MATH 310 FALL 2019

PROBLEM SET 1

Due Thursday, Sep 12th, at 11:35 AM, in class.
(1) Find all possible complex numbers corresponding to the following expressions
(a) \sqrt{i}
(b) $\sqrt[3]{-1+i}$
(c) $\left(\frac{1+3 i}{2}\right)^{6}$
(d) $e^{-2+i \frac{\pi}{3}}$
(e) $\log \left(\frac{e^{5}}{2}+i \frac{e^{5} \sqrt{3}}{2}\right)$
(f) $\cos (i)$
(2) Show that the following functions are holomorphic, then find their complex derivative
(a) $f(z)=\cos (z)$
(b) $f(z)=\sin (z)$
(c) $f(z)=\sum_{k=0}^{n} a_{k} z^{k}$, where a_{k} are fixed complex numbers
(3) Define the function

$$
f(z)= \begin{cases}e^{-z^{-4}} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

Show that f satisfies the Cauchy-Riemann equations in all \mathbb{C}. Then show that f is not holomorphic at 0 . What went wrong?
(4) Take $f=u+i v$ a holomorphic function. Show that after writting (x, y) in polar coordinates (r, θ) the Cauchy-Riemann equations are equivalent to

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \quad \frac{\partial u}{\partial \theta}=-r \frac{\partial v}{\partial r}
$$

(5) Show that if $f: U \rightarrow \mathbb{C}$ is holomorphic on a domain U and f has image contained in some (1dimensional) real affine line inside $\mathbb{C}=\mathbb{R}^{2}$, then f is constant.
(6) Use the following example to show that holes can be an obstruction to find a harmonic conjugate.

- Verify that $u: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{R}$ defined as $u(x, y)=\log \left(\sqrt{x^{2}+y^{2}}\right)$ is harmonic.
- Take $(-1,-1)$ as a base point. Use the formula of harmonic conjugate for u along the polygonal paths $(-1,-1) \rightarrow(-1,1) \rightarrow(1,1)$ and $(-1,-1) \rightarrow(1,-1) \rightarrow(1,1)$. Compare the two values obtained and draw a conclusion about finding a harmonic conjugate for u in $\mathbb{C} \backslash\{0\}$
(7) Denote by $\langle v, w\rangle$ the dot product for $v, w \in \mathbb{R}^{2}$. We say that a function $f: U \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is conformal if it has continuous first order partial real derivatives and for any $v, w \in \mathbb{R}^{2}, p \in U$ we have that $\frac{\langle v, w\rangle}{|v| \cdot|w|}=\frac{\left\langle\mathcal{J}_{f}(p) v, \mathcal{J}_{f}(p) w\right\rangle}{\left|\mathcal{J}_{f}(p) v\right| \cdot \mathcal{J}_{f}(p) w \mid}$. We say that f preserves orientation if $\operatorname{det}\left(\mathcal{J}_{f}(p)\right)>0$ for all $p \in U$. Show that if a function is conformal and preserves orientation then is holomorphic. Show also that if f is holomorphic and $f^{\prime}(z) \neq 0$, then f is conformal at z and preserves orientation. (Hint: find a description of 2×2 real matrices A so that the multiplication with vectors $v \rightarrow A . v$ is angle preserving)

[^0]
[^0]: A cornerstone of our thinking is that in the infinitely small every function becomes linear (from an unknown mathematical physicist, 1915).

