
A NOTE ON THE SINGULARITY CONJECTURE FOR

INFINITE COVOLUME DISCRETE SUBGROUPS

DONGRYUL M. KIM AND ANDREW ZIMMER

Abstract. We consider random walks on semisimple Lie groups where the

support of the step distribution generates (as a group) a Zariski dense discrete
subgroup of infinite covolume. When the semisimple Lie group has property

(T), we show that the stationary measure on the Furstenberg boundary is sin-

gular to the Lebesgue measure class. This result does not require any condition
on the moment or symmetry of the step distribution. When the semisimple

Lie group has rank one and the step distribution has a finite first moment,

we again show that the stationary measure on the Furstenberg boundary is
singular to the Lebesgue measure class. For general semisimple Lie groups, we

also obtain a sufficient condition for the singularity of the stationary measure

and a general Patterson–Sullivan measure.

1. Introduction

Let G be a connected semisimple Lie group without compact factors and with
finite center. Suppose Γ < G is a Zariski dense discrete subgroup, and m is a
probability measure on Γ whose support generates Γ (as a group). Let F denote
the Furstenberg boundary, i.e. the flag manifold F := G /P for a minimal parabolic
subgroup P < G. Then there is a unique m-stationary measure ν on F and is equal
to the hitting measure for the random walk generated by m [Fur73, GR85, GM89].
The measure ν is also referred to as the Furstenberg measure.

The following is a well-known conjecture (cf. Kaimanovich–Le Prince [KLP11]).

Conjecture 1.1 (Singularity conjecture). If m has finite support, then the m-
stationary measure ν is singular to the Lebesgue measure class on F .

The Lie group G has Kazhdan’s property (T) if and only if no simple factor of G
is locally isomorphic to SO(n, 1) or PU(n, 1) for any n ≥ 1. For such G and Γ < G
with infinite covolume, we give an affirmative answer to the singularity conjecture.
We emphasize that in the following, m does not have any moment condition and Γ
does not need to be generated by the support of m as a semigroup.

Theorem 1.2. Assume G has property (T). If m is a probability measure on G
whose support generates (as a group) a Zariski dense discrete subgroup Γ < G with

Vol(Γ\G) = +∞,

then the m-stationary measure ν is singular to the Lebesgue measure class on F .

We will show the same results for rank one Lie groups without property (T) in
Theorem 1.5 and Theorem 1.7, assuming the finite moment condition.
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Remark 1.3.

(1) In the special case when m is symmetric (i.e. m(g) = m(g−1) for all g ∈ Γ)
and the support of m generates Γ as a semigroup, Lee–Tiozzo–Van Lim-
beek [LTVL25] have independently obtained a proof of Theorem 1.2.

(2) When Γ < G is a lattice, there exists m with infinite support such that
the m-stationary measure ν on F is in the Lebesgue measure class on F ,
as shown by Furstenberg [Fur71], Lyons–Sullivan [LS84], and Ballmann–
Ledrappier [BL96] (see also [BQ18]).

(3) There exist examples where m is a finitely supported probability measure
on G, the group generated by the support of m is non-discrete, and the m-
stationary measure is absolutely continuous with respect to the Lebesgue
measure class on F . For G = SL(2,R), this was shown by Bárány–Pollicott–
Simon [BPS12, Theorem 26, Section 8], and Bourgain constructed such a
measure m with symmetric support [Bou12]. For G ̸= SL(2,R), Benoist–
Quint gave a construction of such m with symmetric support [BQ18, The-
orem 1.2].

(4) In contrast to the rigidity in Theorem 1.2, Dey–Hurtado [DH24] have con-
structed examples of non-lattice discrete subgroups Γ < G which act mini-
mally on F and in particular there exist stationary measures coming from
random walks on such groups which have full support in F .

The proof of Theorem 1.2 is based on studying the growth indicator function of
Γ (defined in the next subsection). When G has property (T) and Γ does not have a
lattice factor, one can use estimates on matrix coefficients of unitary representations
to prove a gap result for this function: this is a well-known theorem of Quint [Qui03]
for G higher rank simple (also [LO24] for a shorter proof) and of Corlette [Cor90]
for G rank one. In Proposition 3.2, we observe that this gap result extends to the
semisimple case. On the other hand, using a result of Bénard [Bén23] about random
walks and work of Lee–Oh [LO24] on a relation between Lebesgue measure and the
growth indicator function, we will show that the non-singularity of the stationary
measure and Lebesgue measure class implies that the growth indicator function
violates this gap.

1.1. Patterson–Sullivan measures and the growth indicator function. Our
argument will exploit the fact that the Lebesgue measure class on F contains a
“higher rank Patterson–Sullivan measure.” In this subsection we recall the defini-
tion of these measures and the definition of the growth indicator function. Then we
explain how non-singularity between a stationary measure and a Patterson–Sullivan
measure restricts the growth indicator function. This result does not require that
G has property (T).

