Let $f: \mathbb{D} \to \mathbb{C}$ be a continuous function on a compact domain \mathbb{D}, S.t. f is holomorphic inside \mathbb{D}, i.e., $|f(z)| \leq M$ for all $z \in \mathbb{D}$, then $|f(z)| \leq M$ for all $z \in \mathbb{D}$.

We prove an important lemma (extreme value theorem for complex functions). Let $g: \mathbb{K} \to \mathbb{C}$ be a continuous function on a compact domain $\mathbb{K} \subseteq \mathbb{C}$, then $|g|$ is a continuous, and hence it maps compact sets to compact sets. Thus

$$|g(K)| = \text{img}(g) = L \subseteq \mathbb{R} \text{ s.t. } L \text{ is compact},$$

Thus L contains its supremum and infimum, i.e., $\exists L_s, L_i \in L$ s.t.

$$L_s = \sup_{x \in L} x \\
L_i = \inf_{x \in L} x$$

Then $bL = \text{img}(g)$, we get that there exist $p, q \in \mathbb{K}$ s.t.

$$|g(p)| = L_s = \sup_{x \in L} x \quad \text{and} \quad |g(q)| = L_i = \inf_{x \in L} x.$$

In other words, g attains its supremum and infimum on \mathbb{K} with respect to the modulus.

We assumed \mathbb{D} was bounded, so by definition $\overline{\mathbb{D}}$ is closed and bounded, and compact. Since f is continuous, we apply the lemma to get that $|f|$ attains its supremum/maximum on $\overline{\mathbb{D}}$, i.e., there $\exists z_0 \in \mathbb{D}$ s.t.

$$|f| \leq S \quad \text{and} \quad \exists z_0 \in \overline{\mathbb{D}} \text{ s.t. } |f(z_0)| = S.$$

We have two cases.

1. $z_0 \in \partial \mathbb{D}$. Then since f is holomorphic, we apply the Maximum Principle for holomorphic functions to get that f is constant on \mathbb{D}. But f extends continuously to $\overline{\mathbb{D}}$ by assumption, and so f is constant on $\partial \mathbb{D} = \overline{\mathbb{D}}$, i.e., Thus $|f(z)| = S \quad \forall z \in \overline{\mathbb{D}}$.

Since $|f(z)| \leq M$ for all $z \in \overline{\mathbb{D}}$, we must have that $S \leq M$, in which case $|f(z)| \leq M \quad \forall z \in \overline{\mathbb{D}}$.

2. $z_0 \in \mathbb{D}$. Then $|f(z_0)| = S \quad \forall z \in \mathbb{D}$, since $|f(z)| \leq M \quad \forall z \in \overline{\mathbb{D}}$, we get $S \leq M$.

Hence by def. of supremum $|f(z)| \leq S \leq M \quad z \in \overline{\mathbb{D}}$.

D must be bounded so that $\overline{\mathbb{D}}$ is compact for the result to hold, as it relies on results of compactness.
b) Suppose \(p: \mathbb{C} \to \mathbb{C} \) is a polynomial that does not vanish. By part 1,
\(p \) is holomorphic on \(\mathbb{C} \) and into \(\mathbb{C} \), so \(p: \mathbb{C} \to \{0\} \).

Now, we also proved that \(\frac{1}{z} \) is holomorphic whenever \(z \neq 0 \), i.e.,
\(\frac{1}{z}: \{z \in \mathbb{C} | z \neq 0\} \to \mathbb{C} \) is holomorphic.

By class 9/3, the composition \((g \circ p(z) = \frac{1}{p(z)}; \mathbb{C} \to \mathbb{C} \) is well-defined and holomorphic, since \(p(z) \neq 0 \) \(\forall z \in \mathbb{C} \).

