay) <1, then v := mu\ﬁ_,\g defines another (T, ¢)-conformal
measure, which would contradict the uniqueness of the (I',)-conformal
measure. Therefore, v(Ay) must be either 0 or 1. O
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We are now ready to give:

Proof of Theorem By Lemma we have v(Ay) =0 or v(Af) = 1.
Similarly, noting that ¢ oi € a;“(e) is (I',i(0))-proper as well, we also have

either I/i(A;Eg))) =0or Vi(A;EZ)) ) = 1. Therefore Proposition |6.11|implies that
if > er,., e V() = oo for some r > 0, then v(AY) = 1 = yi(AiEZ))). On
the other hand Theorem H implies that if Z%Fu . e ¥we) < oo for all

r >0, then v(Ay) =0= yi(A;EZ))). This proves the theorem. O

The following estimate reduces the divergence of the series > €T eV uo(7)
to the local mixing rate for the a;-flow:

Corollary 6.13. For all sufficiently large r > 0, there exist compact subsets
Q1, Q2 of Qg with non-empty interior such that for allT > 1,

T 1/2 T
(/ m(Q1 N Q1a_t)dt> < Z e~ ¥ (1o() <</ m(Q2NQaa_;)dt.
0 YEL u,r 0
¥(po(v))<oT

Proof. Let Q C Qp be a compact subset with non-empty interior. By Propo-
sition 1), there exists ro = 79(Q) > 0 such that for all 7> 1 and for all
r > To,

(6.4) 2

T T
/ / > m(QNYQa_1NY Qay)dtds < Yo et
0 0

v~ €T YELu,r»

Y(po(7))<6T
Fix a small € > 0 so that Q™ := ()j<,<. @a—s has non-empty interior. Since
we have
T T pe
[ Y@ n@aars [ mQN1(QN Qaaidsd,
0 ~ver 0 J0 ~€eT

it follows from (6.4]) that for all r» > 7o,

/ ' > MQ N9Q ay)dt < T et
0

~vel 'Yeru,'r
¥(po(v))<oT

Now let Q' = Q'(r) C Qp be a compact subset given in Proposition (2)
such that for any 7" > 1,

T
(6.5) / Z m(Q NyQ'a_y)dt > Z e~ %(re (7))
0

Y€l YETy,r
P(po(v))<6T
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Replacing Q' with a larger compact subset, we may assume that int Q" # 0.
Hence it suffices to set Q1 = I'\I'Q~ and Q2 = I'\I'Q’ to finish the proof. O

Remark 6.14. For 6 = 11, Corollary [6.13| was established in [7] for any Zariski
dense discrete subgroup of G (see [7, Proof of Thm. 6.3]). For example, it
implies that if T' is a lattice of G, then for any non-zero u € at, we have
ZVGFM e20(1(M) = oo for all » > 1 large enough where 2p denotes the sum
of all positive roots. It follows from the Howe-Moore mixing property of the
(finite) Haar measure [16].

7. TRANSITIVITY SUBGROUP AND ERGODICITY OF DIRECTIONAL FLOWS

Let I' < G be a Zariski dense 6-transverse subgroup. We fix u € a; — {0}
and a (I, §)-proper linear form ¢ € aj;. We also fix a pair v,v; of (I',9)
and (I',¢ o i)-conformal measures on Ay and Aj(g) respectively. Denote by
m = m(v, ;) the associated Bowen-Margulis-Sullivan measures on Q. In
this section, we discuss the ergodicity and conservativity of the directional
flow

Ay ={a; :=exp(tu) : t € R}
on (g with respect to m. We emphasize that the notion of a transitivity
subgroup plays a key role in showing the A,-ergodicity.

Conservativity of directional flows. Recall the following definitions:

(1) A Borel subset B C €y is called a wandering set for m if for m-a.e.
@ € B, we have [* 1p(za;)dt < co.

(2) We say that (g, Ay, m) is conservative if there is no wandering set
B C Qy with m(B) > 0.

(3) We say that (Qg, Ay, m) is completely dissipative if €y is a countable
union of wandering sets modulo m.

The following is proved for § = II in [7, Prop. 4.2] and a similar proof
works for general 6:

Proposition 7.1. The flow (Qg, Ay, m) is conservative (resp. completely
dissipative) if and only if max (V(Ag),l/i(A;EZ)))) > 0 (resp. v(Ay) =0 =
u(AG))-

Proof. Suppose that there exists a non-wandering subset B with m(B) > 0.
Setting BT := {x € B : limsup,_,, . va;NB # (}, we have m(BTUB™) > 0.
Since m is locally equivalent to v ® v; ® db, if we have m(B™) > 0, then

v(Ay) > 0 by Lemma Otherwise, if m(B~) > 0, then Vi(Aigg))) > 0. It

shows the following two implications:

(Qp, Ay, m) is conservative = max (V(Aé‘), Vl(AIEZ)))) > 05

(Q9, Ay, m) is completely dissipative <= v(Ay) =0 = V1<A;Eg)))

where the second implication is due to the o-compactness of (2.
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Now suppose that v(Ag) > 0 (resp. ui(Aigg)) > 0). By Theorem [5.6
el e Vo) = o0 (resp. > ers! e~ WD (M) = o0) for some r > 0.

u,r

Note that v € I', }. if and only if |9y () —ti(u)|| < r for some ¢ > 0. Hence

it follows from (6.12) that v(Ay) = 1 (resp. Vi(A;EZ)) ) = 1). It implies that
for m-a.e. T'[g] € Qp, we have g7 € A} (resp. g~ € Aigg))) and hence I'[g]at,s,
is a convergent sequence for some sequence t; — oo (resp. t; — —o0). In
other words, for m-a.e. © € 0y, there exists a compact subset B such that
7 1p(zas)dt = oo. It implies the conservativity of (€, Ay, m) by [23,

Lem. 6.1]. O
Density of 6-transitivity subgroups.