Fix a maximal real split torus A < P and write a := logA. For Γ < G, a
functional ϕ : a → R, and δ ≥ 0, a Borel probability measure µ on F is called a
δ-dimensional coarse ϕ-Patterson–Sullivan measure of Γ if there exists C ≥ 1 such
that for any g ∈ Γ, the measures µ, g∗µ are absolutely continuous and

(1)
1

C
e−δϕ(B(g−1,x)) ≤ dg∗µ

dµ
(x) ≤ Ce−δϕ(B(g−1,x)) for µ-a.e. x ∈ F ,

where B : G×F → a is the Iwasawa cocycle (see Section 2.2). When C = 1
and hence equality holds above, we call µ a δ-dimensional ϕ-Patterson–Sullivan
measure. These higher rank Patterson–Sullivan measures were introduced and
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constructed in [Qui02a]. We also note that in the literature these measures are
sometimes called (quasi-)conformal measures.

We choose a positive closed Weyl chamber a+ ⊂ a and denote the associated
Cartan projection by κ : G → a+ (see Equation (4)). Given a discrete subgroup
Γ < G, the growth indicator function ψΓ : a → R≥0 ∪ {−∞} is defined by

ψΓ(u) := ∥u∥ · inf
C∋u

critical exponent of s 7→
∑

γ∈Γ,κ(γ)∈C

e−s∥κ(γ)∥


where ∥·∥ is any norm on a and the infimum is over all open cones C ⊂ a containing
u. Notice that ψΓ ≡ −∞ on a∖ a+. The growth indicator function can be viewed
as a higher rank analogue of the critical exponent in rank one settings and was
introduced by Quint [Qui02b].

We will show that non-singularity between a stationary measure and a Patterson–
Sullivan measure restricts the growth indicator function.

Theorem 1.4. Suppose m is a probability measure on G whose support generates
(as a group) a Zariski dense discrete subgroup Γ < G and µ is a δ-dimensional
coarse ϕ-Patterson–Sullivan measure of Γ. If the m-stationary measure ν on F is
non-singular to µ, then∑

γ∈Γ

e−δϕ(κ(γ)) = +∞ and ψΓ ≤ δ · ϕ on a

with equality at some u ∈ a+ ∖ {0}.

When m has finite superexponential moment (e.g. finite support), Γ is relatively
hyperbolic as an abstract group, and Γ is generated by suppm as a semigroup, we
proved the stronger statement [KZ25, Theorem 1.15]: if the m-stationary measure
is non-singular to a δ-dimensional coarse ϕ-Patterson–Sullivan measure of Γ, then

(2) sup
γ∈Γ

|dG(id, γ)− δϕ(κ(γ))| < +∞

where dG denotes the Green metric for m on Γ. In particular, any orbit map of
Γ into the symmetric space associated to G is a quasi-isometric embedding (with
respect to a word metric on Γ). It would be interesting to know if this is true for
more general Γ and m.

1.2. The rank one case. We now consider the case when rankG = 1 and denote
by (X,dX) the associated symmetric space of G. Then X is a negatively curved
symmetric space and when X is a real or complex hyperbolic space, G does not
have property (T).

We fix a basepoint o ∈ X. In this setting, the Furstenberg boundary F is
identified with the visual boundary ∂∞X, and for a discrete subgroup Γ < G, its
limit set Λ(Γ) ⊂ ∂∞X is the set of all accumulation points of Γ(o) ⊂ X. The group
Γ is non-elementary if #Λ(Γ) ≥ 3.

Given a probability measure m on G, if the support of m generates a non-
elementary discrete subgroup as a group, then there exists a unique m-stationary
measure on ∂∞X which is equal to the hitting measure for the random walk [Kai00,
Remark following Theorem 7.7]. The measure m has a finite first moment if∫

G

dX(o, go)dm(g) < +∞.
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Under the finite first moment condition, we prove the singularity conjecture (Con-
jecture 1.1) for non-lattice discrete subgroups of G.

Theorem 1.5. Suppose rankG = 1. If m is a probability measure on G whose
support generates (as a group) a non-elementary discrete subgroup Γ < G with

Vol(Γ\G) = +∞
and m has a finite first moment, then the m-stationary measure ν is singular to the
Lebesgue measure class on ∂∞X.

Remark 1.6. In the special case that

• X = Hn is a real hyperbolic space,
• Γ < G is a non-uniform lattice (i.e., Γ\X is non-compact and has finite
volume), and

• the support of m generates Γ as a semigroup,

the singularity of m-stationary measure on ∂∞X and the Lebesgue measure class
were known under various moment conditions with respect to a word metric on
Γ.

When n = 2, Gadre–Maher–Tiozzo [GMT15] showed the singularity for m
with finite first moment with respect to a word metric on Γ. See also [GLJ90,
DKN09, KLP11] for different contexts. For n ≥ 3, this was obtained by Randecker–
Tiozzo [RT21], under the moment condition that m has a finite k-th moment with
respect to a word metric for some k > n − 1, and a finite exponential moment for
a so-called relative metric on Γ.

Further, we remark that Kosenko–Tiozzo [KT22] explicitly constructed cocom-
pact lattices Γ of Isom(H2) and finitely supported probability measures m such that
the m-stationary measure on ∂∞ H2 is singular to the Lebesgue measure class on
∂∞ H2.

Theorem 1.5 is a consequence of a more general result about Patterson–Sullivan
measures.