Now suppose \(p \) is not constant. Hence \(p(z) = \sum a_n z^n \) \(\forall \) \(z \), the exists at
least one \(i \) \(\in \{1, \ldots, n\} \) such that \(a_i \neq 0 \). So, let \(\alpha \) be the largest such \(i \), and we have
that \(p \) is a complex polynomial of degree \(n \); we then from analysis that its
leading term dominates:

\[
\lim_{z \to 0} |p(z)| = \lim_{z \to 0} \left| \sum a_n z^n \right| = \lim_{z \to 0} \left| z^n \sum a_n z^{-n} \right|
\]

since \(\sum a_n z^{-n} = a_n z^{-n} + \cdots + a_n z^{-n} = \lim_{z \to \infty} |\sum a_n z^{-n}| \)

\[
= 0.
\]

Moreover, note that \(|\sum a_n \theta^n| = |\sum a_n \theta^n| \]

Puting these observations together, we have that \(p(Re^{i\theta}) \to \infty \) as \(R \to \infty \). Hence, as \(R \) gets large, the values of \(\frac{1}{p(Re^{i\theta})} \) get
arbitrarily small for fixed \(\theta \).

c) We want to show that if \(p \) is not constant then \(\exists z_0 \) s.t. \(p(z_0) = 0 \).

We proceed by contradiction. Suppose \(\forall z \in \mathbb{C} \), \(p(z) \neq 0 \) i.e., \(p \) does not vanish.
We want to show that \(p \) is not constant. Toward a contradiction, suppose that \(p \) is not constant.

Then we have by (b) that, in fixed \(\Theta \),

\[
\lim_{R \to \infty} \frac{|1|}{|p(Re^{i\Theta})|} = 0.
\]

Fix some \(z_0 \in \mathbb{C} \). Since \(p \) does not vanish, \(p(z_0) \neq 0 \) \(\neq 1/z_0 \).

Then there is some large \(R > 0 \) s.t. \(R > |z_0| \) and
\[
\left| \frac{1}{p(z)} \right| \leq \left| \frac{1}{p(z_0)} \right| \quad \text{for all } \Theta. \quad \text{In other words,}
\]

Let \(\text{Re} e = \theta \in [0, \pi] \) be any point on the boundary of \(B_R(0) \). Then the modulus of \(\frac{1}{p} \) along the boundary of \(B_R(0) \) is bounded above by \(\left| \frac{1}{p(z_0)} \right| \).

Considering \(B_R(0) \), a compact domain, we apply (a), setting \(\left| \frac{1}{p(z_0)} \right| = M \), we see that \(\left| \frac{1}{p(z)} \right| \leq M \) for all \(z \in B_R(0) \), and hence \(\left| \frac{1}{p(z)} \right| \leq M \) for all \(z \in B_R(0) \).

In particular, this tells us that \(\frac{1}{p(z)} \) achieves its supremum in \(B_R(0) \), at the point \(z_0 \in B_R(0) \). By the maximum modulus principle, we get that \(\frac{1}{p(z)} \) is constant on \(B_R(0) \).

This holds for all \(R \geq 1 \), to which the initial inequality held. But since \(\frac{1}{p(z_0)} = 0 \), take \(R \) to infinity to get that \(\frac{1}{p(z)} \) is constant on \(\bigcup_{R \geq 1} B_R(0) \).

Hence \(\frac{1}{p(z)} \) is constant, implying \(p(z) \) is constant in all \(C \). This contradicts our assumption, which completes the proof by contradiction.

Hence if \(p \) is not constant there exist \(z_0 \) so that \(p(z_0) = 0 \).
(2) Let $f : D \to \mathbb{C}$ be holomorphic with no zeros.

a) Take $g = \frac{1}{f}$, which exists everywhere since f does not vanish and is holomorphic since f and the function $z \mapsto \frac{1}{z}$ are both holomorphic (see class, 9.3).

Suppose $|f(z)|$ attains its supremum in D. Then by real analysis,

$$\frac{1}{|f(z)|} = \left| \frac{1}{f(z)} \right| \text{ attains its supremum in } D,$$

$g = \frac{1}{f}$ is a constant in D, as desired.

b) Suppose D is bounded and f extends continuously to \bar{D}. By (a), we know that D is compact, so f attains a supremum in D.

Thus by 2.1, f is constant on D.

If $|f|$ attains its minimum in D, then by (a), f is constant in \mathbb{C}.