Definition 7.2 (f-transitivity subgroup). For g € G with (¢7,97) € A((f),
we define the subset H2(g) of Ag as follows: for a € Ay, a € HY(g) if and
only if there exist v € ', s € Sy and a sequence ny,--- ,n; € Ng UN,", such
that

(1) ((gn1---ny)t,(gn1---n,)7) € AéZ) for all 1 <r < k; and
(2) ygni -+ ny = gas.
It is not hard to see that H%(g) is a subgroup (cf. [35, Lem. 3.1]).

We deduce the density of transitive subgroups from Theorem

Proposition 7.3. For any g € G with (g7,97) € AgQ), the subgroup HY(g)
is dense in Ag.

Proof. Since gN9+ Py C F is a Zariski open subset, there exists a Zariski
dense Schottky subgroup I'g < I' so that for any loxodromic element v € Ty,
its attracting fixed point y, belongs to gN, Py (cf. [12, Lem. 7.3], [3]). Note
that any non-trivial element of Iy is loxodromic. By Theorem [2.6] it suffices
to prove:

(7.1) {ps(A()) : v € T} C log Hix(g).

Fixing any non-trivial element v € I'g, write v = hcwmh*1 € hA*Mh!
for some h € G. Then A(y) = logay and y, = hP € A; hence yioy = hPy €
gN;Pg. Using Py = NgAySy, we can write h € gnnAySy for some n € Ne+
and n € Ny. By replacing h with gnn, we may assume that

h=gnn € gN;Ng and ~ = hash™!

for some s € Sy where a is the Ag-component of a, in the decomposition
ay € AJ By so that pp(loga,) = loga. It remains to show that a € H{(g).
We first note from v = hash™! and h = gin that

v = (gas) ((as)"'7(as)) ((as)"'n(as)) n~'a~tg™!

and hence
(7.2) ygnn ((as)_ln_l(as)) ((as)_lﬁ_l(as)) = gas.
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Writing ny = i, ng = n, n3 = (as)"'n"(as) and ny = (as) 2" (as), we
have ni,ny4 € NQJr and ng,n3 € Ny. By (7.2), the elements n;, 1 < i < 4,
satisfy the second condition for a € 7—[? (g). We now check the first condition:

o gn1Py = gnPy = hPy =y € Ay and gnywoPyg) = gwoP,g) € Aj(g);
i(0
o gnina Py = hPy € Ag and gninawo P9y = hwoPy) = y;(_)l € Ajg);

o gningnzPy = gninaPy € Ag and gninangwoPygy = v~ gasny ' woP;g) =

v~ tgaswoPyg) = v~ tgwo Py € Aip) by (7-2);
o gningnanaPy = v 'gasPy = v~ 'gPy € Ag and gningnznawoPyg) =
gningnzwoPyg) € Ajp).-

This proves that a € 7—[? (g) and completes the proof. O

Stable and unstable foliations for directional flows. Recall the nota-
tion that for g € G, we set

9] = (47,97, 8)s(e.9)) € Fy?) x .
Lemma 7.4. Let g € G, n € Ny and v € N, . Then
lgn] = (g%, (9n)~, BY+ (e, 9));
lg7) = ((97) ", 97, B0+ (e,9) +G°((97) T, 97) = G’(gT,97)).
Proof. Since (gn)* = gnPy = gPy, we have
Byt (e:gn) — B2 (e, 9) = B4 (e,n) =0
and therefore [gn] = (g7, (gn)~, 3+(e,g)). To see the second identity, we

first note that gnwo P9y = gwoPg), that is, (gi)~ = g~. Since Bie@(e, n) =
0, we have

G*((g7)",97) = Bl (e 97) + (B (e, 9)) + (8 (e, 7))

Since G(g*,97) = 8% (e,9) + i(ﬁ;(f)(e,g)), we get
B+ (e:97) = By (e, 9) + G°((97) T, 97) = G%(g%,97)
proving the second identity. O

We say a metric d on £y admissible if it extends to a metric of the one-
point compactification of Qy (if gy is compact, any metric is admissible).
Since €y is a second countable locally compact Hausdorff space (Theorem
, there exists an admissible metric.

For x € Qy, we define W**(z) (resp. W**(x)) to be the set of all y € Qp
such that d(xza¢,ya;) — 0 as t — +oo (resp. t — —o0). They form strongly
stable and unstable foliations in Qg with respect to the flow {a;} respectively.
In turns out that with respect to any admissible metric d on €y, the Ny
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and N; -orbits are contained in the stable and unstable foliations of the
directional flow {a;} on Qy respectively.

