MATH 310 FALL 2019 PROBLEM SET 9

Due Thursday, Nov 21th, at 11:35 AM, in class.
(1) Show that for $a>0$ real parameter (Hint: replace $\sin a z$ by $e^{i a z}$ and integrate over an indented domain)

$$
\int_{-\infty}^{\infty} \frac{\sin a x}{x\left(x^{2}+1\right)} d x=\pi\left(1-e^{-a}\right)
$$

(2) By integrating $\left(e^{ \pm 2 i z}-1\right) / z^{2}$ show that

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\pi
$$

(3) Show that for a real parameter

$$
\mathrm{PV} \int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)(x-a)} d x=-\frac{\pi a}{a^{2}+1}
$$

(4) Show that for $0<a<b$ real parameters

$$
\mathrm{PV} \int_{0}^{\infty} \frac{x^{a-1}}{x^{b}-1} d x=-\frac{\pi}{b} \cot \left(\frac{\pi a}{b}\right)
$$

(5) Show that the sum of residues of a rational function on the extended complex plane $\overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ is equal to 0 .
(6) Show that

$$
\int_{-1}^{1} \frac{\sqrt{1-x^{2}}}{1+x^{2}} d x=\pi(\sqrt{2}-1)
$$

(7) Let D be an exterior domain. Suppose that f is analytic on $D \cup \partial D$ and at ∞. Show that

$$
\frac{1}{2 \pi i} \int_{\partial D} \frac{f(w)}{w-z} d w=f(z)-f(\infty)
$$

(8) Let f be a meromorphic function on \mathbb{C} with finite many poles, none in the real line. Suppose that there is a constant K so that $|f(z)| \leq K /|z|$ for z sufficiently large. Let $a>0$. Show that

$$
\int_{-\infty}^{\infty} f(x) e^{i a x}=2 \pi i \sum\left(\text { residues of } e^{i a z} f(z) \text { in the upper half-space }\right)
$$

. This formula is useful to find some Fourier Transforms.

[^0]
[^0]: "but even complete mastery does not guarantee success" Ahlfors, on using calculus of residues to compute definite integrals

