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Abstract. In this paper we introduce Patterson–Sullivan systems, which con-
sist of a group action on a compact metrizable space and a quasi-invariant

measure which behaves like a classical Patterson–Sullivan measure. For such

systems we prove a generalization of Tukia’s measurable boundary rigidity the-
orem. We then apply this generalization to (1) study the singularity conjecture

for Patterson–Sullivan measures (or, conformal densities) and stationary mea-

sures of random walks on isometry groups of Gromov hyperbolic spaces, map-
ping class groups, and discrete subgroups of semisimple Lie groups; (2) prove

versions of Tukia’s theorem for word hyperbolic groups, Teichmüller spaces,

and higher rank symmetric spaces; and (3) prove an entropy rigidity result for
pseudo-Riemannian hyperbolic spaces.
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1. Introduction

Let Hn denote real hyperbolic n-space and let ∂∞Hn denote its boundary at
infinity. Given a discrete subgroup Γ < Isom(Hn) and δ ≥ 0, a Borel probability
measure µ on ∂∞Hn is called a Patterson–Sullivan measure (or conformal measure)
for Γ of dimension δ if for any γ ∈ Γ and Borel subset E ⊂ ∂∞Hn,

(1) µ(γE) =

∫
E

|γ′|δdµ.

These measures play a fundamental role in the study of geometry and dynamics of
discrete subgroups of Isom(Hn), or equivalently, of hyperbolic n-manifolds.

The celebrated rigidity theorem of Mostow [Mos75, Mos73] asserts that the ge-
ometry of a finite-volume hyperbolic n-manifold, n ≥ 3, is determined by its funda-
mental group (see also [Pra73]). By considering Patterson–Sullivan measures, Tukia
generalized Mostow’s rigidity theorem to infinite-volume hyperbolic manifolds, as
in the following theorem (which implies Mostow’s rigidity).

Theorem 1.1. [Tuk89, Thm. 3C] For i = 1, 2 let Γi < Isom(Hni) be a Zariski dense
discrete subgroup and let µi be a Patterson–Sullivan measure for Γi of dimension
δi. Suppose

•
∑
γ∈Γ1

e−δ1 d(o,γo) = +∞ for some o ∈ Hn1 .
• There exists an onto homomorphism ρ : Γ1 → Γ2 and a µ1-a.e. defined

measurable ρ-equivariant injective boundary map f : ∂∞Hn1 → ∂∞Hn2 .

If the measures f∗µ1 and µ2 are not singular, then n1 = n2 and ρ extends to an
isomorphism Isom(Hn1)→ Isom(Hn2).

Prior to Tukia’s work, Sullivan [Sul82, Thm. 5] proved the above theorem in
the special case when δ1 = δ2 and n1 = n2. Later Yue [Yue96] extended Tukia’s
theorem to discrete subgroups in isometry groups of negatively curved symmetric
spaces.

In this paper, we define “Patterson–Sullivan systems” which consist of a group
action and a quasi-invariant measure which behaves like a classical Patterson–
Sullivan measure. More precisely, given a compact metrizable space M and a
subgroup Γ < Homeo(M), a function σ : Γ×M → R is called a κ-coarse-cocycle if

(2) |σ(γ1γ2, x)− (σ(γ1, γ2x) + σ(γ2, x))| ≤ κ
for any γ1, γ2 ∈ Γ and x ∈ M . Given such a coarse-cocycle and δ ≥ 0, a Borel
probability measure µ on M is called coarse σ-Patterson–Sullivan measure of di-
mension δ if there exists C ≥ 1 such that for any γ ∈ Γ the measures µ, γ∗µ are
absolutely continuous and

(3) C−1e−δσ(γ−1,x) ≤ dγ∗µ

dµ
(x) ≤ Ce−δσ(γ−1,x) for µ-a.e. x ∈M.

When C = 1 and hence equality holds in Equation (3), we call µ a σ-Patterson–
Sullivan measure.

Remark 1.2. We note that we do not assume anything on the support of a Patterson–
Sullivan measure (e.g. supported on a minimal set). Further, in specific settings
these measures are sometimes called (quasi-)conformal densities.

A Patterson–Sullivan system consists of a coarse Patterson–Sullivan measure, a
collection of open sets called shadows, and a choice of magnitude function all of
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which satisfy certain properties (see Section 1.4 for the precise definition). The
definition is quite robust and in Example 1.31 below we list a number of examples
of Patterson–Sullivan systems.

In a classical setting, M is the boundary of real hyperbolic space, the coarse-
cocycle is an actual cocycle (implicit in Equation (1)), the shadows are the geodesic
shadows, and the magnitude of an element is the distance it translates a fixed
basepoint.

For Patterson–Sullivan systems we prove a version of Tukia’s measurable bound-
ary rigidity theorem (Theorem 1.1). Before stating our general theorem in Sec-
tion 1.4 below, we describe a number of applications.

1.1. Random walks. In this section we describe applications of our main theorem
towards the singularity conjecture for Patterson–Sullivan measures and stationary
measures of random walks in a variety of settings.

One novelty in this work is the observation that the singularity conjecture can
be studied via Tukia-type measurable boundary rigidity theorems.

1.1.1. Random walks on Gromov hyperbolic spaces. Suppose (X,dX) is a proper
geodesic Gromov hyperbolic metric space and Γ < Isom(X) is a non-elementary
discrete subgroup. Let m be a probability measure on Γ whose support generates
Γ as a semigroup, i.e.

(4)
⋃
n≥1

[suppm]n = Γ.

Consider the random walk Wn = γ1 · · · γn where the γi’s are independent identically
distributed elements of Γ each with distribution m. Then, given o ∈ X, almost every
sample path Wno ∈ X converges to a point in the Gromov boundary ∂∞X [Kai00,
Remark following Thm. 7.7] (see also [MT18]). Further,

(5) ν(A) := Prob
(

lim
n→∞

Wno ∈ A
)

defines a Borel probability measure ν on ∂∞X called the hitting measure (or
harmonic measure) for the random walk associated to m, and is the unique m-
stationary measure on ∂∞X, that is m ∗ ν = ν.

Fixing a basepoint o ∈ X, the coarse Busemann cocycle β : Γ × ∂∞X → R is
the coarse-cocycle defined by

(6) β(g, x) = lim sup
p→x

dX(p, g−1o)− dX(p, o).

A coarse Busemann Patterson–Sullivan measure on ∂∞X is a coarse β-Patterson–
Sullivan measure in the sense of Equation (3).

We will apply our generalization of Theorem 1.1 to the following well-studied
problem.

Problem 1.3 (Singularity Problem). If m has finite support, determine when
the m-stationary measure ν is singular to some/any coarse Busemann Patterson–
Sullivan measure for Γ on ∂∞X.

In what follows, we will consider a slightly more general class of probability
measures: The probability measure m has finite superexponential moment if

(7)
∑
γ∈Γ

c|γ|m(γ) < +∞
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for any c > 1, where |·| is the distance from the identity with respect to a word
metric on Γ.

We first present some applications of one of our main results (Theorem 1.9)
towards Problem 1.3. For any finitely generated Kleinian group, we obtain the
following, which was previously known only for geometrically finite groups [GT20].

Corollary 1.4 (corollary of Theorem 1.5 and Corollary 1.7). Suppose X = H3,
Γ < Isom(H3) is a non-elementary finitely generated discrete subgroup, and m has
finite superexponential moment. If Γ is not convex cocompact, then the m-stationary
measure ν is singular to every coarse Busemann Patterson–Sullivan measure of Γ
on ∂∞H3. In particular, if Γ is not a cocompact lattice, then ν is singular to the
Lebesgue measure class on ∂∞H3.

Our results for general X involve relatively hyperbolic groups which is a class
of finitely generated groups including word hyperbolic groups, whose definition we
delay to Definition 2.1, and quasi-convex subgroups of Isom(X) which are discrete
subgroups whose orbits are quasi-convex in X.

Theorem 1.5 (corollary of Theorem 1.9). Suppose Γ is relatively hyperbolic (as
an abstract group) and m has finite superexponential moment. If Γ is not a quasi-
convex subgroup of Isom(X), then the m-stationary measure ν is singular to every
coarse Busemann Patterson–Sullivan measure on ∂∞X.

Remark 1.6. In the special case when Γ is word hyperbolic, X admits a geometric
group action, and m is symmetric, Theorem 1.5 is due to Blachère–Häıssinsky–
Mathieu [BHM11, Prop. 5.5]. In the special case when Γ acts geometrically finitely
on X (which implies it is relatively hyperbolic), Theorem 1.5 is due to Gekhtman–
Tiozzo [GT20, Coro. 4.2].

Theorem 1.5, in full generality, is new even for negatively curved symmetric
spaces. In this case, quasi-convex subgroups are convex cocompact subgroups,
∂∞X has a smooth structure, and there is always a Busemann Patterson–Sullivan
measure in the Lebesgue measure class. Using these facts, we will prove the follow-
ing.

Corollary 1.7 (see Corollary 12.2 below). Suppose X is a negatively curved sym-
metric space, Γ is relatively hyperbolic (as an abstract group), and m has finite
superexponential moment. If Γ is not a cocompact lattice in Isom(X), then the
m-stationary measure ν is singular to the Lebesgue measure class on ∂∞X.

Corollary 1.4 follows from Theorem 1.5 and Corollary 1.7. Indeed, when X = H3,
every finitely generated non-elementary discrete subgroup of Isom(H3) is relatively
hyperbolic relative to some (possibly empty) collection of peripheral subgroups
which are virtually abelian. This can be deduced by Scott core theorem [Sco73]
and Thurston’s hyperbolization [Thu82] (see also [MT98, Thm. 4.10]).

Remark 1.8. In the special case when X = Hn is real hyperbolic space, n ≥ 3,
and Γ is a non-uniform lattice in Isom(Hn), Corollary 1.7 is due to Randecker–
Tiozzo [RT21]. When X = H2, this was obtained in different contexts [GLJ90,
DKN09, KLP11, GMT15]. Further, Kosenko–Tiozzo [KT22] explicitly constructed
cocompact lattices of Isom(H2) such that hitting measures are singular to the
Lebesgue measure class on ∂∞H2.
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In fact, we show that the non-singularity occurs precisely when any Γ-orbit is
roughly isometric to the Green metric associated to the random walk. The Green
metric on Γ is defined by

(8) dG(g, h) = − log
Gm(g, h)

Gm(id, id)
for g, h ∈ Γ

where Gm(g, h) =
∑∞
n=0 m

∗n(g−1h) is the Green function. When m has finite
superexponential moment and Γ is finitely generated and non-amenable, the Green
metric dG on Γ is quasi-isometric to a word metric with respect to a finite generating
set [GT20, Prop. 7.8]. So Theorem 1.5 is a consequence of the following.

Theorem 1.9 (see Theorem 12.1 below). Suppose Γ is relatively hyperbolic (as
an abstract group), m has finite superexponential moment, ν is the m-stationary
measure, and µ is a coarse Busemann Patterson–Sullivan measure for Γ on ∂∞X
of dimension δ. Then the following are equivalent:

(1) The measures ν and µ are not singular.
(2) The measures ν and µ are in the same measure class and the Radon–

Nikodym derivatives are a.e. bounded from above and below by a positive
number.

(3) For any o ∈ X,

sup
γ∈Γ
|dG(id, γ)− δ dX(o, γo)| < +∞.

In particular, Γ is quasi-convex and δ is the critical exponent of Γ.

When Γ is assumed to be a quasi-convex subgroup of Isom(X) (in particular,
word hyperbolic) and m is symmetric, Theorem 1.9 was obtained by Blachère–
Häıssinsky–Mathieu [BHM11, Thm. 1.5]. In the special case when Γ acts geo-
metrically finitely on X (which implies it is relatively hyperbolic), Theorem 1.9
is due to Gekhtman–Tiozzo [GT20, Thm. 4.1]. For relatively hyperbolic groups,
Dussaule–Gekhtman [DG20] proved an analogous statement for Patterson–Sullivan
measure coming from a word metric on Γ.

1.1.2. Random walks on mapping class groups and Teichmüller spaces. Let Σ be
a closed connected orientable surface of genus at least two, Mod(Σ) denote the
mapping class group of Σ, and (T ,dT ) denote the Teichmüller space of Σ endowed
with Teichmüller metric dT .

Thurston [Thu88] compactified T by the space PMF of projective measured
foliations on Σ. This compactification is called Thurston’s compactification and
PMF is also referred to as Thurston’s boundary.

Let Γ < Mod(Σ) be a non-elementary subgroup (i.e. Γ is not virtually cyclic
and contains a pseudo-Anosov element) and m a probability measure on Γ whose
support generates Γ as a semigroup. Kaimanovich–Masur [KM96] showed that there
exists a unique m-stationary measure ν on PMF and the subset UE ⊂ PMF of
uniquely ergodic foliations has full ν-measure. Further, for any o ∈ T the measure
ν is the hitting measure for the associated random walk on the orbit Γ(o) ⊂ T .

Analogous to Problem 1.3, Kaimanovich–Masur suggested the following.

Conjecture 1.10 (Kaimanovich–Masur [KM96, pg. 9]). If m has finite support,
then the m-stationary measure ν is singular to every Busemann Patterson–Sullivan
measure for Γ.
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For a special type of Patterson–Sullivan measure which is of Lebesgue measure
class on PMF , Gadre [Gad14] proved the singularity of m-stationary measure for
finitely supported m. Later, Gadre–Maher–Tiozzo [GMT17] extended this result
to m with finite first moment with respect to a word metric as well.

To the best of our knowledge, Conjecture 1.10 is only known for the Lebesgue
measure class. We also note that many subgroups of Mod(Σ) have limit sets with
Lebesgue measure zero (e.g. handlebody groups [Mas86, Ker90]), which automati-
cally implies that the stationary measure is singular to the Lebesgue measure class.

As an application of our generalization of Tukia’s theorem, we prove Conjec-
ture 1.10 for a certain class of subgroups of Mod(Σ), showing the singularity of
m-stationary measure and any Busemann Patterson–Sullivan measure. Before pre-
senting the theorem, we first define Patterson–Sullivan measures in this context.

Gardiner–Masur [GM91] introduced another compactification by ∂GM T , called
Gardiner–Masur boundary of T , and proved that PMF is a proper subset of
∂GM T . Liu–Su [LS14] showed that ∂GM T is the horofunction boundary of (T ,dT ).
Hence, after fixing o ∈ T , one can define a cocycle β : Mod(Σ)× ∂GM T → R by

β(g, x) = lim
p→x

dT (p, g−1o)− dT (p, o)

where p ∈ T converges to x ∈ ∂GM T . A Busemann Patterson–Sullivan measure
on ∂GM T is a β-Patterson–Sullivan measure in the sense of Equation (3). These
measures have been constructed and studied by several authors, including Coulon
[Cou24] and Yang [Yan22].

We also note that Athreya–Bufetov–Eskin–Mirzakhani [ABEM12] constructed
a Patterson–Sullivan measure for Mod(Σ) on PMF using Thurston measure, and
Gekhtman [Gek12] constructed Patterson–Sullivan measures for convex cocompact
subgroups of Mod(Σ) on UE . Since the identity map T → T continuously extends
to a topological embedding UE ↪→ ∂GM T [Miy13], the Patterson–Sullivan mea-
sures constructed in [Gek12] are Patterson–Sullivan measures on ∂GM T . Further,
by works of Masur [Mas82] and Veech [Vee82], the Patterson–Sullivan measure con-
structed in [ABEM12] gives a full measure on UE , and therefore can be identified
with a Busemann Patterson–Sullivan measure on ∂GM T .

Finally, since the m-stationary measure ν also gives a full measure on UE , we can
view ν as a measure on ∂GM T . Moreover, any measure on PMF is non-singular
to ν on PMF if and only if its restriction on UE is non-singular to ν viewed as
measures on ∂GM T .

We now state our contribution towards Conjecture 1.10.

Theorem 1.11 (see Corollary 12.4 below). Suppose Γ is relatively hyperbolic (as
an abstract group) and m has finite superexponential moment. If Γ contains a mul-
titwist, then the m-stationary measure ν is singular to every Busemann Patterson–
Sullivan measures on ∂GM T .

As explained above, Theorem 1.11 implies the same statement for Patterson–
Sullivan measures on PMF , such as the measures constructed in [ABEM12, Gek12].
Note also that Patterson–Sullivan measures under consideration do not have any as-
sumptions on their supports. We also remark that in Theorem 1.11, the multitwist
in Γ does not necessarily belong to a peripheral subgroup of Γ.

There are many examples of subgroups of Mod(Σ) which are relatively hyperbolic
and containing multitwists, so Theorem 1.11 applies to. For instance, the combina-
tion theorem for Veech subgroups by Leininger–Reid [LR06] produces closed surface
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subgroups in Mod(Σ) with multitwists, and so-called parabolically geometrically fi-
nite subgroups introduced by Dowdall–Durham–Leininger–Sisto [DDLS24] are rel-
atively hyperbolic and contain multitwists in their peripheral subgroups. Many
examples of parabolically geometrically finite subgroups were also constructed by
Udall [Uda25] and Loa [Loa21]. Finally, in their proof of the purely pseudo-Anosov
surface subgroup conjecture, Kent–Leininger [KL24] constructed a type-preserving
homomorphism from a finite index subgroup of the fundamental group of the figure-
8 knot complement into Mod(Σ) when Σ has genus at least 4. The image of such
a homomorphism is relatively hyperbolic and contains a multitwist.

Theorem 1.11 will be a consequence of the following.

Theorem 1.12 (see Theorem 12.3 below). Suppose Γ is relatively hyperbolic (as
an abstract group), m has a finite superexponential moment with the m-stationary
measure ν, and µ is a Busemann Patterson–Sullivan measure for Γ on ∂GM T of
dimension δ. If the measures ν and µ are not singular, then:

(1) For any o ∈ T ,

sup
γ∈Γ
|dG(id, γ)− δ dT (o, γo)| < +∞.

In particular, δ is the critical exponent of Γ and
∑
γ∈Γ e

−δ dT (o,γo) = +∞.

(2) If dw is a word metric on Γ with respect to a finite generating set, then the
map

γ ∈ (Γ,dw) 7→ γo ∈ (T ,dT )

is a quasi-isometric embedding.

For parabolically geometrically finite subgroups, we will also prove the converse
of Theorem 1.12, see Theorem 12.5 below.

1.1.3. Random walks on discrete subgroups of Lie groups. Let G be a connected
semisimple Lie group without compact factors and with finite center. Suppose
Γ < G is a Zariski dense discrete subgroup, and m is a probability measure on Γ
whose support generates Γ as a semigroup. Let F denote the Furstenberg boundary,
the flag manifold associated to a minimal parabolic (i.e. F = G /P for a minimal
parabolic subgroup P < G). Then there is a unique m-stationary measure ν on F
[GR85]. The measure ν is also referred to as the Furstenberg measure.

We will apply our generalization of Tukia’s theorem to consider the following
well-known conjecture (cf. Kaimanovich–Le Prince [KLP11]).

Conjecture 1.13 (Singularity conjecture). If m has finite support, then the m-
stationary measure ν is singular to the Lebesgue measure class on F .

For a large class of G and relatively hyperbolic Γ < G (e.g. any free subgroup,
word hyperbolic group, or non-trivial free products of finitely many finitely gener-
ated groups), we give an affirmative answer to the singularity conjecture. Note that
we do not assume anything on Γ as a subgroup of G, such as the Anosov property.

Theorem 1.14 (see Theorem 12.8 below). Suppose G has no rank one factor, Γ
is relatively hyperbolic (as an abstract group), and m has finite superexponential
moment. Then the m-stationary measure ν is singular to the Lebesgue measure
class on F .
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When Γ < G is a lattice, there exists m with an infinite support such that the
m-stationary measure ν on F is in the Lebesgue measure class on F , as shown by
Furstenberg [Fur71], Lyons–Sullivan [LS84], Ballmann–Ledrappier [BL96] (see also
[BQ18]).

We also study the singularity conjecture for a more general class of measures
introduced by Quint [Qui02a].

Delaying precise definitions until Section 9, we fix a Cartan decomposition g =
k+p of the Lie algebra of G, a Cartan subspace a ⊂ p, and a positive Weyl chamber
a+ ⊂ a. Then let ∆ ⊂ a∗ be the corresponding system of simple restricted roots,
and let κ : G→ a+ denote the associated Cartan projection.

Given a non-empty subset θ ⊂ ∆, we let Pθ < G denote the associated parabolic
subgroup and let Fθ = G /Pθ denote the associated partial flag manifold. We
denote by Bθ : G×Fθ → aθ the partial Iwasawa cocycle, a vector valued cocycle
whose image lies in a subspace aθ ⊂ a associated to θ.

Given a functional φ ∈ a∗θ and a subgroup Γ < G, a Borel probability measure µ
on Fθ is called a coarse φ-Patterson–Sullivan measure for Γ if it is a coarse (φ◦Bθ)-
Patterson–Sullivan measure for Γ in the sense of Equation (3). We refer to these
measures as coarse Iwasawa Patterson–Sullivan measures.

In the case when G = Isom0(Hn), ∆ = {α} consists of a single simple restricted
root and Fα naturally identifies with ∂∞Hn. Employing the ball model for Hn
with o ∈ Hn as the center of the ball so that ∂∞Hn = Sn−1,

|g′(x)|∂∞ Hn = e−(α◦Bα)(g,x)

for all g ∈ G and x ∈ ∂∞Hn. So the above definitions encompasses the classical
case described in Equation (1).

As F = F∆ always supports a Iwasawa Patterson–Sullivan measure in the
Lebesgue measure class [Qui02a, Lem. 6.3], it is natural to consider the follow-
ing generalization of Conjecture 1.13.

Conjecture 1.15 (generalized Singularity conjecture). If m has finite support, then
the m-stationary measure ν is singular to every coarse Iwasawa Patterson–Sullivan
measure on F .

We prove that non-singularity implies strong restrictions on how a discrete sub-
group embeds in G.

Theorem 1.16 (see Theorem 12.7 below). Suppose Γ is relatively hyperbolic (as
an abstract group), m has finite superexponential moment, and µ is a coarse φ-
Patterson–Sullivan measure on F of dimension δ. If the measures ν and µ are not
singular, then:

(1) supγ∈Γ |dG(id, γ)− δφ(κ(γ))| < +∞. In particular,
∑
γ∈Γ e

−δφ(κ(γ)) = +∞.

(2) If dw is a word metric on Γ with respect to a finite generating set, (X,dX)
is the symmetric space associated to G, and x0 ∈ X, then the map

γ ∈ (Γ,dw) 7→ γx0 ∈ (X,dX)

is a quasi-isometric embedding.

For some classes of groups, it is easy to verify that the map in part (2) cannot
be a quasi-isometric embedding.

Corollary 1.17 (see Corollary 12.9 below). Suppose Γ is word hyperbolic (as an
abstract group) and m has finite superexponential moment. If Γ contains a unipotent
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element of G, then the m-stationary measure ν is singular to every coarse Iwasawa
Patterson–Sullivan measure on F .

More generally, Corollary 1.17 holds when Γ is relatively hyperbolic and contains
an element u which is unipotent (as an element of G) and the stable translation
length of u is positive on a Cayley graph of Γ (e.g. u is loxodromic [DG20, Prop.
7.8]).

1.2. Tukia’s measurable boundary rigidity theorem. In this section we de-
scribe special cases of our main theorem in a variety of settings.

1.2.1. Tukia’s theorem for word hyperbolic groups. We establish a version of Tukia’s
theorem for word metrics on word hyperbolic groups, which implies that any mea-
surable isomorphism between Gromov boundaries with respect to coarse Patterson–
Sullivan measures always extends to a homeomorphism.

Theorem 1.18 (see Theorem 8.8 below). For i = 1, 2 suppose Γi is a non-
elementary word hyperbolic group endowed with a word metric di with respect to
a finite generating set and µi is a coarse Busemann Patterson–Sullivan measure
for Γi of dimension δi on ∂∞Γi. Assume there exist

• a homomorphism ρ : Γ1 → Γ2 with non-elementary image and
• a µ1-almost everywhere defined measurable ρ-equivariant injective map f :
∂∞Γ1 → ∂∞Γ2.

If f∗µ1 and µ2 are not singular, then ker ρ is finite, ρ(Γ1) < Γ2 has finite index,

sup
γ1,γ2∈Γ1

|δ1 d1(γ1, γ2)− δ2 d2(ρ(γ1), ρ(γ2))| < +∞,

and there exists a ρ-equivariant homeomorphism f̃ : ∂∞Γ1 → ∂∞Γ2 such that

(1) f̃ = f µ1-a.e.,

(2) f̃∗µ1, µ2 are in the same measure class and the Radon–Nikodym derivatives
are a.e. bounded from above and below by a positive number.

In fact we prove Theorem 1.18 for Patterson–Sullivan measures associated to
a more general class of cocycles introduced in [BCZZ24b], see Definition 8.3 and
Theorem 8.8.

Remark 1.19. Given two minimal convergence group actions Γ1 y M1 and Γ2 y
M2 and an onto homomorphism ρ : Γ1 → Γ2, it is known that any continuous ρ-
equivariant map f : M1 →M2 is injective on the so-called Myrberg limit set of Γ1

[Ger12, Prop. 7.5.2] (see also [Yan22, Lem. 10.5]). Moreover, for a word hyperbolic
group, the Myrberg limit set on its Gromov boundary is of full measure with respect
to any coarse Busemann Patterson–Sullivan measure [Yan22, Thm. 1.14] (see also
[Coo93, Cor. 7.3]). Hence, any continuous equivariant maps between Gromov
boundaries of word hyperbolic groups satisfies the condition in Theorem 1.18.

1.2.2. Tukia’s theorem for Teichmüller spaces. We establish a version of Tukia’s
theorem for Teichmüller spaces.

Theorem 1.20 (corollary to Theorems 1.29 and 10.1). For i = 1, 2, let Σi be a
closed connected orientable surface of genus at least two and T i its Teichmüller
space. Let Γi < Mod(Σi) be a non-elementary subgroup and µi a Busemann
Patterson–Sullivan measure for Γi of dimension δi on ∂GM T i. Suppose
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•
∑
γ∈Γ1

e−δ1 dT 1
(o1,γo1) = +∞ for o1 ∈ T 1.

• There exists an onto homomorphism ρ : Γ1 → Γ2 and a µ1-almost every-
where defined measurable ρ-equivariant injective map f : ∂GM T 1 → ∂GM T 2.

If f∗µ1 and µ2 are not singular, then for any o2 ∈ T 2, the orbit map γo1 7→ ρ(γ)o2

is a rough isometry after scaling, i.e.,

sup
γ∈Γ1

|δ1 dT 1
(o1, γo1)− δ2 dT 2

(o2, ρ(γ)o2)| < +∞.