The following proposition is important in applying Hopf-type arguments;
the observation that one can use an admissible metric in this context is due
to Blayac-Canary-Zhu-Zimmer [5].

Proposition 7.5. Let d be an admissible metric on Q. Let g € G with
[9] € Q. For any compact subsets U~ C Ny and U™ C N, , we have

diam ({T[gn] € Qo :n €U} - a;) = 0;
ast — +0oo
diam ({T'[gn] € Qo : R € UT} - a_y) — 0;
where the diameter is with respect to d. In particular,

(1) {T'[gn] € Qg :n € Np} C W**(I'[g]);
(2) {T[gn] € Qo : 1 € N} € W(T[g]).

Proof. Let & be the point at infinity in the one-point compactification of
Qy. For each ¢ > 0, set Q. = Qp if Qp is compact and Q. = {z € Qy :
d(z,#) > £/2} otherwise, and choose a compact lift Q. C €y of Q.. Let
[9] = (&,m,v) € Qg. To show the first claim, suppose not. Then there exist
e > 0, a sequence t; — oo and convergent sequences n;,n; € Ny such that
[gni, [gnt] € Qg and d(T[gn,]as,, Tlgnilay,) > € for all i > 1. By passing to a
subsequence and switching n; and n} if necessary, we may assume that for
all i > 1, v;[gnila;, € Q. for some ~; € I'. After passing to a subsequence,
we have the convergence

(7.3)

vilgnilar, = (vi€, vi(gna) ", v + BL(v; 1, €) + tiw) — (S0, m0, vo) as i — oo,

for some (&p, 10, v0) € Q.. In particular, for any linear form ¢ € a, positive
on a(';, we must have qb(ﬁg(fyi_l, e)) — —oo as i — oo and the sequence ; is
unbounded.

Since the sequence n; € Ny converges, the sequence (&, (gn;)~) € A(GQ) is
convergent as well. Moreover, implies that the sequence v;(§, (gn;)~) €
Aé2) is precompact. By the argument as in the proof of [20, Lem. 9.10,

Prop. 9.11], for any compact subset C' C Ajg) with {{} x C C AéQ), we
have v;C — 19 as i — oo. Since n, € Ny is a convergent sequence and
_ 2 _ : _

&, {(gn))~}) C Aé ), we have 7;(gn})~ — no. Since [gn}] = (&, (gn})~,v) by
Lemma [7.4] we deduce from ([7.3)) that

Yilgnila, = (%€, 7i(gnl) " v + BL(v; ' €) + tiu) = (€0,m0, vo) as i — oo
Therefore, two sequences ~;[gn;]a:, and ~;[gn}]a, converge to the same limit,
which is a contradiction to the assumption d(I'[gn;]as,, I'[gn}]as,) > € for all
1 > 1. Hence the first claim is proved.

For the second claim, suppose to the contrary that for some € > 0, there
exist a sequence t; — oo and convergent sequences 7;, N, € N; such that
(g7, [gn)] € Qp and d(T'[gn;la—y,, T[gn;la—y,) > € for all ¢ > 1. As above,
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we may then assume that for all ¢ > 1, v;[gn;la_y, € QE for some sequence
~v; € I'. By passing to a subsequence, we have the convergence

’Yi[gﬁi]a—ti — (615 7717”1) as ¢ — 00
for some (&1,71,v1) € Q.. By Lemma we have for each ¢ > 1 that
vilgia) = v ((97) "m0 + G ((g7a) T m) — G7(€,m) )
= (vilgna)* vim, v + G2 ((gna) *m) — P& m) + Bl (7€)
and therefore we have that as i — oo,
Yilgni) T — &i;
(7.4) Vin = M
v+ ge((gﬁl)+7 77) - g@(g’ 77) + 5(097”74.)-%(’7;13 6) - t’Lu — V1.
Since the sequence 7i; € N; converges, the sequence ((gn;)*,n) € Ag) is
convergent as well. Hence G%((g7n;)*,n) is a bounded sequence in ag. It then
follows from ([7.4]) that for any linear form ¢ € aj positive on a;, we have
S(Blynpy+ (v r€)) = oo asi— oo

and the sequence -y; is unbounded.

Again, by the same argument as in the proof of [20, Lem. 9.10, Prop.
9.11], we obtain that for any compact subset C' C Ay such that C x {n} C
Aé2), we have v;C' — & as i — co. Since the sequence ((gn})*,n) € Aé2) is
convergent as mentioned above, we also have v;(gn;)"™ — & as i — oco. It
then follows from Lemma [7.4] that

vilgni] = (vilgia) ™, yim v + BL(v ™€) + G (ilgia) T, vim) — G° (i, vim) ) 5
vilgii] = (v(gnp) ™, vim v + BL (vt €) + G (ilgiy) T, vim) — G0 (i€, vim)) -
Since both sequences (v;(gni) ™, vin) and (vi(gn;)™,vin) converge to (&1,m)
and v;[gnila—, = (&1,m,v1) as ¢ — o0, it follows that

vilgntla—t, — (&1,m,v1) as i — oo.

