MATH 310 FALL 2019 PROBLEM SET 3

Due Thursday, Sep 26th, at 11:35 AM, in class.

- (1) Prove the Fundamental Theorem of Algebra by following these steps
 - (a) Let $f: \overline{D} \to \mathbb{C}$ be a continuous function on a compact domain \overline{D} so that f is holomorphic in the interior D. If $|f(z)| \leq M$ for all $z \in \partial D$, then $|f(z)| \leq M$ for all $z \in \overline{D}$. Why is it important that D is bounded?
 - (b) If a polynomial $p : \mathbb{C} \to \mathbb{C}$ does not vanish then $1/p : \mathbb{C} \to \mathbb{C}$ is a well defined holomorphic function. See that for p not constant and for large R the values $1/p(Re^{i\theta})$ are arbitrarily small.
 - (c) Use the Maximum Principle for 1/p for larger and larger balls to show that if p is not constant then exists z_0 so that $p(z_0) = 0$.
- (2) Let $f: D \to \mathbb{C}$ be a holomorphic function with no zeros (i.e. does not vanish).
 - (a) Show that if |f(z)| attains its infimum in D then f is constant
 - (b) Show that if D is bounded and f extends continuously to \overline{D} then |f| attains its minimum in ∂D .
- (3) Let $f : \mathbb{D} \to \mathbb{C}$ be holomorphic and bounded, where \mathbb{D} is the unit disk. Assume that f extends continuously to $\partial \mathbb{D} \setminus \{z_1, z_2, \ldots, z_n\}$ so that $|f(z)| \leq M$ for $z \in \partial \mathbb{D} \setminus \{z_1, z_2, \ldots, z_n\}$. Show that $|f(z)| \leq M$ for any $z \in \mathbb{D}$. (Hint: work with $(z - z_1)^{\epsilon} f(z)$ for small epsilon. Why is $(z - z_1)^{\epsilon} := e^{\epsilon \log(z-z_1)}$ well-defined on the disk?)
- (4) Show that for the following cases of domain U a holomorphic and bounded function f: U → C that extends continuously to ∂U so that |f(z)| ≤ M for z ∈ ∂U then |f(z)| ≤ M for z ∈ U. (Hint: find a map that identifies U with D. What happens to the boundary ∂U?)
 (a) U the half-space {z | Im(z) > 0}
 - (a) U the strip $\{z \mid \pi > \text{Im}(z) > 0\}$ (Think about the exponential map)
- (5) Show that for D a bounded domain with piecewise smooth boundary $2i\operatorname{Area}(D) = \int_{\partial D} \overline{z} dz$.
- (6) Show that a holomorphic function $f: D \to \mathbb{C}$ has a primitive (or antiderivative) F (meaning $\frac{dF}{dz} = f$) if and only $\int_{\gamma} f(z) dz = 0$ for any closed piecewise smooth path γ .
- (7) It is customary to denote the infinitesimal arc-length by $|dz| = \sqrt{(dx)^2 + (dy^2)}$. Hence $\int_{\gamma} h(z)|dz|$ denotes $\int_a^b h(\gamma(t))\sqrt{(\gamma'_1(t))^2 + (\gamma'_2(t))^2}dt$. Show that if h is so that $|h(z)| \leq M$ then $|\int_{\gamma} h(z)dz| \leq M$. $\int_{\gamma} |dz| = M$.Length(γ)
- (8) Take γ a path between 0 and *i*. Find the following integrals (and justify why you were given enough information to do so!)
 - (a) $\int_{\gamma} e^{\pi z} dz$
 - (b) $\int_{\gamma}^{\prime} (z-1)^m dz, \ m \neq -1$ (Assume that γ does not pass through z=1).
 - (c) $\int_{\gamma}^{\cdot} \cos(z) dz$

On a letter that Gauss wrote to Bessel on December 18, 1811: "What should we make of $\int \phi x dx$ for x = a + bi?"