MATH 310 FALL 2019 PROBLEM SET 2

Due Thursday, Sep 19th, at 11:35 AM, in class.
(1) Show that the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in polar coordinates $x=r \cos \theta, y=r \sin \theta$ is

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

(2) Check that for $u(z)=\operatorname{Im}\left(\frac{1}{z^{2}}\right), z \neq 0, u(0)=0$ the partial derivatives $\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}$ exist and satisfy $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$. Then show that u is not harmonic. What went wrong?
(3) A fractional linear transformation (also known as Möbius tranformation) is a function of the form

$$
f(z)=\frac{a z+b}{c z+d}, \quad c z+d \neq 0
$$

where a, b, c, d are complex numbers satisfying $a d-b c \neq 0$
(a) Show that $f^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}}$
(b) Show that for $f(z)=\frac{a z+b}{c z+d}, g(z)=\frac{\alpha z+\beta}{\gamma z+\delta}$ the composition $f \circ g$ is a Möbius transformation. Moreover, show that the coefficients for the fraction expression of $f \circ g$ correspond to the matrix multiplication $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$.
(c) Show that the inverse function f^{-1} is a Möbius transformation defined by $f^{-1}(w)=\frac{-d w+b}{c w-a}$
(d) Show that the image of a real line under a fractional linear transformation is a line or a circle. Show also that the image of a circle under a fractional linear transformation is a line or a circle. (Hint: Show first that every linear transformation is the composition of a dilations $z \rightarrow \lambda z$, translations $z \rightarrow z+\eta$ and inversions $z \rightarrow \frac{1}{z}$. Then prove that each of those transformations send lines and circles to lines and circles). Extra challenge: Why we have to consider both lines and circles at the same time?
(4) Use Green's theorem to show that for a domain D with piecewise smooth boundary ∂D, $\operatorname{Area}(D)=$ $\int_{\partial D} x d y$. Use this to calculate the area of a unit square and a unit ball in \mathbb{C}.
(5) Let $P, Q: D \rightarrow \mathbb{C}$ be continuous functions and let $\gamma:[a, b] \rightarrow D$ be piecewise smooth path.
(a) We say that a reparametrization of γ is a path $\tilde{\gamma}=\gamma \circ \phi$ where $\phi:[\alpha, \beta] \rightarrow[a, b]$ is a smooth function with $\phi^{\prime}(s)>0$ for all $s \in[\alpha, \beta]$ and $\phi(\alpha)=a, \phi(\beta)=b$. Show that $\int_{\tilde{\gamma}} P d x+Q d y=$ $\int_{\gamma} P d x+Q d y$. Notice that this says that the line integral is always independent from the parametrization.
(b) Define γ^{-}as $\gamma^{-}:[-b,-a] \rightarrow D$ as $\gamma^{-}(t)=\gamma(-t)$. Show that $\int_{\gamma^{-}} P d x+Q d y=-\int_{\gamma} P d x+Q d y$. Notice that this says that the integral distinguishes the orientation of the path.
(c) Show that the following statements are equivalent

- $\int_{\gamma} P d x+Q d y$ depends only on the endpoints of γ, for all paths γ.
- $\int_{\eta} P d x+Q d y=0$ for all closed paths η.
(6) Determine whether the following path integrals are independent of the path (i.e. depend only on the endpoints).
(a) $x d x+y d y$
(b) $x^{2} d x+y^{5} d y$
(c) $y d x+x d y$
(d) $y d x-x d y$

[^0]
[^0]: Calculus integralis est methodus, ex data differentialium relation inveniendi relationem ipsarum quantitatum (Integral calculus is the method for finding, from a given relation of differentials, the relation of the quantities themselves). L. EULER