Recall that the Busemann cocycle β : G×∂∞X → R is defined by

β(g, x) := lim
p→x

dX(p, g−1o)− dX(p, o).

Then, for Γ < G and δ ≥ 0, a Borel probability measure µ on ∂∞X is called a
δ-dimensional Patterson–Sullivan measure of Γ if for any g ∈ Γ, the measures µ,
g∗µ are absolutely continuous and

(3)
dg∗µ

dµ
(x) = e−δβ(g−1,x) for µ-a.e. x ∈ ∂∞X.

In fact these are a special case of the measures introduced in Equation (1). In this
rank one setting, we can identify a with R and a+ with R≥0 in such a way that the
Cartan projection and the Iwasawa cocycle are the displacement of the basepoint
o ∈ X and the Busemann cocycle respectively: for g ∈ G and x ∈ ∂∞X,

κ(g) = dX(o, go) and B(g, x) = β(g, x).

Then Equation (3) is exactly Equation (1) with C = 1 and the functional ϕ which
coincides with our identification a = R.

For a non-elementary discrete subgroup Γ < G and a Patterson–Sullivan measure
µ on ∂∞X of Γ, we denote by mBMS

µ the (generalized) Bowen–Margulis–Sullivan

measure of Γ on the unit tangent bundle T1(Γ\X) associated to µ (see Section 6.1).
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Theorem 1.7. Suppose rankG = 1, Γ < G is a non-elementary discrete subgroup,
and µ is a Patterson–Sullivan measure of Γ such that

mBMS
µ (T1(Γ\X)) = +∞.

If m is a probability measure on Γ whose support generates Γ (as a group) and m
has a finite first moment, then the m-stationary measure ν on ∂∞X is singular to µ.

We can always take µ in the Lebesgue measure class on ∂∞X, and in this case
mBMS

µ (T1(Γ\X)) = +∞ if and only if Vol(Γ\G) = +∞. Hence, Theorem 1.5
follows from Theorem 1.7.

We remark that both Theorem 1.4 and Equation (2) also apply to rank one cases,
regardless of the size of Bowen–Margulis–Sullivan measures.

Remark 1.8. In case that

• X is a proper geodesic Gromov hyperbolic space,
• Γ < Isom(X) is a finitely generated but not quasi-convex discrete subgroup,
• the support of m generates Γ as a semigroup, and
• m has a finite superexponential moment with respect to a word metric
on Γ,

the singularity of the m-stationary measure and Patterson–Sullivan measures of Γ
on ∂∞X were studied by several authors.

When Γ is word hyperbolic, X admits a geometric action, and m further has a
symmetric and finite support, Blachère–Häıssinsky–Mathieu [BHM11] showed such
a singularity. When Γ acts geometrically finitely on X, this singularity is due to
Gekhtman–Tiozzo [GT20]. More generally, when Γ is relatively hyperbolic as an
abstract group (e.g. any finitely generated Kleinian group), this was obtained in
our earlier paper [KZ25].

Acknowledgements. We thank Hee Oh for helpful discussions. We also thank
Timothée Bénard and Ilya Gekhtman for suggesting the formulation of Theorems
1.5 and 1.7 and for helpful discussions on its proof. Kim extends his gratitude to
his advisor Hee Oh for her encouragement and guidance.

Kim thanks the University of Wisconsin–Madison for hospitality during the Mid-
west Summer School in Geometry, Topology, and Dynamics in June 2025 (which
was supported by grant DMS-2230900 from the National Science Foundation),
where work on this project was finished. Zimmer was partially supported by a
Sloan research fellowship and grant DMS-2105580 from the National Science Foun-
dation.

2. Discrete subgroups of Lie groups

We fix a Langlands decomposition P = MAN where A is a maximal real split
torus of G, M is the maximal compact subgroup of P commuting with A, and N is
the unipotent radical of P. The Furstenberg boundary is defined as

F := G /P .

Let g and a be the Lie algebras of G and A respectively. We denote by a∗ the
space of all functionals a → R. Fix a maximal compact subgroup K < G and a
positive closed Weyl chamber a+ ⊂ a with A+ := exp a+ so that we have a Cartan
decomposition G = KA+K. Then let

(4) κ : G → a+
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denote the associated Cartan projection, i.e. κ(g) ∈ a+ is the unique element where
g = k(expκ(g))ℓ for some k, ℓ ∈ K.

When G =
∏m

i=1 Gi is a product of simple Lie groups, we assume that

a = ⊕m
i=1ai, a+ = ⊕m

i=1a
+
i , K =

m∏
i=1

Ki, and P =

m∏
i=1

Pi

where ai, a
+
i , Ki, and Pi are the corresponding objects for Gi.

2.1. Shadows and conical limit sets. Let X := G /K be the associated sym-
metric space and fix the basepoint o := [id] ∈ G /K. Fix a K-invariant norm ∥ · ∥
on a induced from the Killing form, and let dX denote the G-invariant symmetric
Riemannian metric on X defined by

dX(go, ho) = ∥κ(g−1h)∥

for g, h ∈ G.
For p ∈ X and R > 0, let

BX(p,R) := {z ∈ X : dX(p, z) < R}.