Again, two sequences 7;[gni]a—s, and v;[gn}]a_s, converge to the same limit,
contradicting the assumption that d(I'[gn;la_q,, [gnt]a_s,) > € for all i > 1.
This proves (2). O

For a (I',#)-proper form ¢ € aj, the action of A, = {a; : t € R} on
Y induces a right A,-action on 4 via the projection €y — €23 where €
is defined in (5.9). Note that when u € int Ly, the condition ¢(u) > 0 is
satisfied for any (I, 6)-proper ¢ € aj [20, Lem. 4.3].

Proposition 7.6. Let ¢ € a be a (I',0)-proper form such that ¢(u) > 0
and let d be any admissz’blcﬁ metric on Qg. Let g € G with [g]y € Qy. For

6I,e.7 it extends to a metric on the one-point compactification of 24
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any compact subsets U~ C Ny and U™ C NJ, we have
diam ({T'[gn]y € Qp :n €U} - az) — 0;
diam ({T[gn]y € Q1 €U} - a_y) — 0;
where the diameter is with respect to d. In particular, we have
{Clgnly € Qp :n € No} € W*(Tlgls);
{Tlgnly € Qg : 7 € Ny} € W*(T[g]y),

where W**(x) (resp. W*"(x)) is the set of ally € Q4 such that d(zas, ya;) —
0 ast — 400 (resp. t = —00) for x € Q.

ast — +oo

Proof. We can proceed exactly as in the proof of Proposition [7.5|replacing {2y
by €4, keeping in mind that the condition ¢(u) > 0 ensures that the conver-

gence of the sequences qS(,Bg(’yi_l, e))+tip(u) in (7.3)) and ¢(ﬂ?gﬁi)+ (v te)—

tio(u) in () implies that ¢(82(3",¢)) - —oc and G(8 . (37, ¢)) —
400 respectively. O

Lemma 7.7. If (g, Ag, m) is conservative, then it is Ag-ergodic.

Proof. Choose any ¢ € a; which is positive on ag; in particular, ¢ is (T, 0)-
proper. Consider Q¢, 4 and m? = m‘f’l,i as defined in and (5.11)). The
conservativity of the Ap-action on (g, m) then implies the conservativity
of the R-action on (245, m?), and the Ag-ergodicity on (£, m) follows if we
show the ergodicity of (24, R, m?).

Let f be a bounded m?-measurable R-invariant function on Q,. We need
to show that f is constant m®-a.e. Choose any admissible metric on Q4
which exists by Theorem and apply Proposition [7.6] By a theorem of
Coudéne [I1], it follows that there exists an m?®-conull subset Wy C Q4 such
that if T'[g]s, [[gn]s € Wo for g € G and n € Ny U N5, then

f(Tlglg) = f(T[gn]s)-

Let f : Q¢ — Rand Wy C Q¢ be I'-invariant lifts of f and Wy respectively.
Since f is R-invariant, we may assume that W, is R-invariant as well. For
any [glg, [h]y € Qp with gt = AT, we can find n € Ny such that [gn], = [hl,
by . Similarly, if g~ = h™, we can find n € ]\79+ and a € Ay such that
[gnalg = [h]s. Hence, by the R-invariance of f and hence of f, for any
(& mn,5), (&0, 8") € Wy such that &€ = & or n = 7/, we have f(£,n,s) =
f&n'ss).
Let

Wt :={cchp:(&1,5) € W for all s € R and v-a.e. 1'};

W= ={nehg: (. ns) e Wy for all s € R and v-a.e. £'}.
Then v(W*) = 13(W~) = 1 by Fubini’s theorem. Hence the set W' :=
(Wt xW=)n A§2) has full ¥ ® v;-measure. We choose a v ® v4-conull subset
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W C W' such that W x R € Wy. Let (€,7), (¢,7) € W. Then there exists
m € Ajg) so that (& m1), (§';m) € W. Hence for any s € R, we get

f(£77775) = f(§777175) = f(élanl’s) = f(flvnlvs)'

Therefore, f is constant on W x R, and hence f is constant m®-a.e., com-
pleting the proof. O

Ergodicity of directional flows. We now prove the following analog of
the Hopf dichotomy:

Proposition 7.8. The directional flow (Qg, Ay, m) is conservative if and
only if (g, Ay, m) is ergodic.

Proof. Suppose that (g, Ay, m) is conservative. Since this implies that
(Q9, Ap,m) is conservative, we have (€, Ag,m) is ergodic by Lemma
Let f : Q9 — R be a bounded measurable function which is A,-invariant.
By the Ag-ergodicity, it suffices to prove that f is Ag-invariant.

Choose any admissible metric on €y which exists by Theorem [5.1] Sim-
ilarly to the proof of Lemma Proposition and [II] imply that there
exists an m-conull subset Wy C Qg such that if I'[g],T'[gn] € W, for g € G
and n € Ny UN;, then

F(Tlg)) = £(Tlgn]).
Consider the I'-invariant lifts f : Qp — R and the m-conull subset Wy C
of f and Wy respectively. Let

Wy = {(&n) € A : (¢,m,b) € Wy for db-a.e. b€ ag};

W={(&n) e Wi : (&), (€ ,n) € Wi for v-a.e. £ € Ag,v-a.e. i € Ny}
By Fubini’s theorem, W has the full v ® vj-measure and we may assume that
W is I'-invariant as well. For all small € > 0, we define f. : 2 — R by

o) = iz, [, o

Then for g € G and n € Ny U N, such that (g%, 97), ((gn)™, (gn)") € W,
we have f.([g]) = f-([gn]) and f. is continuous on [g] Ag.

