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Multiscale Anomaly Detection Using Diffusion
Maps
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Abstract—We propose a multiscale approach to anomaly de-  There are many approaches to anomaly detection in images
tection in images, combining spectral dimensionality redation  pased on statistical models, machine learning, saliensga
and a nearest-neighbor-based anomaly score. We use diffosi methods, sparse representations, and more

maps to embed the data in a low dimensional representation, o . L
which separates the anomaly from the background. The diffuen Statl§tlcal approach.es. model t.he data b.aSEd on its statisti
distance between points is then used to estimate the localmty ~ Properties and use this information to estimate whethest te
of each pixel in the new embedding. The diffusion map is sample comes from the distribution describing the normal
constructed based on a subset of samples from the image anddatapoints [2]-[5]. The problem with statistical approesh
then extended to all other pixels. Due to the interpolative ture s that the choice of the distribution to model the image is
of extension methods, this may limit the ability of the diffusion . . -

map to reveal the presence of the anomaly in the data. To not_ ob\{lous. In cases where the back_grqund is multi-class,
overcome this limitation, we propose a multiscale approach €stimation of the parameters of the statistical model besom
based on Gaussian pyramid representation, which drives the complex. Also, a statistical model which works well for

sampling process to ensure separability of the anomaly from certain images will not necessarily be easily adapted tova ne
the background clutter. The algorithm is successfully testd on application

side-scan sonar images of sea-mines. . . .
g Anomaly detection methods based on machine learning

_Index Terms—Anomaly detection, diffusion maps, nonlinear require training data, which is not always available, areyth
dimensionality reductlo_n, multlsc_ale representation, gnilarity may not be able to detect new types of anomalies they were not
measure, automated mine detection. . L . :

trained on. The assumption in anomaly detection using epars
representation is that an anomaly cannot be reconstructad i
I. INTRODUCTION sparse manner using a dictionary learned from normal images
In such an approach, it is necessary to learn a dictionary to
Anomaly detection is important in many applications ifnodel the normal regions in the image, which requires tnaini
image processing, such as target detection in hyperspgdira data to model the background.
[2] or sonar images [3], [4], mammographic image analysjs [5 Chen, Nasrabadi and Tran [1] propose training an additional
and defect detection, for example in wafer or fabric inspegiictionary to model the anomalies using training samples.
tion [6], [7]. A robust solution to this problem is importantn [6], the algorithm proposed by Boiman and Irani is based
in military applications and automation of quality asswen on the assumption that anomaly patches in an image cannot
processes, as the user will be shown only suspicious obje@gé composed combining normal patches from the image or
Anomaly detection in images is challenging due to severgbm a reference image. The data (image or video) is divided
factors: into ensembles of many small patches at multiple scalesgalo
. Large size of the data set: images have between tenswth their relative spatial layout. Image regions that aatrive
thousands of pixels and up to millions of pixels. composed from ensembles of other patches are detected as
« Noisy features which may be falsely detected as anonpomalies. This algorithm presents impressive results,itbu
lies. has high computational complexity in regards to both memory
« Lack of training data: it is usually very hard to attaiféquirements and run-time. Zontak and Cohen [7] propose
labeled data for anomaly detection. In addition, the da& algorithm for wafer defect detection based on anisotropi
sets are unbalanced due to the nature of anomalikgfnels. Patches from a test image are reconstructed using
there are many examples of normal data, but few @Btches taken from a reference image, and patches which can-
the anomalies. This makes unsupervised methods mo@¢ be reconstructed from the reference patches are anosaalo
desirable than supervised ones. This algorithm requires a reference image or an image with a
« High dimensionality of the data: images are usuallperiodic pattern.
represented using high-dimensional features such as thdhe features used to describe images are typically high-
patch surrounding each pixel, histogram of gradients, e@mensional, but can be shown to lie on a low-dimensional
« Multiple classes of normal data points: in many image®anifold. Dimensionality reduction techniques find a new,