Then, for q ∈ X, the shadow of BX(p,R) viewed from q is

(5) OR(q, p) := {g P ∈ F : g ∈ G, go = q, gA+o ∩BX(p,R) ̸= ∅}.

Given a subgroup Γ < G, we define the conical limit set of Γ as follows:

Λcon(Γ) :=

{
x ∈ F :

∃ R > 0 and an infinite sequence {γn} ⊂ Γ
s.t. x ∈ OR(o, γno) for all n ≥ 1

}
.

2.2. Iwasawa cocycles and Patterson–Sullivan measures. Using the identi-
fication F = K/M, the Iwasawa cocycle B : G×F → a is defined as follows: for
g ∈ G and x ∈ F , fix k ∈ K such that kM = x and let B(g, x) ∈ a be the unique
element such that

gk ∈ K (expB(g, x))N.

Then B(·, ·) satisfies the cocycle relation: for any x ∈ F and g1, g2 ∈ G,

B(g1g2, x) = B(g1, g2x) +B(g2, x).

Recall that Patterson–Sullivan measures in higher rank were defined, using the
Iwasawa cocycle, in Equation (1).

Let Leb be the unique K-invariant probability measure on F , which is induced
by a smooth volume form and hence in the Lebesgue measure class. A crucial
observation in our proof is that Leb is a Patterson–Sullivan measure.

Lemma 2.1. [Qui02a, Lemma 6.3] The measure Leb is a 1-dimensional ΨG-
Patterson–Sullivan measure of G, where

ΨG ∈ a∗

is the sum of all positive roots for (g, a+).

Next we recall a version of the classical Shadow Lemma. The following was
proved in [LO23] for non-coarse Patterson–Sullivan measures, but the same proof
works for coarse ones (see also [Alb99, Theorem 3.3] for the Shadow Lemma for a
smaller class of functionals).
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Lemma 2.2 (Shadow Lemma, [LO23, Lemma 7.8]). Let Γ < G be a Zariski dense
discrete subgroup and µ a δ-dimensional coarse ϕ-Patterson–Sullivan measure of
Γ on F , for ϕ ∈ a∗ and δ ≥ 0. Then for any R > 0 large enough, there exists
C = C(R) > 1 such that

1

C
e−δϕ(κ(γ)) ≤ µ(OR(o, γo)) ≤ Ce−δϕ(κ(γ)) for all γ ∈ Γ.

Remark 2.3. There are a number of other versions of shadows and Shadow Lemmas
in higher rank, see for instance [Qui02a, PSW23].

2.3. Random walks. In this section we recall some classical properties of random
walks on semisimple Lie groups and a result of Bénard. For more background, see
[Fur02, BQ16].

Let Γ < G be a Zariski dense subgroup. Let m be a probability measure on G
whose support generates Γ as a group, i.e.,

⟨suppm⟩ = Γ.

In this case, the semigroup generated by suppm is Zariski dense as well [BQ16,
Lemma 6.15].

Consider the random walk

ωn = γ1 · · · γn
where the γi’s are independent identically distributed elements of Γ each with dis-
tribution m. For each n ∈ N, we fix a Cartan decomposition

ωn = kn(expκ(ωn))ℓn ∈ KA+K

so that kn ∈ K and κ(ωn) ∈ a+ are random variables.
We will use the following well-known fact about the convergence of random

products (for a proof, see for instance [Bén23, Lemmas 2.1, 2.8]).

Lemma 2.4. For almost every sample path ω = (ωn) ∈ GN, there exists xω ∈ F
such that as n→ +∞,

kn P → xω in F and α(κ(ωn)) → +∞ for all simple roots α ∈ a∗.

Continuing the notation in the above lemma, Bénard showed that the conver-
gence is conical as follows (we rephrase this result in terms of shadows).

Theorem 2.5. [Bén23, Theorem A bis] For any ϵ > 0, there exists R > 0 such

that for almost every ω = (ωn) ∈ GN,

lim inf
N→+∞

1

N
#{1 ≤ n ≤ N : xω ∈ OR(o, ωno)} > 1− ϵ.

By work of Guivarc’h–Raugi [GR85] and Gol’dshĕid–Margulis [GM89], there
exists a unique m-stationary measure ν on F . Further, for a Borel subset E ⊂ F ,

(6) ν(E) = Prob
(
ω = (ωn) ∈ GN : xω ∈ E

)
(see also [BQ16, Proposition 10.1]).

The following is a consequence of Lemma 2.4, Theorem 2.5, and Equation (6).

Corollary 2.6. With the notation above,

ν(Λcon(Γ)) = 1.
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3. Gap theorem for the growth indicator function

In proving Theorem 1.2, we will employ the following result of Lee–Oh. Recall
the functional ΨG defined in Section 2.2.

Proposition 3.1. [LO24, Proposition 7.6] Suppose Γ < G is a discrete subgroup
such that ψΓ < ΨG on a+ ∖ {0}. Then

Leb(Λcon(Γ)) = 0.

To apply Proposition 3.1, we first prove the gap result for the growth indicator
function as follows. While the following cannot be directly applied, we will proceed
with a reduction argument to use it in the next section.

