Due Thursday, Nov 7th, at 11:35 AM, in class.

(1) Show that if \(z_0 \) is not a removable singularity for \(f(z) \), then \(z_0 \) is an essential singularity for \(e^{f(z)} \).

(Hint: in the case \(z_0 \) is a pole for \(f \), try to use that if \(U \) is open and \(g \) is holomorphic in \(U \), then \(g(U) \) is open.)

(2) Show that for \(z_0 \) isolated singularity of \(f \), the Laurent series \(f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_0)^k \) classifies the type of singularity at \(z_0 \) by

(a) Removable, if \(a_k = 0 \) for all \(k \leq -1 \)

(b) Pole, if \(a_k = 0 \) for all \(k \leq n \leq -1 \), and \(a_n \neq 0 \)

(c) Essential, if that are infinitely many negative indices \(k \) with \(a_k \neq 0 \)

(3) Show that if \(f \) is holomorphic in \(\mathbb{C} \) has two periods \(w_1, w_2 \in \mathbb{C} \) that are \(\mathbb{Z} \)-linearly independent (i.e. if \(nw_1 + mw_2 = 0, n, m \in \mathbb{Z} \) then \(n, m = 0 \)). Show that \(f \) is constant. Show that if a meromorphic function \(g \) in \(\mathbb{C} \) has 3 \(\mathbb{Z} \)-linearly independent periods, then \(g \) is constant.

(4) Evaluate the following residues

(a) \(\text{Res} \left[\frac{1}{z^2 + 4}, 2i \right] \)

(b) \(\text{Res} \left[\frac{\sin z}{z}, 0 \right] \)

(c) \(\text{Res} \left[\frac{z}{\log z}, 1 \right], \text{Re}(z) > 0 \)

(d) \(\text{Res} \left[\frac{z}{z^2}, 0 \right] \)

(5) Evaluate the following counter-clockwise integrals, using the residue theorem

(a) \(\int_{|z|=1} \frac{\sin z}{z} \, dz \)

(b) \(\int_{|z|=2} \frac{z}{\cos z} \, dz \)

(c) \(\int_{|z|=1} \frac{1}{z} \, dz \)

(d) \(\int_{|z|=2} \frac{z^2}{z^2 + 1} \, dz \)

(6) Suppose \(P(z), Q(z) \) are polynomials such that \(Q \) only has simple zeros \(z_1, \ldots, z_m \) and \(\deg P < \deg Q \). Show that the partial fractions decomposition of \(\frac{P(z)}{Q(z)} \) is given by

\[
\frac{P(z)}{Q(z)} = \sum_{j=1}^{m} \frac{P(z_j)}{Q'(z_j)} \frac{1}{z - z_j}
\]

(7) Using calculus of residue, show that

(a) \(\int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} = \frac{\pi}{\sqrt{2}} \)

(b) \(\int_{0}^{\infty} \frac{x^2}{x^4 + 1} \, dx = \frac{\pi}{2\sqrt{2}} \)