
. . . . . .

.

...... Review of Formulas in Calculus

Fei Qi

Rutgers University

fq15@math.rutgers.edu

January 21, 2014

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 1 / 16



. . . . . .

Disclaimer

The slides are written exclusively for 244 students. It might not be
appropriate to use them in any earlier course.

There may be errors. Use them at your own discretion. Anyone who
notify me with an error will get some award in grade points.
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. . . . . .

Power Function

Definitions: f (x) = xa (a ∈ R)

Derivative:

f ′(x) = (xa)′ =

{
axa−1 a ̸= 0

0 a = 0

Antiderivative:∫
f (x)dx =

∫
xadx =


1

a+ 1
xa+1 + C a ̸= −1

ln |x |+ C a = −1

Note: When you perform the integration, you should never forget to
take absolute values. However in many cases of the 244 course, you
don’t have to care too much about that.
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. . . . . .

Exponential Functions

Definitions: f (x) = ax (a > 0)

Derivative:
f ′(x) = (ax)′ = ax ln a.

How to compute: Take logarithms on both sides and apply the
differentiation law of composite functions.

Antiderivative: ∫
f (x)dx =

∫
axdx =

1

ln a
ax + C

How to compute: Make use of the derivative above.
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. . . . . .

Logarithm Functions

Definitions: f (x) = loga x (a > 0)

Derivative:

f ′(x) = (loga x)
′ =

1

x ln a
.

How to compute: Strictly speaking you should be using the law for
inverse functions. But if you know already that (ln x)′ = 1/x , then
you can simply make use of the fact loga x = ln x/ ln a.

Antiderivative:∫
f (x)dx =

∫
loga xdx =

1

ln a
(x ln x − x) + C

How to compute: Use integration by parts to solve the special case
that a = e, then again use loga x = ln x/ ln a.
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. . . . . .

Trigonometric functions

Definitions: sin x , cos x , tan x , cot x , sec x , csc x

Derivative:

(sin x)′ = cos x , (cos x)′ = − sin x ,

(tan x)′ = sec2 x , (cot x)′ = − csc2 x ,

(sec x)′ = sec x tan x , (csc x)′ = − csc x cot x .

How to compute: Use definitions of derivatives and the trigonometric
identities to work on sin x and cos x . Use laws of quotients to work on
tan x and cot x . Use either law of quotients or chain rule to work on
sec x and csc x .
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. . . . . .

Trigonometric functions

Antiderivative:∫
sin xdx = − cos x + C ,

∫
cos xdx = sin x + C ,∫

tan xdx = − ln | cos x |+ C ,

∫
cot xdx = ln | sin x |+ C ,∫

sec xdx = ln | sec x + tan x |+ C ,

∫
csc x = − ln | csc x + cot x |.

How to compute: Use the derivatives above to see the first two.
Write in quotients and use substitutions then you will see the second
two. Use trigonometric techniques to get the last two.
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. . . . . .

Details of
∫
sec xdx

∫
sec xdx =

∫
1

cos x
dx

=

∫
cos x

cos2 x
dx

=

∫
1

1− sin2 x
d sin x =

∫
1

2

(
1

1− sin x
+

1

1 + sin x

)
d sin x

=
1

2
(ln |1 + sin x | − ln |1− sin x |) =

1

2
ln

∣∣∣∣1 + sin x

1− sin x

∣∣∣∣
It would be fine to end here. This is a correct answer. It just take a few
more steps to get what we are looking for
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∣∣∣∣ = ln |sec x + tan x |
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. . . . . .

Inverse Trigonometric functions

Definitions: arcsin x , arccos x , arctan x , arccotx .

Derivative:

(arcsin x)′ =
1√

1− x2
, (arccos x)′ = − 1√

1− x2
,

(arctan x)′ =
1

1 + x2
, (arccotx)′ = − 1

1 + x2
.