the normal datapoints do not belong to a single clustefower-dimensional representation for the data, which atve
meaningful structures. This is useful in anomaly detection
Gal Mishne and Israel Cohen are with the Department of Htettr because such techniques can find a representation which sep-
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for the data. For example, Madar, Malah and Barzohar [8] Rabin and Averbuch recently proposed using diffusion maps
perform dimensionality reduction using the normalizeceeig for anomaly detection in a different application than image
vectors of the Normalized Laplacian Matrix, constructed oprocessing: a sensor data fusion framework [23], [24]. §sin
a hyperspectral image. In the lower dimensionality, spéctra hierarchical framework, diffusion maps are applied to the
clustering is employed to model different types of backgibu nodes at every level, first fusing groups of sensors together
terrain. These clusters are then used in a combined locahd then fusing the groups together. The score function used
global statistical approach to model the background anelctletis also a nearest-neighbors based approach, determined by
anomalies. Tsai and Yang [9] introduce a method for defeitte sum of the diffusion distances between each instance
detection using dimensionality reduction, in cases whereaad its nearest neighbors. The anomalies in this applitatio
clean reference image is available. Dimensionality radact are contextual anomalies: the sensor measurements are not
is performed on the images using a 1-D vector of quantilesecessarily anomalies by themselves, but their co-ococcere
and the quantile of the input image is compared to that of tire a particular form makes them anomalies [25]. In [24], the
template using a quantile-quantile (Q-Q) plot. Abnornigdit assumption is that the anomaly is within normal levels fatea
are detected in the Q-Q plot using Chi square distribution. of the individual sensors and only becomes distinct thrahgh

We propose using diffusion maps [10] for dimensionality refusion of the sensors. At the bottom level of their framework
duction. Diffusion maps is a spectral dimensionality rathuc i.e. the measurements, anomalies have values similar to the
method based on the construction of the graph Laplacian normal instances. This assumption usually does not hold in
the data. It has been used successfully in various apmitatiimage anomaly detection where the data points are featfires o
[11]-[16]. The computational burden of the diffusion mapsnage patches or the image patches themselves.
approach may be significant as it requires the computation ofA disadvantage of using spectral dimensionality reduction
an affinity matrix on the data. This requires calculations ehethods is that they are only useful if the normal and
the distance between each pair of samples in the data set. #hemalous instances are separable in the lower dimensional
burden can be reduced by sampling a subset of data poietsbedding of the data [25]. This issue manifests itself in ou
for which the diffusion map is calculated and then extendirgpproach due to the process of sampling and out-of-sample
it to all points using an out-of-sample extension method,[17extension. We show how this process can limit the success
[18]. Sampling and extension is common practice in applyirgf the dimensionality reduction in revealing the presente o
diffusion maps to images due to the large size of the deaaomalies in the data and propose an algorithm for overapmin
set [15], [19]. these limitations. We propose a multiscale approach which

