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. . . . . .

Disclaimer

These slides are designed exclusively for students attending section 1,
2 and 3 for the course 640:244 in Fall 2013. The author is not
responsible for consequences of other usages.

These slides may suffer from errors. Please use them with your own
discretion.
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. . . . . .

Power Function

Definitions: f (x) = xa (a ∈ R)

Derivative:

f ′(x) = (xa)′ =

{
axa−1 a ̸= 0

0 a = 0

Antiderivative:∫
f (x)dx =

∫
xadx =


1

a+ 1
xa+1 + C a ̸= −1

ln |x |+ C a = −1

Note: DO NOT forget to take absolute values in the natural
logarithm.
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. . . . . .

Exponential Functions

Definitions: f (x) = ax (a > 0)

Derivative:
f ′(x) = (ax)′ = ax ln a.

How to compute: Take logarithms on both sides and apply the
differentiation law of composite functions.

Antiderivative: ∫
f (x)dx =

∫
axdx =

1

ln a
ax + C

How to compute: Make use of the derivative above.
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. . . . . .

Logarithm Functions

Definitions: f (x) = loga x (a > 0)

Derivative:

f ′(x) = (loga x)
′ =

1

x ln a
.

How to compute: Strictly speaking you should be using the law for
inverse functions. But if you know already that (ln x)′ = 1/x , then
you can simply make use of the fact loga x = ln x/ ln a.

Antiderivative:∫
f (x)dx =

∫
loga xdx =

1

ln a
(x ln x − x) + C

How to compute: Use integration by parts to solve the special case
that a = e, then again use loga x = ln x/ ln a.
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. . . . . .

Trigonometric functions

Definitions: sin x , cos x , tan x , cot x

Derivative:

(sin x)′ = cos x , (cos x)′ = sin x ,

(tan x)′ = sec2 x , (cot x)′ = − csc2 x .

How to compute: Use definitions of derivatives and the trigonometric
identities to compute sin x and cos x . Use laws of quotients to
compute tan x and cot x .
Antiderivative:∫

sin xdx = − cos x + C ,

∫
cos xdx = sin x + C ,∫

tan xdx = − ln | cos x |+ C ,

∫
cot xdx = ln | sin x |+ C .

How to compute: Use the derivatives above to see the first two.
Write in quotients and use substitutions then you will see the last two.
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. . . . . .

Inverse Trigonometric functions

Definitions: arcsin x , arccos x , arctan x , arccotx .

Derivative:

(arcsin x)′ =
1√

1− x2
, (arccos x)′ = − 1√

1− x2
,

(arctan x)′ =
1

1 + x2
, (arccotx)′ = − 1

1 + x2
.

How to compute: Use the techniques dealing with inverse functions.
Example of computing arctan x :

y = arctan x ⇒ x = tan y

⇒ dx = sec2 ydy = (1 + tan2 y)dy = (1 + x2)dy ⇒ dy

dx
=

1

1 + x2
.

Antiderivative: Not interesting at least in 244. So forget it.
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. . . . . .

Hyperbolic trigonometric functions

Definitions:

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
, tanh x =

sinh x

cosh x
, coth x =

cosh x

sinh x
.

Derivative:
(sinh x)′ = cosh x , (cosh x)′ = sinh x .

The rest two are left as exercises for product rule.

How to compute: Straightforward.

Antiderivative:∫
sinh xdx = − cosh x + C ,

∫
cosh xdx = sinh x + C .

The rest two are left as exercises for technique of substitution.
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. . . . . .

More formulas

∫
1

a2 + x2
=

1

a
arctan

x

a
+ C

How to compute: Substitution by scalar.

∫
1

x2 − a2
=

1

2a
ln

∣∣∣∣a− x

a+ x

∣∣∣∣+ C

How to compute: Either by trigonometric substitution or by breaking
rational functions.
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More formulas

∫
1√

a2 − x2
= arcsin

x

a
+ C

How to compute: Again substitution by scalar.

∫
1√

x2 ± a2
= ln |x +

√
x2 ± a2|+ C

How to compute: Either by trigonometric substitution or by
hyperbolic substitution.
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hyperbolic substitution.
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. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by trigonometric substitution: Let x = a sec t.∫
1√

x2 − a2
dx =

∫
1

a
√
sec2t − 1

d
( a

cos t

)
=

∫
1

tan t
· sin t

cos2t
dt =

∫
1

cos t
dt =

∫
d sin t

1− sin2t
= ln

∣∣∣∣1 + sin t

1− sin t

∣∣∣∣
= ln

∣∣∣∣∣(1 + sin t)2

cos2t

∣∣∣∣∣ = ln

∣∣∣∣1 + sin t

cos t

∣∣∣∣ = ln | sec t + tan t|

= ln

∣∣∣∣∣∣xa +
x
√

1− (a/x)2

a

∣∣∣∣∣∣+ C = ln |x +
√

x2 − a2|+ C
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More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.

∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C
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