Remark 1.21. As shown by Yang [Yan22],
∑
γ∈Γ1

e−δ1 dT 1
(o1,γo1) = +∞ implies

that UE(Σ1) ⊂ ∂GM T 1 has a full µ1-measure. Hence, the boundary map f and
measure µ1 can be regarded to be defined on PMF(Σ1), i.e. Thurston’s boundary.

For a convex cocompact Γ < Mod(Σ), there exists a unique Γ-minimal subset of
PMF , called the limit set of Γ, and is the image of a Γ-equivariant embedding of
∂∞Γ into UE [FM02, Prop. 3.2]. Moreover, if µ is a Patterson–Sullivan measure
for Γ of dimension δ and

∑
γ∈Γ e

−δ dT (o,γo) = +∞, then µ is supported on the

limit set of Γ [Gek12] (see also [Cou24, Yan22]). Hence, the boundary map f as in
Theorem 1.20 always exists for two isomorphic convex cocompact subgroups. See
also Remark 1.19.

1.2.3. Tukia’s theorem in higher rank. Using the Iwasawa Patterson–Sullivan mea-
sures introduced in Section 1.1.3, we extend Tukia’s theorem to a class of discrete
subgroups in higher rank semisimple Lie groups called transverse groups, which
can be viewed as a higher rank analogue of Kleinian groups. This class is defined
in Section 9 and includes the Anosov and relatively Anosov subgroups and their
subgroups. Further, any discrete subgroup of a rank one non-compact simple Lie
group is transverse.

Theorem 1.22 (see Corollary 9.14 below). Let G1,G2 be non-compact simple Lie
groups with trivial centers. Let Γ < G1 be a Zariski dense Pθ1-transverse subgroup,
µ a coarse φ-Patterson–Sullivan measure for Γ of dimension δ ≥ 0 on Fθ1 , and
ρ : Γ→ G2 a representation with Zariski dense image. Suppose

•
∑
γ∈Γ

e−δφ(κ(γ)) = +∞.

• There exists a µ-almost everywhere defined measurable ρ-equivariant injec-
tive map f : Fθ1 → Fθ2 .

If f∗µ is not singular to some coarse Iwasawa Patterson–Sullivan measure for ρ(Γ),
then ρ extends to a Lie group isomorphism G1 → G2.

Remark 1.23.

(1) As in Margulis’ superrigidity theorem, the representation ρ is not assumed
to be discrete in Theorem 1.22, in contrast to Theorem 1.1 and Yue’s gen-
eralization [Yue96].

(2) Theorem 1.22 follows from a more general statement (Corollary 9.14) about
a non-elementary transverse subgroup of a semisimple Lie group and its
irreducible representation into a semisimple Lie group.

(3) See Remark 9.15 for a version of the theorem for non-transverse Zariski
dense discrete subgroups.
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Remark 1.24. Theorem 1.22 was previously established in a variety of special cases.
In all of these previous works, the representation ρ was assumed to be discrete
faithful and the boundary map was assumed to be a topological embedding.

• Kim–Oh [KO24] considered the cases when either
(1) G1 is rank one, ρ is faithful, and ρ(Γ) is P∆2

-divergent.
(2) Γ is P∆1

-Anosov, ρ is faithful, and ρ(Γ) is P∆2
-Anosov.

• Kim [Kim24] considered the case where Γ is Pθ1 -hypertransverse (Pθ1 -
transverse with an extra assumption), ρ is faithful, and ρ(Γ) is Pθ2-divergent.
• Blayac–Canary–Zhu–Zimmer [BCZZ24b] considered the case where Γ is
Pθ1-transverse, ρ is faithful, and ρ(Γ) is Pθ2-transverse.

In contrast to these previous works, in Theorem 1.22, ρ does not need to be discrete
or faithful, and the boundary map does not even need to be continuous. Further,
in many natural settings the boundary maps will not be a topological embedding
(e.g. Cannon–Thurston maps [CT07]), continuous, or even defined everywhere (e.g.
maps between limit sets of isomorphic geometrically finite groups [Tuk95]).

1.3. Entropy rigidity in pseudo-Riemannian hyperbolic geometry. Delay-
ing more definitions until Section 13, let Hp,q be pseudo-Riemannian hyperbolic
space of signature (p, q). The group PO(p, q+ 1) acts by isometries on this pseudo-
metric space and using this action Danciger–Guéritaud–Kassel [DGK18] introduced
Hp,q-convex cocompact subgroups of PO(p, q+1). Glorieux–Monclair [GM21] intro-
duced a critical exponent δHp,q (Γ) for a convex cocompact subgroup Γ < PO(p, q)
and proved that

δHp,q (Γ) ≤ p− 1.

The critical exponent δHp,q (Γ) is also referred to as entropy of Γ.
Using our version of Tukia’s theorem for higher rank Lie groups (Theorem 1.22),

we characterize the equality case.

Theorem 1.25 (see Theorem 13.2 below). If Γ < PO(p, q + 1) is Hp,q-convex
cocompact and δHp,q (Γ) = p− 1, then Γ preserves and acts cocompactly on a totally
geodesic copy of Hp in Hp,q.

Remark 1.26. A totally geodesic copy of Hk in Hp,q is a subset of the form P(V )∩
Hp,q where V ⊂ Rp+q+1 is a (k+ 1)-dimensional linear subspace and the associated
bilinear form [·, ·]p,q+1 restricted to V has signature (k, 1).

A number of special cases of Theorem 1.25 have been previously established:

(1) Hp,0 is real hyperbolic p-space and Hp,0-convex cocompact coincides with
the usual definition in real hyperbolic geometry. In this case, the above
theorem follows from a result of Tukia [Tuk84], which also shows that a
non-lattice geometrically finite group has critical exponent strictly less than
p− 1.

(2) Collier–Tholozan–Toulisse [CTT19] proved the above theorem when p = 2
and Γ is the fundamental group of a closed surface.

(3) Mazzoli–Viaggi [MV23] proved the above theorem when Γ is the fundamen-
tal group of a closed p-manifold.

The techniques used in [CTT19, MV23] strongly use the fact that Γ is the fun-
damental group of a closed manifold and are very different than the approach taken
here. In the proof of Theorem 1.25 we construct coarse Iwasawa Patterson–Sullivan
measures on two different flag manifolds and show that there is a measurable map



12 KIM AND ZIMMER

so that the push-forward of one of the measures is non-singular to the other. Then
we use Theorem 1.22 to constrain the eigenvalues of elements in the group, which
in turn constrains the Zariski closure of the group.

1.4. Patterson–Sullivan systems. We now define Patterson–Sullivan systems
and then state our generalization of Tukia’s theorem. In the classical setting of
real hyperbolic geometry, “geodesic shadows” play a fundamental role in the study
of Patterson–Sullivan measures and our definition of Patterson–Sullivan systems
attempts to extract the key properties of these sets.

As in the beginning of the introduction, let M be a compact metric space and let
Γ < Homeo(M) be a subgroup. Recall that coarse-cocycles and coarse Patterson–
Sullivan measures were introduced in Equations (2) and (3).

Definition 1.27. A Patterson–Sullivan-system (PS-system) of dimension δ con-
sists of

• a coarse-cocycle σ : Γ×M → R,
• coarse σ-Patterson–Sullivan measure (PS-measure) µ of dimension δ,
• for each γ ∈ Γ, a number ‖γ‖σ ∈ R called the σ-magnitude of γ, and
• for each γ ∈ Γ and R > 0, a non-empty open set OR(γ) ⊂ M called the
R-shadow of γ

such that:

(PS1) For any γ ∈ Γ, there exists c = c(γ) > 0 such that |σ(γ, x)| ≤ c(γ) for µ-a.e.
x ∈M .

(PS2) For every R > 0 there is a constant C = C(R) > 0 such that

‖γ‖σ − C ≤ σ(γ, x) ≤ ‖γ‖σ + C

for all γ ∈ Γ and µ-a.e. x ∈ γ−1OR(γ).
(PS3) If {γn} ⊂ Γ, Rn → +∞, Z ⊂M is compact, and [M r γ−1

n ORn(γn)]→ Z
with respect to the Hausdorff distance, then for any x ∈ Z, there exists
g ∈ Γ such that

gx /∈ Z.
We call the PS-system well-behaved with respect to a collection

H := {H(R) ⊂ Γ : R ≥ 0}
of non-increasing subsets of Γ if the following additional properties hold:

(PS4) Γ is countable and for any T > 0, the set {γ ∈ H(0) : ‖γ‖σ ≤ T} is finite.
(PS5) If {γn} ⊂ Γ, Rn → +∞, Z ⊂M is compact, and [M r γ−1

n ORn(γn)]→ Z
with respect to the Hausdorff distance, then for any h1, . . . , hm ∈ Γ and
x ∈ Z, there exists g ∈ Γ such that

gx /∈
m⋃
i=1

hiZ.

(PS6) If R1 ≤ R2 and γ ∈ H(0), then OR1
(γ) ⊂ OR2

(γ).
(PS7) For any R > 0 there exist C > 0 and R′ > 0 such that: if α, β ∈ H(R),

‖α‖σ ≤ ‖β‖σ, and OR(α) ∩ OR(β) 6= ∅, then

OR(β) ⊂ OR′(α)

and ∣∣‖β‖σ − (‖α‖σ +
∥∥α−1β

∥∥
σ
)
∣∣ ≤ C.
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(PS8) For every R > 0, there exists a set M ′ ⊂M of full µ-measure such that

lim
n→∞

diamOR(γn) = 0

whenever {γn} ⊂ H(R) is an escaping sequence and

x ∈M ′ ∩
∞⋂
n=1

OR(γn).

We call the collection H the hierarchy of the Patterson–Sullivan system.

Remark 1.28. Property (PS3) and the stronger Property (PS5) can be viewed as
saying the action of Γ on Z is “irreducible” and “strongly irreducible” respectively.

For a well-behaved Patterson–Sullivan system (M,Γ, σ, µ) with respect to a hier-
archy H = {H(R) ⊂ Γ : R ≥ 0}, we consider the following analogue of the conical
limit set:

(9) Λcon(H) :=

{
x ∈M :

∃ R > 0, γ ∈ Γ, an escaping sequence {γn ∈ H(n)}
s.t. x ∈ γOR(γn) for all n ≥ 1

}
.

We now state our generalization of Tukia’s rigidity theorem (Theorem 1.1) to PS-
systems.

Theorem 1.29 (see Theorem 7.1 below). Suppose

• (M1,Γ1, σ1, µ1) is a well-behaved PS-system of dimension δ1 with respect to
a hierarchy H1 = {H1(R) ⊂ Γ1 : R ≥ 0} and

µ1(Λcon(H1)) = 1.

• (M2,Γ2, σ2, µ2) is a PS-system of dimension δ2.
• There exists an onto homomorphism ρ : Γ1 → Γ2 and a µ1-a.e. defined

measurable ρ-equivariant injective map f : M1 →M2.

If the measures f∗µ1 and µ2 are not singular, then

sup
γ∈Γ1

∣∣δ1 ‖γ‖σ1
− δ2 ‖ρ(γ)‖σ2

∣∣ < +∞.

Remark 1.30. Although formulated differently, Theorem 1.29 contains Tukia’s theo-
rem as a special case. Under the hypothesis of Theorem 1.1, the Patterson–Sullivan
measures µi are part of a well-behaved PS-system with respect to a trivial hierarchy
Hi(R) ≡ Γi and with magnitude function

γ 7→ dHni (oi, γoi)

where oi ∈ Hni is a basepoint. Further, the conical limit set defined in Equation (9)
coincides with the classical conical limit set in hyperbolic geometry. The classical
Hopf–Tsuji–Sullivan dichotomy then implies that µ1(Λcon(H1)) = 1 and hence
Theorem 1.29 implies that

sup
γ∈Γ1

|δ1 dHn1 (o1, γo1)− δ2 dHn2 (o2, ρ(γ)o2)| < +∞.

It then follows from marked length spectrum rigidity that n1 = n2 and ρ extends to
an isomorphism Isom(Hn1) → Isom(Hn2), as in Theorem 1.1. Similarly, Theorem
1.18, Theorem 1.20, and Theorem 1.22 are consequences of Theorem 1.29.

Example 1.31 (PS-systems). Our abstract setting encompasses the following:
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(1) Stationary measures on the Bowditch boundary of a relatively hyperbolic
group associated to random walks with finite superexponential moments
are contained in well-behaved PS-systems (see Section 11).

(2) Coarse Busemann PS-measures on the Gromov boundary of a proper geo-
desic Gromov hyperbolic space are contained in well-behaved PS-systems.
More generally, coarse PS-measures associated to expanding coarse-cocycles
(introduced in [BCZZ24b]) are contained in well-behaved PS-systems (see
Section 8).

(3) Coarse Iwasawa PS-measures on a partial flag manifold associated to Zariski
dense subgroups (more generally “Pθ-irreducible” subgroups) are always
contained in PS-systems. When the subgroup is transverse and the measure
is supported on the limit set, they are contained in well-behaved PS-systems
(see Section 9; see also Theorem 9.12 for general Zariski dense discrete
subgroups).

(4) Busemann PS-measures
• on the Gardiner–Masur boundary ∂GM T of Teichmüller space for non-

elementary subgroups of a mapping class group,
• on the geodesic boundary of a CAT(0)-space for discrete groups of

isometries with rank one elements,
are contained in well-behaved PS-systems (see Section 10 for a general
discussion on group actions with contracting isometries).
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special gratitude to his Ph.D. advisor Hee Oh for her encouragement and guidance.

Kim thanks the University of Wisconsin–Madison for hospitality during a visit in
October 2024 where work on this project started. Zimmer was partially supported
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2. Preliminaries

2.1. Possibly ambiguous notation/terminology. We briefly define any possi-
ble ambiguous notation and terminology.

(1) A sequence {yn} in a countable set Y is escaping if it eventually leaves
every finite set, i.e. if F ⊂ Y is finite, then #{n : yn ∈ F} is finite.

(2) Any connected semisimple Lie group G with trivial center is real algebraic
[Zim84, Prop. 3.1.6]. Hence, Zariski density is defined for H < G, in the
sense that no finite index subgroup of H is contained in a proper connected
closed subgroup of G.

(3) Given a proper metric space X we endow the isometry group Isom(X) with
the compact open topology. Then a subgroup Γ < Isom(X) is discrete if
and only if it is countable and acts properly on X.

2.2. The Hausdorff distance. Suppose (M, d) is a compact metric space. Given
a subset C ⊂ M and ε > 0, let N ε(C) denote the open ε-neighborhood of C with
respect to d. The Hausdorff distance between two compact subsets C1, C2 ⊂M is

dHaus(C1, C2) := inf{ε : C1 ⊂ N ε(C2) and C2 ⊂ N ε(C1)}.
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Notice that for the empty set we have

dHaus(∅, C) = dHaus(C, ∅) =

{
0 if C = ∅
+∞ if C 6= ∅

.

This metric induces a compact topology on the space of compact subsets of M
where Cn → C if and only if

lim
n→∞

dHaus(Cn, C) = 0.

Notice that the empty set is an isolated point: Cn → ∅ if and only if Cn = ∅ for all
n sufficiently large.

2.3. Relatively hyperbolic groups. There are several equivalent definitions of
relatively hyperbolic groups and we state the definition we use in this paper.

Suppose Γ < Homeo(M) is a convergence group.

• A point x ∈ M is a conical limit point of Γ if there are a, b ∈ M distinct
and {γn} ⊂ Γ such that γn(x)→ a and γn(y)→ b for all y ∈M r {x}.
• An element γ ∈ Γ is parabolic if it has infinite order and fixes exactly one

point in M .
• A point x ∈ M is a parabolic fixed point of Γ if the stabilizer StabΓ(x) is

infinite and every infinite order element in StabΓ(x) is parabolic. A bounded
parabolic fixed point x ∈ M is a parabolic fixed point where the quotient
StabΓ(x)\(M − {x}) is compact.
• Γ is a geometrically finite convergence group if every point in M is either a

conical limit point or a bounded parabolic fixed point of Γ.

Definition 2.1. Given a finitely generated group Γ and a collection P of finitely
generated infinite subgroups, we say that (Γ,P) is relatively hyperbolic, if Γ acts on
a compact perfect metrizable space M as a geometrically finite convergence group
and the maximal parabolic subgroups are exactly the set

{γPγ−1 : P ∈ P, γ ∈ Γ}.

Given a relatively hyperbolic group (Γ,P), any two compact perfect metriz-
able spaces satisfying Definition 2.1 are Γ-equivariantly homeomorphic (see [Bow12,
Thm. 9.4]). This unique topological space is then denoted by ∂(Γ,P) and called
the Bowditch boundary of (Γ,P).

Remark 2.2. Note that by definition we assume that a relatively hyperbolic group is
non-elementary, finitely generated, and has finitely generated peripheral subgroups.

Part 1. Abstract PS-systems

3. Basic properties of PS-systems

In this section we observe some immediate consequences of the definitions intro-
duced in Section 1.4.

Proposition 3.1 (Shadow Lemma). Let (M,Γ, σ, µ) be a PS-system of dimension
δ ≥ 0. For any R > 0 sufficiently large there exists C = C(R) > 1 such that

1

C
e−δ‖γ‖σ ≤ µ(OR(γ)) ≤ Ce−δ‖γ‖σ
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for all γ ∈ Γ and
inf
γ∈Γ

µ(γ−1OR(γ)) > 0.

Proof. We first show that for any R > 0 sufficiently large,

(10) inf
γ∈Γ

µ(γ−1OR(γ)) > 0.

Suppose not. Then for every n ≥ 1 there exists γn ∈ Γ with

µ(γ−1
n On(γn)) <

1

n
.

Fix a metric on M which generates the topology. Passing to a subsequence, we
can suppose that M r γ−1

n On(γn) converges to a compact set Z with respect to
the Hausdorff distance (note it is possible for Z to be the empty set, in which case
M r γ−1

n On(γn) is also empty for n sufficiently large).
Fix ε > 0. Then M r γ−1

n On(γn) ⊂ N ε(Z) for n sufficiently large and hence

µ(N ε(Z)) ≥ lim
n→∞

µ(M r γ−1
n On(γn)) = 1.

Since ε > 0 is arbitrary and Z is closed,

µ(Z) = lim
n→∞

µ(N 1/n(Z)) = 1.

On the other hand, by Property (PS3),
⋂
γ∈Γ γZ = ∅. Since M is compact, there

exist finitely many γ1, . . . , γn ∈ Γ such that
⋂n
i=1 γiZ = ∅, which is a contradiction

to µ(Z) = 1 and the Γ-quasi-invariance of µ. Thus Equation (10) is true for
sufficiently large R > 0.

Fix R > 0 satisfying Equation (10) and let ε0 := infγ∈Γ µ(γ−1OR(γ)). Since

µ(OR(γ)) =

∫
γ−1OR(γ)

dγ−1
∗ µ

dµ
dµ,

by Property (PS2), there exists C = C(R) > 1 such that
ε0
C
e−δ‖γ‖σ ≤ µ(OR(γ)) ≤ Ce−δ‖γ‖σ . �

We will use the following version of the Vitali covering lemma.

Lemma 3.2. Let (M,Γ, σ, µ) be a well-behaved PS-system with respect to a hierar-
chy H = {H(R) ⊂ Γ : R ≥ 0}. Let R > 0 and let R′ > 0 be the constant satisfying
Property (PS7) for R. Then for any I ⊂ H(R), there exists J ⊂ I such that⋃

γ∈I
OR(γ) ⊂

⋃
γ∈J
OR′(γ)

and the shadows {OR(γ) : γ ∈ J} are pairwise disjoint.

Proof. By Property (PS4) we can enumerate I = {γn} so that

‖γ1‖σ ≤ ‖γ2‖σ ≤ ‖γ3‖σ ≤ · · ·
Now we define indices j1 < j2 < · · · as follows. First let j1 = 1. Then supposing
j1, . . . , jk have been selected, let jk+1 be the smallest index greater than jk such
that

OR(γjk+1
) ∩

k⋃
i=1

OR(γji) = ∅.

(This process could terminate after finitely many steps).
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We claim that J = {γjk} has the desired properties. By construction, the shad-
ows {OR(γ) : γ ∈ J} are pairwise disjoint. For any γn ∈ I r J , we can pick k such
that jk < n and that k is the maximal index with this property. Since γn /∈ J , we
must have

OR(γn) ∩
k⋃
i=1

OR(γji) 6= ∅

and so

OR(γn) ⊂
k⋃
i=1

OR′(γji)

by Property (PS7). Thus ⋃
γ∈I
OR(γ) ⊂

⋃
γ∈J
OR′(γ). �

We will crucially use the following diagonal covering lemma several times in the
arguments that follow. It applies in the case when Γ < Homeo(M1) is part of a
well-behaved PS-system and ρ(Γ) < Homeo(M2) is part of a PS-system.

Lemma 3.3. Let M1,M2 be compact metrizable spaces. Suppose Γ < Homeo(M1)
and ρ : Γ→ Homeo(M2) is a homomorphism. If

• Z1 ⊂M1, Z2 ⊂M2 are compact,
• for any finitely many h1, . . . , hm ∈ Γ and x ∈ Z1, there exists g ∈ Γ such

that

gx /∈
m⋃
i=1

hiZ1,

and
• for any y ∈ Z2, there exists h ∈ Γ such that ρ(h)y /∈ Z2,

then we have
M1 ×M2 =

⋃
γ∈Γ

(M1 r γZ1)× (M2 r ρ(γ)Z2).

Proof. The third hypothesis implies that
⋂
γ∈Γ ρ(γ)Z2 = ∅. Since Z2 is compact,

there exist finitely many elements h1, . . . , hm ∈ Γ such that

ρ(h1)Z2 ∩ · · · ∩ ρ(hm)Z2 = ∅.
Now suppose to the contrary that

C := M1 ×M2 r
⋃
γ∈Γ

(M1 r γZ1)× (M2 r ρ(γ)Z2)

=
⋂
γ∈Γ

(
M1 × ρ(γ)Z2

)
∪
(
γZ1 ×M2

)
is non-empty. Let (x, y) ∈ C. Since C is invariant under the action of {(γ, ρ(γ)) :
γ ∈ Γ}, we have

(γx, ρ(γ)y) ∈ C for all γ ∈ Γ.

By the choice of {ρ(h1), . . . , ρ(hm)}, we have for some j ∈ {1, . . . ,m} that y /∈
ρ(hj)Z2, and hence

(x, y) ∈ hjZ1 ×M2.

In other words,
(h−1
j x, ρ(hj)

−1y) ∈ Z1 ×M2.
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By the second hypothesis, there exists g ∈ Γ such that

g(h−1
j x) /∈

m⋃
i=1

hiZ1.

On the other hand, there exists i ∈ {1, . . . ,m} such that ρ(g)ρ(hj)
−1y /∈ ρ(hi)Z2.

Since (gh−1
j x, ρ(g)ρ(hj)

−1y) ∈ C, we have

(gh−1
j x, ρ(g)ρ(hj)

−1y) ∈ hiZ1 ×M2.

In particular,

g(h−1
j x) ∈ hiZ1.

This is a contradiction to the choice of g ∈ Γ. �

4. An analogue of the conical limit set

Let (M,Γ, σ, µ) be a PS-system of dimension δ ≥ 0. In this section we introduce
an analogue of the conical limit set and relate its measure to the divergence of the
Poincaré series.

Given a subset H ⊂ Γ, let ΛR(H) ⊂M be the set of points x ∈M where there
exists an escaping sequence {γn} ⊂ H and R > 0 such that

x ∈
⋂
n≥1

OR(γn).

Using this notation, the conical limit set of a hierarchy H = {H(R) ⊂ Γ : R ≥ 0}
defined in Equation (9) can be rewritten as

Λcon(H) = Γ ·
⋃
R>0

⋂
n≥1

ΛR(H(n)).

For simplicity, we denote by Λcon(Γ) the conical limit set of the trivial hierarchy
H(R) ≡ Γ.

Theorem 4.1.

(1) If µ(ΛR(H)) > 0 for some H ⊂ Γ and R > 0, then
∑
γ∈H e

−δ‖γ‖σ = +∞.

(2) If (M,Γ, σ, µ) is well-behaved with respect to the trivial hierarchy H(R) ≡ Γ
and

∑
γ∈Γ e

−δ‖γ‖σ = +∞, then µ (Λcon(Γ)) = 1.

Remark 4.2. In many examples, the shadows have the following additional property:
for any α ∈ Γ and R > 0, there exists R′ > 0 such that

αOR(γ) ⊂ OR′(αγ)

for all γ ∈ Γ. In this case, one has Λcon(Γ) =
⋃
R>0 ΛR(Γ).

4.1. Proof of Theorem 4.1 part (1). By Property (PS2), there exists C =
C(R) > 0 such that for any γ ∈ Γ,

µ(OR(γ)) = γ−1
∗ µ(γ−1OR(γ)) ≤ Ce−δ‖γ‖σ .

Now suppose
∑
γ∈H e

−δ‖γ‖σ < +∞. Then H is countable and enumerating H =

{γn}, we have

ΛR(H) ⊂
⋃
n≥N

OR(γn) for all N > 0.

Therefore, µ(ΛR(H)) = 0, which is a contradiction.
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4.2. Proof of Theorem 4.1 part (2). The proof is exactly the same as the
proof of [BCZZ24b, Prop. 7.1], which itself is similar to an earlier argument of
Roblin [Rob03]. Since the proof is short, we include it here.

We use the following variant of Borel–Cantelli Lemma.

Lemma 4.3 (Kochen–Stone Lemma [KS64]). Let (X, ν) be a finite measure space.
If {An} ⊂ X is a sequence of measurable sets where

∞∑
n=1

ν(An) = +∞ and lim inf
N→∞

∑N
n,m=1 ν(An ∩Am)(∑N

n=1 ν(An)
)2 < +∞,

then

ν ({x ∈ X : x is contained in infinitely many of A1, A2, . . . }) > 0.

Using the Shadow Lemma (Proposition 3.1), fix R > 0 and C1 > 1 such that

(11)
1

C1
e−δ‖γ‖σ ≤ µ

(
OR(γ)

)
≤ C1e

−δ‖γ‖σ

for all γ ∈ Γ. Using Property (PS4), we can fix an enumeration Γ = {γn} such that

‖γ1‖σ ≤ ‖γ2‖σ ≤ · · · .
We will show that the sets An := OR(γn) satisfy the hypothesis of the Kochen–
Stone Lemma.

The first estimate follows immediately from the divergence of the Poincaré series
∞∑
n=1

µ(An) ≥ 1

C1

∑
γ∈Γ

e−δ‖γ‖σ = +∞.

The other estimate is only slightly more involved. Using Property (PS7), there
exists C ′2 > 0 such that: if 1 ≤ n ≤ m and An ∩Am 6= ∅, then

‖γn‖σ +
∥∥γ−1

n γm
∥∥
σ
≤ ‖γm‖σ + C ′2.