Since f = lim._,q fe m-a.e., it suffices to show that fe is Ag-invariant.
Fix g € G such that (¢g*,¢97) € W. By Proposition and the continuity
of fg on each Ag-orbit, it is again sufficient to show that fa is invariant
under H%(g). Let a € H%(g). Then there exist v € T' and a sequence
ni,--- ,nE € Np UN9+ such that

(1) (gn1---n.)*" € Ag and (gny---n,)~ € Ay for all 1 <r < k; and
(2) gny---ni =~ygas for some s € Sp.
For each i = 1,--- , k, we denote by N; = Ny if n; € Ng and N; = N9+ if
n; € N9+. We may assume that N; #% N;1 for all 1 < ¢ < k — 1. Noting
that W is I'-invariant, we consider a sequence of k-tuples (ny j,--- ,ng ;) €
Ny X -++ X N}, as follows:



ERGODIC DICHOTOMY 39

Case 1: Ny = N;. In this case, we have

(vg)" = (gn1---np)™ and  (yg)” = (gna--me-1)”.
Take a sequence of k-tuples (n1;,---,n5;) € N1 X --- x N}, converging to
(n1,-+-,ng) as j — oo so that for each j, we have

(1) ((gnaj---mrj)T, (gnaj---nej)”) € Wiorall 1 <r <k;

(2) (vg)” = (gnuj -+ nk—14)"; and

(3) (vg)* = (gnug - -mu )™
This is possible since (g%, 97), ((vg)", (vg)~) € W and W has the full v @ ;-
measure. Since ny ; € N, , we indeed have (vg)™ = (gnyj -+ ny ;) as well,
and therefore gny;---ny; = vgajs; for some a; € Ag and s; € Sp. In
particular, we have

[gna ;- ni ;] = [vga4] € Qp for all 7 > 1.

Case 2: N = Ny. In this case, we have

(v)* = (gni---ne—1)™ and  (vg)” = (gna---nx)”.
We then take a sequence of k-tuples (ny j,---,ng;) € N1 X --- x Nj, con-
verging to (ni,---,ng) as j — oo so that for each j, we have

(1) ((gnag---neg)t,(gnug---npj)”) € Wforall 1 <7 < k;

(2) (vg)" = (gn1 -+ np—15)"; and

3) (vg)™ = (gna - )~
Since ny; € Ny, we have (yg)t = (gnij---ng ;)" as well, and therefore
gni;---ny; = vga;s; for some a; € Ag and s; € Sy. In particular, we have

lgnij - maj] = lyga;] € Qo for all j > 1.

In either case, we have that for each j > 1,
fe(rgas]) = fellgnay - nuy)) = Fellgna - a1 g]) = - = fe((g))-
Since f- is T-invariant, it implies
f-(lga;]) = J=(lg]) for all j > 1.

Since a; converges to a as j — 0o, we get f-([ga]) = f-([g]) by the continuity
of f- on gAg. This shows that f- is invariant under HY(g), finishing the proof
of ergodicity.

Now suppose that the flow (€, Ay, m) is ergodic. Then by the Hopf
decomposition theorem, it is either conservative or completely dissipative.
Suppose to the contrary that (g, Ay, m) is completely dissipative. Then it
is isomorphic to a translation on R with respect to the Lebesgue measure
which yields an easy contradiction (see, e.g., proof of [20, Thm. 10.2]).
Therefore, (g, Ay, m) is conservative. O
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Proof of Theorem (1.1} The equivalences among (1)-(4) follow from Lemma
Proposition and Proposition Suppose that m is u-balanced.

Theorem and Theorem imply that (1) < (5) < (6). That the first

case occurs only when 9 (u) = @bl@(u) > 0 is a consequence of the following

lemma:

Lemma 7.9. If ZWGFW e Vo) = oo for some r > 0 and there exists a
(T, ¢)-conformal measure on Fy, then

¥(u) = Y(u) > 0.

Moreover the abscissa of convergence of s +— >
one.

€T e=s% o (M) s equal to

Proof. First note that the existence of the (T, ¢)-conformal measure implies
that ¢ > ¢1€ by Theorem Now suppose that ¢(u) > ¢1€(U)- We may
assume that u is a unit vector as both ¢ and wIQ are homogeneous of degree
one. By the definition of w{i, there exists an open cone C containing u
so that >0 cpr . ec e VWlreMIl < 0o, Since pg(Ty,) is contained in C
possibly except for finitely many elements, we have

T et « 3 vl < oo,

YE w,r YE y »

which is a contradiction. Therefore, ¥(u) = 1% (u). Moreover, it follows from
Y velus e ¥Wo() = oo that #T,, = oo. If ¢(u) < 0, it contradicts the
(T, §)-proper hypothesis on v since (¢ o uig)(I'y,) C (=00, ||¢||r]. Therefore
we have ¥(u) = 2 (u) > 0.