The computational complexity of constructing the affinitylrives the sampling process to ensure separability of the
matrix can also be reduced by calculating a sparse affinepomaly from the background clutter. This approach enables
matrix, using a k-nearest-neighbor search. Thus, instdadto effectively apply diffusion maps to the problem of anoynal
calculating the kernel between each sample and all the rdstection. We demonstrate on real images that this approach
of the samples, the kernel is calculated only between eagteatly improves the anomaly detection, compared to method
sample and its nearest neighbors. This results in a sparddch are single-scale.
matrix and complexity is further reduced by efficient spaictr The main advantage of using diffusion maps in our frame-
decomposition algorithms adapted for sparse matrices.nWheork is that it induces a distance measure over the data set
using exact nearest-neighbor search, it can still be necessampich is robust to noise and preserves local neighborhoods.
to employ sampling and out-of-sample extension to redudéis enables nearest-neighbor anomaly detection in the re-
run-time, dependent on the size of the data set. Howevér, fdaced dimensionality. Our assumption is that anomaliemlie
algorithms forapproximate nearest neighbor (ANN) search inlow-density neighborhoods, whereas normal pixels lie imsge
which a degree of error is allowed in the query result cameighborhoods. Based on the local density of the pixel on the
enable calculating the matrix for all data-points. This oses lower-dimensional manifold, we compute an anomaly score
the need for sampling and extension. In such methods, tloe every pixel. This score conveys the degree to which the
exact k-nearest-neighbors are not necessarily obtaingds b pixel is considered an anomaly. Depending on the applicatio
neighbors that are not too distant from the exact ones. Theéle score can be thresholded to produce a binary map of
approximate queries can greatly reduce the search time [2@8homalies, or the pixels with top-ranking can be outputted t
[22]. For example, the computational complexity of the rebe inspected by the user. The successful performance of our
cently proposed randomized approximate nearest neiglaborsalgorithm is demonstrated for real images of side-scanrsona
gorithm (RANN) search method proposed by Jones et al. [2®here the anomalies are sea-mines.
scales nearly linearly with the number of patches. This is Our approach is unsupervised and no prior knowledge is
useful when the dimensionality of the image features is oot trequired regarding the appearance of the anomaly or the
high, since the performance of ANN algorithms deteriorates background. No assumptions are made on the statisticallmode
the dimension increases. In practice, the performancendispeof the background pixels or if the background can be clusdtere
on the intrinsic dimension of the data, which often turnstout into several different classes. We do not use training data o
be much smaller than the extrinsic dimension, as we assumaéerence image. Our approach is data-driven, and can loe use
in our setting. Since often the intrinsic dimension of théadain different applications. The user needs to provide a featu
is not known in advance, it is difficult to predict how well arspace for the data set and a distance measure which can be
ANN algorithm will do in a specific application. used to compare the local similarity of data points. In addit
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the size of meaningful anomaly regions in the image can alsolt can be shown thd® has a complete sequence of biorthog-
serve as input, but it is not necessary. onal left and right eigenvectors,; and; respectively, with
The paper is organized as follows. Sec. Il reviews the sequence of positive eigenvaluésy| > |A\i| > .... The
diffusion map framework for dimensionality reduction andgpectral decomposition @, yields thatt steps of the Markov
Sec. Il describes out-of-sample extension methods arnid thehain can be presented as
limitations in anomaly detection. In Sec. IV, the proposed
multiscale algorithm is presented. Finally, Sec. V demass pi(,y) = Z Aithi(x)du(y). 3)
the application of the proposed algorithm to automaticetrg 120
detection in real images. Because of the fast decay of the spectrum, only a few terms are
required to achieve sufficient accuracy in the sum. A mapping
Il. DIEEUSION MAPS can be defined between the original space and the first

Real world data typically has high dimensionality. Howeveslgenvectors. The diffusion map is defined by

these high dimensional data sets can be shown to lie on low- Uy x— (M (@), Aot (2), ..., AﬁW(x))T. (4)

dimensional manifolds. Finding a low-dimensional represe h . in th . o
tation of the data is necessary to efficiently handle it aldote that?o is not used in the embedding because it is a

usually reveals meaningful structures within the data.sThHfonstant vector. Thez mapping; embeds the data sétinto
embedding of high-dimensional data into a low-dimensiond]€ Euclidéan spadé’. The spectrum decay of the eigenvalues

manifold is done by dimensionality reduction methods. Iff the reason why dimensionality reduction can be achieved.
recent years, a large number of nonlinear techniques f'BI?e dimension of the new representation depends only on the

dimensionality reduction have been proposed [10], [L&3]42 random walk_ and is i_ndependent of th.e length of the feature
[28]. Several of these methods are spectral methods, baggat%r#sgd In dt.he or|g|n2al repr(te)sentatlon of the data.

on the eigenvectors of adjacency matrices of graphs on théAd usion |Ztafr_10edDE(x,z) etween two pointsz, z In
data [10], [16], [28]. These methods take into account tﬁ@e ata sef” Is defined by

geometry of the data set and the representation they provide pe(2,9)) — pe(2,y 2
preserves local neighborhood information. Diffusion mgije§ Di(z,2) = (pr( )(; (y)t( ) (5)
is one such technique, based on the construction of the graph y€eT 0

