MATH 310 FALL 2019 **PROBLEM SET 2**

Due Thursday, Sep 19th, at 11:35 AM, in class.

(1) Show that the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in polar coordinates $x = r \cos \theta, y = r \sin \theta$ is

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

- (2) Check that for $u(z) = \operatorname{Im}\left(\frac{1}{z^2}\right), z \neq 0, u(0) = 0$ the partial derivatives $\frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial y^2}$ exist and satisfy $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. Then show that u is <u>not</u> harmonic. What went wrong?
- (3) A fractional linear transformation (also known as Möbius transformation) is a function of the form

$$f(z) = \frac{az+b}{cz+d}, \quad cz+d \neq 0$$

where a, b, c, d are complex numbers satisfying $ad - bc \neq 0$

- (a) Show that $f'(z) = \frac{ad-bc}{(cz+d)^2}$ (b) Show that for $f(z) = \frac{az+b}{cz+d}$, $g(z) = \frac{\alpha z+\beta}{\gamma z+\delta}$ the composition $f \circ g$ is a Möbius transformation. Moreover, show that the coefficients for the fraction expression of $f \circ g$ correspond to the matrix multiplication $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. (c) Show that the inverse function f^{-1} is a Möbius transformation defined by $f^{-1}(w) = \frac{-dw+b}{cw-a}$.
- (d) Show that the image of a real line under a fractional linear transformation is a line or a circle. Show also that the image of a circle under a fractional linear transformation is a line or a circle. (Hint: Show first that every linear transformation is the composition of a dilations $z \to \lambda z$, translations $z \to z + \eta$ and inversions $z \to \frac{1}{z}$. Then prove that each of those transformations send lines and circles to lines and circles). Extra challenge: Why we have to consider both lines and circles at the same time?
- (4) Use Green's theorem to show that for a domain D with piecewise smooth boundary ∂D , Area(D) = $\int_{\partial D} x dy.$ Use this to calculate the area of a unit square and a unit ball in \mathbb{C} . (5) Let $P, Q: D \to \mathbb{C}$ be continuous functions and let $\gamma: [a, b] \to D$ be piecewise smooth path.
- - (a) We say that a reparametrization of γ is a path $\tilde{\gamma} = \gamma \circ \phi$ where $\phi : [\alpha, \beta] \to [a, b]$ is a smooth function with $\phi'(s) > 0$ for all $s \in [\alpha, \beta]$ and $\phi(\alpha) = a, \phi(\beta) = b$. Show that $\int_{\tilde{\alpha}} P dx + Q dy =$ $\int_{\gamma} Pdx + Qdy$. Notice that this says that the line integral is always independent from the parametrization.
 - (b) Define γ^- as γ^- : $[-b, -a] \to D$ as $\gamma^-(t) = \gamma(-t)$. Show that $\int_{\gamma^-} P dx + Q dy = -\int_{\gamma} P dx + Q dy$. Notice that this says that the integral distinguishes the orientation of the path.
 - (c) Show that the following statements are equivalent
 - $\int_{\gamma} P dx + Q dy$ depends only on the endpoints of γ , for all paths γ .
 - $\int_{n} P dx + Q dy = 0$ for all closed paths η .
- (6) Determine whether the following path integrals are independent of the path (i.e. depend only on the endpoints).
 - (a) xdx + ydy
 - (b) $x^2 dx + y^5 dy$
 - (c) ydx + xdy
 - (d) ydx xdy

Calculus integralis est methodus, ex data differentialium relation inveniendi relationem ipsarum quantitatum (Integral calculus is the method for finding, from a given relation of differentials, the relation of the quantities themselves). L. EULER