Since f extends continuously to \bar{D} (go to the boundary), f must be constant in ∂D as well. Hence $|f|$ attains its minimum in ∂D. That is, since $|f(z)| = S$ for $z \in \partial D$ and $f \to \bar{D}$ continuously, $f(z) = S e^{i \theta}$ constantly in ∂D and $|f(z)| = S$ for $z \in \partial D$.

Thus $|f|$ attains its minimum in ∂D.

If $|f|$ attains its minimum in ∂D, then we are done.

In either case, assuming D is bounded and f extends continuously to \bar{D}, $|f|$ attains its minimum in ∂D.
3) Let \(f: \mathbb{D} \to \mathbb{C} \) be holomorphic and 1-1. Assume \(f \) extends continuously to \(\partial \mathbb{D} \setminus \{ z \} \) such that \(|f(z)| \leq M \) for \(z \in \mathbb{D} \setminus \{ z \} \). Show that if \(f(z) \) is any \(z \in \mathbb{D} \), then there exists a unique point \(z_0 \in \mathbb{D} \) such that \(f(z_0) = z \).

Suppose first that there exists only one discontinuity point \(z \), \(x \) extends continuously to \(\partial \mathbb{D} \setminus \{ z \} \) and \(f(z) = e^{\log(z - x)} \) is well-defined on the disk, i.e., why \(\log(z - x) \) has unique outputs on \(\mathbb{D} \).

Wlog, assume that \(z_1 = 1 \in \mathbb{D} \) (same up to rotation). Then \(\log(z - x) \) is a branch of \(z \). \(f(z) = e^{\log(z - x)} \) on \(\mathbb{D} \). However, the angles possible for the vector \(z - z_1 = z - 1 \) are in the open interval \((- \pi/2, \pi/2\)\), which means that \(\arg(z - z_1) \in (- \pi/2, \pi/2) \) and hence \(\log(z - z_1) \) can be chosen as the canonical branch to be well-defined on \(\mathbb{D} \). Moreover, the function \(e^{\log(z - z_1)} \) is holomorphic on \(\mathbb{D} \), since \(\log(z - z_1) \) is holomorphic on \(\mathbb{C} \setminus \{z_1\} \).

We prove that the "replacement function" \(f(z) \) extends continuously to \(z \in \partial \mathbb{D} \). First observe that \((z - z_1)^2 = 0 \) for \(z - z_1 = 0 \), but for small \(\varepsilon > 0 \), \((z - z_1)^{\varepsilon} = 0 \) whenever \(z - z_1 \). To prove the former statement, we have

\[
\lim_{z \to z_1} e^{\log(z - z_1)^{\varepsilon}} = \lim_{z \to z_1} (z - z_1)^{\varepsilon} = 0.
\]

Now observe that

\[
\lim_{z \to z_1} (z - z_1)^{\varepsilon} = M \lim_{z \to z_1} |(z - z_1)^{\varepsilon}| = 0
\]

(by supposition).

Hence \((z - z_1)^{\varepsilon} = f(z) \) extends continuously to \(\partial \mathbb{D} \setminus \{z_1\} \) (by virtue of the continuity of \((z - z_1)^{\varepsilon} \) and of the cont. extension of \(f \)), and we just showed that it extends cont. to \(z_1 \in \mathbb{D} \). Hence the function extends continuously to \(\partial \mathbb{D} \) as a whole set.

Thus \(|(z - z_1)^{\varepsilon} f(z)| \leq M |z - z_1|^{\varepsilon} \) and hence for all \(z \in \mathbb{D} \). This holds for all small \(\varepsilon \in \mathbb{C} \) (\(\varepsilon > 0 \)), so \(f(z) \) can take another limit to get that

\[
\lim_{\varepsilon \to 0} (z - z_1)^{\varepsilon} f(z) = f(z), \text{ and hence, taking } \varepsilon \to 0 \text{ with}
\]

1)}
the above result for each ε shows that $|f(z)| \le M$ for all $z \in D$.

Now assume that there exist a many discontinuity points z_1, \ldots, z_λ s.t. f extends cont to 00 \{z_1, \ldots, z_\lambda\}$ and $|f(z)| \le M$ at $z=0 (z_1, \ldots, z_\lambda)$.