Hence, in this case,
∥∥γ−1

n γm
∥∥
σ
≤ ‖γm‖σ + C2 where C2 = C ′2 − ‖γ1‖σ and

µ(An ∩Am) ≤ µ(Am) ≤ C1e
−δ‖γm‖σ ≤ C3e

−δ‖γn‖σe−δ‖γ
−1
n γm‖

σ

where C3 := C1e
δC′2 .

Let f(N) := max{n : ‖γn‖σ ≤ ‖γN‖σ + C2}, which is finite by Property (PS4).
Then
N∑

m,n=1

µ(An ∩Am) ≤ 2
∑

1≤n≤m≤N

µ(An ∩Am) ≤ 2C3

∑
1≤n≤m≤N

e−δ‖γn‖σe−δ‖γ
−1
n γm‖

σ

≤ 2C3

N∑
n=1

e−δ‖γn‖σ
f(N)∑
n=1

e−δ‖γn‖σ .

Thus to apply the Kochen–Stone lemma, it suffices to observe the following.

Lemma 4.4. There exists C4 > 0 such that:

f(N)∑
n=1

e−δ‖γn‖σ ≤ C4

N∑
n=1

e−δ‖γn‖σ

for all N ≥ 1.
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Proof. Notice if N < n ≤ m ≤ f(N) and An ∩Am 6= ∅, then∥∥γ−1
n γm

∥∥
σ
≤ ‖γm‖σ − ‖γn‖σ + C ′2 ≤ C2 + C ′2.

Let D := #{γ ∈ Γ : ‖γ‖σ ≤ C2 + C ′2}, which is finite by Property (PS4). Then

f(N)∑
n=N+1

e−δ‖γn‖σ ≤ C1

f(N)∑
n=N+1

µ(An) ≤ C1Dµ

 f(N)⋃
n=N+1

An

 ≤ C1D

where Equation (11) is applied in the first inequality. Hence

f(N)∑
n=1

e−δ‖γn‖σ ≤
(

1 + C1De
δ‖γ1‖σ

) N∑
n=1

e−δ‖γn‖σ . �

So by the Kochen–Stone lemma, the set

ΛR(Γ) = {x ∈M : x is contained in infinitely many of A1, A2, . . . }

has positive µ-measure. Hence µ(Λcon(Γ)) > 0.
Suppose for a contradiction that µ(Λcon(Γ)) < 1. Then

µ′(·) :=
1

µ(Λcon(Γ)c)
µ (Λcon(Γ)c ∩ ·)

is a σ-PS measure of dimension δ, and so by the argument above we must have
µ′(Λcon(Γ)) > 0, which is impossible. Hence µ(Λcon(Γ)) = 1. �

5. An analogue of the Lebesgue differentiation theorem

Let (M,Γ, σ, µ) be a well-behaved PS-system of dimension δ ≥ 0 with respect to
a hierarchy H = {H(R) ⊂ Γ : R ≥ 0}. Fix R0 > 0 such that any R ≥ R0 satisfies
the Shadow Lemma (Proposition 3.1).

In this section we prove the following analogue of the Lebesgue differentiation
theorem (which is known to hold for many particular PS-systems).

Theorem 5.1. Fix R ≥ R0. If h ∈ L1(M,µ), then for µ-a.e. x ∈M we have

0 = lim
n→∞

1

µ(γOR(γn))

∫
γOR(γn)

|h(y)− h(x)|dµ(y),

and hence

h(x) = lim
n→∞

1

µ(γOR(γn))

∫
γOR(γn)

h(y)dµ(y),

whenever x ∈
⋂
n≥1 γOR(γn) for some γ ∈ Γ and escaping sequence {γn} ⊂ H(R).

Delaying the proof of the theorem, we state several corollaries. We will use
Theorem 5.1 to prove that Γ acts ergodically.

Corollary 5.2. If µ(Λcon(H)) = 1, then the Γ-action on (M,µ) is ergodic. In
particular, if the hierarchy is trivial (i.e. H(R) ≡ Γ) and

∑
γ∈Γ e

−δ‖γ‖σ = +∞,

then the Γ-action on (M,µ) is ergodic.

Corollary 5.2 is a consequence of Theorem 5.1 and the following lemma (which
is itself a corollary of Theorem 5.1).
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Lemma 5.3. Fix R ≥ R0. If E ⊂M is measurable, then for µ-a.e. x ∈ E we have

0 = lim
n→∞

µ
(
γ−1
n OR(γn) r γ−1

n γ−1E
)

whenever x ∈
⋂
n≥1 γOR(γn) for some γ ∈ Γ and escaping sequence {γn} ⊂ H(R).

Remark 5.4. Lemma 5.3 can be viewed as an analogue of the Lebesgue density
theorem.

For use in Section 8 we also record the following corollary about approximate
continuity of maps into separable metric spaces.

Corollary 5.5. Fix R ≥ R0. If F : M → (Y, dY ) is a Borel measurable map into
a separable metric space, then for µ-a.e. x ∈M we have

0 = lim
n→∞

1

µ(γOR(γn))
µ ({y ∈ γOR(γn) : dY (F (x), F (y)) > ε})

for all ε > 0 whenever x ∈
⋂
n≥1 γOR(γn) for some γ ∈ Γ and escaping sequence

{γn} ⊂ H(R).

The rest of the section is devoted to the proof of the theorem and the three
corollaries.

5.1. Proof of Theorem 5.1. Recall that any R ≥ R0 satisfies the Shadow Lemma
(Proposition 3.1) and recall that ΛR(H(R)) is the set of points x ∈ M such that
x ∈

⋂
n≥1OR(γn) for some escaping sequence {γn} ⊂ H(R).

Fix R ≥ R0 and h ∈ L1(M,µ). For α ∈ Γ, define functions Aαh,Bαh : M →
[0,+∞] by

Aαh(x) =


lim
T→∞

sup
γ∈H(R)
‖γ‖σ≥T
x∈αOR(γ)

1
µ(αOR(γ))

∫
αOR(γ)

|h(y)− h(x)| dµ(y) if x ∈ αΛR(H(R))

0 else

and

Bαh(x) =


lim
T→∞

sup
γ∈H(R)
‖γ‖σ≥T
x∈αOR(γ)

1
µ(αOR(γ))

∫
αOR(γ)

|h(y)| dµ(y) if x ∈ αΛR(H(R))

0 else

.

Lemma 5.6. If α ∈ Γ, then Aαh = 0 µ-a.e.

Proof. It suffices to show that µ({x : Aαh(x) > c}) = 0 for any c > 0. To that end,
fix c, ε > 0 and a continuous function g : M → R with∫

M

|h− g| dµ < ε.

Then

Aαh(x) ≤ Bα(h− g)(x) + |h(x)− g(x)|+Aαg(x).

Hence

{x : Aαh(x) > c} ⊂ N1 ∪N2 ∪N3
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where

N1 := {x : Bα(h− g)(x) > c/3};
N2 := {x : |h(x)− g(x)| > c/3};
N3 := {x : Aαg(x) > c/3}.

Since g is continuous, Property (PS8) implies that µ(N3) = 0. Further,

µ(N2) ≤ 3

c

∫
M

|h− g| dµ < 3

c
ε.

To bound µ(N1), we use Lemma 3.2. For any x ∈ N1 there exists γx ∈ H(R)
such that x ∈ αOR(γx) and∫

αOR(γx)

|h− g| dµ > c

4
µ(αOR(γx)).

By Lemma 3.2 there exist N ′1 ⊂ N1 and R′ > R such that

N1 ⊂
⋃
x∈N1

αOR(γx) ⊂
⋃
x∈N ′1

αOR′(γx)

and the shadows {αOR(γx) : x ∈ N ′1} are disjoint. By Property (PS1), there exists
Cα > 1 such that

C−1
α µ ≤ α−1

∗ µ ≤ Cαµ.
Then by the Shadow Lemma (Proposition 3.1), there exists C = C(α,R,R′) > 1
such that

µ(αOR′(γ)) ≤ Cµ(αOR(γ))

for all γ ∈ Γ. Then

µ(N1) ≤
∑
x∈N ′1

µ(αOR′(γx)) ≤ C
∑
x∈N ′1

µ(αOR(γx)) <
4C

c

∑
x∈N ′1

∫
αOR(γx)

|h− g| dµ

≤ 4C

c

∫
M

|h− g| dµ < 4C

c
ε.

Thus

µ({x : Aαh(x) > c}) ≤ µ(N1) + µ(N2) + µ(N3) <
4C

c
ε+

3

c
ε+ 0.

Since ε > 0 was arbitrary, we see that {x : Aαh(x) > c} is µ-null. Then since c > 0
was arbitrary, Aαh = 0 µ-a.e. �

We now finish the proof of Theorem 5.1. Fix h ∈ L1(M,µ) and set

M ′ :=
⋂
α∈Γ

{x : Aαh(x) = 0}.

Then µ(M ′) = 1 by Lemma 5.6.
Fix x ∈M ′ and suppose that

x ∈
⋂
n≥1

γOR(γn)

for some γ ∈ Γ and an escaping sequence {γn} ⊂ H(R). Then

lim sup
n→∞

1

µ(γOR(γn))

∫
γOR(γn)

|h(y)− h(x)| dµ(y) ≤ Aγh(x) = 0,
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completing the proof. �

5.2. Proof of Lemma 5.3. Fix R ≥ R0 and a measurable set E ⊂M .
For each g ∈ Γ, consider the function 1g−1E . Then by Theorem 5.1, we have a

measurable subset Mg ⊂M such that µ(Mg) = 1 and for any y ∈Mg ∩ g−1E,

1 = lim
n→∞

µ(g−1E ∩ γOR(γn))

µ(γOR(γn))

whenever y ∈
⋂
n≥1 γOR(γn) for some γ ∈ Γ and escaping sequence {γn} ⊂ H(R).

Set

ME :=
⋂
g∈Γ

gMg.

Since µ is Γ-quasi-invariant, µ(ME) = 1.
Fix x ∈ E ∩ ME and suppose that x ∈

⋂
n≥1 γOR(γn) for some γ ∈ Γ and

escaping sequence {γn} ⊂ H(R). We then have γ−1x ∈ Mγ ∩ γ−1E and moreover
γ−1x ∈

⋂
n≥1OR(γn). Therefore

1 = lim
n→∞

µ(γ−1E ∩ OR(γn))

µ(OR(γn))
= lim
n→∞

(γ−1
n ∗µ)(γ−1

n γ−1E ∩ γ−1
n OR(γn))

(γ−1
n ∗µ)(γ−1

n OR(γn))
.

In particular,

lim
n→∞

(γ−1
n ∗µ)(γ−1

n γ−1Ec ∩ γ−1
n OR(γn))

(γ−1
n ∗µ)(γ−1

n OR(γn))
= 0.

By Property (PS2), there exists C = C(R) > 1 such that

Ce−δ‖γn‖ ≤
dγ−1
n ∗µ

dµ
≤ Ce−δ‖γn‖ µ-a.e.

on γ−1
n OR(γn). So

lim
n→∞

µ(γ−1
n γ−1Ec ∩ γ−1

n OR(γn))

µ(γ−1
n OR(γn))

= 0.

Since µ(γ−1
n OR(γn)) ≤ 1, we then have

lim
n→∞

µ(γ−1
n γ−1Ec ∩ γ−1

n OR(γn)) = 0,

which implies that

0 = lim
n→∞

µ(γ−1
n OR(γn) r γ−1

n γ−1E).

�

5.3. Proof of Corollary 5.2. Once we show the first statement, the second follows
from Theorem 4.1.

Recall that Λcon(H) = Γ ·
⋃
R>0

⋂
n≥1 ΛR(H(n)), which is assumed to have full

µ-measure. We show that the Γ-action on (M,µ) is ergodic using Lemma 5.3.
Let E ⊂ M be a Γ-invariant measurable set with µ(E) > 0. Since the sequence
Γ ·
⋂
n≥1 ΛR(H(n)) is non-decreasing in R by Property (PS6), there exists R ≥ R0

such that µ(E ∩ Γ ·
⋂
n≥1 ΛR(H(n))) > 0.

Fix a sequence Rk → +∞. For each k ≥ 1, let Mk ⊂ M a full measure set
satisfying Lemma 5.3. We then set ME :=

⋂
k≥1Mk which is of µ-full measure.
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Fix x ∈ E ∩ME ∩ Γ ·
⋂
n≥1 ΛR(H(n)). Then there exist γ ∈ Γ and an escaping

sequence {γn ∈ H(n)} such that

x ∈
⋂
n≥1

γOR(γn).

Since the hierarchy H consists of a non-increasing sequence of subsets of Γ, for each
k ≥ 1, we have γn ∈ H(Rk) for all large n ≥ 1. Then by Property (PS6), Lemma
5.3, and the Γ-invariance of E,

0 = lim
n→∞

µ(γ−1
n ORk(γn) r E).

Hence, after passing to a subsequence of {γn}, we have

0 = lim
n→∞

µ(γ−1
n ORn(γn) r E).

Fix a metric on M which generates the topology. Passing to a subsequence,
we can suppose that M r γ−1

n ORn(γn) converges to some compact set Z ⊂ M
with respect to the Hausdorff distance (it is possible for Z = ∅, in which case
M r γ−1

n ORn(γn) = ∅ for n sufficiently large).
Then for each j ≥ 1,

M r γ−1
n ORn(γn) ⊂ N 1/j(Z)

when n is sufficiently large. Therefore

µ((M r Z) r E) ≤ µ((M rN 1/j(Z)) r E) + µ(N 1/j(Z) r Z)

≤ lim
n→∞

µ(γ−1
n ORn(γn) r E) + µ(N 1/j(Z) r Z)

= µ(N 1/j(Z) r Z).

Since Z is closed, N 1/j(Z) r Z is a decreasing sequence of sets whose limit is
the empty set. Therefore, taking j → +∞, we have

µ((M r Z) r E) = 0.

By Property (PS3), M =
⋃
γ∈ΓMrγZ. Therefore, it follows from the Γ-invariance

of E and the Γ-quasi-invariance of µ that

µ(M r E) ≤
∑
γ∈Γ

µ((M r γZ) r E) =
∑
γ∈Γ

γ−1
∗ µ((M r Z) r E) = 0.

This shows µ(E) = 1, finishing the proof. �

5.4. Proof of Corollary 5.5. Fix R ≥ R0 and fix a countable dense subset D =
{zn} ⊂ Y . For k ∈ N define fk : M → N by letting

fk(x) = min{n : dY (F (x), zn) < 1/k}.

Then for K ∈ N let hk,K(x) = min{fk(x),K}. Each hk,K is bounded and hence in
L1(M,µ). Then there exists a full measure set M ′ such that Theorem 5.1 holds for
every x ∈M ′ and every hk,K , for our given R ≥ R0.

Now fix x ∈ M ′ and ε > 0. Then fix k ∈ N with 1
2k < ε and fix K ∈ N with

fk(x) < K. Then for y ∈M ,

dY (F (x), F (y)) > ε⇒ |hk,K(x)− hk,K(y)| ≥ 1.



RIGIDITY FOR PS-SYSTEMS, RANDOM WALKS, AND ENTROPY RIGIDITY 25

So whenever x ∈
⋂
n≥1 γOR(γn) for some γ ∈ Γ and escaping sequence {γn} ⊂

H(R), we have

0 ≤ lim
n→∞

1

µ(γOR(γn))
µ ({y ∈ γOR(γn) : dY (F (x), F (y)) > ε})

≤ lim
n→∞

1

µ(γOR(γn))

∫
γOR(γn)

|hk,K(x)− hk,K(y)| dµ(y) = 0.

�

6. Mixed Shadows and a Shadow Lemma

For the rest of the section suppose

• (M1,Γ1, σ1, µ1) is a well-behaved PS-system of dimension δ1 with respect
to a hierarchy H1 = {H1(R) ⊂ Γ1 : R ≥ 0}.

• (M2,Γ2, σ2, µ2) is a PS-system of dimension δ2.
• There exists an onto homomorphism ρ : Γ1 → Γ2 and a measurable ρ-

equivariant map f : Y →M2 where Y ⊂M1 is a Γ1-invariant subset of full
µ1-measure.

In this section we introduce mixed shadows, which play a key role in our main
rigidity result, and prove a version of the Shadow Lemma.

Definition 6.1. For R > 0 and γ ∈ Γ, the associated mixed shadow is

OfR(γ) := OR(γ) ∩ f−1(OR(ρ(γ))) ∩ Y ⊂M1.

Theorem 6.2 (Mixed Shadow Lemma).

(1) For any sufficiently large R > 0, there exists C = C(R) > 1 such that

1

C
e−δ1‖γ‖σ1 ≤ µ1

(
OfR(γ)

)
≤ Ce−δ1‖γ‖σ1

for all γ ∈ Γ.
(2) Suppose, in addition, that f maps Borel subsets of Y to Borel subsets of

M2 and µ2(f(Y )) > 0. Then for any sufficiently large R > 0, there exists
C = C(R) > 1 such that

1

C
e−δ2‖ρ(γ)‖σ2 ≤ µ2

(
f
(
OfR(γ)

))
≤ Ce−δ2‖ρ(γ)‖σ2

for all γ ∈ Γ.

Delaying the proof of the theorem for a moment, we establish the following
corollary.

Theorem 6.3. There exists R0 > 0 such that: if R ≥ R0 and h ∈ L1(M1, µ1),
then for µ1-a.e. x ∈M1 we have

h(x) = lim
n→∞

1

µ1

(
OfR(γn)

) ∫
OfR(γn)

h(y)dµ1(y)

whenever x ∈
⋂
n≥1OR(γn) for some escaping sequence {γn} ⊂ H1(R).

Proof. FixR0 > 0 such that anyR ≥ R0 satisfies Proposition 3.1 for (M1,Γ1, σ1, µ1)
and Theorem 6.2 part (1). Fix R ≥ R0 and h ∈ L1(M1, µ1). Let M ′1 ⊂ M1 be a
full µ1-measure set satisfying Theorem 5.1 for h and R.
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Now fix x ∈M ′1 and an escaping sequence {γn} ⊂ H1(R) where x ∈
⋂
n≥1OR(γn).

By Theorem 5.1,

0 = lim
n→∞

1

µ1 (OR(γn))

∫
OR(γn)

|h(y)− h(x)|dµ1(y).

By our choice of R0, there exists C = C(R) > 1 such that

µ1

(
OfR(γn)

)
≥ Cµ1 (OR(γn)) .

Then, since OfR(γn) ⊂ OR(γn),

0 ≤ 1

µ1

(
OfR(γn)

) ∫
OfR(γn)

|h(y)− h(x)|dµ1(y)

≤ 1

µ1

(
OfR(γn)

) ∫
OR(γn)

|h(y)− h(x)|dµ1(y)

≤ C

µ1 (OR(γn))

∫
OR(γn)

|h(y)− h(x)|dµ1(y)→ 0.

Therefore,∣∣∣∣∣∣h(x)− lim
n→∞

1

µ1

(
OfR(γn)

) ∫
OfR(γn)

h(y)dµ1(y)

∣∣∣∣∣∣
≤ lim
n→∞

1

µ1

(
OfR(γn)

) ∫
OfR(γn)

|h(y)− h(x)|dµ1(y) = 0.

�

6.1. Proof of Theorem 6.2. Fix metrics onM1,M2 which induce their topologies.
As in the proof of the classical Shadow Lemma, we start by proving lower bounds
for translates of shadows.

Lemma 6.4. For any sufficiently large R > 0,

inf
γ∈Γ1

µ1

(
γ−1OfR(γ)

)
> 0.

Proof. Suppose not. Then there exist sequences Rn → +∞ and {γn} ⊂ Γ1 such
that

µ1

(
γ−1
n O

f
Rn

(γn)
)
<

1

n
for all n ≥ 1.

Since µ1(Y ) = 1 and f is ρ-equivariant,

µ1

(
γ−1
n ORn(γn) ∩ f−1

(
ρ(γn)−1ORn(ρ(γn))

))
<

1

n
.

Note that

M1 r
(
γ−1
n ORn(γn) ∩ f−1

(
ρ(γn)−1ORn(ρ(γn))

))
=
(
M1 r γ−1

n ORn(γn)
)
∪
(
M1 r f−1

(
ρ(γn)−1ORn(ρ(γn))

))
=
(
M1 r γ−1

n ORn(γn)
)
∪ f−1

(
M2 r ρ(γn)−1ORn(ρ(γn))

)
.



RIGIDITY FOR PS-SYSTEMS, RANDOM WALKS, AND ENTROPY RIGIDITY 27

After passing to a subsequence, we can assume that

[M1 r γ−1
n ORn(γn)]→ Z1

for some (possibly empty) compact subset Z1 ⊂ M1 with respect to the Hausdorff
distance and

[M2 r ρ(γn)−1ORn(ρ(γn))]→ Z2

for some (possibly empty) compact subset Z2 ⊂ M2 with respect to the Hausdorff
distance.

For any ε > 0 and n ≥ 1 sufficiently large (depending on ε),

M1 r γ−1
n ORn(γn) ⊂ N ε(Z1) and M2 r ρ(γn)−1ORn(ρ(γn)) ⊂ N ε(Z2).

Hence

µ1

(
N ε(Z1) ∪ f−1(N ε(Z2))

)
> 1− 1/n

for all large n ≥ 1. Taking the limit n→∞, we have

µ1

(
N ε(Z1) ∪ f−1(N ε(Z2))

)
= 1.

Since Z1 and Z2 are closed,

Z1 ∪ f−1(Z2) =
⋂
k≥1

N 1/k(Z1) ∪ f−1(N 1/k(Z2)).

We therefore have µ1(Z1 ∪ f−1(Z2)) = 1. In other words,

(12) µ1

(
(M1 r Z1) ∩ f−1(M2 r Z2)

)
= 0,

and hence

µ1

 ⋃
γ∈Γ1

(M1 r γZ1) ∩ f−1(M2 r ρ(γ)Z2)

 = 0

by the Γ1-quasi-invariance of µ1. However then Lemma 3.3 implies µ1(M1) = 0,
contradiction. �

Lemma 6.5. Suppose that f maps Borel subsets of Y to Borel subsets of M2 and
µ2(f(Y )) > 0. For any sufficiently large R > 0,

inf
γ∈Γ1

µ2

(
ρ(γ)−1f

(
OfR(γ)

))
> 0.

Proof. Suppose not. Then there exist sequences Rn → +∞ and {γn} ⊂ Γ1 such
that

µ2

(
ρ(γn)−1f

(
OfRn(γn)

))
<

1

n
.

Then, since f is ρ-equivariant,

(13) µ2

(
f
(
γ−1
n ORn(γn) ∩ Y

)
∩ ρ(γn)−1ORn(ρ(γn))

)
→ 0.

After passing to a subsequence, we can assume that

[M1 r γ−1
n ORn(γn)]→ Z1

for some (possibly empty) compact subset Z1 ⊂ M1 with respect to the Hausdorff
distance and

[M2 r ρ(γn)−1ORn(ρ(γn))]→ Z2

for some (possibly empty) compact subset Z2 ⊂ M2 with respect to the Hausdorff
distance.
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By Lemma 3.3,

M1 ×M2 =
⋃
γ∈Γ1

(M1 r γZ1)× (M2 r ρ(γ)Z2)

and hence

M1 ×M2 =
⋃
ε>0

⋃
γ∈Γ1

(
M1 r γN ε(Z1)

)
×
(
M2 r ρ(γ)N ε(Z2)

)
.

By compactness, we can fix ε > 0 and a finite set F ⊂ Γ such that

(14) M1 ×M2 =
⋃
γ∈F

(
M1 r γN 2ε(Z1)

)
×
(
M2 r ρ(γ)N 2ε(Z2)

)
.

Now for n ≥ 1 sufficiently large,

M1 r γ−1
n ORn(γn) ⊂ N ε(Z1) and M2 r ρ(γn)−1ORn(ρ(γn)) ⊂ N ε(Z2)

and hence

M1 rN ε(Z1) ⊂ γ−1
n ORn(γn) and M2 rN ε(Z2) ⊂ ρ(γn)−1ORn(ρ(γn)).

So, by Equation (13),

µ2 (f (Y rN ε(Z1)) ∩ (M2 rN ε(Z2))) = 0.

Then, since µ2 is ρ(Γ)-quasi-invariant,

µ2

⋃
γ∈F

f (Y r γN ε(Z1)) ∩ (M2 r ρ(γ)N ε(Z2))

 = 0.

Then Equation (14) implies that µ2(f(Y )) = 0, which is a contradiction. �

With the lower bounds in Lemmas 6.4 and 6.5, one can complete the proof of
Theorem 6.2 by arguing exactly same as in Proposition 3.1. �

7. The Main Theorem

In this section we prove Theorem 1.29, which we restate here.

Theorem 7.1. Suppose

• (M1,Γ1, σ1, µ1) is a well-behaved PS-system of dimension δ1 with respect to
a hierarchy H1 = {H1(R) ⊂ Γ1 : R ≥ 0} and

µ1(Λcon(H1)) = 1.

• (M2,Γ2, σ2, µ2) is a PS-system of dimension δ2.
• There exists an onto homomorphism ρ : Γ1 → Γ2, a measurable Γ1-invariant

set Y with full µ1-measure, and a measurable ρ-equivariant injective map
f : Y →M2.

If the measures f∗µ1 and µ2 are not singular, then

sup
γ∈Γ1

∣∣δ1 ‖γ‖σ1
− δ2 ‖ρ(γ)‖σ2

∣∣ < +∞.

Remark 7.2. By Theorem 4.1, when we have the trivial hierarchy H1(R) ≡ Γ1, the
condition µ1(Λcon(H1)) = 1 in Theorem 7.1 is equivalent to∑

γ∈Γ1

e−δ1‖γ‖σ1 = +∞.
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7.1. Proof of Theorem 7.1. The rest of the section is devoted to the proof the
theorem. For notational convenience, we write ‖ · ‖i = ‖ · ‖σi for i = 1, 2.

Suppose that f∗µ1 and µ2 are not singular. Since f |Y is injective and M1,M2

are compact and metrizable, f maps Borel subsets of Y to Borel subsets of M2

[Kec95, Coro. 15.2]. Hence

(15) µ̃2 := µ2(f(Y ∩ ·))

defines a finite Borel measure on M1.

Lemma 7.3. The Borel measure µ̃2 is non-zero, and after possibly replacing Y
with a subset, we can assume that µ̃2 � µ1 (i.e., µ̃2 � µ1 and µ̃2 � µ1).

Proof. Decompose

µ̃2 = µ̃′2 + µ̃′′2

where µ̃′2 � µ1 and µ̃′′2 is singular to µ1.
Suppose for a contradiction that µ̃′2 is the zero measure. Then µ̃2 is singular to

µ1. Then there exists a measurable subset Y ′ ⊂ Y ⊂M1 such that µ1(Y ′) = 1 and
µ̃2(Y ′) = 0. Then

f∗µ1(f(Y ′)) ≥ µ1(Y ′) = 1

and

µ2(f(Y ′)) = µ̃2(Y ′) = 0.