We now show the last claim. Since ). .1 e V(o) > 2 vl e Ple() =
00, the abscissa of convergence of s — nyer e—s%(o(1) is equal to one by
Theorem Hence the abscissa of convergence of s — ZWEFW es¥ (ke (7))

is at most one. Since Zveru . e ¥e()) = 0o, it must be exactly one. [

8. ERCODIC DICHOTOMY FOR SUBSPACE FLOWS

Let I be a Zariski dense 6-transverse subgroup of G. Let W < ay be a non-
zero linear subspace and set Ay = exp W. In this section, we consider the
subspace flow Ay on Qy and explain how the proof of Theorem [I.1] extends
to this setting so that we obtain Theorem adapting the argument of
Pozzetti-Sambarino [26] on relating the subspace flows with directional flows.

For R > 0, we set

Twr={y €T |u(y) - W < R}.
If W = ap, then I'iy g =T for all R > 0.
Definition 8.1 (W-conical points). We say & € Fy is a W-conical point of

I' if there exist R > 0 and a sequence v; € I'yy, g such that £ € O%(o, ~;0) for
all ¢ > 1. We denote by Agv the set of all W-conical points of T'.
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Fix a (I', §)-proper linear form 1 € aj. Let v,14 be a pair of (I',7) and
(I'; 9 oi)-conformal measures on Ag and A;) respectively, and let m = m, ,,
denote the associated Bowen-Margulis-Sullivan measure on $2g.

If WnNn Ly =40} or W C ker, then the (T',§)-proper hypothesis on
implies that 'y is finite for all R > 0, and hence AZV = Aigg[)/) = () and
(Q9, Aw, m) is completely dissipative and non-ergodic.

In the rest of this section, we suppose that

WnNLy#{0} and W ¢ ker.

Recalling that ¥ > 0 on Ly by [20, Lem. 4.3], W Nker is a codimension
one subspace of W intersecting int Ly only at 0.
Set

WO =ag/(WNkerd)) and Qo := AP x W,

Recalling the spaces Qw and Q, defined in , the projection Qy — Qw
factors through Que. Since the -action on Qp is properly discontinuous
(Theorem, the induced T-action on Qe is also properly discontinuous.
Moreover, the trivial vector bundle Q¢ — €, in factors through

(81) Qwo = F\QWO.
Hence we have a W N ker y-equivariant homeomorphism:
Qg >~ Qo x (W Nkere).

Denote by m’ the Ap-invariant Radon measure on Qo such that m =
m ® Leankerw.

Definition 8.2. We say that m is W-balanced if there exists u € W N Ly
with ¥(u) > 0 (which always exists by the hypothesis on W) such that
(Qpo, m’) is u-balanced.

The main point of the proof of Theorem is to relate the action of Ay
on )y with that of a directional flow on Qe as in the work of Pozzetti-
Sambarino [26]. Once we do that, we can proceed similarly to the proof of
Theorem [Tl

Fix a unit vector u € W N Ly with ¥(u) > 0 such that m’ is u-balanced.
Set ay,, = exp(tu) for t € R and A, = Ar, = {aw, : t € R}. Consider the
Ay-action on (Qye, m’). Since W = Ru + (W Nker), we have:

Lemma 8.3. The Ay -action on (29, m) is ergodic (resp. conservative, non-
ergodic, completely dissipative) if and only if the Ay-action on (Qyo, m’)
ergodic (resp. conservative, non-ergodic, completely dissipative).

Among the ingredients for the proof of Theorem Lemma [5.2] and
Proposition [5.3| were repeatedly used and played fundamental roles in the
proof. The following analogue of Lemma [5.2] can be proved by a similar
argument as in the proof of Lemma
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Lemma 8.4. Suppose that d; € ay,,, exp(WNker @ZJ)B;, t; >0and~y; €T are
infinite sequences such that ~v;hym;d; is bounded for some bounded sequence
h; € G with h; P € A and m; € My. Then after passing to a subsequence,
we have that for all i > 1,

di € wATw™  for some w € W N M,.

Proof. As in the proof of Lemma there exists a Weyl element w €
W such that d; € wATw™" for all i > 1 after passing to a subsequence,
and moreover w € My or w € Mywy. We claim that the latter case w €
Mpwo cannot happen. Suppose that w € Mpwy and write d; = ay;,a:b; for
a; € exp(W Nkert) and b; € B, . Since w € Mpwy, we get o) (di) =
log(wo_latiuaiwo) for all 4 > 1. In particular, t;u + loga; € —a;.

Since the sequence v;h;m;d; is bounded by the hypothesis, the sequence
14i(0) (v h - ti(e)(d:) is bounded as well by Lemma Since fi;(p) (vl =
— Aduy, (po (i) and pyg)(di) = Adw, (tiv + loga;), it follows that ug(v;) =
—(t;u +log a;) + ¢; for some bounded sequence ¢; € ag. Applying 1, we get
Y(po(i)) = —tip(u) + (g;) since loga; € kery. Since y(u) > 0, ¥(uo(7i))
is uniformly bounded. The (T, #)-properness of 1 implies that ~; is a finite
sequence, yielding a contradiction. Therefore, the case w € Mywy cannot
occur; so w € Mpy. O

Let p : ag — W* denote the projection map. Choose a norm || - || on W°.
Then for a constant ¢ > 1 dependong only on the Lipschitz constant of p,
we have for all R > 0,

{v el :lp(po(v))—Rul| < R/c} CTwr C {y €T : |Ip(ue(y)) —Rul < cR}.