Just as above, for small ε, define

$$g(z) = \left(\prod_{i=1}^{\lambda} \frac{1}{z-z_i} \right) \varepsilon f(z).$$

By exactly the same proof as above, g is holomorphic in the interior of D and extends continuously to all of ∂_D. Since

$$\lim_{z \to z_i} \left| g(z) \right| = \lim_{z \to z_i} \left| \prod_{i=1}^{\lambda} \frac{1}{z-z_i} \varepsilon |f(z)| \right|$$

$$= \left(\prod_{i=1}^{\lambda} \lim_{z \to z_i} \left| z-z_i \right| \right) \varepsilon \lim_{z \to z_i} |f(z)|$$

$$\le M \lim_{z \to z_i} |z-z_i|^\varepsilon = 0, \quad \text{since } \varepsilon \text{ is bounded.}$$

Hence by la., $\left| g(z) \right| \le M$ for all $z \in D$, z for all $z \in \partial D$.

Now taking

$$\lim_{\varepsilon \to 0} g(z) = f(z) \text{ gets us that since the result holds for each } \varepsilon \text{ and }$$

$$f, g \text{ are continuous, } |f(z)| \le M \text{ for all } z \in D.$$
1) Show that for the following cases of domain U a holomorphic \(f \) is not \(f(U) \) that extends continuously to the set \(U \). If \(f(z) = z \) for \(z \in U \) then \(|f(z)| \leq |z| \) for \(z \in U \).

\(a) \ U = \{ z \mid \text{Im}(z) > 0 \} \)

We want to find a holomorphic map \(\sigma(z) : D \to \{ z \mid \text{Im}(z) > 0 \} \) that preserves boundaries, where \(D \) is the unit disk.

Let \(T : D \to \mathbb{H} = \{ z \mid \text{Im}(z) > 0 \} \) by \(T(z) = \frac{1 + i z}{1 - z} \). By part 2, the Mobius transform is a bijection and function from \(D \to \mathbb{H} \) and holomorphic and continuous on \(D \) (since \(1 \notin D \)).

We show that \(\text{Im}(T(z)) \geq 1 \) for all \(z \in D \), \(\text{Im}(T(z)) > 0 \).

Let \(z \in D \) and then

\[T(z) = \frac{i}{1 - z} \frac{z(1 - i) - i(1 + i)}{1 - z} = \frac{1 - \overline{z}}{1 - z} \frac{1 - i|z|^2}{1 - z} = \frac{(1 - |z|^2) - (1 - |z|^2)i}{1 - z} \]

Since \(z \in D \), \(|z| < 1 \) and hence \(1 - |z|^2 > 0 \). Similarly \(2 \text{Re}(z) \leq |z|^2 < 1 + |z|^2 \) since \(|z| < 1 \), so \(1 - 2|z|^2 + |z|^2 > 0 \). Thus \(\text{Im}(T(z)) > 0 \), so \(T(z) \in \mathbb{H} \), as desired.

We claim that \(T \) is surjective. Let \(\omega \in \mathbb{H} \). \(\omega = x + iy \) for \(y > 0 \).

Set \(z = \frac{w - i}{w + i} \), and we claim that \(T(z) = \omega \). We have

\[T(z) = \frac{i + \frac{w - i}{w + i}}{1 - \frac{w - i}{w + i}} = \frac{2i}{2w} = \omega, \text{ as desired.} \]

We must show that \(z \in D \), \(|z| < 1 \):

\[|\frac{w - i}{w + i}|^2 = \frac{(w - i)(\overline{w} + i)}{(w + i)(\overline{w} - i)} = \frac{1 - |w|^2}{2|1 - w|^2} \leq 1 \text{ since } \text{Im}(z) = \frac{\text{Im}(w)}{2} \]

since \(\text{Im}(z) > 0 \) and hence \(1 - |w|^2 - 2\text{Im}(z) - 1 \leq 1 - |w|^2 - 2\text{Im}(z) - 1 \).