Hence µ2 and f∗µ1 are singular, which is a contradiction. So µ̃′2 is not the zero
measure. In particular, µ̃2 is non-zero.

Now fix a measurable subset A ⊂ Y such that µ1(A) = 1 and µ̃′′2(A) = 0.
Since µ1 is Γ1-quasi-invariant, A′ :=

⋂
γ∈Γ1

γA also has full µ1-measure and so by

replacing Y with A′ we can assume that µ̃2 � µ1.
Suppose for a contradiction that µ1 6� µ̃2. Then there exists a measurable

subset B ⊂ Y where µ1(B) > 0 and µ̃2(B) = 0. Since the Γ1-action on (M1, µ1)
is ergodic (Corollary 5.2), µ1(Γ1 · B) = 1. Since µ2 is Γ2-quasi-invariant and
µ2(f(Y ∩B)) = µ̃2(B) = 0,

µ̃2(Γ1 ·B) ≤
∑
γ∈Γ1

µ2(ρ(γ)f(Y ∩B)) = 0.

Hence µ1 and µ̃2 are singular, which contradicts the fact that µ̃2 � µ1. So µ1 � µ̃2

and thus µ1 � µ̃2. �

By Lemma 7.3, we can consider the following Radon–Nykodim derivative:

h :=
dµ̃2

dµ1
∈ L1(M1, µ1).

Since µ1, µ2 are PS-measures, h satisfies the following.

Lemma 7.4. There exists C1 ≥ 0 such that for any γ ∈ Γ1 and µ1-a.e. x ∈M1,

e−C1+δ1σ1(γ,x)−δ2σ2(ρ(γ),f(x)) · h(x) ≤ h(γx) ≤ eC1+δ1σ1(γ,x)−δ2σ2(ρ(γ),f(x)) · h(x).

Proof. Since µ2 is a coarse σ2-PS measure of dimension δ2, there exists c1 ≥ 0 such
that

e−c1−δ2σ2(ρ(γ),y) ≤ dρ(γ−1)∗µ2

dµ2
(y) ≤ ec1−δ2σ2(ρ(γ),y)
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for all γ ∈ Γ1 and µ2-a.e. y ∈ M2. Since Y is Γ-invariant and f is ρ-equivariant,
we have for a measurable A ⊂M1 that

γ−1
∗ µ̃2(A) = µ2(f(Y ∩ γA)) = µ2(ρ(γ)f(Y ∩A)) = ρ(γ)−1

∗ µ2(f(Y ∩A)).

Hence

(16) e−c1−δ2σ2(ρ(γ),f(x)) ≤ dγ−1
∗ µ̃2

dµ̃2
(x) ≤ ec1−δ2σ2(ρ(γ),f(x))

for all γ ∈ Γ1 and µ̃2-a.e. x ∈ M1. Since µ1 � µ̃2, this equation holds for µ1-a.e.
x ∈M1.

Since µ1 is a coarse σ1-PS measure of dimension δ1, there exists c2 ≥ 0 such that

(17) e−c2−δ1σ1(γ,x) ≤ dγ−1
∗ µ1

dµ1
(x) ≤ ec2−δ1σ1(γ,x)

for all γ ∈ Γ1 and µ1-a.e. x ∈M1.
Finally, for any γ ∈ Γ1,

dγ−1
∗ µ̃2

dµ̃2
hdµ1 = dγ−1

∗ µ̃2 = dγ−1
∗ (hµ1) = (h ◦ γ)dγ−1

∗ µ1.

Combining with Equations (16) and (17), we get the desired inequalities with C1 :=
c1 + c2. �

Since µ1 � µ̃2 and Γ1 is countable, using Property (PS1) we can replace Y with
a Γ-invariant full µ1-measure subset such that for all γ ∈ Γ1,

(18) sup
x∈Y
|σ1(γ, x)| < +∞ and sup

x∈Y
|σ2(ρ(γ), f(x))| < +∞.

Since

1 = µ1(Λcon(H1)) = µ1

Γ ·
⋃
R>0

⋂
n≥1

ΛR(H1(n))

 > 0

and µ1 is Γ1-quasi-invariant, we can fix R > 0 such that
⋂
n≥1 ΛR(H1(n)) has

positive µ1-measure. Since µ1 � µ̃2, h is positive and finite µ1-a.e. and thus we
can fix n0 ≥ 1 sufficiently large so that the set

E := {x ∈ Y : n−1
0 ≤ h(x) ≤ n0} ∩

⋂
n≥1

ΛR(H1(n))

has positive µ1-measure.
Fix a sequence Rn → +∞ with Rn ≥ R for all n. After possibly increasing

R > 0, we can assume that

• R satisfies Theorem 6.2,
• there is a subset M ′1 ⊂M1 of full µ1-measure that satisfies Theorem 6.3 for
h and R, and satisfies Lemma 5.3 for E and all Rn.

Fix

x0 ∈ E ∩M ′1.
Since x0 ∈ E ⊂

⋂
n≥1 ΛR(H1(n)), there exists an escaping sequence {γn ∈ H1(n)}

such that

x0 ∈
⋂
n≥1

OR(γn).
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Since {γn}n>R ⊂ H1(R) and x0 ∈M ′1, we have

h(x0) = lim
n→∞

1

µ1(OfR(γn))

∫
OfR(γn)

hdµ1 = lim
n→∞

µ̃2(OfR(γn))

µ1(OfR(γn))
.

Since x0 ∈ E, we have h(x0) ∈ [n−1
0 , n0]. Further, since R satisfies Theorem 6.2,

there exists C2 = C2(R) > 1 such that

(19)

1

C2
e−δ1‖γ‖1 ≤ µ1(OfR(γ)) ≤ C2e

−δ1‖γ‖1 and

1

C2
e−δ2‖ρ(γ)‖2 ≤ µ̃2(OfR(γ)) ≤ C2e

−δ2‖ρ(γ)‖2

for all γ ∈ Γ1. Thus

(20) C3 := sup
n≥1
|δ1 ‖γn‖1 − δ2 ‖ρ(γn)‖2|

is finite.
Using Lemma 3.3 we will prove the following covering lemma.

Proposition 7.5. There exist R′ > 0, α1, . . . , αm ∈ Γ1, and M ′′1 ⊂ M1 with full
µ1-measure with the following property: for any x ∈M ′′1 there exist 1 ≤ i ≤ m and
n ∈ N such that

x ∈ αiγ−1
n E

and

(x, f(x)) ∈
(
αiγ
−1
n OR′(γn)

)
×
(
ρ(αi)ρ(γn)−1OR′(ρ(γn))

)
.

Delaying the proof of the proposition, we complete the proof of Theorem 7.1.

Lemma 7.6. There exists D > 1 such that

D−1 ≤ h(x) ≤ D

for µ1-a.e. x ∈M1.

Proof. Let R′ > 0, α1, . . . , αm ∈ Γ1, and M ′′1 ⊂M1 be as in Proposition 7.5.
We start by fixing some constants. Fix κ > 0 such that σ1, σ2 are both κ-coarse-

cocycles. Since Γ is countable and µ1 � µ̃2, using Property (PS2) we can fix C4 > 0
and replace M ′′1 with a full µ1-measure subset such that: if x ∈ M ′′1 and γ ∈ Γ1,
then

|σ1(γ, x)− ‖γ‖1| ≤ C4

whenever x ∈ γ−1OR′(γ) and

|σ2(ρ(γ), f(x))− ‖ρ(γ)‖2| ≤ C4

whenever f(x) ∈ ρ(γ)−1OR′(ρ(γ)). Replacing M ′′1 by M ′′1 ∩ Y , we can also assume
that M ′′1 ⊂ Y and hence

C5 := max
1≤i≤m

max

{
sup
y∈M ′′1

∣∣σ1(α−1
i , y)

∣∣ , sup
y∈M ′′1

∣∣σ2(ρ(αi)
−1, f(y))

∣∣} < +∞

is finite, see Equation (18). Again replacing M ′′1 with a full µ1-measure subset
we can also assume that the estimate in Lemma 7.4 holds for all x ∈ M ′′1 and all
γ ∈ Γ1. Finally, since µ1 is Γ1-quasi-invariant and Γ1 is countable, we can replace
M ′′1 by

⋂
γ∈Γ γM

′′
1 and assume that M ′′1 is Γ1-invariant.
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Fix x ∈M ′′1 . By Proposition 7.5, there exist 1 ≤ i ≤ m and n ∈ N such that

x ∈ αiγ−1
n E ∩ αiγ−1

n OR′(γn) and f(x) ∈ ρ(αi)ρ(γn)−1OR′(ρ(γn)).

By Lemma 7.4,

e−C1−δ1σ1(γnα
−1
i ,x)+δ2σ2(ρ(γn)ρ(αi)

−1,f(x))h(γnα
−1
i x)

≤ h(x) ≤ eC1−δ1σ1(γnα
−1
i ,x)+δ2σ2(ρ(γn)ρ(αi)

−1,f(x))h(γnα
−1
i x).

Further, since α−1
i x ∈ γ−1

n OR′(γn) ∩M ′′1 , we have∣∣σ1(γnα
−1
i , x)− ‖γn‖1

∣∣ ≤ κ+
∣∣σ1(γn, α

−1
i x) + σ1(α−1

i , x)− ‖γn‖1
∣∣

≤ κ+ C4 + C5.

Likewise, ∣∣σ2(ρ(γn)ρ(αi)
−1, f(x))− ‖ρ(γn)‖2

∣∣ ≤ κ+ C4 + C5.

Since γnα
−1
i x ∈ E,

n−1
0 ≤ h(γnα

−1
i x) ≤ n0.

Finally notice that
|δ1‖γn‖1 − δ2‖ρ(γn)‖2| ≤ C3 < +∞

by Equation (20). Thus
D−1 ≤ h(x) ≤ D,

where D := eC1+C3+(δ1+δ2)(κ+C4+C5)n0. �

Recalling that h = dµ̃2

dµ1
, it follows from Lemma 7.6 that

D−1µ1(OfR(γ)) ≤ µ̃2(OfR(γ)) ≤ Dµ1(OfR(γ))

for all γ ∈ Γ1. Therefore, by Equation (19), we have the desired estimate:

sup
γ∈Γ

∣∣δ1 ‖γ‖σ1
− δ2 ‖ρ(γ)‖σ2

∣∣ < +∞.

Now the proof of Theorem 7.1 is complete once we show Proposition 7.5.

7.2. Proof of Proposition 7.5. Fix metrics on M1 and M2 inducing their topolo-
gies. For each j ≥ 1 fix a subsequence {γ̃j,n} ⊂ {γn} so that

[M1 r γ̃−1
j,nORj (γ̃j,n)]→ Zj and [M2 r ρ(γ̃j,n)−1ORj (ρ(γ̃j,n))]→ Z ′j

for some (possibly empty) compact subsets Zj ⊂ M1 and Z ′j ⊂ M2 with respect
to the Hausdorff distance. Then passing to a subsequence of {Rj}, we can assume
that

Zj → Z and Z ′j → Z ′

for some (possibly empty) compact subsets Z ⊂ M1 and Z ′ ⊂ M2 with respect to
the Hausdorff distance.

By a diagonal argument, we can extract a subsequence {γnj} ⊂ {γn} so that

[M1 r γ−1
nj ORj (γnj )]→ Z and [M2 r ρ(γ−1

nj )ORj (ρ(γnj ))]→ Z ′

with respect to the Hausdorff distance. Since (M1,Γ1, σ1, µ1) and (M2,Γ2, σ2, µ2)
are PS-systems and (M1,Γ1, σ1, µ1) is well-behaved (with respect to the hierarchy
H1 = {H1(R) ⊂ Γ1 : R ≥ 0}), it then follows from Lemma 3.3 that

M1 ×M2 =
⋃
γ∈Γ1

(M1 r γZ)× (M2 r ρ(γ)Z ′).
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This implies that

M1 ×M2 =
⋃
ε>0

⋃
γ∈Γ1

(M1 r γN ε(Z))× (M2 r ρ(γ)N ε(Z ′)).

By the compactness, there exist ε > 0 and α1, . . . , αm ∈ Γ1 such that

M1 ×M2 =

m⋃
i=1

(M1 r αiN ε(Z))× (M2 r ρ(αi)N ε(Z ′)).

We then fix j0 ≥ 1 such that

Zj0 ⊂ N ε/2(Z) and Z ′j0 ⊂ N ε/2(Z ′).

Let {γ̃n} = {γ̃j0,n}. Then there exists N ≥ 1 such that for any n ≥ N ,

M1 r γ̃−1
n ORj0 (γ̃n) ⊂ N ε/2(Zj0) and M2 r ρ(γ̃n)−1ORj0 (ρ(γ̃n)) ⊂ N ε/2(Z ′j0).

Therefore,

(21) M1 ×M2 =

m⋃
i=1

(
αiγ̃
−1
n ORj0 (γ̃n)

)
×
(
ρ(αi)ρ(γ̃n)−1ORj0 (ρ(γ̃n))

)
for all n ≥ N .

Recall that M ′1 satisfies Lemma 5.3 for E and all Rn. Also, since n 7→ H(n) is
a non-increasing sequence of sets and γ̃n ∈ H(n) for all n, we have {γ̃n}n>Rj0 ⊂
H(Rj0). So by Lemma 5.3,

lim
n→∞

µ1(γ̃−1
n ORj0 (γ̃n) r γ̃−1

n E) = 0.

Hence, since µ1 is Γ1-quasi-invariant,

lim
n→∞

µ1(αiγ̃
−1
n ORj0 (γ̃n) r αiγ̃

−1
n E) = 0

for all i = 1, . . . ,m. We set

M ′′1 := M1 r
⋂
n≥N

m⋃
i=1

(
αiγ̃
−1
n ORj0 (γ̃n) r αiγ̃

−1
n E

)
,

which is of full µ1-measure.
For x ∈M ′′1 , there exists n ≥ N such that

x /∈
m⋃
i=1

(
αiγ̃
−1
n ORj0 (γ̃n) r αiγ̃

−1
n E

)
.

On the other hand, by Equation (21), there exists 1 ≤ i ≤ m such that

(x, f(x)) ∈
(
αiγ̃
−1
n ORj0 (γ̃n)

)
×
(
ρ(αi)ρ(γ̃n)−1ORj0 (ρ(γ̃n))

)
,

and therefore we must have

x ∈ αiγ̃−1
n E

as well. This completes the proof of Proposition 7.5 with R′ := Rj0 , and hence the
proof of Theorem 7.1. �
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Part 2. Examples and Applications

8. Convergence groups and expanding coarse-cocycles

In [BCZZ24b], Blayac–Canary–Zhu–Zimmer developed Patterson–Sullivan the-
ory for coarse-cocycles of convergence groups. In this section we show that this
theory is a special case of the definitions developed in the current paper.

Let M be a compact metrizable space and let Γ < Homeo(M) be a non-
elementary convergence group. In [BCZZ24b, Prop. 2.3] it was observed that
the set Γ tM has a unique topology such that

• Γ tM is a compact metrizable space.
• The inclusions Γ ↪→ ΓtM and M ↪→ ΓtM are embeddings (where in the

first embedding Γ has the discrete topology).
• the Γ-action on Γ t M , induced by the left-multiplication on Γ and the

given Γ-action on M , is a convergence action.

Moreover,

• γn → a ∈ M and γ−1
n → b ∈ M if and only if γn|Mr{b} → a locally

uniformly.

For the rest of the section fix a metric d on Γ tM which generates this topology.
In this setting, shadows can be defined as follows: for γ ∈ Γ and R > 0 let

(22) OR(γ) := γ
(
M rB1/R(γ−1)

)
where B1/R(γ−1) denotes the open ball of radius 1/R centered at γ−1 with respect
to d.

Remark 8.1. In [BCZZ24b], shadows are defined to be the closed sets

γ
(
M rB1/R(γ−1)

)
.

For the results cited below the difference between the two definitions is immaterial.

Observation 8.2. [BCZZ24b, proof of Lem. 5.4] With shadows as in Equa-
tion (22), the set Λcon(Γ) defined in Section 4 coincides with the set of conical
limit points in the usual convergence group sense. Moreover, if d(a, b) > 1/R,
γ−1
n x→ a, and γ−1

n y → b for all y ∈M r {x}, then

x ∈
⋂
n≥1

OR(γn).

In [BCZZ24b, Def. 1.2, Prop. 3.2 and 3.3] the following special class of coarse-
cocycles where introduced.

Definition 8.3. A coarse-cocycle σ : Γ×M → R is called expanding if:

(1) There exists κ > 0 such that for any γ ∈ Γ, the function σ(γ, ·) is κ-coarsely-
continuous: for x0 ∈M ,

lim sup
x→x0

|σ(γ, x)− σ(γ, x0)| ≤ κ.

(2) For every γ ∈ Γ, there is a number ‖γ‖σ ∈ R, called the σ-magnitude of γ,
with the following properties:
(a) limn→∞ ‖γn‖σ = +∞ for any escaping sequence {γn} ⊂ Γ.
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(b) For any ε > 0, there exists C > 0 such that

‖γ‖σ − C ≤ σ(γ, x) ≤ ‖γ‖σ + C

whenever x ∈M rBε(γ
−1).

Part of [BCZZ24b] was devoted to developing a theory of PS-measures for ex-
panding coarse-cocycles and using these results we show that this theory is a special
case of our well-behaved PS-systems.

Theorem 8.4. Let σ : Γ×M → R be an expanding coarse-cocycle and µ a coarse
σ-PS measure, then (M,Γ, σ, µ) is a well-behaved PS-system with respect to the
trivial hierarchy H(R) ≡ Γ, with shadows as in Equation (22).

Proof. Since each σ(γ, ·) is coarsely-continuous, Property (PS1) is satisfied. Prop-
erty (PS2) follows from the defining property of the σ-magnitude and the definition
of the shadows. Property (PS6) follows from the definition of the shadows.

Property (PS4) is a consequence of [BCZZ24b, Prop. 3.3 part (2)], Prop-
erty (PS7) is a consequence of [BCZZ24b, Prop. 5.1 parts (3) and (4)], and Prop-
erty (PS8) is a consequence of [BCZZ24b, Prop. 5.1 part (2)].

To verify Property (PS3) and Property (PS5), assume {γn} ⊂ Γ, Rn → +∞, and
[M r γ−1

n ORn(γn)]→ Z with respect to the Hausdorff distance. Then Z must be
singleton or empty. Then, since Γ is a non-elementary convergence group, Property
(PS3) and Property (PS5) are true. �

8.1. Examples. We will describe one class of examples of expanding coarse-cocycle,
for more see [BCZZ24b, Sect. 1.2]. For the rest of this subsection suppose (X,dX)
is a proper geodesic Gromov hyperbolic metric space and Γ < Isom(X) is discrete.

Following [BCZZ24b, Def. 1.9] (which is similar to [CT24, Def. 2.2]), a function
ψ : X ×X → R is a coarsely additive potential if

(1) limr→∞ infdX(p,q)≥r ψ(p, q) = +∞,
(2) for any r > 0,

sup
dX(p,q)≤r

|ψ(p, q)| < +∞,

(3) for every r > 0 there exists κ = κ(r) > 0 such that: if u is contained in the
r-neighborhood of a geodesic in (X,dX) joining p to q, then∣∣ψ(p, q)−

(
ψ(p, u) + ψ(u, q)

)∣∣ ≤ κ.
Theorem 8.5. [BCZZ24b, Thm. 1.11 and 1.13]

(1) If ψ is a Γ-invariant coarsely additive potential, then

σψ(γ, x) := lim sup
p→x

ψ(γ−1o, p)− ψ(o, p)

is an expanding coarse-cocycle on ∂∞X and one can choose

‖γ‖σψ = ψ(o, γo).

(2) If Γ acts cocompactly on X and σ : Γ× ∂∞X → R is an expanding coarse-
cocyle, then there exists a Γ-invariant coarsely additive potential ψ such
that

sup
γ∈Γ,x∈∂∞X

|σ(γ, x)− σψ(γ, x)| < +∞.
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Example 8.6. The distance function dX is a Isom(X)-invariant coarsely additive
potential and the associated expanding coarse-cocycle is just the coarse Busemann
cocycle.

Example 8.7 (see [BCZZ24b, Sect. 1.2.5]). Suppose Γ is word hyperbolic, X is a
Cayley graph of Γ, and m is a probability measure on Γ with finite superexponential
moment and whose support generates Γ as a semigroup. Then the Green metric dG
is a Γ-invariant coarsely additive potential and the unique m-stationary measure
on ∂∞Γ is a σdG-PS measure of dimension 1. Note: in [BCZZ24b, Sect. 1.2.5] it is
assumed that m has finite support, but using [Gou15] the same discussion is valid
when m has finite superexponential moment.

In Section 11 we consider stationary measures on the Bowditch boundary of a
relatively hyperbolic group.

8.2. Measurable isomorphisms. As an application of Theorem 1.29, we show
that for word hyperbolic groups a measurable isomorphism between boundaries
endowed with PS-measures is always induced by a homeomorphism.

Theorem 8.8. For i = 1, 2 suppose Γi is non-elementary word hyperbolic, σi :
Γi × ∂∞Γi → R is an expanding coarse-cocycle, and µ is a coarse σi-PS measure
for Γi of dimension δi on ∂∞Γi. Assume there exist

• a homomorphism ρ : Γ1 → Γ2 with non-elementary image and
• a µ1-almost everywhere defined measurable ρ-equivariant injective map f :
∂∞Γ1 → ∂∞Γ2.

If f∗µ1 and µ2 are not singular, then ker ρ is finite, ρ(Γ1) < Γ2 has finite index,

sup
γ∈Γ1

∣∣δ1 ‖γ‖σ1
− δ2 ‖ρ(γ)‖σ2

∣∣ < +∞,

and there exists a ρ-equivariant homeomorphism f̃ : ∂∞Γ1 → ∂∞Γ2 such that

(1) f̃ = f µ1-a.e.,

(2) sup(γ,x)∈Γ1×∂∞Γ1

∣∣∣δ1σ1(γ, x)− δ2σ2(ρ(γ), f̃(x))
∣∣∣ < +∞,

(3) f̃∗µ1, µ2 are in the same measure class and the Radon–Nikodym derivatives
are a.e. bounded from above and below by a positive number.

8.3. Proof of Theorem 8.8. For notational convenience, we let ‖·‖i := ‖·‖σi .
By Theorem 8.5 we can assume that each σi corresponds to a coarsely additive

potential on a Cayley graph. Then the third defining property for coarsely additive
potentials implies that there exist c > 1 such that

(23) c−1 |γ|i − c ≤ ‖γ‖i ≤ c |γ|i + c

for all γ ∈ Γi, where |·|i is the distance from id ∈ Γi with respect to a word metric
on Γi with respect to a finite generating set.

By Theorem 1.29,

(24) sup
γ∈Γ1

|δ1 ‖γ‖1 − δ2 ‖ρ(γ)‖2| < +∞.

Then Property (PS4) implies that ker ρ is finite and Equation (23) implies that
ρ induces a quasi-isometric embedding Γ1 → Γ2. So there exists a ρ-equivariant
embedding f̃ : ∂∞Γ1 → ∂∞Γ2.
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For a subgroup H < Γ2, let δσ2
(H) be the critical exponent of the Poincaré

series s 7→
∑
g∈Γ2

e−s‖g‖σ2 . Since µ2 is a coarse σ2-PS measure for Γ2 of dimension

δ2, [BCZZ24b, Prop. 6.2] implies that δ2 ≥ δσ2
(Γ2). Moreover, since every point in

∂∞Γi is conical, [BCZZ24b, Prop. 6.3] implies that for i = 1, 2,∑
γ∈Γi

e−δi‖γ‖i = +∞.

This, together with Equation (24), implies that

δσ2
(Γ2) = δσ2

(ρ(Γ1)) = δ2.

Then [BCZZ24b, Thm. 4.3] implies that f̃(∂∞Γ1) = ∂∞Γ2. Since ρ(Γ1) is quasi-
convex in Γ2, this implies that ρ(Γ1) < Γ2 has finite index.

Now by replacing Γ1 with Γ1/ ker ρ and Γ2 with ρ(Γ2), it suffices to consider
the case where Γ := Γ1 = Γ2, ρ : Γ → Γ is the identity representation, and
f : ∂∞Γ→ ∂∞Γ commutes with the Γ action, then show that

(1) f = id∂∞Γ µ1-a.e.,
(2) sup

(γ,x)∈Γ×∂∞Γ

|δ1σ1(γ, x)− δ2σ2(γ, x)| < +∞,

(3) µ1, µ2 are in the same measure class and the Radon–Nikodym derivatives
are a.e. bounded from above and below by a positive number.

Assertions (2) and (3) are an immediate consequence of [BCZZ24b, Prop. 13.1 and
13.2].

We now show (1). Fix Rj → +∞. After possibly passing to a tail of {Rj},
by Corollary 5.5 and the fact that H1(R) ≡ Γ, there exists a µ1-full measure set
M ′ such that whenever x ∈ M ′ ∩

⋂
n≥1 γORj (γn) for some j ≥ 1, γ ∈ Γ, and an

escaping sequence {γn} ⊂ Γ, we have

0 = lim
n→∞

1

µ(γORj (γn))
µ
({
y ∈ γORj (γn) : d(f(x), f(y)) > ε

})
for all ε > 0.

Fix x ∈M ′. Since Γ acts on ∂∞Γ as a uniform convergence group, x is a conical
limit point. So there exist {γn} and distinct a, b ∈ ∂∞Γ such that γ−1

n x → a and
γ−1
n y → b for all y ∈ ∂∞Γ r {x}. Then γn → x and γ−1

n → b in Γ t ∂∞Γ. So
γn|∂∞Γr{b} → x locally uniformly. Further, by Observation 8.2,

x ∈
⋂
n≥1

OR′(γn)

where R′ := 2
d(a,b) .

Lemma 8.9. After replacing {γn} with a subsequence we can find a µ1-full measure
set E where γnf(y)→ f(x) for all y ∈ E.