Proposition 3.2. Suppose G =
∏m

i=1 Gi is a product of connected simple Lie groups
of non-compact type with trivial centers and Γ < G is a Zariski dense non-lattice
discrete subgroup. Assume

(1) G has property (T), and
(2) for each 1 ≤ i ≤ m there is no non-zero Gi-invariant vector in L2(Γ\G).

Then

ψΓ < ΨG on a+ ∖ {0}.

Remark 3.3. The above proposition was known when G has rank one [Cor90, The-
orem 4.4] and when G is simple with higher rank ([Qui03], [LO24, Theorem 7.1]).
For semisimple G, it is not enough to assume that Γ is not a lattice. Indeed, when
L2(Γ\G) contains a non-zero Gi-invariant vector for some i, it is possible for the
conclusion of the proposition to fail. For instance if G = G1 ×G2 and Γ = Γ1 × Γ2

where Γ1 < G1 is a lattice and Γ2 < G2 is a Zariski dense non-lattice discrete
subgroup, then

ψΓ = ΨG on a+1 ⊕ {0}.
(Since a+ is the closed maximal Weyl chamber, a+1 ⊕ {0} ⊂ a+.)

Remark 3.4. One can see that the condition (2) in Proposition 3.2 holds when the
subgroup ΓGi is dense in G for each 1 ≤ i ≤ m.

The proof below closely follows the argument in [LO24, Theorem 7.1] and we
use the following result from that paper to reduce to a problem about unitary
representations. Let ρ be the unitary representation of G on L2(Γ\G) given by
ρ(g)f(x) = f(xg) for g ∈ G, f ∈ L2(Γ\G), and x ∈ Γ\G.

Proposition 3.5. [LO24, Proposition 7.3] Suppose θ ∈ a∗ satisfies

(1) 0 < θ < ΨG on a+ ∖ {0}, and
(2) there exists a function C : (0,+∞) → (0,+∞) so that

⟨ρ(expu)f, f⟩ ≤ C(ϵ)e−(1−ϵ)θ(u) ∥f∥22
for any K-invariant vector f ∈ L2(Γ\G), u ∈ a+, and ϵ > 0.

Then

ψΓ ≤ ΨG − θ on a+ ∖ {0}.

Proof of Proposition 3.2. We can decompose

ρ =

∫ ⊕

Y

ρydy
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into irreducible representations ρy : G → U(Hy), for some (standard) measure
space (Y, dy) (see [Zim84, Section 2.3]). As in Section 2.6 of [Oh02], we can write
Hy = ⊗iHy,i and ρy = ⊗iρy,i where each ρy,i : Gi → U(Hy,i) is irreducible. Further,
any K-invariant f ∈ Hy can be written as f = ⊗ifi where each fi is Ki-invariant.

Now, if f = (fy)y ∈ L2(Γ\G) is K-invariant, then fy is K-invariant for a.e. y and
for such y, fy = ⊗ify,i where each fy,i is Ki-invariant. Further,

⟨(⊗ify,i)y, (⊗igy,i)y⟩ =
∫
Y

∏
i

⟨fy,i, gy,i⟩ dy.

So using Proposition 3.5 it suffices to show the following.

Claim: For each 1 ≤ i ≤ m there exist θi ∈ a∗i and a function Ci : (0,+∞) →
(0,+∞) such that 0 < θi < ΨG on a+i ∖ {0} and

⟨ρy,i(expu)f, f⟩ ≤ Ci(ϵ)e
−(1−ϵ)θi(u) ∥f∥22

for a.e. y ∈ Y , any Ki-invariant vector f ∈ Hy,i, u ∈ a+i , and ϵ > 0.

Fix 1 ≤ i ≤ m. By hypothesis and construction, ρy,i has no non-zero Gi-invariant
vectors for a.e. y ∈ Y . Hence when rank(Gi) > 1, the claim follows immediately
from Theorem 1.2 (and the estimates for ξS on page 136) in [Oh02].

Suppose rank(Gi) = 1. Since G has property (T), Gi is not isomorphic to SO(n, 1)
or PU(n, 1) for any n ≥ 1. Then by [Cow79, Theorem 2.5.3] there exists p > 0
(which only depends on Gi) such that for a.e. y ∈ Y , each matrix coefficient

g ∈ Gi 7→ ⟨ρy,i(g)f1, f2⟩
is in Lq(Gi) for all q ≥ p. For such y ∈ Y , [CHH88, Corollary pg. 108] implies that
there exists k ∈ N (which only depends on Gi) such that

⟨ρy,i(g)f, f⟩ ≤ Ξi(g)
1/k ∥f∥22

for any Ki-invariant vector f ∈ Hi,y, where Ξi is the Harish-Chandra function of
Gi. Then the claim follows from the definition of Ξi. □

4. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2. Let G be a connected semisimple Lie
group without compact factors and with finite center. Suppose Γ < G is a Zariski
dense discrete subgroup, m a probability measure whose support generates Γ as a
group, and ν is the unique m-stationary measure on the Furstenberg boundary F .