Using this relation and Lemma similar arguments as in sections [5] and [0]
apply to the A,-flow on Qyyo, replacing I'y, , with I'yy g. In particular, apply-
ing Lemma in place of Lemma the following analogs of Proposition
and Lemma (2) respectively can be proved similary.

Proposition 8.5. Let Q C Qo be a compact subset. There are positive
constants C1 = C1(Q),Cy = C2(Q) and R = R(Q) such that if [h] € QN
YQa_gy, for some h € G, v €1 and t > 0, then the following hold:
(1) llp(ue()) — tull < Cr;
(2) (h*,h7) € O%(0,70) x O}g) (v0,0);
(3) 1G°(h* )| < Ca.
Lemma 8.6. The following are equivalent for any £ € Ag:
(1) €Ay
(2) £ = gPy € Fy for some g € G such that [g] € Qp and lim sup[g](Aw N
A+) 7& Q);
(3) the sequence [(§,m,v)]|aty is relatively compact in Qo for some n €
Ai(é); v e W and t; — oo.
In particular, a W-conical point of I is a u-conical point for the action of
A, on Qo and vice versa. Note also that ¥(p(ug(7y))) = ¥ (ug(7y)) for all
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~v € I'. Following the proof of Proposition while applying Proposition
in the place of Proposition we get:

Proposition 8.7. Suppose that e ¥ (M) = oo for some R > 0.

Set § = (u) > 0.

(1) For any compact subset Q C Quye, there exists R = R(Q) > 0 such
that for any T > 1, we have

YEl'w,r

2

/ / Z QO’YQG tul 1Y QCL (t+s)u)dtd8 < Z e_w(#G(V))

v,y €T vel'w,r
P(po(7))<0T

(2) For any R > 0, there exists a compact subset Q' = Q'(R) C Qyye

such that
/ Z m’ Q N 'YQ A_py)dt > Z e~ Yo (7))
el v€l'w,r

Y(po(v))<6T

The proof of Theorem works verbatim for AZV so that the convergence
Y velTwr e ¥()) < oo for all R > 0 implies that v(A})) = 0. Together

with Proposition we deduce the following by applying the same argu-
ment as in the proof of Theorem

Theorem 8.8. Suppose that m is W-balanced. The following are equivalent:
(1) Z’YGFW,R e VW) = oo for some R > 0;
(w
2) v(A)) = 1= (A
Similarly, the following are also equivalent:

(1) Z’YGFWR e ¥ < o for all R > 0.

(2) v(A)) =0 = u(Aly)).

Since the recurrence of the A,-flow on Qo is related to the W-conical
set as stated in Lemma the arguments in section [7] for the directional
flow (Qpe, Ay, m’) yield the following equivalences:

(8.2)
max (V(Agv), Vi(AT(W))) >0 < (Qwe, Ay, m’) is conservative

i(0)
Quo, Ay, m’

QWO Au, m'

is ergodic;

max (V(Agv), yi(A;(W))) is completely dissipative

~

( )
< ( )
& ( )
< (Qe, Ay, m') is non-ergodic.

By Lemma Theorem follows from Theorem and (8.2), as in the
proof of Theorem
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Remark 8.9. The W-balanced condition on m was needed because @ and @’
in Proposition [8:7 may not be the same in principle. However when W = ay,
we have I'yyp = I for any R > 0 and @ and @' in Proposition can be
taken to be the same set, and hence the W-balanced condition is not needed

in the proof of Theorem

Similarly to Corollary we have the following estimates which reduce
the divergence of the series ) e ¥e(7) to the local mixing rate for
the a;-flow:

vel'w,r

Corollary 8.10. For all sufficiently large R > 0, there exist compact subsets
Q1, Q2 of Qo with non-empty interior such that for all T > 1,

T 1/2 T
(/ m'(Q1 N Q1a_t)dt) < g e Pe() « / m’(Q2NQ2a_¢)dt.
0 0
v€l'w,r
P(pe (7)) <0T

9. DICHOTOMY THEOREMS FOR ANOSOV SUBGROUPS

In this last section, let I' < G be a Zariski dense #-Anosov subgroup
defined as in the introduction. Recall that Ly C a;r denotes the 6-limit cone
of I'. Denote by 7}9 C aj the set of all linear forms tangent to the growth
indicator 1/)1@ and by Mi‘l the set of all I'-conformal measures on Ay. There

are one-to-one correspondences between the following sets ([20, Coro. 1.12],
[32, Thm. Al):

P(int L) +— T +— M.