Assuming the lemma for a moment we finish the proof. By [BCZZ24b, Prop. 6.3
and 7.1], µ1 has no atoms and by assumption f is injective on a full measure set.
Thus f(E) has at least two points. Then, since γn|∂∞Γr{b} → x locally uniformly,
we must have f(x) = x. Since x ∈M ′ was arbitrary, we see that f = id∂∞Γ µ1-a.e.
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Proof of Lemma 8.9. For Rj ≥ R′, notice that

0 = lim
n→∞

1

µ(ORj (γn))
µ
({
y ∈ ORj (γn) : d(f(x), f(y)) > ε

})
= lim
n→∞

1

(γ−1
n )∗µ(γ−1

n ORj (γn))
(γ−1
n )∗µ

({
y ∈ γ−1

n ORj (γn) : d(f(x), γnf(y)) > ε
})

for all ε > 0.
By Property (PS2), there exists Cj = Cj(Rj) > 1 such that

1

Cj
e−δ‖γn‖ ≤

dγ−1
n ∗µ

dµ
≤ Cje−δ‖γn‖ µ-a.e.

on γ−1
n ORj (γn). Hence

0 = lim
n→∞

1

µ(γ−1
n ORj (γn))

µ
({
y ∈ γ−1

n ORj (γn) : d(f(x), γnf(y)) > ε
})

for all Rj ≥ R′ and ε > 0. Since

µ(γ−1ORj (γ)) ≤ 1,

we have

0 = lim
n→∞

µ
({
y ∈ γ−1

n ORj (γn) : d(f(x), γnf(y)) > ε
})

for all Rj ≥ R′ and ε > 0.
After passing to a subsequence of {γn}, we can fix εn ↘ 0 such that

∞∑
n=1

µ
({
y ∈ γ−1

n ORn(γn) : d(f(x), γnf(y)) > εn
})

< +∞.(25)

Recall that γ−1
n → b in Γ tM . Then let

En :=
{
y ∈ γ−1

n ORn(γn) : d(f(x), γnf(y)) > εn
}

and

E := (∂∞Γ− {b}) r
∞⋂
N=1

⋃
n≥N

En.

By [BCZZ24b, Prop. 6.3 and 7.1], µ1 has no atoms and hence Equation (25) implies
that E has full µ1-measure. Further, if y ∈ E ⊂ ∂∞Γ r {b}, then

y ∈ γ−1
n ORn(γn) = ∂∞Γ rB1/Rn(γ−1

n )

for n sufficiently large and there exists N ≥ 1 such that y /∈
⋃
n≥N En. Thus

γnf(y)→ f(x). �

9. Discrete subgroups of Lie groups

Let G be a connected semisimple Lie group without compact factors and with
finite center. We fix a Cartan decomposition g = k + p of the Lie algebra of G, a
Cartan subspace a ⊂ p, and a positive Weyl chamber a+ ⊂ a. Then let

κ : G→ a+
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denote the associated Cartan projection. Denoting by A = exp a and A+ = exp a+,
we have G = KA+K for a maximal compact subgroup K < G. The Jordan projection
λ : G→ a+ is given by

λ(g) = lim
n→∞

κ(gn)

n
.

We also let i : a → a denote the opposition involution, which is defined as i(·) =
−Adw0(·) where w0 is the longest Weyl element. We then have κ(g−1) = i(κ(g))
for all g ∈ G.

Let X := G /K and fix a basepoint o = [e] ∈ G /K. Fix a K-invariant norm ‖ · ‖
on a induced from the Killing form, and let dX denote the G-invariant symmetric
Riemannian metric on X defined by dX(go, ho) = ‖κ(g−1h)‖ for g, h ∈ G.

Let M < K be the centralizer of A, and ∆ the set of all simple roots associated
to a+. For a non-empty subset θ ⊂ ∆, let Pθ be the standard parabolic subgroup
corresponding to θ. That is, Pθ is generated by MA and all root subgroups Uα,
where α ranges over all positive roots and any negative root which is a Z-linear
combination of ∆ r θ. We denote by Nθ the unipotent radical of Pθ. We simply
write P = P∆ and N = N∆.

Let aθ :=
⋂
α∈∆rθ kerα and let a∗θ denote the space of R-linear forms on aθ. Let

pθ : a → aθ be the unique projection which is invariant under all Weyl elements
fixing aθ pointwise. We can identify a∗θ with the subspace of pθ-invariant linear
forms on a.

The Furstenberg boundary and general θ-boundary are defined as

F := G /P = K/M and Fθ := G /Pθ

respectively. We denote by πθ : F → Fθ the quotient map.
Let Popp

θ := w0 Pi(θ) w
−1
0 which is a parabolic subgroup opposite to Pθ, and

denote by Nopp
θ the unipotent radical of Popp

θ . Two points x ∈ Fθ and y ∈ Fi(θ) are
called transverse if there exists g ∈ G such that

x = g Pθ and y = gw0 Pi(θ) .

One can see that x ∈ Fθ is transverse to w0 Pi(θ) if and only if x ∈ Nopp
θ Pθ.

9.1. Iwasawa cocycles and Patterson–Sullivan measures. The Iwasawa co-
cycle B : G×F → a is defined as follows: for g ∈ G and x ∈ F , fix k ∈ K such that
kM = x and let B(g, x) ∈ a be the unique element such that

gk ∈ K (expB(g, x))N.

For general θ ⊂ ∆, the partial Iwasawa cocycle Bθ : G×Fθ → aθ is defined as

Bθ(g, x) = pθ (B(g, x̃))

for some (any) x̃ ∈ π−1
θ (x) ∈ F . This does not depend on the choice of x̃ [Qui02a,

Lem. 6.1]. Then Bθ satisfies the cocycle relation: for any x ∈ Fθ and g1, g2 ∈ G,

Bθ(g1g2, x) = Bθ(g1, g2x) +Bθ(g2, x).

Let H < G be a subgroup. Recall from the introduction that for δ ≥ 0 and
φ ∈ a∗θ, a Borel probability measure µ on Fθ is called a coarse φ-Patterson–Sullivan
measure (coarse φ-PS measure) for H of dimension δ if there exists C ≥ 1 such
that for any γ ∈ H the measures µ, γ∗µ are absolutely continuous and

C−1e−δφ(Bθ(g−1,x)) ≤ dγ∗µ

dµ
(x) ≤ Ce−δφ(Bθ(g−1,x)) for µ-a.e. x ∈ Fθ .
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If C = 1, then µ is a φ-Patterson–Sullivan measure (φ-PS measure) for H of di-
mension δ.

9.2. Limit sets. We say that a sequence {gn} ⊂ G converges to x ∈ Fθ if

• α(κ(gn))→ +∞ for all α ∈ θ and
• a Cartan decomposition gn = kn(expκ(gn))`n ∈ KA+K satisfies

kn Pθ → x in Fθ.
We say that the sequence gno ∈ X converges to x if gn → x. This notion of
convergence leads us to define the limit set of a discrete subgroup.

Definition 9.1. Let Γ < G be a discrete subgroup. The limit set of Γ in Fθ is
defined as

Λθ(Γ) := {x ∈ Fθ : γn → x for some sequence {γn} ⊂ Γ}.

When Γ < G is Zariski dense, then Λθ(Γ) is the unique Γ-minimal set in Fθ
as shown by Benoist [Ben97]. Note that if {gn} ⊂ G is a sequence converging to
a point in Fθ, then {g−1

n } ⊂ G has a subsequence converging to a point in Fi(θ).
The following well-known lemma asserts that such a sequence {gn} ⊂ G exhibits a
source-sink dynamics, giving the motivation for the definitions above.

Lemma 9.2. Let {gn} ⊂ G be a sequence such that gn → x ∈ Fθ and g−1
n → y ∈

Fi(θ) as n→∞. Then for any z ∈ Fθ transverse to y ∈ Fi(θ), we have

gnz → x as n→∞.

For a proof see [LO23, Lem. 2.9] (for θ = ∆), [KOW23, Lem. 2.4], [CZZ24,
Prop. 2.3], or [KLP17, Sect. 4].

9.3. Transverse subgroups. The class of transverse subgroups of G provides well-
behaved PS-systems.

Definition 9.3. A discrete subgroup Γ < G is Pθ-transverse if

• α(κ(gn))→ +∞ for all α ∈ θ and
• any distinct x, y ∈ Λθ∪i(θ)(Γ) are transverse.

A Pθ-transverse subgroup Γ < G is called non-elementary if #Λθ∪i(θ)(Γ) > 2.

Remark 9.4. In the literature, transverse groups are sometimes called antipodal
groups (e.g. [KLP17]).

It is easy to see that for a Pθ-transverse Γ < G, the canonical projection
Λθ∪i(θ)(Γ) → Λθ(Γ) is a Γ-equivariant homeomorphism (cf. [KOW23, Lem. 9.5]).
An important feature of a Pθ-transverse subgroup Γ < G is that the Γ-action on
Λθ(Γ) is a convergence action ([KLP17, Thm. 4.16], [CZZ24, Prop. 2.8]) and that
there is a natural class of expanding cocycles.

Proposition 9.5. [BCZZ24a, Prop. 10.3] Let Γ < G be a non-elementary Pθ-
transverse subgroup and φ ∈ a∗θ. If φ(κ(γn)) → +∞ for any sequence {γn} ⊂ Γ
of distinct elements, then σφ := φ ◦Bθ|Γ×Λθ(Γ) is an expanding coarse-cocycle with
magnitude γ 7→ φ(κ(γ)).

Hence, if µ is a coarse φ-PS measure for Γ supported on Λθ(Γ) of dimension δ,
then (Λθ(Γ),Γ, σφ, µ) is a well-behaved PS-system of dimension δ with resepct to
the trivial hierarchy H(R) ≡ Γ, with shadows as in Equation (22).
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Given a subgroup Γ < G and a functional φ ∈ a∗θ, let δφ(Γ) ∈ [0,+∞] denote the
critical exponent of the Poincaré series∑

γ∈Γ

e−sφ(κ(γ)),

i.e. the series diverges for s ∈ [0, δφ(Γ)) and converges for s ∈ (δφ(Γ),+∞). For
transverse groups, we have the following existence/uniqueness results.

Theorem 9.6. Suppose Γ < G is a non-elementary Pθ-transverse subgroup and
φ ∈ a∗θ satisfies δφ(Γ) < +∞.

(1) [CZZ24] There exists a φ-PS measure for Γ of dimension δφ(Γ) supported
on Λθ(Γ).

(2) [CZZ24] If
∑
γ∈Γ e

−δφ(Γ)φ(κ(γ)) = +∞, then there is a unique φ-PS measure

for Γ of dimension δφ(Γ) supported on Λθ(Γ).

(3) [KOW23] If Γ is Zariski dense and
∑
γ∈Γ e

−δφ(Γ)φ(κ(γ)) = +∞, then any

φ-PS measure for Γ of dimension δφ(Γ) is supported on Λθ(Γ).

9.4. Anosov and relatively Anosov groups. A non-elementary Pθ-transverse
group Γ is Pθ-Anosov if it is word hyperbolic (as an abstract group) and there is
an equivariant homeomorphism between the Gromov boundary ∂∞Γ and the limit
set Λθ(Γ). More generally, a non-elementary Pθ-transverse group Γ is relatively Pθ-
Anosov with respect to a collection P of subgroups if it is relatively hyperbolic with
respect to P (as an abstract group) and there is an equivariant homeomorphism
between the Bowditch boundary ∂(Γ,P) and the limit set Λθ(Γ).

For relatively Anosov groups, the Poincaré series diverges at its critical exponent.

Theorem 9.7. [CZZ25] If Γ < G is relatively Pθ-Anosov, φ ∈ a∗θ, and δφ(Γ) < +∞,

then
∑
γ∈Γ e

−δφ(Γ)φ(κ(γ)) = +∞.

9.5. Irreducible subgroups. We now consider a more general class of subgroups.

Definition 9.8. A subgroup Γ < G is called Pθ-irreducible if for any x ∈ Fθ and
y ∈ Fi(θ), there exists γ ∈ Γ such that γx is transverse to y. We say that Γ is
strongly Pθ-irreducible if any finite index subgroup of Γ is Pθ-irreducible.

It is easy to see that any Zariski dense subgroup of G is strongly Pθ-irreducible.
We will show that irreducible subgroups form PS-systems, with higher rank shadows
defined as follows. First, for p ∈ X and R > 0, let BX(p,R) denote the metric ball
{x ∈ X : dX(x, p) < R}. Then, for q ∈ X, the θ-shadow OθR(q, p) ⊂ Fθ of BX(p,R)
viewed from q is defined as

OθR(q, p) := {g Pθ ∈ Fθ : g ∈ G, go = q, gA+o ∩BX(p,R) 6= ∅}.

Note that for any g ∈ G, q, p ∈ X, and R > 0,

gOθR(q, p) = OθR(gq, gp).

We will use the following observations.

Lemma 9.9 ([LO23, Lem. 5.7], [KOW23, Lem. 5.7]). For any R > 0 there exists
C > 0 such that: if g ∈ G and x ∈ OθR(g−1o, o), then

‖pθ(κ(g))−Bθ(g, x)‖ ≤ C.
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Lemma 9.10. For any relatively compact subset V ⊂ Nopp
θ there exists R0 > 0

such that: if g ∈ G has a Cartan decomposition g = ka` ∈ KA+K, then

`−1V Pθ ⊂ OθR0
(g−1o, o).

Proof. Notice that the desired inclusion is equivalent to V Pθ ⊂ OθR0
(a−1o, o).

Fix h ∈ V and let

ah = k′bn ∈ KAN.

denote the Iwasawa decomposition of ah. Notice that

aha−1 = k′(ba−1)(ana−1) ∈ KAN,

is the Iwasawa decomposition of aha−1. Since V ⊂ Nopp
θ is relatively compact and

a ∈ A+, there exists a relatively compact subset V ′ ⊂ Nopp
θ , which only depends

on V , such that aha−1 ∈ V ′. Then, since the Iwasawa decomposition induces a
diffeomorphism K × A × N → G, there exists a relatively compact subset W ⊂ G,
which only depends on V , such that

ba−1, ana−1 ∈W.

Since n ∈ N and a ∈ A+, there exists a relatively compact subset W ′ ⊂ G, which
only depends on V , such that n ∈W ′.

Then

hn−1b−1a ∈ V ·W ′−1 ·W−1

is uniformly bounded. Thus there exists R0 > 0, which only depends on V , such
that

hn−1b−1ao ∈ BX(o,R0).

Therefore, hPθ = h(n−1b−1)Pθ ∈ OθR0
(hn−1b−1o, o). Since hn−1b−1 = a−1k′, we

have hPθ ∈ OθR0
(a−1o, o). This finishes the proof. �

We now verify that irreducible subgroups give PS-systems. We emphasize that
Γ is not assumed to be discrete in the following.

Theorem 9.11. Let Γ < G be a Pθ-irreducible subgroup. If φ ∈ a∗θ and µ is
a coarse φ-PS measure on Fθ, then (Fθ,Γ, σφ, µ) is a PS-system with magnitude
γ 7→ φ(κ(γ)) and shadows {OR(γ) := OθR(o, γo) : γ ∈ Γ, R > 0}.

Proof. Since Bθ is continuous and Fθ is compact, Property (PS1) holds. Property
(PS2) follows from Lemma 9.9. We now show Property (PS3).

Suppose {γn} ⊂ Γ, Rn → +∞, and [M r γ−1
n ORn(γn)]→ Z with respect to the

Hausdorff distance. Since

γ−1
n ORn(γn) = OθR(γ−1

n o, o),

Lemma 9.10 implies that Z ⊂ FθrkNopp
θ Pθ for some k ∈ K. Since kNopp

θ Pθ consists
of points transverse to kw0 Pi(θ), Property (PS3) follows from the definition of Pθ-
irreducibility. �
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9.6. Zariski dense discrete subgroups. In this section, we show that Zariski
dense discrete subgroups give rise to well-behaved PS-systems with respect to some
natural subsets.

Let Γ < G be a Zariski dense discrete subgroup. For R > 0 and γ ∈ Γ, we
consider the shadow

(26) OR(γ) := O∆
R (o, γo) ⊂ F .

For u ∈ int a+ and r > 0, we collect elements of Γ along the direction u:

Γu,r := {γ ∈ Γ : ‖κ(γ)− tu‖ < r for some t > 0}.

Theorem 9.12. Let Γ < G be a Zariski dense discrete subgroup and u ∈ int a+.
Let φ ∈ a∗ be such that φ(u) > 0 and let µ be a φ-PS measure for Γ on F . Then for
any r > 0, the PS-system (F ,Γ, σφ, µ) is well-behaved with respect to the constant
hierarchy H(R) ≡ Γu,r, with magnitude γ 7→ φ(κ(γ)) and shadows as in Equation
(26).

Proof. By Theorem 9.11, (F ,Γ, σφ, µ) is a PS-system. To see Property (PS5), let
{γn} ⊂ Γ and Rn → +∞ be sequences so that [Mrγ−1

n ORn(γn)]→ Z with respect
to the Hausdorff distance. Since

γ−1
n ORn(γn) = O∆

Rn(γ−1
n o, o),

Lemma 9.10 implies that Z ⊂ F rkNopp P for some k ∈ K.
Thus Z is contained in a proper subvariety of F . Hence, Property (PS5) follows

from the Zariski density of Γ. Property (PS4) and Property (PS6) are straight-
forward. By [BLLO23, Lem. 3.6 and its proof], Property (PS7) holds. Property
(PS8) is a consequence of u ∈ int a+. �

Remark 9.13. The set Λcon(Γu,r) = Λcon(H) above is related to the notion of “u-
directional limit set” discussed in [Lin06, BLLO23, Sam24, KOW25]. When Γ is
an irreducible lattice and µ is a K-invariant measure on F , it follows from the work
of Link [Lin06] that µ(Λcon(Γu,r)) = 1 for all large r > 0. For general Γ and µ, it
was shown by Burger–Landesberg–Lee–Oh [BLLO23] that µ(Λcon(Γu,r)) = 1 holds
for large r > 0 if and only if the right-multiplication of exp(uR) on Γ\G /M is
ergodic with respect to a Bowen–Margulis–Sullivan measure associated to µ (see
also [KOW25]). It was also shown in [BLLO23] that if Γ < G is P∆-Anosov and
rankG ≤ 3, µ(Λcon(Γu,r)) = 1 for some u ∈ int a+ and all large r > 0.

9.7. Tukia’s theorem in higher rank. Let G1,G2 be connected semisimple Lie
groups without compact factors and with finite centers. For i = 1, 2, let θi be a
non-empty subset of simple roots for Gi. Combining Proposition 9.5 and Theorem
7.1, we obtain the following.

Corollary 9.14. For i = 1, 2, let Γi < Gi, φi ∈ a∗θi , and µi a coarse φi-PS measure
for Γi of dimension δi on Fθi . Suppose

• Γ1 is non-elementary Pθ1-transverse and
∑
γ∈Γ1

e−δ1φ1(κ(γ)) = +∞.
• Γ2 is Pθ2-irreducible.
• There exists an onto homomorphism ρ : Γ1 → Γ2 and a µ1-almost every-

where defined measurable ρ-equivariant injective map f : Fθ1 → Fθ2 .

If f∗µ1 and µ2 are not singular, then

sup
γ∈Γ1

|δ1φ1(κ(γ))− δ2φ2(κ(ρ(γ)))| < +∞.
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Remark 9.15. Note that Γ2 is not assumed to be discrete. When θ1 is the set
of all simple roots for G1, by Theorem 9.12, we can replace the first condition in
Corollary 9.14 with Γ1 being Zariski dense discrete and µ1(Λcon(Γ1,u,r)) = 1 for
some u ∈ int a+

1 with φ1(u) > 0 and r > 0.

To complete the proof of Theorem 1.22 from the introduction, we use the fol-
lowing result of Dal’Bo–Kim.

Theorem 9.16. [DK00] For i = 1, 2, suppose that Gi is simple and has a trivial
center and let Γi < Gi be a Zariski dense subgroup and φi ∈ a∗i r{0}. If ρ : Γ1 → Γ2

is an onto homomorphism and

sup
γ∈Γ1

|φ1(λ(γ))− φ2(λ(ρ(γ)))| < +∞,

then ρ extends to a Lie group isomorphism G1 → G2.

9.8. The Linear Case. For use in Section 13 we specialize some of the above
discussion to the case when G = PGL(d,R). In this case, we can let

a = {diag(a1, . . . , ad) : a1 + · · ·+ ad = 0}
and

a+ = {diag(a1, . . . , ad) ∈ a : a1 ≥ · · · ≥ ad}.
Then the Cartan and Jordan projections are given by

κ(g) = (log σ1(g), . . . , log σd(g)) and λ(g) = (log λ1(g), . . . , log λd(g))

where σ1(g) ≥ · · · ≥ σd(g) are the singular values and λ1(g) ≥ · · · ≥ λd(g) are the
absolute values of the generalized eigenvalues of some (any) representative of g in
GL(d,R) with determinant ±1.

With this choice of a+, ∆ = {α1, . . . , αd−1} where

αj(diag(a1, . . . , ad)) = aj − aj+1

and the opposition involution satisfies i(αj) = αd−j .
We also let ωj ∈ a∗ denote the fundamental weight associated to αj , which

satisfies
ωj(diag(a1, . . . , ad)) = a1 + · · ·+ aj .

Notice that when θ ⊂ ∆,
a∗θ = 〈ωj |aθ : αj ∈ θ〉 .

Given θ = {αj1 , . . . , αjk} ⊂ ∆ with j1 < · · · < jk, the parabolic subgroup Pθ is
the stabilizer of the partial flag

〈e1, . . . , ej1〉 ⊂ 〈e1, . . . , ej2〉 ⊂ · · · ⊂ 〈e1, . . . , ejk〉

where e1, . . . , ed is the standard basis of Rd. So we can identify Fθ with the partial
flag manifold F j1,...,jk(Rd) and F i(θ) with the partial flag manifold Fd−jk,...,d−j1(Rd).
Using these identifications, two flags x = (xji)ki=1 ∈ Fθ and y = (yd−ji)ki=1 ∈ F i(θ)

are transverse if and only if xji and yd−ji are transverse for all i = 1, . . . , k.
To avoid cumbersome notation, in this setting we often replace θ subscripts with

the indices appearing in θ, e.g. if θ = {α1, αd−1}, then

P1,d−1 = Pθ, F1,d−1 = Fθ, and Λ1,d−1(Γ) = Λθ(Γ).

The standard inner product on Rd induces an inner product on ∧j Rd where
{ei1 ∧ · · · ∧ eij} is an orthonormal basis. Given v ∈ ∧j Rd, we let ‖v‖ denote the
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norm induced by this inner product. Then when αj ∈ θ, the partial Iwasawa cocycle
satisfies

(27) ωj (Bθ(g, x)) = log
‖g̃(v1 ∧ · · · ∧ vj)‖
‖v1 ∧ · · · ∧ vj‖

where xj = 〈v1, . . . , vj〉 and g̃ is some (any) representative of g in GL(d,R) with
determinant ±1.

Recall that a subgroup Γ < PGL(d,R) is irreducible if there are no Γ-invariant
proper linear subspaces and strongly irreducible if every finite index subgroup is
irreducible. We will use the following result of Labourie.

Proposition 9.17. [Lab06, Prop. 10.3] If Γ < PGL(d,R) is strongly irreducible,
then Γ is strongly Pθ-irreducible for every non-empty θ ⊂ ∆.

10. Group actions with contracting isometries

In this section we use the theory of contracting isometries on general metric
spaces developed by Coulon [Cou24] and Yang [Yan22], to verify that Busemann
PS-measures on the Gardiner–Masur boundary of Teichmüller space are part of
PS-systems. Let Σ, (T ,dT ), and Mod(Σ) be as in Section 1.1.2.

Theorem 10.1 (Teichmüller space). Suppose Γ < Mod(Σ) is non-elementary and
µ is a Busemann PS-measure for Γ of dimension δ on ∂GM T . Then µ is part of
a well-behaved PS-system with respect to some hierarchy H = {H(R) ⊂ Γ : R ≥
0} and with magnitude function γ 7→ dT (o, γo) for a fixed o ∈ T . Moreover, if∑
γ∈Γ e

−δ dT (o,γo) = +∞, then

µ(Λcon(H)) = 1.

In fact, we show a more general result about isometric actions on general metric
spaces which have a contracting isometry (see Theorems 10.11 and 10.13 below).

Remark 10.2. Let X be a proper geodesic CAT(0) space. The same statement as in
Theorem 10.1 holds for a non-elementary discrete subgroup of Isom(X) with a rank
one isometry and a Busemann PS-measure on the visual boundary (which coincides
in this case with the horofunction boundary) (see Examples 10.5, 10.7, and 10.14).

10.1. Contracting isometries. Let (X,d) be a proper geodesic metric space. For
a closed subset Y ⊂ X and x ∈ X, a point y ∈ Y is called a nearest-point projection
of x on Y if d(x, y) = d(x, Y ). This defines a set-valued map πY as follows: for a
subset Z ⊂ X,

πY (Z) = {y ∈ Y : y is a nearest-point projection of some z ∈ Z}.

Definition 10.3. For α ≥ 0, a closed subset Y ⊂ X is called α-contracting if for
any geodesic L ⊂ X with d(L, Y ) ≥ α,

diamπY (L) ≤ α.

We call Y contracting if Y is α-contracting for some α ≥ 0.

Definition 10.4. An isometry g ∈ Isom(X) is called (α-)contracting if an orbit map
Z→ X, n 7→ gnx, is a quasi-isometric embedding and the image is (α-)contracting,
for some (hence any) x ∈ X.
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Note that conjugates of contracting elements are contracting. In this section, we
consider the assumption:

(CTG) Γ < Isom(X) discrete with a contracting isometry.

Such Γ is acylindrically hyperbolic [Sis18]. We also call Γ non-elementary if Γ is
not virtually cyclic.

Example 10.5. The following are examples of metric spaces and contracting isome-
tries:

(1) When X is Gromov hyperbolic space, any loxodromic isometry on X is
contracting [Gro87].

(2) Let Γ be a relatively hyperbolic group acting properly and cocompactly on
a metric space X by isometries (e.g. X is a Cayley graph of Γ). Then
any infinite order element of Γ which is not conjugated into a peripheral
subgroup is contracting [GP13, GP16].

(3) If X is CAT(0), any rank one isometry of X is contracting [BF09].
(4) Let Σ be a closed connected orientable surface of genus at least two. Con-

sider the action of its mapping class group Mod(Σ) on its Teichmüller space
T equipped with the Teichmüller metric. Then pseudo-Anosov mapping
classes are contracting [Min96].

10.2. Horofunction compactification. We recall the horofunction compactifica-
tion of X. Fix a basepoint o ∈ X and let

C∗(X) := {h : X → R : h(o) = 0}

which is equipped with the topology of uniform convergence on compact subsets.
We embed X ↪→ C∗(X) via the map

x 7→ d(x, ·)− d(x, o).

Then by Arzelà–Ascoli theorem, its image has the compact closure. This gives the
horofunction compactification.

Definition 10.6. The horofunction compactification X of X is the closure of X in
C∗(X). The horofunction boundary of X is ∂HX := X rX.

Note that every h ∈ X is 1-Lipschitz. Since uniform convergence on compact
subsets is equivalent to pointwise convergence for 1-Lipschitz functions, it follows
from the separability of X that X is metrizable.

Example 10.7. The following examples are horofunction boundaries. See [Yan22]
for further discussion on each of them.

(1) When X is CAT(0), it is well-known that the visual boundary is the same
as the horofunction boundary [BH99, II.8].

(2) As mentioned in the introduction, the horofunction boundary of a Te-
ichmüller space T equipped with its Teichmüller metric is the same as
Gardiner–Masur boundary ∂GM T of T [LS14].