Notice that replacing G by G /Z(G), Γ by its projection to G /Z(G), and m by
its push-forward to G /Z(G) does not change F or ν. So for our purposes there is
no loss in generality in assuming that Z(G) = {id}. Then we can write

G =

m∏
i=1

Gi

where the Gi’s are the simple factors of G.
We prove Theorem 1.2 by contradiction. To that end, suppose that

• ν is non-singular to the Lebesgue measure Leb on F ,
• Γ is not a lattice, and
• G has property (T).

To use Proposition 3.2 we need to reduce to the case where condition (2) is
satisfied.
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Proposition 4.1. There exists J ⊂ {1, . . . ,m} non-empty such that

(1) the projection Γ′ of Γ to G′ :=
∏

i∈J Gi is a Zariski dense non-lattice discrete

subgroup of G′, and
(2) for every j ∈ J , there is no Gj-invariant non-zero vector in L2(Γ′\G′).

Proof. It suffices to consider the case where there is a G1-invariant non-zero vector
f ∈ L2(Γ\G). Replacing f by min{f, 1} we can assume that f is bounded. Since

Γ is not a lattice, f is non-constant (as an a.e. defined function). Let f̃ : G → R
be the lift of f . Then we can view f̃ as a bounded non-constant function f̃ :
G2 × · ×Gm → R. Further, if H ⊂ G2 × · ×Gm is the projection of Γ, then f̃ is
H-invariant. Using Lebesgue differentiation, f̃ is H-invariant, where H denotes the
closure of H in the Hausdorff topology.

Since H < G2 × · ×Gm is Zariski dense and normalizes H, after relabelling we
can assume that

H =

k∏
i=2

Gi ×H ′

where H ′ <
∏m

i=k+1 Gi is discrete. Since f̃ is non-constant, we must have k < m.

Notice that H ′ is a Zariski dense discrete subgroup of
∏m

i=k+1 Gi. If H
′ is not a

lattice, then the result follows from induction on the number of simple factors. So
it suffices to assume that H ′ is a lattice and obtain a contradiction.

Let Γ0 be the kernel of the projection Γ → H ′. Then

Γ\G → H ′\
m∏

i=k+1

Gi

is a fiber bundle with fibers Γ0\
∏k

i=1 Gi. Further, f descends to a function f1 :
H ′\

∏m
i=k+1 Gi → R. Hence∫

Γ\G

|f |2 dVol = Vol

(
Γ0\

k∏
i=1

Gi

)∫
H′\

∏m
i=k+1 Gi

|f1|2 dVol .

So Γ0 <
∏k

i=1 Gi must be a lattice. Then

+∞ = Vol(Γ\G) = Vol

(
Γ0\

k∏
i=1

Gi

)
Vol

(
H ′\

m∏
i=k+1

Gi

)
< +∞

and so we have a contradiction. □

We now finish the proof of Theorem 1.2. Fix J ⊂ {1, . . . ,m}, Γ′, and G′ as in the
previous proposition. Let m′ be the push-forward of m to G′ and let ν′ be the push-
forward of ν to F ′ := G′ /P′ under canonical projections, where P′ :=

∏
j∈J Pj .

Then the support of m′ generates Γ′ as a group and ν′ is the unique m′-stationary
measure. Further, ν′ is non-singular to the Lebesgue measure on F ′, which is the
push-forward of the Lebesgue measure on F .

Hence by replacing G by G′ we can assume that for every 1 ≤ i ≤ m, there is no
Gi-invariant non-zero vector in L2(Γ\G). By Proposition 3.2,

(7) ψΓ < ΨG on a+ ∖ {0}.
Now Corollary 2.6 and the fact that ν, Leb are non-singular imply that

Leb(Λcon(Γ)) > 0.
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However this contradicts Proposition 3.1 and Equation (7). □

5. Proof of Theorem 1.4

Following the argument in [LO24, Proposition 7.6] (stated as Proposition 3.1
above), we prove Theorem 1.4. As in the previous sections, let G be a connected
semisimple Lie group without compact factors and with finite center.

We start by recalling some facts, established by Quint, about the growth indi-
cator function.

Theorem 5.1. [Qui02a, Theorem 8.1] Suppose Γ < G is a Zariski dense discrete
subgroup, ϕ ∈ a∗, and δ ≥ 0. If a δ-dimensional coarse ϕ-Patterson–Sullivan
measure of Γ exists, then

ψΓ ≤ δ · ϕ on a.

Remark 5.2. Theorem 8.1 in [Qui02a] only considers non-coarse Patterson–Sullivan
measures, but the same proof works in the coarse case.

Lemma 5.3. [Qui02b, Lemma III.1.3] Suppose Γ < G is a discrete subgroup and
ϕ ∈ a∗ satisfies

∑
γ∈Γ e

−ϕ(κ(γ)) = +∞. Then there exists u ∈ a+ ∖ {0} such that

ψΓ(u) ≥ ϕ(u).

As our terminology is slightly different, we recall the proof.

