MATH 310 FALL 2019 PROBLEM SET 7

Due Thursday, Nov 7th, at 11:35 AM, in class.
(1) Show that if z_{0} is not a removable singularity for $f(z)$, then z_{0} is an essential singularity for $e^{f(z)}$. (Hint: in the case z_{0} is a pole for f, try to use that if U is open and g is holomorphic in U, then $g(U)$ is open.)
(2) Show that for z_{0} isolated singularity of f, the Laurent series $f(z)=\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ classifies the type of singularity at z_{0} by
(a) Removable, if $a_{k}=0$ for all $k \leq-1$
(b) Pole, if $a_{k}=0$ for all $k \leq n \leq-1$, and $a_{n} \neq 0$
(c) Essential, if that are infinitely many negative indices k with $a_{k} \neq 0$
(3) Show that if f is holomorphic in \mathbb{C} has two periods $w_{1}, w_{2} \in \mathbb{C}$ that are \mathbb{Z}-linearly independent (i.e. if $n w_{1}+m w_{2}=0, n, m \in \mathbb{Z}$ then $n, m=0$). Show that f is constant. Show that if a meromorphic function g in \mathbb{C} has $3 \mathbb{Z}$-linearly independent periods, then g is constant.
(4) Evaluate the following residues
(a) $\operatorname{Res}\left[\frac{1}{z^{2}+4}, 2 i\right]$
(b) $\operatorname{Res}\left[\frac{\sin z}{z^{2}}, 0\right]$
(c) $\operatorname{Res}\left[\frac{z}{\log z}, 1\right], \operatorname{Re}(z)>0$
(d) $\operatorname{Res}\left[\frac{e^{z}}{z^{5}}, 0\right]$
(5) Evaluate the following counter-clockwise integrals, using the residue theorem
(a) $\int_{|z|=1} \frac{\sin z}{z^{2}} d z$
(b) $\int_{|z|=2} \frac{z}{\cos z} d z$
(c) $\int_{|z-1|=1} \frac{1}{z^{8}-1} d z$
(d) $\int_{|z|=2} \frac{e^{z}}{z^{2}-1} d z$
(6) Suppose $P(z), Q(z)$ are polynomials such that Q only has simple zeros z_{1}, \ldots, z_{m} and $\operatorname{deg} P<\operatorname{deg} Q$. Show that the partial fractions decomposition of P / Q is given by

$$
\frac{P(z)}{Q(z)}=\sum_{j=1}^{m} \frac{P\left(z_{j}\right)}{Q^{\prime}\left(z_{j}\right)} \frac{1}{z-z_{j}}
$$

(7) Using calculus of residue, show that
(a) $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{\sqrt{2}}$
(b) $\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x=\frac{\pi}{2 \sqrt{2}}$

[^0]
[^0]: The method of evaluating real integrals by passing to the complex numbers (passage du réel á l'imaginaire) goes as early as the 18th century