We employ a slightly different point of view on the horofunction compactification,
which is more suitable to our purpose. For h ∈ C∗(X), the function ch : X×X → R
defined as

ch(x, y) := h(x)− h(y)
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is a cocycle, i.e. ch(x, z) = ch(x, y)+ch(y, z). Conversely, given a continuous cocycle
c : X × X → R, we have c(·, o) ∈ C∗(X). This gives another characterization of
C∗(X) as the space of all continuous cocycles.

In this perspective, each point x ∈ X corresponds to the Busemann cocycle
bx : X ×X → R defined as

bx(y, z) = d(x, y)− d(x, z).

In the rest of this section, we regard each point of X as a cocycle. It is easy to see
that for c ∈ X,

|c(x, y)| ≤ d(x, y) for all x, y ∈ X.
For g ∈ Isom(X), its action on X extends to a homeomorphism of X, by

(gc)(x, y) = c(g−1x, g−1y).

In particular, (gc)(gx, gy) = c(x, y).

10.3. Shadows. Given x, y ∈ X and c ∈ X, the Gromov product is

〈x, c〉y =
1

2
(d(y, x) + c(y, x)),

which is equal to the usual Gromov product when c ∈ X.

Definition 10.8. Let x, y ∈ X and R > 0. The R-shadow of y seen from x is

OR(x, y) := {c ∈ X : 〈x, c〉y < R}.

Note that for g ∈ Isom(X),

gOR(x, y) = OR(gx, gy).

The following is direct from the definition:

Observation 10.9. Let x, y ∈ X and R > 0. If c ∈ OR(x, y), then

d(x, y)− 2R < c(x, y) ≤ d(x, y)

10.4. Patterson–Sullivan measures. For Γ < Isom(X), the Busemann cocycle
β : Γ×X → R is

β(γ, c) = c(γ−1o, o).

Recall from Equation (3) that a probability measure µ is a β-PS measure for Γ of
dimension δ ≥ 0 on X if for every γ ∈ Γ,

dγ∗µ

dµ
(c) = eδc(o,γo) for µ-a.e. c ∈ X

(in this setting we do not consider coarse PS-measures). We denote by δΓ ≥ 0 the
critical exponent of the Poincaré series

s 7→
∑
γ∈Γ

e−s d(o,γo).

Following Patterson [Pat76] and Sullivan [Sul79]’s construction, Coulon and Yang
showed the existence of PS-measures in the critical dimension.

Proposition 10.10 ([Cou24, Prop. 4.3, Cor. 4.25], [Yan22, Lem. 6.3, Prop. 6.8]).
Let Γ < Isom(X) be a non-elementary subgroup satisfying (CTG). If δΓ < +∞,
then there exists a β-PS measure of dimension δΓ, which is supported on ∂HX.
Moreover, if a β-PS measure for Γ of dimension δ exists, then δ ≥ δΓ.
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10.5. Verification of PS-system. In the rest of this section, let Γ < Isom(X) be
a non-elementary subgroup satisfying (CTG). We verify that the Γ-action on ∂HX
gives a PS-system. For γ ∈ Γ, we define the β-magnitude by

(28) ‖γ‖β := d(o, γo)

and the R-shadow of γ to be

(29) OR(γ) := ∂HX ∩OR(o, γo).

Theorem 10.11. Let Γ < Isom(X) be non-elementary and satisfying (CTG). If
µ is a β-PS measure for Γ, then (X,Γ, β, µ) is a PS-system with magnitude and
shadows as in Equations (28) and (29). Moreover, Properties (PS5)–(PS6) hold
with any choice of the hierarchy H.

We further show that the PS-system in Theorem 10.11 is well-behaved under
some condition related to a saturation of ∂HX; w call c ∈ ∂HX saturated if for any
c′ ∈ X r {c}, ‖c− c′‖∞ = +∞.

To make an appropriate choice of the hierarchy {H(R) ⊂ Γ : R ≥ 0}, we use the
notion of contracting tails, following [Cou24].

Definition 10.12. Let α,L ≥ 0. For x, y ∈ X, we say that the pair (x, y) has an
(α,L)-contracting tail if there exists an α-contracting geodesic τ ending at y and a
projection p ∈ τ of x such that d(p, y) ≥ L.

We then consider the following subset of Γ:

C(α,L) := {γ ∈ Γ : (o, γo) has an (α,L)-contracting tail}.
Note that for a fixed α ≥ 0, the set C(α,L) is non-increasing in L ≥ 0.

Theorem 10.13. Let Γ < Isom(X) be non-elementary and satisfying (CTG). If
µ is a β-PS measure for Γ and µ-a.e. point in Λcon(Γ) is saturated, then the
PS-system (∂HX,Γ, β, µ) is well-behaved with respect to the hierarchy {H(R) =
C(α,R + 16α + 1) : R ≥ 0} for some α ≥ 0, with magnitude and shadows as in
Equations (28) and (29).

Example 10.14. The following are examples that almost every point is saturated:

(1) Suppose that (X,d) is CAT(0). Then its horofunction boundary ∂HX is
the same as its visual boundary, and every single point of ∂HX is saturated.

(2) Suppose that (X,d) is the Teichmüller space T of a closed connected ori-
entable sufrace Σ of genus at least two, equipped with the Teichmüller met-
ric. Then its horofunction boundary ∂GM T contains the space PMF of
projective measured foliations on Σ as a proper subset [GM91]. Moreover,
the subset UE ⊂ PMF of uniquely ergodic ones is topologically embedded
in ∂GM T [Miy13, Coro. 1], and every point in UE is saturated [Yan22,
Lem. 12.6].

Let Γ < Mod(Σ) be non-elementary and µ its PS-measure of dimension
δ on ∂GM T . If

∑
γ∈Γ e

−δ d(o,γo) < +∞, µ(Λcon(Γ)) = 0 by Theorem 4.1.

If
∑
γ∈Γ e

−δ d(o,γo) = +∞, we have µ(UE) = 1 [Yan22, Thm. 1.14, Lem.

12.6]. Therefore, in any case, the condition in Theorem 10.13 is verified.

In general, points in ∂HX may not be saturated, even in contracting limit sets.
On the other hand, one can proceed the same argument as in our proof of the rigidity
theorm (Theorem 7.1) in the so-called reduced horofunction boundary of X, which
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is obtained as the quotient of ∂HX under the equivalence relation c ∼ c′ if and
only if ‖c − c′‖∞ < +∞. When the reduced horofunction boundary is metrizable
(e.g. X is a proper geodesic Gromov hyperbolic space), the same argument can
be proceeded. In general, one should employ [Cou23, Prop. 5.1]. We omit this
discussion in the current paper.

10.6. Boundary of contracting subsets. To prove Theorem 10.11 and Theorem
10.13, we need to introduce more notation. Let Y ⊂ X be a closed subset and c ∈ X.
A point p ∈ Y is called a projection of c on Y if

c(p, y) ≤ 0 for all y ∈ Y.
When c ∈ X, a point y ∈ Y is a projection if and only if it is a nearest-point
projection. The boundary at infinity ∂+Y is the set of all c ∈ ∂HX such that there
is no projection of c on Y .

Going back to a classical setting for a moment, a non-elementary discrete sub-
group of Isom(Hn) has infinitely many loxodromic elements with disjoint fixed points
on ∂∞Hn. The following is a similar phenomenon in this current setting.

Proposition 10.15 ([Yan19, Lem. 2.12], [Cou24, Prop. 3.15]). Let Γ < Isom(X)
be a non-elementary discrete subgroup. If γ ∈ Γ is a contracting isometry, then
there exist infinitely many gi ∈ Γ such that

∂+(gi〈γ〉o) ∩ ∂+(gj〈γ〉o) = ∅ for all i 6= j.

In particular, ∂+(〈giγg−1
i 〉o) ∩ ∂+(〈gjγg−1

j 〉o) = ∅ for all i 6= j.

10.7. Invisible locus. We describe the locus which cannot be seen from a sequence
of shadows. The following two lemmas can be proved by a slight modification of
[Cou24, Proof of Prop. 4.9].

Lemma 10.16. [Cou24, Proof of Prop. 4.9] Let {zn} ⊂ X be a sequence converging
to z ∈ ∂HX. Let g ∈ Isom(X) be an α-contracting isometry such that z /∈ ∂+(〈g〉o).
Suppose that {pn} ⊂ 〈g〉o is a sequence of projections of zn and that pn → p ∈ 〈g〉o.
Then for any Rn → +∞, we have

X rORn(zn, o) ⊂ {c ∈ X : c(p, gko) ≤ 4α for all k ∈ Z} for all large n.

Lemma 10.17. [Cou24, Proof of Prop. 4.9] Let g ∈ Isom(X) be an α-contracting
isometry. For i = 1, . . . ,m, let pi ∈ 〈g〉o and set

Z̃i := {c ∈ X : c(pi, g
ko) ≤ 4α for all k ∈ Z}.

Then there exists N > 0 such that for all n ∈ Z with |n| > N , we have(
m⋃
i=1

Z̃i

)
∩ gn

(
m⋃
i=1

Z̃i

)
= ∅.

10.8. Proof of Theorem 10.11. As we observed above, |c(x, y)| ≤ d(x, y) for all
c ∈ X and x, y ∈ X. Hence, Property (PS1) follows. Property (PS2) follows from
Observation 10.9. Property (PS4) and Property (PS6) are straightforward.

Fix a metric on X which generates the topology. Property (PS3) is implied by
Property (PS5). To see Property (PS5), let {γn} ⊂ Γ and Rn → +∞ be sequences
such that [∂HXrγ−1

n ORn(γn)]→ Z with respect to the Hausdorff distance. After
passing to a subsequence, we may assume that γ−1

n o → z ∈ ∂HX. By Proposition
10.15, for any h1, . . . , hm ∈ Γ, there exists an α-contracting isometry g ∈ Γ such that
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z, h1z, . . . , hmz /∈ ∂+(〈g〉o), for some α ≥ 0. Then Property (PS5) is a conseqeunce
of Lemma 10.16 and Lemma 10.17. �

10.9. Properties of contracting tails. To show the well-behavedness, we employ
some propeties of contracting tails obtained in [Cou24].

Proposition 10.18. [Cou24, Lem. 4.15, Lem. 5.2] Let α,L,R ≥ 0 with L >
R + 16α. If ‖γ1‖β ≤ ‖γ2‖β and OR(o, γ1o) ∩ OR(o, γ2o) 6= ∅ for γ1, γ2 ∈ C(α,L),
then

(1)
∣∣‖γ2‖β − (‖γ1‖β + ‖γ−1

1 γ2‖β)
∣∣ ≤ 4R+ 44α;

(2) OR(o, γ2o) ⊂ OR+42α(o, γ1o).

Recall from Section 4 the notion of conical limit set for a subset of Γ. As a
generalization of Hopf–Tsuji–Sullivan dichotomy, the following was obtained by
Coulon [Cou24] (see also Yang [Yan22]).

Theorem 10.19. [Cou24, Coro. 5.19] If
∑
γ∈Γ e

−δΓ‖γ‖β = +∞, then there exists
α0, R0 ≥ 0 such that for any β-PS measure µ of dimension δΓ,

µ (ΛR0
(C(α0, L))) = 1 for all L ≥ 0.

Property (PS8) says that shadows converging to a generic point have diameter
decaying to 0. This can be observed from contracting tails. Recall that c ∈ ∂HX
is saturated if for any c′ ∈ X r {c}, ‖c− c′‖∞ = +∞.

Lemma 10.20. [Cou24, Coro. 5.14] Let α,L,R ≥ 0 with L > R + 13α. Let
c ∈ ΛR(C(α,L)) be saturated. For any open neighborhood U ⊂ X of c, there exists
T ≥ 0 such that for any γ ∈ C(α,L) with d(o, γo) ≥ T ,

c ∈ OR(o, γo) =⇒ OR(o, γo) ⊂ U.

10.10. Proof of Theorem 10.13. By Thoerem 10.11, it suffices to verify Prop-
erties (PS7) and (PS8). First, note that for any α ≥ 0, the hierarchy {H(R) =
C(α,R+ 16α+ 1) : R ≥ 0} satisfies Property (PS7) by Proposition 10.18.

Hence, it suffices to show that Property (PS8) holds for some α ≥ 0. We consider
two cases separately. Suppose first that

∑
γ∈Γ e

−δ‖γ‖β < +∞. Then by Theorem
10.11 and Theorem 4.1,

µ(Λcon(Γ)) = 0.

Setting M ′ := ∂HX r Λcon(Γ), Property (PS8) is vacuously true for any α ≥ 0.
Now suppose that

∑
γ∈Γ e

−δ‖γ‖β = +∞. By Theorem 10.19, there exist α0, R0 ≥
0 such that

µ(ΛR0(C(α0, L))) = 1 for all L ≥ 0.

We then consider the hierarchy {H(R) = C(α0, R+ 16α0 + 1) : R ≥ 0} and set

M ′ :=

c ∈ ⋂
L≥0

ΛR0(C(α0, L)) : c is saturated


which has the full µ-measure by the hypothesis. To see Property (PS8), fix R > 0.
Then for any c ∈M ′, if c ∈

⋂∞
n=1OR(γn) for some escaping sequence {γn} ⊂ H(R),

then limn→∞ diamOR(γn) = 0 by Lemma 10.20. This completes the proof. �

10.11. Proof of Theorem 10.1. This follows immediately from Example 10.14,
Theorem 10.13, and Theorem 10.19. �
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11. Random walks on relatively hyperbolic groups

In this section we use results in [GGPY21] to show that the stationary measures
on the Bowditch boundary of a relatively hyperbolic group (Definition 2.1) are
examples of PS-measures on well-behaved PS-systems. For word hyperbolic groups
see the discussion in Section 8.7.

For the rest of the section suppose (Γ,P) is relatively hyperbolic and suppose m
is a probability measure on Γ such that:

(1) The support of m generates Γ as a semigroup, see Equation (4).
(2) m has finite superexponential moment, see Equation (7).

By the work of Maher–Tiozzo [MT18, Thm. 1.1], there exists a unique m-
stationary measure ν on ∂(Γ,P) and this measure has no atoms. Moreover, it is
realized as the hitting measure for a sample path in a Gromov model for (Γ,P). In
particular, ν is Γ-quasi-invariant. We consider the measurable cocycle defined by

σm(γ, ·) = − log
dγ−1
∗ ν

dν

so that ν is a σm-PS measure of dimension 1. More precisely, let M ′ ⊂ ∂(Γ,P)
be a Γ-invariant subset of full ν-measure on which the Radon–Nykodim derivative
dγ−1
∗ ν
dν is defined for all γ ∈ Γ. Then we set σm(γ, x) = − log

dγ−1
∗ ν
dν for x ∈ M ′ and

σm(γ, x) = 0 for x /∈ M ′. Since the set of bounded parabolic points is countable
and ν has no atoms, ν assigns full measure to the set of conical limit points.

In the rest of the section, fix a metric d on Γt∂(Γ,P) that generates the topology
described at the start of Section 8. Also let dG be the Green metric on Γ associated
to m, which is a left Γ-invariant asymmetric metric on Γ, see Equation (8).

Theorem 11.1. With the notation above, (∂(Γ,P),Γ, σm, ν) is a well-behaved PS-
system of dimension 1 with respect to the trivial hierarchy H(R) ≡ Γ, with magni-
tude function ‖·‖m := dG(id, ·) and shadows as in Equation (22). Moreover,∑

γ∈Γ

e−‖γ‖m = +∞.

11.1. Proof of Theorem 11.1. As described above, the conical limit set has full
ν-measure. Then by Theorem 4.1 and Observation 8.2, it suffices to prove the first
assertion in Theorem 11.1.

For notational convenience, we write

‖ · ‖ := ‖ · ‖m.

Properties (PS3), (PS5), (PS6), and (PS8) can be verified as in the proof of
Theorem 8.4. By [GT20, Prop. 7.8], the Green metric dG is quasi-isometric to any
word metric on Γ with respect to a finite generating set and hence Property (PS4)
holds.

Property (PS1) follows from the fact that ν is a stationary measure and suppm
generates Γ as a semigroup. In particular, since

ν = m∗k ∗ ν =
∑
γ∈Γ

m∗k(γ)γ∗ν,

we have

ν ≥
(

max
k≥1

m∗k(γ)

)
γ∗ν
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and

γ∗ν ≥ γ∗
(

max
k≥1

m∗k(γ−1)

)
(γ−1)∗ν =

(
max
k≥1

m∗k(γ−1)

)
ν.

It remains to verify Properties (PS2) and Property (PS7). The following can be
deduced from [GGPY21, Coro. 1.8].

Theorem 11.2. [GGPY21] For every ε > 0 there exists C = C(ε) > 0 such that:
if d(α, β) > ε, then

(30) dG(α, β) ≤ dG(α, id) + dG(id, β) ≤ dG(α, β) + C.

Remark 11.3. One always has dG(α, β) ≤ dG(α, id) + dG(id, β) and so the non-
trivial part of the above statement is the second inequality.

We first prove Property (PS2).

Proposition 11.4. There exists a Γ-invariant full ν-measure subset Y ⊂ ∂(Γ,P)
where for any R > 0, there exists C = C(R) > 0 such that: if x ∈ γ−1OR(γ) ∩ Y
for some γ ∈ Γ, then

|‖γ‖ − σm(γ, x)| ≤ C.

Proof. We consider the Martin boundary ∂M (Γ,m), which is the horofunction
boundary for the Green metric dG. First, for γ ∈ Γ, define Kγ : Γ→ R by Kγ(g) =
Gm(g,γ)
Gm(id,γ) , where Gm is the Green function for m (Equation (8)). Then the Martin

boundary ∂M (Γ,m) consists of functions K : Γ → R where K = limn→∞Kγn for
some escaping sequence {γn} ⊂ Γ. Then the set Γt ∂M (Γ,m) has a topology mak-
ing it a compact metrizable space and where an escaping sequence {γn} converges
to K ∈ ∂M (Γ,m) if and only if Kγn → K pointwise (see [Woe00, Sect. 24]). Fur-
ther the left action of Γ on Γ extends to a continuous action on Γt∂M (Γ,m) where

γ ·K = K◦γ−1

K(γ−1) .

By [GGPY21, Coro. 1.7], the identity map Γ → Γ extends to a continuous
surjective equivariant map

π : Γ t ∂M (Γ,m)→ Γ t ∂(Γ,P)

where the pre-image of each conical limit point x ∈ ∂(Γ,P) is a singleton {Kx} and

Kx = lim
γ→x

Kγ .

There exists a m-stationary measure ν0 on ∂M (Γ,m) such that

dγ∗ν0

dν0
(K) = K(γ)

for ν0-a.e. K (see [Woe00, Thm. 24.10]). Since π is equivariant, π∗ν0 is a stationary
measure on ∂(Γ,P) and so, by uniqueness, ν = π∗ν0. Then

(31) σm(γ, x) = − log
dγ−1
∗ ν

dν
(x) = − logKx(γ−1)

for ν-a.e. conical limit point x. Let Y be a ν-full measure set where every x ∈ Y is
conical and satisfies Equation (31). Since ν is Γ-quasi-invariant, replacing Y with⋂
γ∈Γ γY , we may assume that Y is Γ-invariant.
Now fix R > 0. Fix γ ∈ Γ and

x ∈ γ−1OR(γ) ∩ Y =
(
∂(Γ,P) rB1/R(γ−1)

)
∩ Y.
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Then x is conical and σm(γ, x) = − logKx(γ−1). Fix a sequence {αn} ⊂ Γ con-
verging to x. Then d(γ−1, αn) > 1/(2R) for n large. Hence by Theorem 11.2

|‖γ‖ − σm(γ, x)| =
∣∣dG(id, γ) + logKx(γ−1)

∣∣
= lim
n→∞

∣∣dG(γ−1, id) + dG(id, αn)− dG(γ−1, αn)
∣∣

is bounded by a constant which only depends on R. �

To verify Property (PS7), we will use the following lemma whose proof follows
[BCZZ24b, Prop. 3.3 part (7)].

Lemma 11.5. For any ε > 0, there exists a finite subset F ⊂ Γ such that: if
α, β ∈ Γ, ‖α‖ ≤ ‖β‖, and β−1α 6∈ F , then

d(β−1, β−1α) ≤ ε.

Proof. By Theorem 11.2, there exists C = C(ε) > 0 such that if α, β ∈ Γ and
d(α−1, β) > ε, then

dG(α−1, id) + dG(id, β) ≤ dG(α−1, β) + C,

which is equivalent to
‖α‖+ ‖β‖ − C ≤ ‖αβ‖.

Let F := {γ ∈ Γ : ‖γ‖ ≤ C}, which is finite by Property (PS4) shown above. Now
if α, β ∈ Γ satisfy ‖α‖ ≤ ‖β‖ and β−1α /∈ F , then

‖β‖+ ‖β−1α‖ − C > ‖β‖ ≥ ‖α‖ = ‖ββ−1α‖.
Therefore, d(β−1, β−1α) ≤ ε as desired. �

We now prove the first half of Property (PS7).

Proposition 11.6. For any R > 0, there exists R′ > 0 such that: if α, β ∈ Γ,
‖α‖ ≤ ‖β‖, and OR(α) ∩ OR(β) 6= ∅, then

OR(β) ⊂ OR′(α).

Proof. Suppose to the contrary that there exist R > 0 and sequences αn, βn ∈ Γ
such that ‖αn‖ ≤ ‖βn‖, OR(αn) ∩ OR(βn) 6= ∅, and OR(βn) 6⊂ On(αn) for all
n ≥ 1. This implies that for all n ≥ 1,

α−1
n βn

(
∂(Γ,P) rB1/R(β−1

n )
)
6⊂ ∂(Γ,P) rB1/n(α−1

n ).

Then the sequence {β−1
n αn} is escaping; otherwise, β−1

n αnB1/n(α−1
n ) ⊂ B1/R(β−1

n )
for all large n ≥ 1, which contradicts our assumptions.

By Lemma 11.5, d(β−1
n , β−1

n αn) → 0 as n → ∞. Hence, for n ≥ 1 sufficiently
large we have

α−1
n OR(βn) = α−1

n βn

(
∂(Γ,P) rB1/R(β−1

n )
)

⊂ α−1
n βn

(
∂(Γ,P) rB1/(2R)(β

−1
n αn)

)
⊂ O2R(α−1

n βn).

Since {α−1
n βn} is escaping as well, it follows from [BCZZ24b, Prop. 5.1 part (2)]

that diamO2R(α−1
n βn)→ 0 as n→∞, and hence diamα−1

n OR(βn)→ 0 as n→∞.

Since OR(αn)∩OR(βn) 6= ∅ and α−1
n OR(αn) = ∂(Γ,P)rB1/R(α−1

n ), it follows

from limn→∞ diamα−1
n OR(βn) = 0 that

α−1
n OR(βn) ⊂ ∂(Γ,P) rB1/(2R)(α

−1
n ) for all large n ≥ 1.
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Therefore, OR(βn) ⊂ O2R(αn) for all large n ≥ 1, which is a contradiction. This
finishes the proof. �

We prove the second half of Property (PS7).

Proposition 11.7. For any R > 0, there exists C > 0 such that if α, β ∈ Γ,
‖α‖ ≤ ‖β‖, and OR(α) ∩ OR(β) 6= ∅, then∣∣‖β‖ − (‖α‖+

∥∥α−1β
∥∥)
∣∣ ≤ C.

Proof. Suppose to the contrary that there exist R > 0 and sequences αn, βn ∈ Γ
such that ‖αn‖ ≤ ‖βn‖, OR(αn) ∩ OR(βn) 6= ∅, and∣∣‖βn‖ − (‖αn‖+

∥∥α−1
n βn

∥∥)
∣∣ ≥ n for all n ≥ 1.

By Theorem 11.2, we have

‖βn‖ ≤ ‖αn‖+ ‖α−1
n βn‖

for all n ≥ 1. Hence, by assumption, the sequence {α−1
n βn} is escaping. Similarly,

for all n ≥ 1,
‖α−1

n βn‖ − ‖α−1
n ‖ ≤ ‖βn‖ ≤ ‖αn‖+ ‖α−1

n βn‖,
and hence the sequence {αn} is also escaping. Since ‖αn‖ ≤ ‖βn‖, {βn} is an
escaping sequence as well. Since {α−1

n βn} is escaping, Lemma 11.5 implies that

lim
n→∞

d(β−1
n , β−1

n αn) = 0.

As Properties (PS1)–(PS3) have been verified, (∂(Γ,P),Γ, σm, ν) is a PS-system.
Hence, by Proposition 3.1, there exists R0 > 0 such that ν(OR0

(γ)) > 0 for all
γ ∈ Γ. Now by increasing R > 0, we may assume that R > R0. By Proposition
11.6, we can fix R′ > 0 such that

OR(βn) ⊂ OR′(αn) for all n ≥ 1.

Let Y ⊂ ∂(Γ,P) be the subset in Proposition 11.4. Since each OR(βn) has positive
measure, for each n ≥ 1 there exists a point

xn ∈ OR(βn) ∩ Y ⊂ OR′(αn) ∩ Y.

Moreover, sinceOR(βn) = βn

(
∂(Γ,P) rB1/R(β−1

n )
)

and limn→∞ d(β−1
n , β−1

n αn) =

0, we have

d(β−1
n xn, β

−1
n αn) ≥ d(β−1

n xn, β
−1
n )− d(β−1

n αn, β
−1
n ) ≥ 1

2R
for n sufficiently large. Hence,

α−1
n xn ∈ O2R(α−1

n βn) ∩ Y.
Now if C = C(max{R′, 2R}) > 0 satisfies Proposition 11.4, then∣∣‖αn‖ − σm(αn, α

−1
n xn)

∣∣ ≤ C, ∣∣‖βn‖ − σm(βn, β
−1
n xn)

∣∣ ≤ C, and∣∣‖α−1
n βn‖ − σm(α−1

n βn, β
−1
n xn)

∣∣ ≤ C.
Further, by the cocycle property

σm(βn, β
−1
n xn) = σm(αnα

−1
n βn, β

−1
n xn) = σm(αn, α

−1
n xn) + σm(α−1

n βn, β
−1
n xn).

Combining altogether, ∣∣‖βn‖ − (‖αn‖+
∥∥α−1

n βn
∥∥)
∣∣ ≤ 3C,

which is a contradiction, finishing the proof. �
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The proof of Theorem 11.1 is now complete. �

12. Rigidity results for random walks

In the following subsections we suppose that

• (Γ,P) is a relatively hyperbolic group and
• m is probability measure on Γ with finite superexponential moment as in

Equation (7) and whose support generates Γ as a semigroup.

Let ν0 be the unique m-stationary measure on ∂(Γ,P) and let (∂(Γ,P),Γ, σm, ν0)
be the well-behaved PS-system in Theorem 11.1.

In the subsections that follow we will assume that Γ is a subgroup of either the
isometry group of a Gromov hyperbolic space, the mapping class group of a surface,
or a semisimple Lie group.