Proof. Suppose to the contrary that ψΓ < ϕ on a+ ∖ {0}.
For each unit vector u ∈ a+, choose ϵu > 0 such that ψΓ(u) < ϕ(u) − ϵu. Then

there exists an open cone Cu ⊂ a containing u such that∣∣∣∣ϕ( v

∥v∥

)
− ϕ(u)

∣∣∣∣ < ϵu for all v ∈ Cu and
∑

γ∈Γ,κ(γ)∈Cu

e−(ϕ(u)−ϵu)∥κ(γ)∥ < +∞.

Hence we obtain ∑
γ∈Γ,κ(γ)∈Cu

e−ϕ(κ(γ)) < +∞.

Since the unit sphere in a+ is compact, there exist unit vectors u1, . . . , un ∈ a+

such that a+ ∖ {0} ⊂
⋃n

i=1 Cui
. We then have∑
γ∈Γ

e−ϕ(κ(γ)) < +∞,

which is a contradiction. □

Now we finish the proof of Theorem 1.4.

Proof of Theorem 1.4. Corollary 2.6 and the fact that ν, µ are non-singular imply
that

µ(Λcon(Γ)) > 0.

By the definition of the conical limit set and the Shadow Lemma (Lemma 2.2), we
have ∑

γ∈Γ

e−δϕ(κ(γ)) = +∞.

Theorem 5.1 and Lemma 5.3 imply the remaining assertion. □
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6. Rank one discrete subgroups with infinite
Bowen–Margulis–Sullivan measures

This section is devoted to the proof of Theorem 1.7. Suppose X is a negatively
curved symmetric space with a fixed basepoint o ∈ X and G = Isom(X).

6.1. Hopf parametrization and Bowem–Margulis–Sullivan measures. Set-
ting ∂2∞X := {(x, y) ∈ ∂∞X × ∂∞X : x ̸= y}, the Hopf parametrization of the unit
tangent bundle T1(X) is a map given by

T1(X) ∂2∞X × R

v (v+, v−,−B(g−1, v+))

where v+, v− ∈ ∂∞X are the forward and backward endpoints of v ∈ T1(X) under
the geodesic flow, and g ∈ G is chosen so that go ∈ X is the basepoint of v. One
can show that the above map is well-defined, and is indeed a homeomorphism.
Moreover, the geodesic flow on T1(X) corresponds to the translation on R in the
Hopf pararmetrization.

Let Γ < G be a discrete subgroup and µ a δ-dimensional Patterson–Sullivan
measure of Γ on ∂∞X, for δ ≥ 0. Using the Hopf parametrization, we define the
Bowen–Margulis–Sullivan measure of Γ on T1(Γ\X) = Γ\T1(X), associated to µ.

Consider the Radon measure m̃µ on T1(X) = ∂2∞X × R defined by

dm̃µ(x, y, t) = e2δ⟨x,y⟩odν(x)dν(y)dt

where ⟨x, y⟩o = limp→x,q→y
1
2 (dX(o, p) + dX(o, q)− dX(p, q)) is the Gromov prod-

uct and dt is the Lebesgue measure on R. Then the measure m̃µ is invariant under
the Γ-action and the geodesic flow. Hence, this induces the measure

mBMS
µ on T1(Γ\X)

which is invariant under the geodesic flow. We call mBMS
µ the (generalized) Bowen–

Margulis–Sullivan measure of Γ associated to µ.
The follwing is a part of the classical Hopf–Tsuji–Sullivan dichotomy for the

geodesic flow.

Theorem 6.1 ([Sul79, Corollary 20, Theorem 21], [CI99], [Rob03]). Let Γ < G
be a non-elementary discrete subgroup and µ a δ-dimensional Patterson–Sullivan
measure of Γ on ∂∞X. Then the following are equivalent.

•
∑

γ∈Γ e
−δ dX(o,γo) = +∞.

• µ(Λcon(Γ)) > 0.
• µ(Λcon(Γ)) = 1.
• The geodesic flow on (T1(Γ\X),mBMS

µ ) is completely conservative and er-
godic.

6.2. Proof of Theorem 1.7. We fix Γ, m, and µ as in the statement:

• Γ < G is a non-elementary discrete subgroup.
• m is a probability measure on Γ such that

⟨suppm⟩ = Γ and
∑
γ∈Γ

dX(o, γo)m(γ) < +∞.

• µ is a Patterson–Sullivan measure of Γ on ∂∞X.
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Suppose to the contrary that the m-stationary measure ν and µ are non-singular.
Note that in this rank one setting, the proof of Corollary 2.6 works for a non-

elementary discrete subgroup Γ < G, which may not be Zariski dense. Hence, by
Corollary 2.6, we have µ(Λcon(Γ)) > 0. By Theorem 6.1, the geodesic flow on
T1(Γ\X) is completely conservative and ergodic with respect to mBMS

µ .
For x ∈ ∂∞X, let σx : R → X be the unit speed geodesic line such that σx(0) = o

and limt→+∞ σx(t) = x. Since mBMS
µ (T1(Γ\X)) = +∞, it follows from the Hopf

ratio ergodic theorem that for any R > 0 we have

lim
t→∞

1

T

∫ T

0

1Γ·BR(o)(σx(t))dt = 0

for µ-a.e. x ∈ ∂∞X, where BR(o) ⊂ X is the closed ball of radius R > 0 with center
o ∈ X. Hence the following proposition yields a contradiction and Theorem 1.7
follows.