Laplacian of the data set. It has been used successfullyTiRis measures the similarity of two points according to the
various applications such as spectral clustering [11]naig evolution of their probability distributions in the Markehain.
denoising [12], speech enhancement [13], [14], hypersplectThe diffusion distance between two points is small if thera i
image representation [15] and word recognition based en ligrge number of short paths connecting them in the grapls. Thi
reading [16]. metric is robust to noise, since the distance between twatpoi
LetI' = {z1,..,2,} be a high-dimensional set of data depends on all possible paths of lengthetween the points,
points. A weighted graph is constructed with the data poinfthin the dataset. As opposed to the original distance eetw
as nodes and the weights of the edges connecting two nodgn§ points which is independent of all other points in the
a measure of the similarity between the two data points. Thgtaset, the diffusion distance depends on the locatiohef t
weight functionw(z, y), =,y € T' is required to be symmetric other points in the dataset. Using the spectral decompasiti

and pointwise nonnegative. The choice of the weight fumctiqyiven in (3), the diffusion distance in (5) can also be caited
should be determined by the application, since it convegs thsing the eigenvectors by

local geometry of the data set. A popular choice is to weight

the edge between the data pointsand; using a Gaussian Di(z,2) =Y _ N ((x) — ¥;(2))*. (6)
kernel: j>1
w(w;, x;) = exp(—|lx; — ;| /0?), (1) Taking into account the spectrum decay, the diffusion dista

whereo > 0 is a scale parameter, Easr; ? eeicilr?\l/giii?s u'l?'httj)s atr(\:: r’g:grr:] a;t(;l:i?:gl léts)lrr:lg I:;ilty torl‘e

Then, a random walk is created on the data set by norm&!— - &g . T put piextty
. . . . e diffusion distance is low given the eigen-decompositb
izing the kernel in an asymmetric manner:

P. It was shown [11] that the diffusion distance is equal to

p(z,y) = w(z,y) ) the Euclidean distance in the diffusion map space using all
’ d(z) ’ eigenvectors in the decomposition:
where d(z) = }  crw(z,y). The functionp satisfies p2(, oy = ST N2 (. (2) — 1;(2))? = | T, (x) — Uy ()]
p(z,y) > 0 and Zzepp(x,y) = 1. Therefore, it can be (%) ; 7 W) = 45(2)" = (@) el
interpreted as the probability for a random walker to jump B 7

from z to y in a single time step. The matrR € R"*™ with In Sec. IV, we use this property of the diffusion distance to
p(-,-) as its entries is the transition matrix of this Markowefine a measure of affinity in the diffusion coordinates.
chain on the data sef. Taking powers of the matrix is Spectral embedding methods are commonly used in clus-
akin to running the Markov chain forward. The kernpe(-,-) tering applications [11], [28]-[30]. Most methods suggest
describes the probability of transition between two points use the first non-trivial eigenvectors (the first eigenvecto
steps. corresponding to\g = 1 is constant) to find clusters in the
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dataset. This clustering property of the diffusion map isfuls A. Laplacian Pyramid Extension

for anomaly detection. We expect the background pixelsén th

image to be clustered together and the anomaly to be distant

from this cluster in the new embedding. Recently, a new algorithm was presented for out-of-sample

function extension using the multiscale Laplacian pyramid

A. Setting the Scale Parameter o [18]. At each iteration, 'Fhe ITapIacian pyr_amid algorithrmeo
structs a coarse approximation of a functjbfor a given scale

The scale parameter is of great significance in construct-; Then, the difference betwegnand the coarse approximation
ing the weighted graph. Setting to be too small results js ysed as input for the next iteration. The difference is

in a disconnected graph, where many points are connecigghroximated at each level using a Gaussian kernel with finer
only to themselves (local neighborhoods of size 1). Howeveind finer scales.

settingo to be too large results in all the points in the graph
being connected. This is especially undesirable in thengedf
anomaly de_tectio_n, where settingo be too large will connect Wo 2 wo (@, x;) = exp (= ||z — 5] /eo) , (10)

the anomalies with the cluttered background. Possitslité

setting the scale parameter are using the median distaMét €0 set to be a large scale. A smoothing operator is
between points in the dataset or the standard deviationeof @#ptained by normalizingVo:

On the lowest level, the Gaussian kernel is defined'doy

dlstanqes. These are global parameters. _ _ Ko = ko(@i, ;) = a5 "wo(xi, z;), (11)
Zelnik-Manor et al. [29] suggest calculating a location
dependent for each data point instead of selecting a singlhere go(z;) = > wo(x;,z;). On the next levels, the

scaling parameter. Then, the affinity between a pair of goirfaussian kernel is computed by

can be written as €0
Wi = wilws, ;) = exp (=llo —a;[%/57), (12)

_ — ||z — ]2
w(®i, 1) = exp ( 0105 ’ ®)  and the smoothing operator is
whereo; ando; are the local scale parameters fgrandz«;, K = ki(zi, ;) = q; wi(g, ). (13)

respectively. The selection of the local scaleis determined

by the local statistics of the neighborhood of point For  The Laplacian Pyramid representation of a functfoan T
example, the scale can be set as is defined iteratively by:

i _ lL _ 9 9 n
o; = ||lz; — vk ) so(xyg) = Zko(fﬂmfﬂk)f(xi)v I=0 (14)
i=1

where z is the K-th nearest neighbor. We adopt this ap-
proach in our algorithm, using’ = 7. This approach is local, n

since the distance between two points is scaled according to si(zr) =Y k(e ap)dy (), 1> 1 (15)
the local statistics of the neighborhoods surrounding e t i=1

points. This is desirable since we expect the anomaly to beviiith the difference defined by

a low density neighborhood in contrast with the background, -1

which we expect to be in a dense neighborhood. _Setting a dy(z1) = f — Z Smy 1> 1. (16)
single global scale would not be able to address the difteren
in density of the points.

m=0

The Laplacian pyramid is iterated on finer and finer scale unt

the difference| f — 3, si|| is below a given error threshold.
[1l. FUNCTION EXTENSION

The functionf is extended to a new data poimt € I' by

When the data set is very large, it is impractical to compuEﬁe SUMF(T4) = 3 si(Z4), where

a diffusion map for the entire datasgt Instead, a diffusion

map is constructed for part of the samplesC I' and then - - B
the embedding is extended to all pointslirusing an out-of- s0(Tk) = Zko(xi’ T) [ (i), 1=0 (17)
sample extension method. =

The Nystrom extension method is @ common method for s1(Tx) = Zkl(xi7fk)dl(xi)7 1> 1. (18)
the extension of functions from a given training set to new =

samples. Recently, methods have been proposed to approx-

imate the Nystrom extension method [31] or improve upon We perform this extension method for each diffusion coordi-
it, such as the Geometric Harmonics method [17]. In [17hate f = ¥; separately. The number of levels in the pyramid
the authors state that low-complexity functions can belyasextension can differ between the coordinates, dependent on
extended very far from the training set as their behavior feeir smoothness ovér. A smooth function can be extended
smooth and the extended values are easy to predict. A functissing coarse scale, i.e. will not require many levels of the
with many variations onl” should have a limited range ofpyramid. An oscillating function on the other hand will régu
extension, as its values off the training set are more difficdiner and finer levels of the pyramid to enable an accurate
to predict. extension.
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B. Limitations of Out-of-sample Extension for Anomaly De- based on the assumption that normal data points appear in
tection dense neighborhoods, whereas anomalies lie in neighbdshoo