12.1. Random walks on the isometry group of a Gromov hyperbolic
space. In this subsection we further suppose that

• (X,dX) is a proper geodesic Gromov hyperbolic space, and
• Γ < Isom(X) is a non-elementary discrete subgroup.

In this setting, Kaimanovich proved that there exists a unique m-stationary measure
ν on the Gromov boundary ∂∞X, and is the hitting measure for a sample path
[Kai00, Remark following Thm. 7.7].

A subset Y ⊂ X is quasi-convex if there exists R > 0 such that any geodesic
joining two points in Y is contained in the R-neighborhood of Y . Then a discrete
subgroup Γ′ < Isom(X) is quasi-convex if for any o ∈ X the orbit Γ′(o) ⊂ X is
quasi-convex (see [Swe01] for properties of such groups). Using the Morse Lemma,
it is easy to see that a subgroup is quasi-convex if and only if any orbit map is a
quasi-isometric embedding with respect to a word metric on the group with respect
to a finite generating set.

Theorem 12.1. If µ is a coarse Busemann PS-measure for Γ on ∂∞X of dimension
δ, then the following are equivalent:

(1) The measures ν and µ are not singular.
(2) The measures ν and µ are in the same measure class and the Radon–

Nikodym derivatives are a.e. bounded from above and below by a positive
number.

(3) For any o ∈ X,

sup
γ∈Γ
|dG(id, γ)− δ dX(o, γo)| < +∞.

In particular, Γ is quasi-convex, δ is equal the critical exponent of Γ, and∑
γ∈Γ e

−δ dX(o,γo) = +∞.

Proof. The implication (2) ⇒ (1) is clear. We now prove (1) ⇒ (3). By [Kai00,
Remark following Thm. 7.7], the spaces (∂(Γ,P), ν0) and (∂∞X, ν) are both Poisson
boundaries for (Γ,m). Hence, there is a Γ-equivariant isomorphism

f : (∂(Γ,P), ν0)→ (∂∞X, ν).

By assumption ν = f∗ν0 is not singular with respect to µ. As explained in Example
8.6 and Theorem 8.4, µ is a coarse PS-measure in a PS-system which has magnitude
function

γ 7→ dX(o, γo).
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Then by Theorem 7.1,

sup
γ∈Γ
|dG(id, γ)− δ dX(o, γo)| < +∞.

Moreover, since dG is quasi-isometric to a word metric on Γ with respect to a finite
generating set by [GT20, Prop. 7.8], Γ is quasi-convex. Since µ is of dimension δ, δ
is at least the critical exponent of the Poincaré series [Coo93, Coro. 6.6]. Together
with

∑
γ∈Γ e

− dG(id,γ) = +∞ (Theorem 11.1), we have that δ is equal to the critical
exponent and the Poincaré series diverges at δ.

It remains to show (3) ⇒ (2). Assuming (3), Γ is a word hyperbolic group
and the orbit map γ ∈ Γ 7→ γo ∈ X is a quasi-isometric embedding with respect
to a word metric on Γ as mentioned above. Hence we can assume that P = ∅
and so ∂(Γ,P) coincides with the Gromov boundary ∂∞Γ. Further, the orbit map
continuously extends to f : ∂∞Γ→ ∂∞X which is a Γ-equivariant homeomorphism
onto its image. Since both ν and ν0 are hitting measures, we have f∗ν0 = ν. Since∑
γ∈Γ e

−δ dX(o,γo) = +∞, Theorem 8.4, Observation 8.2, and Theorem 4.1, imply

that µ(f(∂∞Γ)) = 1. Hence, we can take a pull-back of the Busmann cocycle on
∂∞X and µ to ∂∞Γ. Since the Busemann cocycle on ∂∞X is expanding (Example
8.6), the same is true for the pull-back. Therefore, (2) follows from [BCZZ24b,
Prop. 13.1 and 13.2]. �

We now restate and prove Corollary 1.7.

Corollary 12.2. Suppose X is a negatively curved symmetric space. If Γ is not a
cocompact lattice in Isom(X), then ν is singular to the Lebesgue measure class on
∂∞X.

Proof. Suppose that ν is non-singular to the Lebesgue measure class on ∂∞X. Since
the Lebesgue measure class contains a Busemann PS-measure for Γ (cf. [Qui02a,
Lem. 6.3]), it follows from Theorem 12.1 that Γ is convex cocompact. Since ν is
supported on the limit set on Γ, the limit set has a positive Lebesgue measure class.
By the classical Hopf–Tsuji–Sullivan dichotomy [Rob03], the Lebesgue measure
class gives a unique PS-measure supported on the limit set. Therefore, ∂∞X is the
limit set of Γ, and hence Γ must be a cocompact lattice. �

12.2. Random walks on mapping class groups and Teichmüller spaces. Let
Mod(Σ) denote the mapping class group of a closed connected orientable surface Σ
of genus at least two and let (T ,dT ) is the Teichmüller space of Σ equipped with
the Teichmüller metric.

We continue to assume that Γ and m satisfy the assumptions at the start of the
section. In this subsection we further suppose that

• Γ < Mod(Σ) is a non-elementary subgroup.

Thurston compactified T with the space PMF of projective measured foliations
on Σ [Thu88]. In this setting, Kaimanovich–Masur showed that there exists a
unique m-stationary measure ν on PMF , and is the hitting measure for a sample
path in T and supported on the subset UE ⊂ PMF of uniquely ergodic foliations
[KM96, Thm. 2.2.4]. Since UE is topologically embedded in the Gardiner–Masur
boundary ∂GM T [Miy13], ν can also be regarded as a measure on ∂GM T , where
PS-measures are defined.

Theorem 12.3. If µ is a Busemann PS-measure for Γ on ∂GM T of dimension δ
and the measures ν, µ are not singular, then:
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(1) For any o ∈ T ,

sup
γ∈Γ
|dG(id, γ)− δ dT (o, γo)| < +∞.

In particular, δ is the critical exponent of Γ and
∑
γ∈Γ e

−δ dT (o,γo) = +∞.

(2) If dw is a word metric on Γ with respect to a finite generating set, then the
map

γ ∈ (Γ,dw) 7→ γo ∈ (T ,dT )

is a quasi-isometric embedding. In particular, Γ has no multitwist.

Proof. By [Kai00, Thm. 2.2.4] the space (PMF , ν) is a Poisson boundary for (Γ,m)
and by [Kai00, Remark following Thm. 7.7], the space (∂(Γ,P), ν0) is a Poisson
boundary for (Γ,m). Hence there is an isomorphism

f : (∂(Γ,P), ν0)→ (PMF , ν).

Since ν(UE) = 1, we can view f as a map into UE ⊂ ∂GM T .
By assumption ν = f∗ν0 is not singular with respect to µ. By Theorem 10.11, µ

is a PS-measure in a PS-system which has magnitude function

γ 7→ dT (o, γo).

Then by Theorem 7.1,

sup
γ∈Γ
|dG(id, γ)− δ dT (o, γo)| < +∞.

Since µ is of dimension δ ≥ 0, δ is at least the critical exponent of the Poincaré
series ([Cou24, Prop. 4.23], [Yan22, Prop. 6.8]). Since

∑
γ∈Γ e

− dG(id,γ) = +∞ by
Theorem 11.1, we have that δ is equal to the critical exponent and the Poincaré
series diverges at δ, showing (1).

By [GT20, Prop. 7.8] the Green metric is quasi-isometric to dw. Therefore, (2)
follows. The “in particular” part is due to [FLM01] which shows that every infinite
order element γ ∈ Γ has positive stable translation length with respect to dw. �

We can now restate (as a corollary) and prove Theorem 1.11.

Corollary 12.4. If Γ contains a multitwist, then the m-stationary measure ν is
singular to every Busemann Patterson–Sullivan measures on ∂GM T .

Proof. By Farb–Lubotzky–Minsky [FLM01], every infinite order element g ∈ Mod(Σ)
has positive stable translation length on its Cayley graph, i.e.,

lim sup
n→∞

dw(id, gn)

n
> 0

for any word metric dw on Mod(Σ) with respect to a finite generating set. On the
other hand, an infinite order mapping class has zero stable translation length on T
if and only if one of its power is a multitwist. So the result follows from Theorem
12.3. �

For a special class of subgroups, we prove the converse of Theorem 12.3. A
subgroup Γ′ < Mod(Σ) is parabolically geometrically finite (PGF) if

• (Γ′,P ′) is relatively hyperbolic for some P ′ = {P1, . . . , Pn} where each
Pi < Γ′ contains a finite index, abelian subgroup consisting entirely of
multitwists;
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• the coned off Cayley graph of (Γ′,P ′) embeds Γ′-equivariantly and quasi-
isometrically into the curve complex of Σ.

See [DDLS24, Def. 1.10] for details. When P ′ = ∅, the group Γ′ is convex
cocompact. This is equivalent to the original definition of [FM02] as shown by
[KL08, Ham05].

Theorem 12.5. Suppose Γ is PGF. If µ is a Busemann PS-measure for Γ on
∂GM T of dimension δ, then the following are equivalent:

(1) The measures ν and µ are not singular,
(2) The measures ν and µ are in the same measure class and the Radon–

Nikodym derivatives are a.e. bounded from above and below by a positive
number,

(3) For any o ∈ T ,

sup
γ∈Γ
|dG(id, γ)− δ dT (o, γo)| < +∞.

In particular, Γ is convex cocompact, δ is the critical exponent of Γ, and∑
γ∈Γ e

−δ dT (o,γo) = +∞.

Proof. The implication (2)⇒ (1) is clear and (1)⇒ (3) follows from Theorem 12.3.
Now suppose (3). Then Γ is word hyperbolic and the orbit map γ 7→ γo continuously
extends to a Γ-equivariant map f : ∂∞Γ → UE which is a homeomorphism onto
its image, after replacing o ∈ T with another point if necessary [FM02, Thm. 1.1,
Prop. 3.2]. Hence, ν = f∗ν0 since both ν and ν0 are hitting measures. Since∑
γ∈Γ e

−δ dT (o,γo) = +∞, Theorem 10.19 implies that µ(f(∂∞Γ)) = 1. Hence, we
can take the pull-back of the measure µ to ∂∞Γ via f , which is a PS-measure for
the cocycle σT given in Proposition 12.6 below. In Proposition 12.6 below we will
verify that σT is an expanding cocycle. Therefore, (2) follows from [BCZZ24b,
Prop. 13.1 and 13.2]. �

Proposition 12.6. Suppose Γ < Mod(Σ) is convex cocompact. Let f : ∂∞Γ →
UE ⊂ ∂GM T be the Γ-equivariant embedding induced from a quasi-isometric em-
bedding γ ∈ Γ 7→ γo ∈ T for some o ∈ T . Then the cocycle σT : Γ × ∂∞Γ → R
given by

σT (γ, x) := f(x)(γ−1o, o)

is an expanding cocycle with magnitude γ 7→ dT (o, γo).

Proof. It is clear that σT is a cocycle and limn→∞ dT (o, γno) = +∞ for any escaping
sequence {γn} ⊂ Γ. Moreover, since f(∂∞Γ) ⊂ UE , σT is continuous [Miy13].
Recalling the metric d on Γ t ∂∞Γ from Section 8, it remains to show that for any
ε > 0, there exists C > 0 such that

dT (o, γo)− C ≤ σT (γ, γ−1x) ≤ dT (o, γo) + C

whenever x ∈ γ
(
∂∞Γ rBε(γ−1)

)
, where Bε is the open d-ball of radius ε centered

at γ−1.
Let dw be a word metric on Γ with respect to a finite generating set. Fix

ε > 0. It is easy to see that there exists R0 > 0 such that for any γ ∈ Γ and

x ∈ γ
(
∂∞Γ rBε(γ−1)

)
, any geodesic ray [id, x) ⊂ Γ with respect to dw intersects

the dw-ball of radius R0 centered at γ.
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Let γ ∈ Γ and x ∈ γ
(
∂∞Γ rBε(γ−1)

)
. Fix a geodesic ray [id, x) ⊂ Γ and for

each n ≥ 1, let γn ∈ [id, x) be such that dw(id, γn) = n. By [Miy13],

σT (γ, γ−1x) = lim
n→∞

dT (γno, o)− dT (γno, γo).

Fix k ≥ 1 with dw(γ, γk) < R0. Since the orbit map Γ → T is a quasi-isometric
embedding, we have

dT (γo, γko) < R

for some R > 0 determined by R0.
For each n ≥ 1, let Ln ⊂ T be the geodesic from o to γno. Since Γ(o) ⊂ T

is quasi-convex [FM02], there exists C0 > 0 such that Ln is contained in the C0-
neighborhood of Γ(o) for all n ≥ 1. Hence, the nearest-point projection L′n ⊂ Γ(o)
of Ln is a quasi-geodesic. Since the orbit map is a quasi-isometric embedding,
it follows from the Morse Lemma for (Γ, dw) that for some uniform C1 > 0, the
quasi-geodesic {γ1o, . . . , γno} ⊂ T is contained in the C1-neighborhood of Ln, for
all n ≥ 1.

Now for all n ≥ k,

dT (γo, Ln) < R+ C1

and hence

|(dT (γno, o)− dT (γno, γo))− dT (o, γo)| < 2(R+ C1).

Taking n → ∞, we have
∣∣σT (γ, γ−1x)− dT (o, γo)

∣∣ ≤ 2(R + C1), completing the
proof with C := 2(R+ C1). �

12.3. Random walks on discrete subgroups of Lie groups. We continue to
assume that Γ and m satisfy the assumptions at the start of the section. In this
subsection we suppose that

• G is connected semisimple Lie group without compact factors and with
finite center, and

• Γ < G is a Zariski dense discrete subgroup.

Recall that F = G /P is the Furstenberg broundary. Guivarc’h and Raugi showed
that there exists a unique m-stationary measure ν on F , and it is the hitting measure
for a sample path [GR85].

As a higher rank analogue of critical exponent, Quint introduced the notion of
growth indicator on Γ [Qui02b]. Fixing any norm ‖·‖ on a, the growth indicator of
Γ is the function ψΓ : a→ R∪{−∞} defined as follows: for u 6= 0,

ψΓ(u) := ‖u‖ inf
C3u

critical exponent of s 7→
∑
γ∈Γ

e−s‖κ(γ)‖


where the infimum is over all open cones in a containing u, and ψΓ(0) = 0. A
functional φ ∈ a∗ is tangent to the growth indicator of Γ if φ ≥ ψΓ on a and there
exists non-zero u ∈ a+ with φ(u) = ψΓ(u).

Theorem 12.7. If µ is a coarse φ-PS measure for Γ on F of dimension δ and the
measures ν, µ are not singular, then:

(1) supγ∈Γ |dG(id, γ)− δφ(κ(γ))| < +∞. In particular,
∑
γ∈Γ e

−δφ(κ(γ)) =
+∞. Moreover, if µ is a φ-Patterson–Sullivan measure without coarseness,
then δφ is tangent to the growth indicator of Γ.
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(2) If dw is a word metric on Γ with respect to a finite generating set, (X,dX)
is the symmetric space associated to G, and x0 ∈ X, then the map

γ ∈ (Γ,dw) 7→ γx0 ∈ (X,dX)

is a quasi-isometric embedding.

Proof. By [Kai00, Thm. 10.7] the space (F , ν) is a Poisson boundary for (Γ,m)
and by [Kai00, Remark following Thm. 7.7], the space (∂(Γ,P), ν0) is a Poisson
boundary for (Γ,m). Hence there is an isomorphism f : (∂(Γ,P), ν0)→ (F , ν).

By assumption ν = f∗ν0 is not singular with respect to µ. By Theorem 9.11, µ
is a coarse PS-measure in a PS-system which has magnitude function

γ 7→ φ(κ(γ)).

Then by Theorem 7.1,

sup
γ∈Γ
|dG(id, γ)− δφ(κ(γ))| < +∞,

showing the first part of (1). Since
∑
γ∈Γ e

− dG(id,γ) = +∞ by Theorem 11.1, we
have ∑

γ∈Γ

e−δφ(κ(γ)) = +∞.

Then [Qui02b, Lem. 3.1.3] implies that δφ(u) ≤ ψΓ(u) for some u 6= 0. Finally, if
µ is a φ-PS measure of dimension δ, then δφ ≥ ψΓ by [Qui02a, Thm. 8.1] and so
δφ is tangent to the growth indicator of Γ.

To show (2), let S ⊂ Γ be the finite symmetric generating set which induces dw.
By [GT20, Prop. 7.8] the Green metric is quasi-isometric to dw and so there exist
a > 1 and b > 0 such that

a−1 dw(γ1, γ2)− b ≤ φ(κ(γ−1
1 γ2)) ≤ a dw(γ1, γ2) + b

for all γ1, γ2 ∈ Γ. Then

dw(γ1, γ2) ≤ aφ(κ(γ−1
1 γ2)) + b ≤ a ‖φ‖

∥∥κ(γ−1
1 γ2)

∥∥+ b = a ‖φ‖dX(γ1o, γ2o) + b

and

dX(γ1x0, γ2x0) ≤ C dw(γ1, γ2)

where C := maxs∈S dX(x0, sx0). So (2) follows. �

We now restate and prove Theorem 1.14.

Theorem 12.8. Suppose G has no rank one factor. Then ν is singular to the
Lebesgue measure class on F .

Proof. Suppose for a contradiction that ν is not singular to the Lebesgue measure
class on F . Let µ be a K-invariant probability measure on F , which is in the
Lebesgue measure class. By [Qui02a, Lem. 6.3], µ is a Ψ-PS-measure for Γ of
dimension 1, where Ψ is the sum of all positive roots. Hence, by assumption and
Theorem 12.7, we have

Ψ(u) = ψΓ(u)

for some non-zero u ∈ a+. On the other hand, since G has no rank one factor
and Γ is relatively hyperbolic, Γ cannot be a lattice in G by [Hae20]. Hence, by
([Qui03, Thm. 5.1], [LO24, Thm. 7.1]), ψΓ < Ψ on a+ r {0} and so we have a
contradiction. �
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Corollary 12.9. If Γ is word hyperbolic (as an abstract group) and contains a
unipotent element of G, then ν is singular with respect to every coarse Iwasawa
PS-measure on F .

Proof. Suppose for a contradiction that ν is non-singular to some coarse φ-PS
measure µ of dimension δ. Fix a word metric dw on Γ with respect to a finite
generating set and x0 ∈ X. By Theorem 12.7, the map

γ ∈ (Γ,dw) 7→ γx0 ∈ (X,dX)

is a quasi-isometry. However, if u ∈ Γ is a unipotent element of G, then

lim
n→∞

1

n
dX(unx0, x0) = 0

while

lim
n→∞

1

n
dw(un, id) > 0

since Γ is word hyperbolic and u ∈ Γ has infinite order (hence is loxodromic). So
we have a contradiction. �

13. Pseudo-Riemannian hyperbolic spaces

In this section we prove Theorem 1.25 from the introduction. Throughout the
section we will freely use the notation introduced in Section 9.8.

Let [·, ·]p,q+1 denote the symmetric bilinear form on Rp+q+1 defined by

[v, w]p,q+1 = v1w1 + · · ·+ vpwp − vp+1wp+1 − · · · − vp+q+1wp+q+1.

Then let O(p, q + 1) < GL(p+ q + 1,R) denote the group which preserves [·, ·]p,q+1

and let PO(p, q + 1) < PGL(p+ q + 1,R) denote its projectivization.
The associated pseudo-Riemannian hyperbolic space is

Hp,q := {[v] ∈ P(Rp+q+1) : [v, v]p,q+1 < 0}.

By studying the action on Hp,q, Danciger–Guéritaud–Kassel [DGK18] introduced
convex cocompact subgroups of PO(p, q + 1).

A subset of P(Rp+q+1) is properly convex if it is bounded and convex in some
affine chart of P(Rp+q+1). A non-trivial projective line segment is a connected
subset of a projective line that contains more than one point.

Definition 13.1. [DGK18] A discrete subgroup Γ < PO(p, q + 1) is Hp,q-convex
cocompact if there exists a convex subset C ⊂ Hp,q such that

• C is closed in Hp,q, has non-empty interior, and the set of accumulation
points ∂i C in ∂Hp,q contains no non-trivial projective line segments,

• C is Γ-invariant and the quotient Γ\ C is compact.

As mentioned in the introduction, Glorieux–Monclair [GM21] introduced a crit-
ical exponent δHp,q (Γ) for a Hp,q-convex cocompact subgroup Γ < PO(p, q+ 1) and
proved that

(32) δHp,q (Γ) ≤ p− 1.

In this section we prove Theorem 1.25, which we restate here.

Theorem 13.2. If Γ < PO(p, q+1) is Hp,q-convex cocompact and δHp,q (Γ) = p−1,
then Γ preserves and acts cocompactly on a totally geodesic copy of Hp in Hp,q.
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When Γ < PO(p, q + 1) is Hp,q-convex cocompact, results of Carvajales [Car20,
Remarks 6.9 and 7.15] and Sambarino [Sam24, Prop. 3.3.2] imply that

δHp,q (Γ) = δω1
(Γ).

where ω1 is the fundamental weight associated to α1 and δω1(Γ) is the critical
exponent associated to ω1 (for definitions see Sections 9.8 and 9.3).

Let d := p+ q+ 1. Since ω1(κ(g)) = ωd−1(κ(g)) for all g ∈ PO(p, q+ 1), we then
have

(33) δHp,q (Γ) = δω1(Γ) = δψ(Γ)

where ψ := 1
2 (ω1 + ωd−1).

13.1. The Anosov property and negativity of the limit set. In the argu-
ments that follow we will need some results from [DGK24, DGK18] about convex
cocompact subgroups in PO(p, q + 1).

For the rest of the section suppose that Γ < PO(p, q+1) is Hp,q-convex cocompact
and suppose that C satisfies Definition 13.1. Let d := p+ q + 1.

By [DGK24, Thm. 1.24], Γ < PO(p, q + 1) is P1,d−1-Anosov and by [DGK24,
Thm. 1.15 and Lem. 7.1]

Λ1,d−1(Γ) = {(x, x⊥) : x ∈ ∂i C}

where x⊥ is the orthogonal complement with respect to [·, ·]p,q+1.

Let C̃ ⊂ Rp+q+1 be a convex cone above C and let Λ̃ ⊂ Rp+q+1 be the cone above
∂i C contained in the closure of C̃. Any element γ ∈ Γ lifts to a unique element

γ̃ ∈ O(p, q + 1)

which preserves C̃. By uniqueness, the map

(34) γ ∈ Γ 7→ τ̃(γ) := γ̃

is a injective homomorphism.

Theorem 13.3. [DGK24] If x ∈ Λ̃ and y ∈ C̃∪Λ̃ are not collinear, then [x, y]p,q+1 <
0.

Proof. By [DGK24, Thm. 1.24] we have [x, y]p,q+1 < 0 when x, y ∈ Λ̃ are not

collinear. In the case when x ∈ Λ̃ and y ∈ C̃, [DGK24, Lem. 11.4] says that

[x, y]p,q+1 6= 0. Then, since y can be continuously deformed to a point in Λ̃rR+ ·x,
we must have [x, y]p,q+1 < 0. �

13.2. Patterson–Sullivan measures and Hausdorff dimension. Suppose Γ <
PO(p, q + 1) is Hp,q-convex cocompact. As before, let d := p+ q + 1 and

ψ :=
1

2
(ω1 + ωd−1).

Since Γ is P1,d−1-Anosov and ψ ∈ a∗1,d−1, there is a unique ψ-PS measure µ̃ψ for

Γ supported on Λ1,d−1(Γ) of dimension δ := δψ(Γ), see Theorems 9.7 and 9.6. Let
µψ be the push-forward of µ̃ψ under the homeomorphism Λ1,d−1(Γ)→ Λ1(Γ).

Fix a distance dP on ∂Hp,q induced by a Riemannian metric and let Hδ be the
associated δ-dimensional Hausdorff measure.

Proposition 13.4. There exists C > 1 such that µψ(A) ≤ CHδ(A) for any Borel
measurable set A ⊂ Λ1(Γ).
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The rest of the subsection is devoted to the proof of Proposition 13.4. We will
use results in [DKO24] to prove the proposition. Alternatively, one could use results
in [GM21] or [GMT23].

Define a distance-like function dΛ on Λ1(Γ) by

dΛ(x, y) =
(

sin∠(x, y⊥)
)1/4(

sin∠(y, x⊥)
)1/4

(in the notation of [DKO24] this is dψ, see [DKO24, Def. 5.1, Lem. 10.4]).
For x ∈ Λ1(Γ) and r > 0, let BΛ(x, r) := {y ∈ Λ1(Γ) : dΛ(x, y) < r}. Then

by [DKO24, Thm. 8.2], there exist C1 > 1, r0 > 0 such that

(35) C−1
1 rδ ≤ µψ(BΛ(x, r)) ≤ C1r

δ

for all x ∈ Λ1(Γ) and r ∈ [0, r0].

Lemma 13.5. There exists C2 > 0 such that dΛ ≤ C2 dP on Λ1(Γ).

Proof. One can show that

sin∠([v], [w]⊥) =
|[v, w]p,q+1|
‖v‖ ‖w‖

and so

dΛ([v], [w]) =
|[v, w]p,q+1|1/2

‖v‖1/2 ‖w‖1/2
.

Further, we can fix ε > 0 such that

dP([v], [w]) ≥ εmin{‖v − w‖ , ‖v − (−w)‖ , ‖(−v)− w‖ , ‖(−v)− (−w)‖}
when v, w ∈ Sp−1×Sq.

Now fix v = (v1, v2), w = (w1, w2) ∈ Sp−1×Sq with [v], [w] ∈ Λ1(Γ). Then

dΛ([v], [w]) =
|[v, w]p,q+1|1/2

‖v‖1/2 ‖w‖1/2
=

1

2
|[v − w, v − w]p,q+1|1/2

=
1

2

√∣∣∣‖v1 − w1‖2 − ‖v2 − w2‖2
∣∣∣ ≤ 1

2
‖v − w‖ .

Since v, w were arbitrary lifts of [v], [w] in Sp−1×Sq, we have

dΛ([v], [w]) ≤ ε−1 dP([v], [w]). �

For x ∈ ∂Hp,q and r > 0, let BP(x, r) := {y ∈ ∂Hp,q : dP(x, y) < r}. Then the
previous lemma implies that

BP(x, r) ∩ Λ1(Γ) ⊂ BΛ(x,C2r)

for all x ∈ Λ1(Γ) and r > 0.
Now we are ready to prove Proposition 13.4.

Proof of Proposition 13.4. Suppose A ⊂ Λ1(Γ) is a Borel measurable set. Fix
{xn}n∈I ⊂ ∂Hp,q and {rn}n∈I ⊂ (0, 1

2C2
r0] such that

A ⊂
⋃
n∈I

BP(xn, rn).