Proposition 6.2. If R > 0 is sufficiently large, then

lim inf
T→+∞

1

T

∫ T

0

1Γ·BR(o)(σx(t))dt > 0

for ν-a.e. x ∈ ∂∞X.

Proof. By [Kai00, Remark following Theorem 7.7], for mN-a.e. g = (g1, g2, . . . ) ∈
GN the limit

ζ(g) := lim
n→∞

g1 · · · gno

exists in ∂∞X and

ν = ζ∗m
N.

Note that in Section 2.3, ζ(g) was denoted by xω where ω = (ωn) ∈ GN, ωn =

g1 · · · gn. In this proof, we consider the sequence g ∈ GN for steps instead.
By Thoerem 2.5, we can fix R0 > 0 such that for mN-a.e. g = (gn) ∈ GN,

lim inf
N→∞

1

N
#{1 ≤ n ≤ N : dX(g1 · · · gno, σζ(g)) ≤ R0} > 1/2.

For each k ∈ N, let

Ak := {g ∈ GN : dX(o, g1 · · · gno) > 4R0 for all n ≥ k}.

Since

lim
n→∞

dX(o, g1 · · · gno) = +∞

for mN-a.e. g = (gn) ∈ GN, we have

lim
k→∞

mN(Ak) = 1.

Hence we can fix k ∈ N such that mN(Ak) > 1/2. Recall that the shift map

S : (GN,mN) → (GN,mN) given by

S(g1, g2, g3, . . . ) = (g2, g3, . . . )

is ergodic. Hence for mN-a.e. g ∈ GN,

lim
N→∞

1

N
# {1 ≤ n ≤ N : Sng ∈ Ak} = lim

N→∞

1

N

N∑
n=1

1Ak
(Sng) = mN(Ak) > 1/2.
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Thus there exists c > 0 such that for mN-a.e. g ∈ GN, we have

(8) c ≤ lim inf
N→∞

1

N
#
{
1 ≤ n ≤ N : Sng ∈ Ak and dX(g1 · · · gno, σζ(g)) ≤ R0

}
.

Since m has a finite first moment, by [MT18, Theorem 1.2], there exists ℓ(m) > 0

such that for mN-a.e. g ∈ GN,

(9) lim
n→∞

1

n
dX(o, g1 · · · gno) = ℓ(m).

Since ν = ζ∗m
N, for ν-a.e. x ∈ ∂∞X there exists g ∈ GN such that ζ(g) = x and

Equations (8) and (9) hold. Since suppm generates Γ, we may assume that g ∈ ΓN.
So it suffices to fix such x ∈ ∂∞X and g ∈ ζ−1(x), and then show that

lim inf
T→+∞

1

T

∫ T

0

1Γ·B2R0
(o)(σx(t))dt > 0.

Let

I0 := {n ∈ N : Sng ∈ Ak and dX(g1 · · · gno, σx) ≤ R0}
and let I := {n1 < n2 < · · · } ⊂ I0 be a maximal k-separated set, i.e., I0 is a
maximal set such that |ni − nj | ≥ k for all distinct ni, nj ∈ I0. By maximality,

I0 ⊂
⋃
i∈I

(i− k, i+ k]

and hence for all j ∈ N,

#(I0 ∩ [0, nj ]) ≤ 2k ·#(I ∩ [0, nj ]).

Thus by Equation (8),

(10)
c

2k
≤ lim inf

j→∞

1

nj
#(I ∩ [0, nj ]).

For each j ∈ N, fix tj > 0 such that

dX(g1 · · · gnjo, σx(tj)) ≤ R0.

Then tj → +∞ and hence we can fix a subsequence tji such that

tj < tji

for all j < ji.
Notice that if j < j′, then

|tj − tj′ | = dX(σx(tj), σx(tj′)) ≥ −2R0 + dX(g1 · · · gnj
o, g1 · · · gnj′ o)

= −2R0 + dX(o, gnj+1 · · · gnj′ o) > 2R0

since Snj (g) = (gnj+1, gnj+2, · · · ) ∈ Ak and nj′ − nj ≥ k. Thus

[tj −R0, tj +R0] ∩ [tj′ −R0, tj′ +R0] = ∅.

Then since

dX(g1 · · · gnj
o, σx(t)) ≤ 2R0

when t ∈ [tj −R0, tj +R0], we have for all i ∈ N that∫ tji+R0

−R0

1Γ·B2R0
(o)(σx(t))dt ≥

ji∑
j=1

∫ tj+R0

tj−R0

dt = 2R0 · ji = 2R0 ·#(I ∩ [0, nji ]).
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Since

ℓ(m) = lim
i→∞

1

nji
dX(o, g1 · · · gnji

o) = lim
i→∞

1

nji
tji ,

then by Equation (10),

lim inf
i→∞

1

tji +R0

∫ tji+R0

0

1Γ·B2R0
(o)(σx(t))dt ≥ lim inf

i→∞

2R0

ℓ(m)nji
#(I ∩ [0, nji ])

≥ cR0

ℓ(m)k
.

Therefore, the proposition holds for any R > 2R0. □
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