The popular methods for out-of-sample extension are basiih low density [25]. One challenge of such an approach
on interpolation. They are all a variety of calculating th& the computational complexity of computing the distance
value for a new sample by weighted sum of the values gf each test instance with all other instances, in order to
the test data points iii, with the weights dependent on thec©Mpute its nearest neighbors. Calculating the distansieg u
Euclidean distance between the data points. This is a limita € low-dimensional diffusion representation, greatlgiuees
of extension methods when applied to anomaly detection. fff_complexity of the distance computation. Also, as noted
a case where there are no anomaliesTirand it consists 1N Sec. Il, calculating the distance between points in their
only of examples from a single-dimensional cluster (the diffusion coordinates, |.e.,_the diffusion distance, haerb _
background), then the eigenvectors capture only the rétaxa shown.to be robust to noise. These st_ep_s are performed in
process within this cluster [30]. If the anomaly is not atstea® Multiscale framework to overcome limitations of under-
partially represented in the subg&tthe values of the diffusion S@MPpling the image and out-of-sample extension to theeentir
map will not capture the nature of the anomaly. Extension 8'29€: .
the diffusion map to anomaly data points will give these poin N S€c. IV-A we present three anomaly detection meth-
diffusion coordinates which are not meaningful in separati ods.based on dlfoSI_On maps, using a single resolution of
them from the background. All anomalies or data points whidR€ image. We describe the disadvantages of these methods
are far removed from the test set, will not be extended {B terms of performance and computational complexity. In
appropriate coordinates representing their distance filoen S€C- IV-B, we propose a multiscale anomaly detection method
test set. Anomaly detection when the anomaly is not includ¥ich overcomes the limitations of applying diffusion maps
in the initial diffusion map, requires extrapolation of thdmages. In Sec. IV-C we describe the implementation detdils
diffusion coordinates and not interpolation. However inist  OUr algorithm. We compare the performance of our multiscale

clear how to perform extrapolation on the low-dimension&f€thod with each of the single-scale methods in Sec. V.
manifold, if at all possible.

The size of the data set for images is very large. Even Single-scale Anomaly Detection
for a small image ofl00 x 100 pixels there arel0,000 _ . . .
data points. Therefore, it can be inefficient to construct a ON€ May consider three simple methods for applying diffu-

diffusion map using all the pixels in the image, especiall§lOn Maps to anomaly detection in images, while avoiding the
for high-resolution images. Instead, it is a common approalmitations of under-sampling. The first is to apply the prss

to construct the diffusion map for an image using a subset g constructing a diffusion map and detecting anomalies in
random samples [15], [19]. The subset is embedded in a Iov&@? low-dimensional embedding several times, for differen
dimensional representation using the first several eigetare subsets of random sqmples.. The results cgn be fused together
and then the diffusion map coordinates are extended to Wjdetect the anomalies. This method avoids the problem of
patches in the image using an extension method. If the set?®§ing t00 dependent on the random samples. However, it
random samples does not include the anomaly, the diffusilsn computationally intensive and the number of times this

map will not capture the difference between the anomaly aijpuld have to be performed until the anomaly was detected is
the background. Therefore, the out-of-sample extensidheof unknown, due to the randomness of the sampling. Therefore,

diffusion map to the pixels in the anomaly region will nofliS method may result in a miss-detection. An example is

succeed in separating them from the background. Thesespix@ipPlayed in Fig. 1. Fig. 1(a) presents a side-scan sonayema

will be assigned diffusion coordinates which represent tff @ Sea-mine on a periodic background. The sea-mine is
background and the anomaly detection will fail. indicated by the red arrow. Two subsets of random samples are

used for the image, yielding very different detection resul
In the top row there is a miss-detection and in the bottom row
there is a positive detection. Note both subsets have the sam
number of samples. The diffusion maps for the two sampling
We propose a multiscale approach combining spectral-basetiemes are shown in Fig. 1(b). The first three coordinates
dimensionality reduction and nearest-neighbor-basechahyo in the diffusion map (4) are associated with RGB color in
detection. Diffusion maps are used to find a lower dimengdionarder to display the connection between the location of the
representation of the image. Due to the successful usepafel in the image, and its diffusion coordinates. Each poin
diffusion maps for spectral clustering, our assumptiorhit t in the three-dimensional space is assigned RGB values, by
the anomaly regions will be well separated from backgrourapplying a simple transform from the diffusion coordinaies
regions in the new embedding. In the embedding, backgrouR&B values|0, 255] x [0,255] x [0,255]. Then, each pixel
pixels will have similar diffusion coordinates, lying in ain the image is colored (Fig. 1(c)) according to the RGB
dense neighborhood, whereas the anomalies are separatdde assigned to its diffusion coordinates (Fig. 1(b))teNo
from the background and lie in a low density neighborhoothat this coloring is only for display purposes. In the top/ro
This enables using a nearest-neighbors based approacthediffusion map (Fig. 1(b)) captures the periodic natufre o
the lower dimensional embedding to determine which pithe data, but the anomaly is not sampled sufficiently and is
els are anomalies and which are normal. This approachnist distinct in the diffusion coordinates. When the diffursi