We can assume that for every n ∈ I there exists yn ∈ Λ1(Γ) ∩BP(xn, rn). Then

A ⊂
⋃
n∈I

BΛ(yn, 2C2rn).
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Hence by Equation (35),

µψ(A) ≤
∑
n∈I

µψ (BΛ(yn, 2C2rn)) ≤
∑
n∈I

C1(2C2)δrδn.

Thus µψ ≤ C1(2C2)δHδ. �

13.3. A second Patterson–Sullivan measure. As in the previous subsection,
fix a distance dP on ∂Hp,q induced by a Riemannian metric and let Hp−1 be the
associated (p− 1)-dimensional Hausdorff measure.

In the next result let pr : F1,p(Rp+q+1)→ P(Rp+q+1) denote the natural projec-
tion.

Proposition 13.6. Suppose that Γ < PO(p, q+1) is Hp,q-convex cocompact. Then
Hp−1(Λ1(Γ)) < +∞. Moreover, if Hp−1(Λ1(Γ)) > 0, then there exists an Hp−1-a.e.
defined measurable Γ-equivariant map ζ : Λ1(Γ)→ F1,p(Rp+q+1) such that

(1) pr ◦ ζ = idΛ1(Γ), and

(2) 1
Hp−1(Λ1(Γ))

ζ∗
(
Hp−1 |Λ1(Γ)

)
is a coarse (pω1 − ωp)-PS measure for Γ of di-

mension 1.

The first assertion is well-known and the “moreover” part is very similar to [PSW23,
Prop. 6.4] (which considers Anosov groups whose limits are Lipschitz manifolds).

Proof. Suppose Γ < PO(p, q + 1) is Hp,q-convex cocompact. First observe that the
map

Φ : Sp−1×Sq → ∂Hp,q

Φ(v, w) = [(v, w)]

is a smooth 2-to-1 covering map. Let Λ′ := Φ−1(Λ1(Γ)). Theorem 13.3 implies that

(36) 〈v1, v2〉 ≤ 〈w1, w2〉
for all (v1, w1), (v2, w2) ∈ Λ′.

Observation 13.7. The projection (v, w) 7→ v is 1-to-1 on Λ′.

Proof. If (v, w1), (v, w2) ∈ Λ′, then Equation (36) implies that

1 = 〈v, v〉 ≤ 〈w1, w2〉 ≤ ‖w1‖ ‖w2‖ = 1.

So by the equality case of Cauchy–Schwarz we must have w1 = w2. �

Then there exists a closed set D ⊂ Sp−1 and a function f : D → Sq such that

Λ′ = {(x, f(x)) : x ∈ D}.
By Equation (36),

〈x, y〉 ≤ 〈f(x), f(y)〉
for all x, y ∈ D. Hence

‖f(x)− f(y)‖ ≤ ‖x− y‖
for all x, y ∈ D. This implies that Λ′ is bi-Lipschitz to D. Since Φ is smooth,
Hp−1(Λ1(Γ)) < +∞.

Now suppose that Hp−1(Λ1(Γ)) > 0. Since there exists an onto Lipschitz map
D → Λ1(Γ), the set Λ1(Γ) is (p − 1)-rectifiable. Then Hp−1-a.e. x ∈ Λ1(Γ) has a
well-defined tangent plane TxΛ1(Γ), see Appendix A. For such x, let Vx ⊂ Rp+q+1
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be the p-dimensional linear subspace containing x with Tx P(Vx) = TxΛ1(Γ). Then

define a Hp−1-a.e. defined measurable map ζ : Λ1(Γ)→ F1,p(Rd) by

ζ(x) = (x, Vx).

Since tangent planes are Hp−1-a.e. unique, we can assume that ζ is Γ-equivariant.
Let ν := 1

Hp−1(Λ1(Γ))
ζ∗
(
Hp−1 |Λ1(Γ)

)
. By the coarea formula (Equation (40))

and Observation A.1 in Appendix A, there exists C > 1 such that for every γ ∈ Γ
the measures γ∗ν, ν are absolutely continuous and

1

C
e−(pω1−ωp)(B1,p(γ−1,F )) ≤ dγ∗ν

dν
(F ) ≤ Ce−(pω1−ωp)(B1,p(γ−1,F )) ν-a.e.

Hence the measure ν is a coarse (pω1 − ωp)-PS measure for Γ of dimension 1. �

13.4. The proof in the strongly irreducible case. We prove the main theorem
(Theorem 13.2) in the strongly irreducible case.

Proposition 13.8. If Γ < PO(p, q + 1) is Hp,q-convex cocompact, strongly irre-
ducible, and δHp,q (Γ) = p−1, then q = 0 and Γ is a uniform lattice in PO(p, q+1) =
PO(p, 1).

Proof. Fix a distance dP on ∂Hp,q induced by a Riemannian metric and let Hp−1

be the associated (p− 1)-dimensional Hausdorff measure.
Let µψ be as in Section 13.2. By Equation (33), δψ(Γ) = δHp,q (Γ) = p − 1, so

Proposition 13.4 implies that Hp−1(Λ1(Γ)) > 0. So by Proposition 13.6 there exists
a Hp−1-a.e. defined measurable Γ-equivariant map ζ : Λ1(Γ)→ F1,p(Rp+q+1) such
that

(1) pr ◦ ζ = idΛ1(Γ), and

(2) ν := 1
Hp−1(Λ1(Γ))

ζ∗
(
Hp−1 |Λ1(Γ)

)
is a coarse (pω1−ωp)-PS measure for Γ of

dimension 1.

By Proposition 13.4, ζ is also µψ-almost everywhere defined and

ζ∗µψ � ν.

By Proposition 9.5, µψ is part of a well-behaved PS-system with magnitude function
g 7→ ψ(κ(g)) = ω1(κ(g)). By Proposition 9.17 and Theorem 9.11, ν is part of a PS-
system with magnitude function g 7→ (pω1 − ωp)(κ(g)). Since Γ is P1,d−1-Anosov,
it follows from Theorem 9.7 that∑

g∈Γ

e−(p−1)ω1(κ(g)) = +∞.

Thus by Theorem 7.1,

(37) (p− 1)ω1(λ(g)) = (pω1 − ωp)(λ(g))

for all g ∈ Γ, where λ(g) = limn→∞ κ(gn)/n is the Jordan projection of g.
Recall that

λ(g) = (log λ1(g), · · · , log λp+q+1(g))

where λ1(g) ≥ · · · ≥ λd(g) are the absolute values of the generalized eigenvalues of
some (any) representative of g in GL(d,R) with determinant ±1.

Lemma 13.9. If γ ∈ Γ, then λj(γ) = 1 for j = 2, . . . , p+ q.
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Proof. Let r := min{p, q + 1}. Since γ ∈ PO(p, q + 1), the eigenvalues satisfy

λj(γ) = λp+q+2−j(γ)−1 for j = 1, . . . , r

λj(γ) = 1 for j = r + 1, . . . , d− r.
In particular, λj(γ) ≥ 1 for 2 ≤ j ≤ p. Then

(pω1 − ωp)(λ(γ)) = p log λ1(γ)− log
(
λ1(γ) · · ·λp(γ)

)
= (p− 1) log λ1(γ)− log

(
λ2(γ) · · ·λp(γ)

)
≤ (p− 1) log λ1(γ) = (p− 1)ω1(λ(γ)).

So Equation (37) implies that λj(γ) = 1 for j = 2, . . . , p. The same reasoning
applied to γ−1 shows that λj(γ) = 1 for j = p+ q, . . . , q + 2. Since

λ1(γ) ≥ · · · ≥ λp+q+1(γ),

we have λj(γ) = 1 for j = 2, . . . , p+ q �

Hence for every γ ∈ Γ we have

λ2(γ) = · · · = λp+q(γ) = 1.

Since Γ is strongly irreducible, this eigenvalue condition implies that Γ has a finite
index subgroup which is conjugate to a Zariski dense subgroup of PO0(p + q, 1),
see Observation B.1 in Appendix B. Since Γ is also a subgroup of PO(p, q + 1), we
must have q = 0.

Since q = 0, Γ is a convex cocompact subgroup of PO(p, 1) in the classical
real hyperbolic geometry sense. Since δHp,0(Γ) = p− 1 coincides with the classical
critical exponent from real hyperbolic geometry (by definition, see [GM21]), a result
of Tukia [Tuk84] implies that Γ is a uniform lattice in PO(p, 1). �

13.5. Reducing to the strongly irreducible case. In this subsection we explain
how to reduce to the strongly irreducible case.

Suppose Γ0 < PO(p, q + 1) is Hp,q-convex cocompact and has connected
Zariski closure. Let τ̃ : Γ0 → SL±(p+ q + 1,R) be a lift as in Equation (34).

Let
U := Span Λ1(Γ0)

and
V1 := U ∩

⋂
x∈Λ1(Γ0)

x⊥ = U ∩
⋂

x∈P(U)

x⊥

(here x⊥ is the orthogonal complement with respect to [·, ·]p,q+1). Then fix sub-
spaces V2, V3 such that U = V1 ⊕ V2 and

Rp+q+1 = U ⊕ V3 = V1 ⊕ V2 ⊕ V3.

By construction, any element of Γ0 is upper triangular relative to the decompo-
sition Rp+q+1 = V1 ⊕ V2 ⊕ V3 and so we can define representations

ρ̃i : Γ0 → GL(Vi)

such that for every γ ∈ Γ0 we have

τ̃(γ) =

ρ̃1(γ) ∗ ∗
0 ρ̃2(γ) ∗
0 0 ρ̃3(γ)


relative to the decomposition Rp+q+1 = V1 ⊕ V2 ⊕ V3.
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Let ρ2 : Γ0 → PGL(V2) be the projectivization of ρ̃2. It follows from [GGKW17,
the proof of Prop. 4.13] that ρ2(Γ0) ⊂ PGL(V2) is irreducible, P1-Anosov, and

(38)
λ1(ρ2(γ))

λdimV2(ρ2(γ))
=

λ1(γ)

λp+q+1(γ)

for all γ ∈ Γ0. Moreover, if π : V1 ⊕ V2 → V2 is the projection, then the map

x ∈ Λ1(Γ0) 7→ π(x) ∈ P(V2)

is a homeomorphism onto Λ1(ρ2(Γ0)).
By the definition of V1,

(39) [ρ2(γ)v, ρ2(γ)w]p,q+1 = [v, w]p,q+1

for all v, w ∈ V2 and γ ∈ Γ0.
Since Γ0 has connected Zariski closure, so does ρ2(Γ0). Thus any finite index

subgroup of ρ2(Γ0) has the same Zariski closure and hence is irreducible. So ρ2(Γ0)
is strongly irreducible.

Lemma 13.10. The linear subspace

V null
2 := {v ∈ V2 : [v, w]p,q+1 = 0 for all w ∈ V2}

is trivial.

Proof. Equation (39) implies that the linear subspace V null
2 is ρ2(Γ0)-invariant.

Hence by irreducibility, V null
2 = {0} or V null

2 = V2.
Fix x, y ∈ Λ1(Γ0) distinct. By Theorem 13.3, we can lift x, y to x̃, ỹ ∈ Rp+q+1

such that [x̃, ỹ]p,q+1 < 0. We can also write x̃ = x1 +x2 and ỹ = y1 + y2 relative to
the decomposition U = V1 ⊕ V2. Then

0 > [x̃, ỹ]p,q+1 = [x1 + x2, y1 + y2]p,q+1 = [x2, y2]p,q+1.

Hence x2, y2 /∈ V null
2 and so V null

2 is trivial. �

Thus [·, ·]p,q+1 restricts to a non-degenerate symmetric 2-form on V2. So there
exist p′, q′ such that 0 ≤ p′ ≤ p and −1 ≤ q′ ≤ q, and an isomorphism

T : V2 → Rp
′+q′+1

such that

[T (v), T (w)]p′,q′+1 = [v, w]p,q+1

for all v, w ∈ V2. Let Φ : PGL(V2) → PGL(p′ + q′ + 1,R) be the representation
Φ(g) = [T ◦ g ◦ T−1]. Then Equation (39) implies that

Γ′ := Φ(ρ2(Γ0)) < PO(p′, q′ + 1).

Since ρ2(Γ0) is P1-Anosov, Γ′ is non-compact. Hence we must have p′ > 0 and
q′ > −1.

Proposition 13.11. Γ′ := Φ(ρ2(Γ0)) is Hp
′,q′-convex cocompact, strongly irre-

ducible, and

δHp′,q′ (Γ
′) = δHp,q (Γ0).

Moreover, p′ ≤ p and

dimV1 ≤ p− p′.
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Proof. The strong irreducibility of Γ′ follows from the strong irreducibility of ρ2(Γ0).

We first verify that Γ′ is Hp
′,q′ -convex cocompact. By [DGK24, Thm. 1.24], it

suffices to show that Λ1(Γ′) lifts to a cone in Rp
′+q′+1 where [·, ·]p′,q′+1 is negative

for every pair of non-collinear points.
Recall that π : V1 ⊕ V2 → V2 was the projection and Λ1(ρ2(Γ0)) = π(Λ1(Γ0)).

Fix a cone Λ̃ ⊂ Rp+q+1 above Λ1(Γ0) as in Section 13.1. Then

Λ̃′ := Tπ(Λ̃)

is a cone above Λ1(Γ′). Fix x′, y′ ∈ Λ̃′ non-collinear. Then x′ = Tπ(x) and

y′ = Tπ(y) for some non-collinear x, y ∈ Λ̃. We can write x = x1 + x2 and
y = y1 + y2 relative to the decomposition U = V1 ⊕ V2. Then

[x′, y′]p′,q′ = [Tπ(x), Tπ(y)]p′,q′ = [π(x), π(y)]p,q+1 = [x2, y2]p,q+1

= [x1 + x2, y1 + y2]p,q+1 = [x, y]p,q+1 < 0

by Theorem 13.3. So Γ′ is Hp
′,q′ -convex cocompact.

Let [Γ] and [Γ′] denote the set of conjugacy classes in Γ and Γ′. Then by [Car20,
Remarks 6.9, 7.15],

δHp′,q′ (Γ
′) = lim

R→∞

1

R
log #

{
[γ] ∈ [Γ′] :

1

2
log

λ1(γ)

λp′+q′+1(γ)
≤ R

}
and

δHp,q (Γ) = lim
R→∞

1

R
log #

{
[γ] ∈ [Γ] :

1

2
log

λ1(γ)

λp+q+1(γ)
≤ R

}
.

So by Equations (38),
δHp′,q′ (Γ

′) = δHp,q (Γ).

For the “moreover” part, notice that [·, ·]p,q+1 is positive semidefinite on W :=

V1 ⊕ T−1(Rp
′
⊕{0Rq′+1}) and hence

W ∩ ({0Rp} × Rq+1) = ∅.
Thus

dimV1 + p′ = dimW ≤ (p+ q + 1)− (q + 1) = p. �

13.6. Proof of Theorem 13.2. We can now prove the theorem in full generality.
Suppose Γ < PO(p, q+1) is Hp,q-convex cocompact and δHp,q (Γ) = p−1. Fix a finite
index subgroup Γ0 < Γ with connected Zariski closure. Then Γ0 < PO(p, q + 1) is
Hp,q-convex cocompact,

δHp,q (Γ0) = δHp,q (Γ) = p− 1,

and
Λ1(Γ0) = Λ1(Γ).

Let Rp+q+1 = V1 ⊕ V2 ⊕ V3 and Γ′ < PO(p′, q′ + 1) be as in Section 13.5.
Then by Proposition 13.11 and Glorieux–Monclair’s [GM21] upper bound on critical
exponent,

p− 1 = δHp′,q′ (Γ
′) ≤ p′ − 1.

So by the “moreover” part of Proposition 13.11, we have p′ = p and V1 = {0}.
Since δHp′,q′ (Γ

′) = p′−1, Proposition 13.8 implies that q′ = 0 and Γ′ < PO(p′, 1)
is a cocompact lattice. Since V1 = {0}, we see that Γ0 preserves Y := P(V2)∩Hp,q.
Since q′ = 0, we see that Y is a totally geodesic copy of Hp. Since Γ′ < PO(p′, 1) is a
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cocompact lattice, Γ0 acts cocompactly on Y . Since Γ0 preserves Y = P(V2)∩Hp,q,
we have

Λ1(Γ) = Λ1(Γ0) ⊂ P(V2)

and hence Γ also preserves Y . �

Part 3. Appendices

Appendix A. Rectifiable sets

In this appendix we record some basis properties of rectifiable sets that are used
in the proof of Theorem 13.2. For more background see [Fed69, Sect. 3.2].

A.1. The Euclidean Case. Let Hk denote the k-dimensional Hausdorff measure
induced by the Euclidean metric on Rd. A subset E ⊂ Rd is k-rectifiable ifHk(E) <

+∞ and there exists a countable collection of Lipschitz maps fi : Ui → Rd defined
on bounded subsets Ui ⊂ Rk such that

Hk
(
E r

⋃
i

f(Ui)

)
= 0.

(This is called (Hk, k)-rectifiable in [Fed69].)

If E ⊂ Rd is k-rectifiable, then for Hk-a.e. x ∈ E there exists a unique k-
dimensional subspace TxE, called the approximate tangent plane of E at x, such
that

lim
r↘0

1

rk
Hk (E ∩Br(x) r {y : dRd(y, x+ TxE) < ε |y − x|}) = 0

for all ε > 0, see [Fed69, Thm. 3.2.19].

Let e1, . . . , ed be the standard basis of Rd and for k ≥ 1 let ‖·‖∧k Rd be the norm

induced by the inner product on ∧k Rd where {ei1∧· · ·∧eik} is an orthonormal basis.

Given a linear map A : Rd → Rd and a k-dimensional subspace V = 〈v1, . . . , vk〉,
let

J(A, V ) :=
‖A(v1 ∧ · · · ∧ vk)‖∧k Rd

‖v1 ∧ · · · ∧ vk‖∧k Rd
.

Suppose E ⊂ Rd is k-rectifiable with Hk(E) > 0, U is a neighborhood of E, and

ϕ : U → Rd is a diffeomorphism onto its image which induces a homeomorphism of
E → E. Let ν := Hk |E . As a consequence of the coarea formula, see [Fed69, Cor.
3.2.20], the measure ν, ϕ∗ν are absolutely continuous and

(40)
dϕ∗ν

dν
= J(d(ϕ−1)(x), TxE) ν-a.e.

A.2. The manifold case. Next suppose that (M,dM ) is a Riemannian d-manifold

and letHk denote the k-dimensional Hausdorff measure induced by the Riemannian
distance on M . One can define k-rectifiable subsets E ⊂ M exactly as in the
Euclidean case. Moreover, if E ⊂ M is k-rectifiable, (U,ψ) is a coordinate chart,
and U ′ ⊂ U is a relatively compact set, then the set

ψ(U ′ ∩ E) ⊂ Rd
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is a k-rectifiable subset of Rd. Thus for Hk-a.e. x ∈ E there exists a unique k-
dimensional subspace TxE ⊂ TxM , called the approximate tangent plane of E at
x, such that

lim
r↘0

1

rk
Hk (E ∩Br(x) r {y : dM (y, expx(TxE ∩ O)) < ε |y − x|}) = 0

for all sufficiently small ε > 0 and sufficiently small neighborhood O of 0 in TxM .

A.3. The Iwasawa cocycle. In this subsection we consider transformations of
projective spaces and make a calculation that is used in the proof of Theorem 13.2.
In this section we write ‖ · ‖ := ‖ · ‖Rd for the standard Euclidean norm on Rd.

Let h0 denote the O(d)-invariant Riemannian metric on P(Rd) scaled so that if

v ∈ Rd is a unit vector and w ∈ Rd is orthogonal to v, then

(41)

∥∥∥∥ ddt
∣∣∣∣
t=0

[v + tw]

∥∥∥∥
h0

= ‖w‖ .

The metric h0 induces a metric hk on the bundle ∧kT P(Rd) → P(Rd) where

{ui1 ∧ · · · ∧uik} is an orthonormal basis of ∧kTx P(Rd) whenever {u1, . . . , ud} is an

orthonormal basis of Tx P(Rd). Then, given a linear map A : Tx P(Rd)→ Ty P(Rd)
and a k-dimensional subspace V = 〈v1, . . . , vk〉 ⊂ Tx P(Rd), let

J(A, V ) :=
‖A(v1 ∧ · · · ∧ vk)‖hk
‖v1 ∧ · · · ∧ vk‖hk

.

Using the notation from Section 9.8 we have the following.

Observation A.1. If γ ∈ PGL(d,R), x = [v1] ∈ P(Rd), and V = 〈v1, . . . , vk+1〉 ∈
Grk+1(Rd), then

log J (d(γ)x, Tx P(V )) = (ωk+1 − (k + 1)ω1)(B1,k+1(γ, (x, V ))).

Proof. Let γ̃ be a representative of γ in GL(d,R) with determinant ±1. For each

y ∈ P(Rd), fix a unit vector vy with y = [vy]. Then define a linear isomorphism

τy : y⊥ → Ty P(Rd) by

τy(w) =
d

dt

∣∣∣∣
t=0

[vy + tw].

By Equation (41),

‖τy(w1) ∧ · · · ∧ τy(wk)‖hk = ‖w1 ∧ · · · ∧ wk‖∧k Rd = ‖vy ∧ w1 ∧ · · · ∧ wk‖∧k+1 Rd

where that last equality follows from the fact that vy is a unit vector and w1, . . . , wk ∈
y⊥. Also, notice that

γ̃vy
‖γ̃vy‖ = ±vγy and so

d(γ)yτy(w) = ±τγy

(
1

‖γ̃vy‖
γ̃w − 〈γ̃w, γ̃vy〉

γ̃vy

‖γ̃vy‖3

)
.

Modifying v1, . . . , vk+1 we can assume that v1 = vx and v2, . . . , vk+1 ∈ x⊥. Then

Tx P(V ) = 〈τx(v2), · · · , τx(vk+1)〉 .

Let

wj :=
1

‖γ̃vx‖
γ̃vj − 〈γ̃vj , γ̃vx〉

γ̃vx

‖γ̃vx‖3
.
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Then, by the above formulas,

‖τx(v2) ∧ · · · ∧ τx(vk+1)‖hk = ‖v1 ∧ v2 ∧ · · · ∧ vk+1‖∧k+1 Rd

and ∥∥∥d(γ)x

(
τx(v2) ∧ · · · ∧ τx(vk+1)

)∥∥∥
hk

= ‖τγx(w2) ∧ · · · ∧ τγx(wk+1)‖hk

= ‖vγx ∧ w2 ∧ · · · ∧ wk+1‖∧k+1 Rd =
‖γ̃(v1 ∧ · · · ∧ vk+1)‖∧k+1 Rd

‖γ̃v1‖k+1
.

Since ‖v1‖ = 1, Equation (27) implies the desired equality. �

Appendix B. Eigenvalues and conjugacy

In this appendix, we prove the following observation that was used in the proof
of Theorem 13.2.

Observation B.1. If d ≥ 3, Γ < PGL(d,R) is a strongly irreducible proximal
subgroup, and

λ2(γ) = · · · = λd−1(γ) = 1

for all γ ∈ Γ, then Γ is conjugate to a Zariski dense subgroup of PO0(d − 1, 1) or
PO(d− 1, 1).

Proof. Let H denote the Zariski closure of Γ and let H0 < H denote the connected
component of the identity. By [BCLS15, Lem. 2.18], H0 is a connected semisimple
Lie group with trivial center. By a theorem of Benoist [Ben97],

λ2(h) = · · · = λd−1(h) = 1

for all h ∈ H0. Thus H0 is a rank one non-compact simple group. Let X be the
symmetric space associated to H0 and let ρ : H0 → Isom(X) be the induced map.
Since H0 has trivial center, ρ induces an isomorphism between H0 and Isom0(X),
the connected component of the identity in Isom(X). Further, X is a negatively
curved symmetric space, the geodesic boundary has a Isom(X)-invariant smooth

structure, and there exists a ρ−1-equivariant smooth embedding ξ : ∂∞X ↪→ P(Rd)
(for details about the construction of ξ, see for instance [ZZ24b, Sect. 4]).

Lemma B.2. X = Hm is real hyperbolic m-space, m = dimX.

Proof. Suppose γ ∈ Isom(X) is loxodromic, i.e. γ has no fixed points in X and
has two fixed points x± in ∂∞X. Then the eigenvalue condition implies that all
eigenvalues of the derivative d(γ)x± : Tx±∂∞X → Tx±∂∞X have the same modulus.
From the description of the negatively curved symmetric spaces in [Mos73, Chap.
19], this is only possible if X is a real hyperbolic space. �

Now we can identify Isom(X) with PO(m, 1) and view ρ−1 as an irreducible
representation of PO0(m, 1), the connected component of the identity in PO(m, 1).
It then follows from the eigenvalue condition and the theory of highest weights (see
for instance [ZZ24a, Lem. 10.4]) that m = d − 1 and H0 = ρ−1(PO0(d − 1, 1))
is conjugate to PO0(d − 1, 1). So, after conjugating, we can assume that H0 =
PO0(d− 1, 1).

Next let G be the normalizer of PO0(d − 1, 1) in PGL(d,R) and let τ : G →
Aut(PO0(d − 1, 1)) be the map induced by conjugation. By Schur’s lemma, τ is
injective. Further, τ |PO(d−1,1) is onto. Hence H ≤ G = PO(d− 1, 1). �
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7(1):1–47, 1997.

[BF09] Mladen Bestvina and Koji Fujiwara. A characterization of higher rank symmetric

spaces via bounded cohomology. Geom. Funct. Anal., 19(1):11–40, 2009.
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Travaux mathématiques. Fasc. XIV, volume 14 of Trav. Math., pages 143–151. Univ.
Luxemb., Luxembourg, 2003.
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in Mathematics. Birkhäuser Verlag, Basel, 1984.
[ZZ24a] Tengren Zhang and Andrew Zimmer. Regularity of limit sets of Anosov representa-

tions. J. Topol., 17(3):Paper No. e12355, 72, 2024.
[ZZ24b] Feng Zhu and Andrew Zimmer. Relatively Anosov representations via flows II: Ex-

amples. J. Lond. Math. Soc. (2), 109(6):Paper No. e12949, 61, 2024.


	1. Introduction
	2. Preliminaries
	Part 1. Abstract PS-systems
	3. Basic properties of PS-systems
	4. An analogue of the conical limit set
	5. An analogue of the Lebesgue differentiation theorem
	6. Mixed Shadows and a Shadow Lemma
	7. The Main Theorem

	Part 2. Examples and Applications
	8. Convergence groups and expanding coarse-cocycles
	9. Discrete subgroups of Lie groups
	10. Group actions with contracting isometries
	11. Random walks on relatively hyperbolic groups
	12. Rigidity results for random walks
	13. Pseudo-Riemannian hyperbolic spaces

	Part 3. Appendices
	Appendix A. Rectifiable sets
	Appendix B. Eigenvalues and conjugacy
	References