We have shown that \(T : D \to \mathbb{H} \) is surjective. Now we want to show that

\(T \) preserves boundaries as well, i.e., that \(T(0) = \mathbb{R} = \{ z \mid \text{Im}(z) = 0 \} = \mathbb{C} \).

Suppose \(z \in D \), \(r = |z| \in \mathbb{R} \). Then \(T(z) = \frac{i + e^{it}}{1 - e^{it}} \) (assuming \(\theta = 0 \), \(\theta \) applies \#3 since \(T \) extends continuously).

\[\frac{i + e^{it}}{1 - e^{it}} = \frac{\cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta} = \frac{(1 - \cos \theta + i \sin \theta)}{2 - 2 \cos \theta} \]

\[= \frac{-\sin \theta + i \cos \theta}{2 - 2 \cos \theta} \]
\[
\begin{align*}
\frac{1}{2-\cos \Theta}
&= (\sin^2 \Theta - (1-\cos^2 \Theta)) (\sin^2 \Theta) + (\sin \Theta \sin \Theta + (\cos \Theta + 1)(1-\cos \Theta)') \\
\Rightarrow \Im(T(z)) &= -\sin^2 \Theta - \cos^2 \Theta + 1 = (\sin^2 \Theta - \cos^2 \Theta) + 1 = -1 + 1 = 0, \text{ i.e.} \\
\Im(T(z)) &\in \mathbb{D}.
\end{align*}
\]

To recap, we have $T : \mathbb{D} \to \mathbb{H}$ holomorphic and surjective and preserves boundaries. Then for $T : \mathbb{D} \to \mathbb{C}$ is holomorphic on \mathbb{D} with continuous extension to the boundary $\partial \mathbb{D}$ (with one point 0 without limit), we have y since composition of holomorphic not.

For $z \in \mathbb{D}$, so

\[
|f(z)| \leq M, \quad \forall z \in \partial \mathbb{D}.
\]

Now we apply Liouville's since $f(z)$ is holomorphic on \mathbb{D} and extends continuously to $\partial \mathbb{D}$ which is compact, so get that $|f(z)| \leq M, \forall z \in \partial \mathbb{D}$, and in particular, $\forall z \in \partial \mathbb{D}$.

Now we apply surjectivity: since $T(\mathbb{D}) = \mathbb{H}$, i.e. T "covers" all of \mathbb{H}, we can replace this with

\[
f(w) \leq M, \quad \forall w \in \mathbb{H}, \text{ i.e. } w = T(z). \text{ In complete, the proof.}
\]

b) Now suppose $U = \{z \mid \Re \Im(z) > 0\}$, the strip with boundary $\{z \mid \Im(z) = \{0, \pi\}\}$. Again, we produce a holomorphic map with the desired properties, but have we use only part (a), let

\[
T(z) = \log : H \to U = \{z \mid 0 < \Im(z) < \pi\}, \text{ fixing the branch}
\]

\[
\log(z) = \log r + i \arg(z), \text{ per class on } 8\pi \mathbb{Z}.
\]

For $z = re^{i\theta}$, we get

\[
\log(z) = \log r + i \theta, \text{ as desired.}
\]

First, we know that $\log(z)$ is holomorphic on the cut plane $\{z \mid \Re(z) > 0 \& \Im(z) > 0\}$. Since $H \leq \{z \mid \Re(z) > 0 \& \Im(z) > 0\}$, and for all $z \in H$, $\Im(z) > 0$ by def. we have that $T : H \to U$ is holomorphic.

Now we show that $\log(u)$. Take some $z \in H$, so $z = re^{i\theta}$ s.t $r > 0, \theta \in (0, \pi)$ strictly. Then $\log(z) = \log r + i \theta$ s.t. $\Im(\log(z)) = \theta > 0$, as desired.