How to compute: Use the techniques dealing with inverse functions.
Example of computing arctan x :

y = arctan x ⇒ x = tan y

⇒ dx = sec2 ydy = (1 + tan2 y)dy = (1 + x2)dy ⇒ dy

dx
=

1

1 + x2
.

Antiderivative: Not interesting at least in 244. So forget it.
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Definitions: arcsin x , arccos x , arctan x , arccotx .

Derivative:

(arcsin x)′ =
1√

1− x2
, (arccos x)′ = − 1√

1− x2
,

(arctan x)′ =
1

1 + x2
, (arccotx)′ = − 1

1 + x2
.

How to compute: Use the techniques dealing with inverse functions.
Example of computing arctan x :

y = arctan x ⇒ x = tan y

⇒ dx = sec2 ydy = (1 + tan2 y)dy = (1 + x2)dy

⇒ dy

dx
=

1

1 + x2
.

Antiderivative: Not interesting at least in 244. So forget it.
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. . . . . .

Hyperbolic trigonometric functions

Definitions:

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
, tanh x =

sinh x

cosh x
, coth x =

cosh x

sinh x
.

Derivative:
(sinh x)′ = cosh x , (cosh x)′ = sinh x .

The rest two are left as exercises for product rule.

How to compute: Straightforward.

Antiderivative:∫
sinh xdx = − cosh x + C ,

∫
cosh xdx = sinh x + C .

The rest two are left as exercises for technique of substitution.
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. . . . . .

More formulas

∫
1

a2 + x2
=

1

a
arctan

x

a
+ C

How to compute: Substitution by scalar.

∫
1

x2 − a2
=

1

2a
ln

∣∣∣∣a− x

a+ x

∣∣∣∣+ C

How to compute: Either by trigonometric substitution or by breaking
rational functions.
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. . . . . .

More formulas

∫
1√

a2 − x2
= arcsin

x

a
+ C

How to compute: Again substitution by scalar.

∫
1√

x2 ± a2
= ln |x +

√
x2 ± a2|+ C

How to compute: Either by trigonometric substitution or by
hyperbolic substitution.
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. . . . . .

More detail about the last integral

Example: ∫
1√

x2 − a2

Approach by trigonometric substitution: Let x = a sec t.∫
1√

x2 − a2
dx =

∫
1

a
√
sec2t − 1

d
( a

cos t

)
=

∫
1

tan t
· sin t

cos2t
dt =

∫
1

cos t
dt =

∫
d sin t

1− sin2t
= ln

∣∣∣∣1 + sin t

1− sin t

∣∣∣∣
= ln

∣∣∣∣∣(1 + sin t)2

cos2t

∣∣∣∣∣ = ln

∣∣∣∣1 + sin t

cos t

∣∣∣∣ = ln | sec t + tan t|

= ln

∣∣∣∣∣∣xa +
x
√

1− (a/x)2

a

∣∣∣∣∣∣+ C = ln |x +
√

x2 − a2|+ C
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More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.

∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx

=

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt

=

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2

⇒ 2
x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1

⇒ e2t − 2
x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)

∫
1√

x2 + a2
dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

More detail about the last integral

Example: ∫
1√

x2 + a2

Approach by hyperbolic substitution: Let x = a sinh t.∫
1√

x2 + a2
dx =

∫
1

a
√

sinh2t + 1
d(a sinh t)

=

∫
1

a cosh t
a cosh tdt =

∫
dt = t + C

x = a sinh t =
et − e−t

2
⇒ 2

x

a
et = e2t − 1 ⇒ e2t − 2

x

a
et − 1 = 0

⇒ et =
x +

√
x2 + a2

a
(The smaller root makes et negative)∫

1√
x2 + a2

dx = t + C = ln

∣∣∣∣∣x ±
√
x2 + a2

a

∣∣∣∣∣+ C

Fei Qi (Rutgers University) Review of Formulas in Calculus January 21, 2014 15 / 16



. . . . . .

The End
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