IV. MULTISCALE DIFFUSION BASEDANOMALY
DETECTION
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Fig. 1. Demonstration of the affect of random sampling on diftusion  Fig- 2. Top row: original side-scan sonar images, the seesnare indicated

map and the detection results. Results are shown for twereift sampling Y red arrows. Bottom row: Anomaly score for detection basedcoarse
distributions in the top and bottom row. (a) Side-scan somage of a sea- resolution of the images. The images were down-sampled actarfof 2,
mine, visible as the dark shadow and indicated by a red airogb),(c) the and a third of the plx&_els were sampled in the const_ructlonhefdlffu5|o_r1
first three coordinates in the diffusion are associated RiBB color in order Map. In (a) the detection is successful. However, this niethay result in
to display the connection between the location of the pirettie image, false alarms (b), low anomaly score (c) or a miss-detecti)n (

and its diffusion coordinates. (b) First three diffusion pneoordinates. (c)

Image pixels colored according to the RGB color associatétl the first

three coordinates of the diffusion map given in (b). (d) Ardynscore. . . .
o ®)- @ image separately. For each sub-image, a high percentage of

samples can be used to avoid sub-sampling. This method is

map is extended to the entire image shown in Fig. 1(c), tf@Mmputationally intensive since it requires the calcofatof
pixels of the anomaly are given coordinates representing th diffusion map for every sub-image. In addition, it can @aus
background, and the anomaly is not visible. Calculating tifeNigher false alarm rate. The reason for this is that regions
anomaly score, Fig. 1(d), yields there are no anomalies \M’]ICh are unique in their immediate surroundings, yet simil
the image. In the example on the bottom row, a differef@ other regions in the image, will be treated in separate sub
subset of random samples is used. In this case, the diffus|Bif9es and can be detected as anomalies. Also, the anomaly
map Fig. 1(b) captures both the anomaly and the periodfge!f might be split between sub-images, making it smafier -
nature of the background, and separates the anomaly fr§Afh Sub-image and reducing the detection rate. To avaid thi
the background. The anomaly score in Fig. 1(d) display€ image will have to be divided into overlapping sub-imsage
the existence of an anomaly in the image. These exampj@ising the computation complexity even more. Finally,reife
demonstrate that the success of the diffusion map in cayturf'€ Sub-image itself is rather homogeneous, the natureeof th
the nature of the anomaly is dependent on the pixels includ@fusion maps is that the embedding for such a sub-image
in T. For this image, in average only one out of every fiyWill include the inner-cluster variations, and cause pussi

random subsets yielded a detection of the anomaly, when {AIS€ alarms.
size of the subset wak% of the pixels.

A second approach is to perform the detection on a coarger
resolution of the image. The advantage of using a coarse
resolution is that a higher percentage of samples can be use@ur method aims at reducing the computational complexity
since the image is down-sampled, and it is more likely thathile improving the detection rate. To overcome the limita-
the anomaly will be properly sampled. A disadvantage of thilbons of random sampling, we propose a multiscale approach.
approach is that the chosen scale may limit the ability tectet Assume that the anomalies in the image are larger than asing|
small anomalies. Also, since the fine details are blurred, thixel. Therefore, they can be detected at several resakitio
anomaly may be less distinctive from the background. Thig the image. At a lower resolution, it is computationally
will require lowering the detection threshold which willstdt  possible to sample a larger percentage of the image. Thus,
in more false-alarms. An example of anomaly detection ondgtecting an anomaly at a lower resolution is less likely
coarse scale is shown in Fig. 2. The original side-scan sonarfail due to sampling. We propose to take advantage of
images are presented in the top row and the anomaly sctte anomaly detection at different scales to overcome the
for each image is displayed on the bottom. In Fig. 2(a) tHinitations of random sampling. Since our method performs
detection is successful. In Fig. 2(b), the anomaly is dettas anomaly detection at different resolutions of the imagenéat
well as other regions in the background. Successful detectthe anomaly is missed on a coarse level, for example sinse it i
of the anomaly in this case, would detect false alarms as watlo small at that level, it can still be detected on the follugv
In Fig. 2(c), the anomaly received a low score. In order tqkediner levels. In addition, it is possible to lower the threlsho
the detection rate high, a low threshold would be necessafity; anomaly detection on the coarser levels, since thisnail
which could cause false alarms in other images. The anomalyrm the false alarm rate as a decision is only reached at the
in Fig. 2(d) is not detected at all. full-scale level. Thus we are able to detect anomalies on the