In fact, $\log(z)$ surjective: take $z \in U$, i.e. $z = x + iy$ s.t. $0 < \Im(z) < \pi$

Define $e^x e^{iy} \in H$ by definition; then $\log(z) = \log(\sqrt{x^2 + y^2}) + iy$

\[
= x + iy = z, \text{ as desired.}
\]

So $\log : H \to U$ is holomorphic and surjective. It also preserves boundaries, let $z = \partial H$ s.t. $z = x + iy$ for some $x \in \mathbb{R}$. Then

\[
\Im(z) = \frac{1}{2} \pi, \text{ as desired.}
\]

Use \sqrt{z} to allow continuity.
\[\log(z) = \begin{cases} \log x + 10 = \log x & \text{if } x > 0 \\ \log|x| + 1 \pi & \text{if } x < 0 \end{cases} \]

Hence \(\im (\log(z)) \in \{0, \pi\} \), that is, \(\log(z) \in \mathbb{U} \).

We have proven that \(\log: \mathbb{H} \to \mathbb{U} \) is holomorphic, surjective, and boundary-preserving. Take \((f \circ z): \mathbb{H} \to \mathbb{C}\) holomorphic, we have

\[
|f(z)| \leq M \quad \forall z \in \mathbb{H}, \quad \text{so} \quad |(f \circ z)(u)| = |f(z)| \leq M \quad \forall z \in \mathbb{H}
\]

Applying \(\text{H}(a) \), we get that \(|f(z)| \leq M \quad \forall z \in \mathbb{H} \).

Noting finally, finally, that \(\text{H}(u) = \mathbb{U} \) since \(z \) is surjective, we have \(|f(z)| \leq M \quad \forall w \in \mathbb{U} \), that \(f(z) \equiv w \).
(5) Show that for D a bounded domain with piecewise smooth boundary
\[
S_{DD} \overline{z} dz = 2i \text{Area}(D).
\]
By Gamelin p. 102, \(d\overline{z} = dx + idy \), so we get that
\[
S_{DD} \overline{z} dz = S_{DD} (x-iy)(dx + idy)
\]
\[
= S_{DD} x dx + y dy + i \int_{\partial D} y dx + x dy \quad (\text{see Gamelin})
\]
Now we apply Green's Theorem since D is piecewise smooth and D bounded.
and $x, y, -y$ are continuously differentiable functions in C ($p. 73$).
We get, setting $P_1(x,y) = x, Q_1(x,y) = y, P_2(x,y) = y, Q_2(x,y) = -x$
\[
\begin{align*}
&= \iint_D \left(\frac{\partial Q_2}{\partial x} - \frac{\partial P_2}{\partial y} \right) dx dy + \int_{\partial D} (Q_2(y,x) - P_2(x,y)) dx \\
&= \iint_D (1-1) dx dy + i \int_{\partial D} (1-1) dx dy \\
&= 0 + 2i \text{Area}(D) \\
&= 2i \text{Area}(D)
\end{align*}
\]
(6) Suppose $f: D \to \mathbb{C}$ has a primitive F, i.e. $\frac{dF}{dz} = f$, let γ be a plane curve smooth path, let A be a point along γ arbitrarily. Since γ is closed and piecewise smooth, there exists a parametrization of γ: $[0, 1] \to D$ such $\gamma(0) = \gamma(1) = A$.
Since we proved last week that line integrals are invariant under parametrization,
\[
\text{so } f(\gamma) dz \text{ can be described as a line integral from } A \text{ to } A.
\]
But by class, 9/2, since f has a primitive F, γ is a path from A to A,
\[
\text{so } f(\gamma) dz = F(A) - F(A) = 0, \text{ since } F \text{ is well-defined. Thus for all closed piecewise smooth paths } \gamma, \text{ so } f(\gamma) dz = 0 \text{ whenever } f \text{ has a primitive.}
\]
Now assume $f(\gamma) dz = 0$ for any closed piecewise smooth path γ. We want to show that f has a primitive, i.e. there is a function $F(z)$, $\text{holomorphic in } D$, $F'(z) = f(z)$.
By Pett 2, $\text{ if } f$ is C^1, we get $f(\gamma) dz$ depends only on the endpoints of γ.
For all paths γ, we have $f(\gamma) dz$ is independent of path [since f is continuous on D].
Fix some point $z_0 \in D$, we define $F(\gamma) = f(\gamma) dz$ for $\gamma \in D$, where γ is any piecewise smooth path from z_0 to γ. We prove that $F(\gamma)$ satisfies the Cauchy-Riemann equations with continuous portions in the first order.