Namely, for each unit vector v € int Ly, there exists a unique 9, € aj which
is tangent to ¥% at v and a unique (T',),)-conformal measure v, supported
on Ayp. We have ¢, oi € ai*(e) is tangent to w}(e) at i(v) and v4,) is a
(T, 4, o i)-conformal measure on Ajg). Denote by m, the Bowen-Margulis-
Sullivan measure on Qg associated with the pair (vy, vi(,))-

What distinguishes 6-Anosov subgroups from general #-transverse sub-
groups is that €, is a compact metric space ([31] and [9, Appendix]) and
hence {2y is a vector bundle over a compact space 2y, with fiber ker 1), ~
R#9=1 We use the the following local mixing for directional flows due to
Sambarino.

Theorem 9.1 ([32, Thm. 2.5.2], see also [10] for § =1II). Let I' < G be a
0-Anosov subgroup and v € int Ly. Then there exists k, > 0 such that for

any fla f2 S CC(QG))

t—o0

lim 77 [ (@) fal exp(tv)dma(@) = mamo (fi)mo (f2)

In particular, for any v € int Ly, m, is v-balanced.
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Corollary 9.2. For any v € int Ly and any bounded Borel subset Q C
with non-empty interior, we have for any T > 2,

T T
/0 Zrﬁv(Qﬂ’YQeXp(—tv))dtx/l e ar

vyel

Proof. Given Q C Qy with non- empty interior, we choose fi, f2 € C. (Qg) SO
that 0 < f < 1g < fo and mv(fl) > 0. For each i = 1,2, we define the

function f; € Ce(Q9) by fi(L[g]) = >_ cr fi(vg). By Theorem [9 . for each
i =1,2, we have

/ > fitlglexp(to) fillg)dmu([g]) = | fi(w exp(tv)) fi(z)dm, (w)

0 yel Qo
1—#6
=t 2
for t > 1. O

By Corollary and Corollary we get:

Proposition 9.3. Let v € int Ly and § = ¥, (v). For all sufficiently large
r > 0, we have that

T 1—#6 1/2 T 1—#6
(9.1) (/ t 2 dt) < Y e—wv(“0<7)><</ te o dt
1

YELy,r 1
o (g (7)) <6T

for T > 2.

Theorem 9.4. For any v € int Ly and u € af — {0}, the following are
equivalent:

(1) #6 <3 and Ru = Ro;

(2) Zyer e Yele(M) = oo for some r > 0.

Proof. Note that f = oo if and only if #6 < 3. Then (1) implies
(2) by Proposition To show the implication (2) = (1), suppose that
2yl e Vo) = oo for some r > 0. By Lemma Vo(u) = PP (u).
It follows from the strict concavity of ¥¢ [20, Thm. 12.2] that v, can be
tangent to wIQ only in the direction Rv. Therefore Ru = Rv. Now #60 < 3
follows from Proposition ([l

Here is the special case of Theorem [1.6] for dim W = 1:

Theorem 9.5. Let I' < G be a Zariski dense 0-Anosov subgroup. For any
u € int Ly, the following are equivalent:

(1) #60 <3 (resp. #0 > 4);

(2) vu(Ag) =1 (resp. vu(Ag) =0);

(3) (g, Ay, my,) is ergodic and conservative (resp. non-ergodic and com-
pletely dissipative);
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(4) Xyery n e Vulhe() = oo for some R > 0 (resp. S e Yulne(7) <

oo for all R > 0).

Proof. Since m,, is u-balanced by Theorem the equivalences among (2)-
(4) follow from Theorem By Theorem we have (1) < (4). O

’YeFu,R

Codimension dichotomy for Anosov subgroups. We now deduce The-
orem We use the notations from Theorem [I.6] and set ¢ = 1),,. As in
section [8] we consider the quotient space W = ay/(W N kere) and set
Qo = I‘\AéQ) x W* (see (8.1)). We denote by m/, the Ap-invariant Radon
measure on Qo such that m, = m}, ® Lebwniery. As before, Qe is a
vector bundle over a compact metric space €2, with fiber RIMW=1 “and the
local mixing theorem for the {as, }-flow on Qo [32) Thm. 2.5.2] says that
there exists k, > 0 such that for any fi, fo € Ce(Quo),
dim W®—1

(9-2) lim ¢ 2 fi(@) fo(wag)dmi,(z) = mami, (f1)ml,(f2)-

t—o00 QWO

We then obtain the following version of Proposition [9.3] using Corollary
and [0.2}

Proposition 9.6. For 6 = ¢(u) > 0 and all sufficiently large R > 0, we

have
T 1—dim w° 1/2 T 1—dim w°
(9.3) /t > dt) <Y ew(ﬂﬂ(”)«/ tr dt
1 Y€l'w,r 1
Y(pe(7))<0T
for T > 2.

Since dim W — 1 = codim W and hence dimW° < 3 < codim W < 2,
the following is immediate from Proposition

Proposition 9.7. IfT' is a Zariski dense 0-Anosov subgroup, then

codimW <2 < Z e YWe™) = 5 for some R > 0.
v€l'w,r

Hence the equivalence (1) < (4) in Theorem follows. Since the local
mixing for (Qye, {aw, }, m!,) implies that m/, is u-balanced, and hence m,, is
W-balanced, we can apply Theorem to obtain the equivalences (2)-(4)
in Theorem Therefore Theorem [L6] follows.
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