MATH 310 FALL 2019 PROBLEM SET 3

Due Thursday, Sep 26th, at 11:35 AM, in class.
(1) Prove the Fundamental Theorem of Algebra by following these steps
(a) Let $f: \bar{D} \rightarrow \mathbb{C}$ be a continuous function on a compact domain \bar{D} so that f is holomorphic in the interior D. If $|f(z)| \leq M$ for all $z \in \partial D$, then $|f(z)| \leq M$ for all $z \in \bar{D}$. Why is it important that D is bounded?
(b) If a polynomial $p: \mathbb{C} \rightarrow \mathbb{C}$ does not vanish then $1 / p: \mathbb{C} \rightarrow \mathbb{C}$ is a well defined holomorphic function. See that for p not constant and for large R the values $1 / p\left(R e^{i \theta}\right)$ are arbitrarily small.
(c) Use the Maximum Principle for $1 / p$ for larger and larger balls to show that if p is not constant then exists z_{0} so that $p\left(z_{0}\right)=0$.
(2) Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function with no zeros (i.e. does not vanish).
(a) Show that if $|f(z)|$ attains its infimum in D then f is constant
(b) Show that if D is bounded and f extends continuously to \bar{D} then $|f|$ attains its minimum in ∂D.
(3) Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be holomorphic and bounded, where \mathbb{D} is the unit disk. Assume that f extends continuously to $\partial \mathbb{D} \backslash\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ so that $|f(z)| \leq M$ for $z \in \partial \mathbb{D} \backslash\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$. Show that $|f(z)| \leq M$ for any $z \in \mathbb{D}$. (Hint: work with $\left(z-z_{1}\right)^{\epsilon} f(z)$ for small epsilon. Why is $\left(z-z_{1}\right)^{\epsilon}:=$ $e^{\epsilon \log \left(z-z_{1}\right)}$ well-defined on the disk?)
(4) Show that for the following cases of domain U a holomorphic and bounded function $f: U \rightarrow \mathbb{C}$ that extends continuously to ∂U so that $|f(z)| \leq M$ for $z \in \partial U$ then $|f(z)| \leq M$ for $z \in U$. (Hint: find a map that identifies U with \mathbb{D}. What happens to the boundary ∂U ?)
(a) U the half-space $\{z \mid \operatorname{Im}(z)>0\}$
(b) U the strip $\{z \mid \pi>\operatorname{Im}(z)>0\}$ (Think about the exponential map)
(5) Show that for D a bounded domain with piecewise smooth boundary $2 i \operatorname{Area}(D)=\int_{\partial D} \bar{z} d z$.
(6) Show that a holomorphic function $f: D \rightarrow \mathbb{C}$ has a primitive (or antiderivative) F (meaning $\frac{d F}{d z}=f$) if and only $\int_{\gamma} f(z) d z=0$ for any closed piecewise smooth path γ.
(7) It is customary to denote the infinitesimal arc-length by $|d z|=\sqrt{(d x)^{2}+\left(d y^{2}\right)}$. Hence $\int_{\gamma} h(z)|d z|$ denotes $\int_{a}^{b} h(\gamma(t)) \sqrt{\left(\gamma_{1}^{\prime}(t)\right)^{2}+\left(\gamma_{2}^{\prime}(t)\right)^{2}} d t$. Show that if h is so that $|h(z)| \leq M$ then $\left|\int_{\gamma} h(z) d z\right| \leq$ $M . \int_{\gamma}|d z|=M . \operatorname{Length}(\gamma)$
(8) Take γ a path between 0 and i. Find the following integrals (and justify why you were given enough information to do so!)
(a) $\int_{\gamma} e^{\pi z} d z$
(b) $\int_{\gamma}(z-1)^{m} d z, m \neq-1$ (Assume that γ does not pass through $z=1$).
(c) $\int_{\gamma} \cos (z) d z$

[^0]
[^0]: On a letter that Gauss wrote to Bessel on December 18, 1811: "What should we make of $\int \phi x . d x$ for $x=a+b i$?"