Compute partials of $F(\gamma)$ by taking rectangular paths. Suppose $\gamma = (x_0, y_0) \to D$, fix some $(x, y) \in D$ and take γ a path from z_0 to (x, y).
for $x \in \text{closed } x$, $F(x, y)$ can be obtained by following γ from z_0 to (x, y) and then the straight path $\gamma_1(t) = x + t \varepsilon$, $0 \leq t \leq 1$

$\gamma_2(t) = u$

$F(x + \varepsilon, y) = \int_0^1 f(x + t \varepsilon, y) \, dt$

Then $\lim_{\varepsilon \to 0} \frac{F(x + \varepsilon, y) - F(x, y)}{\varepsilon} = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_0^1 f(x + t \varepsilon, y) \, dt = \int_0^1 f(x, y) \, dt - f(x, y)$ by the above worked since f is continuous. Similarly, $F(x, y + \varepsilon) = \int_0^1 f(x, y + t \varepsilon) \, dt$

So if $f(x, y) = f(x, y)$ and $y(t) = y + t \varepsilon$, $y'(t) = \varepsilon$.

Hence $\frac{dF}{dx} = f(x, y) \, dx + \varepsilon f(x, y) \, dy$

$= f(x, y) \, dx + \varepsilon \frac{dy}{dx} f(x, y) \, \frac{dx}{\varepsilon} = \frac{df}{dz}$, as desired.

Moreover, we get that $\frac{dF}{dx} = \frac{df}{dz}$ from the above statements by class on 9/18.

The question is the Cauchy-Riemann equations. Moreover, since $f(z)$ is continuous, $\frac{dF}{dz}$ and $\frac{dF}{dx}$ are continuous.

Putting these pieces together, we get that EF holomorphic at $-\frac{dF}{dz} = f$; hence $f: D \to C$ is a primitive.

We have shown that a holomorphic $f: D \to C$ has a primitive if $\int f(z) \, dz = 0$ for any closed path in D.
Suppose \(h: C \to \mathbb{C} \) is s.t. \(|h(z)| \leq M \) \(\forall z \in C \). We want to show \(\left| \oint_{\partial C} h(z) \, dz \right| \leq M \cdot \text{Length} (\partial C) \)

We denote the infinitesimal arc-length by \(|dz| = \sqrt{(dx)^2 + (dy)^2} \). Hence, \(\oint_{\partial C} h(z) \, dz \)

denotes \(\int_0^1 h(x(t)) \cdot |x'(t)| \, dt \).

We complete the proof by approximating the line integral using Riemann sums. Parametrize \(\gamma \) by \(\mathbf{r}(t) = x(t) + iy(t) \) for \(a \leq t \leq b \) and take some partition \(a = t_0 < t_1 < \ldots < t_n = b \). Then, per Corollary \(p.102 \),

\[
\oint_{\partial C} h(z) \, dz = \oint_{t_0}^{t_n} h(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} \, dt
\]

can be approximated in the \(n \)th dissection by

\[
\sum_{j=0}^{n-1} h(\mathbf{r}(t_j)) \cdot \frac{\mathbf{r}(t_{j+1}) - \mathbf{r}(t_j)}{t_{j+1} - t_j}
\]

where \(0 \leq j \leq n \).

Simplifying, we get

\[
\sum_{j=0}^{n-1} h(\mathbf{r}(t_j)) \cdot \left[(x_{j+1} - x_j) + i(y_{j+1} - y_j) \right]
\]

\[
= \sum_{j=0}^{n-1} h(\mathbf{r}(t_j)) \cdot [Z_{j+1} - Z_j]
\]

Then for each \(n \in \mathbb{N} \), we have

1. \(\left| \sum_{j=0}^{n-1} h(\mathbf{r}(t_j)) \cdot [Z_{j+1} - Z_j] \right| \leq \sum_{j=0}^{n-1} |h(\mathbf{r}(t_j))| |Z_{j+1} - Z_j| \) by the triangle inequality

\[
\leq \sum_{j=0}^{n-1} M |Z_{j+1} - Z_j| \quad \text{since each} \ Z_j \in C
\]

\[
= M \sum_{j=0}^{n-1} \sqrt{(x_{j+1} - x_j)^2 + (y_{j+1} - y_j)^2}
\]

Note that \(\sum_{j=0}^{n-1} \sqrt{(x_{j+1} - x_j)^2 + (y_{j+1} - y_j)^2} \) is an approximation of \(\text{Length}(\partial C) \) for this partition.

