MATH 310 FALL 2019 **PROBLEM SET 1**

Due Thursday, Sep 12th, at 11:35 AM, in class.

- (1) Find all possible complex numbers corresponding to the following expressions
 - (a) \sqrt{i}
 - (b) $\sqrt[3]{-1+i}$
 - (c) $\left(\frac{1+3i}{2}\right)^6$ (d) $e^{-2+i\frac{\pi}{3}}$

 - (e) $\log(\frac{e^5}{2} + i\frac{e^5\sqrt{3}}{2})$
 - (f) $\cos(i)$
- (2) Show that the following functions are holomorphic, then find their complex derivative (a) $f(z) = \cos(z)$
 - (b) $f(z) = \sin(z)$

(c) $f(z) = \sum_{k=0}^{n} a_k z^k$, where a_k are fixed complex numbers

(3) Define the function

$$f(z) = \begin{cases} e^{-z^{-4}} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Show that f satisfies the Cauchy-Riemann equations in all \mathbb{C} . Then show that f is not holomorphic at 0. What went wrong?

(4) Take f = u + iv a holomorphic function. Show that after writting (x, y) in polar coordinates (r, θ) the Cauchy-Riemann equations are equivalent to

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

- (5) Show that if $f: U \to \mathbb{C}$ is holomorphic on a domain U and f has image contained in some (1dimensional) real affine line inside $\mathbb{C} = \mathbb{R}^2$, then f is constant.
- (6) Use the following example to show that holes can be an obstruction to find a harmonic conjugate.
 - Verify that $u: \mathbb{C} \setminus \{0\} \to \mathbb{R}$ defined as $u(x, y) = \log(\sqrt{x^2 + y^2})$ is harmonic.
 - Take (-1, -1) as a base point. Use the formula of harmonic conjugate for u along the polygonal paths $(-1,-1) \rightarrow (-1,1) \rightarrow (1,1)$ and $(-1,-1) \rightarrow (1,-1) \rightarrow (1,1)$. Compare the two values obtained and draw a conclusion about finding a harmonic conjugate for u in $\mathbb{C} \setminus \{0\}$
- (7) Denote by $\langle v, w \rangle$ the dot product for $v, w \in \mathbb{R}^2$. We say that a function $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ is conformal if it has continuous first order partial real derivatives and for any $v, w \in \mathbb{R}^2, p \in U$ we have that $\frac{\langle v,w\rangle}{|v|.|w|} = \frac{\langle \mathcal{J}_f(p)v,\mathcal{J}_f(p)w\rangle}{|\mathcal{J}_f(p)v|.|\mathcal{J}_f(p)w|}$. We say that f preserves orientation if $\det(\mathcal{J}_f(p)) > 0$ for all $p \in U$. Show that if a function is conformal and preserves orientation then is holomorphic. Show also that if f is holomorphic and $f'(z) \neq 0$, then f is conformal at z and preserves orientation. (Hint: find a description of 2×2 real matrices A so that the multiplication with vectors $v \to A.v$ is angle preserving)

A cornerstone of our thinking is that in the infinitely small every function becomes linear (from an unknown mathematical physicist, 1915).