Since this inequality holds for each partition of the \(\gamma \) path, we can take \(n \) to infinity (i.e., smaller and smaller refinements) to get that

\[
\left| \oint_{\partial C} h(z) \, dz \right| \leq M \cdot \text{Length}(\partial C)
\]

since the left hand side of the inequality \(0 \) was an approximation of \(\left| \oint_{\partial C} h(z) \, dz \right| \) and the RHS is an approximation, by definition, of \(M \cdot \sqrt{\text{Length}(\partial C)^2} \)

\[
= M \cdot \text{Length}(\partial C)
\]

By the above argument, this proves \(M \cdot \text{Length}(\partial C) \), which completes the proof.
Take γ a path from 0 to 1. Find the following integrals (and justify why you need given some information to do so.)

a) $\int_{\gamma} e^{iz} \, dz$

We know that e^{iz} is continuous in all z, and furthermore that the complex derivative of e^{iz} is e^{iz} (part 1). By the chain rule, the derivative of e^{iz} is $i \pi e^{iz}$; hence a primitive for e^{iz} is

$$\frac{e^{iz}}{i},$$

which is a scalar multiple of a holomorphic function and hence holomorphic (by class 3/8). Similarly, the derivative is $(\frac{1}{i} e^{iz})' = \frac{1}{i} (e^{iz})'$

as desired.

By p. 107 in Gamelin, $\int_{\gamma} e^{iz} \, dz = F(1) - F(0)$ where F is a primitive of e^{iz} and $F(1)$, $F(0)$ are the endpoints of γ. Thus, we get

$$\int_{\gamma} e^{iz} \, dz = \left[\frac{e^{iz}}{i} \right]_0^1 = e^{i1}/i - e^{i0}/i = -1/i - 1/i = -2/i.$$

b) $\int_{\gamma} (z-1)^m \, dz$, $m \neq -1$. Assume that γ does not pass through $z=1$.

By part 1, we know that $(z-1)^m$ is continuous on γ; hence γ is a path within a domain where $(z-1)^m$ is continuous, since γ does not pass through $z=1$. Also by part 1, $(z-1)^m$ is holomorphic with primitive

$$F(z) = \frac{(z-1)^{m+1}}{m+1}.$$ Since $m \neq 1$, this is a non-constant and we proved a

Now, we have

$$F'(z) = \frac{1}{m+1} \cdot (m+1) (z-1)^{m+1-1} = (z-1)^m,$$

as desired.

So

$$\int_{\gamma} (z-1)^m \, dz = \int_{0}^{1} \frac{(z-1)^m}{m+1} \, dz = (1)^{m+1} - (0)^{m+1} = (2)^m - (1)^m,$$

as desired.
c) \(\int_0^1 \cos(z) \, dz \).

Observe that \(\cos(z) \) is continuous in \(\mathbb{C} \); it is also holomorphic (part 1)

with primitive

\[F(z) = \sin(z), \text{ since we proved in part 1 that } F \text{ is holomorphic} \]

\[F'(z) = \cos(z), \text{ as desired} \]

Hence by Thm. 6.6 on p.107

\[\int_0^1 \cos(z) = \sin(1) - \sin(0) \]

Note that \(\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \) (class 8/29), so

\[\sin(i) = \frac{e^i - e^{-i}}{2i} = \frac{e^{-1} - e}{2i} = \frac{e - \frac{1}{e}}{2i} \]

\[= \frac{e}{2i} - \frac{1}{2i} \]

\[\sin(0) = \frac{e^0 - e^0}{2i} = 0 \]

So \(\int_0^1 \cos(z) = \frac{e^{-1} - e}{2i} \).