A third possibility is to divide the image into severalhigher levels, even at the cost of detecting more false alarm
sub-images, and perform anomaly detection on each ssiice these false alarms will be removed at the final level.

Multiscale Anomaly Detection
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Our multiscale approach is based on constructing a Gaussiarthe next level. An example of this process is shown in
pyramid [32] representation of the image. Starting with th€ig. 3. Fig. 3(a) shows the calculated anomaly score forl leve
coarsest scale, a diffusion map is constructed, based om. @hresholding this score yields a group of suspicious pixel
subset of the data set. Since the image is smaller at thisluding both the anomaly and some background pixels. The
scale, a larger percentage of the image can be sampled dorresponding pixels on the next levél- 1, are included in
the construction of the diffusion map, perhaps even alllpixel';_;. The rest of the pixels are randomly sampled. Calculation
Then, an anomaly score is used to determine which pixesthe diffusion map and its extension to the image, yields th
are anomalies at this level. These pixels are used as inpuatmmaly score’;_1, in which only the anomaly received a
the next level as the pixels at the finer level corresponding lhigh score, separating it from the background.
the anomalous pixels at the coarser level are includet.in  The process of sampling, dimensionality reduction and
The rest of the pixels il" are sampled randomly from theanomaly detection repeats for every level, with the outgut o
image. This algorithm continues from level to level, witltka each level serving as input to the next level, determinirgy th
previous level providing prior information on which samplesamples inl';. At the full-scale levelG,, the anomaly score
of the data set are used to construct the diffusion map. Thig each pixel determines the existence of anomalies in the
approach greatly increases the detection rate of the @ifius image. We use a hard threshotdon Cy and then smooth
based anomaly detector. the resulting image. Anomalies have a high score, close to 1.

Our approach is less computationally intensive than aeingFig. 4 presents a flowchart of the algorithm.
scale detector using an equivalent amount of samples, sinc@t each level, the affinity matrix is calculated for the subse
on the coarser scales, smaller patches can be used as $eatgreysing (8), with the scaling parameter set as explained in
reducing computation time of the calculation of the affinitgec. 1I-A. In order to reduce computation time and mem-
matrix. Also, the detection process is faster on a coars8escory requirements, the matrix is calculated usihgnearest

The anomaly score itself is based on a nearest neighbeiighbors, i.e. patch; is connected to patch; if z; is
approach. In the low dimensional embedding, backgrouaghong thek nearest neighbors af; or vice-versa. Otherwise
pixels will have similar diffusion coordinates, lying in aw(z;,z;) = 0, as in [28]. This enables the matrix to be sparse.
dense neighborhood, whereas the anomalies are sepated fr The anomaly score for each level is calculated based on
the background and lie in a low density neighborhood. The nearest-neighbor approach. This requires calculatieg th
diffusion distances in the low dimensional embedding cafistance to each point’s nearest neighbors. Calculatieg th
be used in a measure of the density of the neighborhoodftances using the low-dimensional diffusion repregerta
each pixel, determining which pixels are anomalies and Whigreatly reduces the complexity of the distance computafion
pixels are normal. Using the diffusion distance in a nearegfither reduce the complexity, we take advantage of théapat
neighbor approach is both computationally efficient coragarnature of the original data. We limit ourselves to computing
to the calculation in the original dimensionality and rabies the diffusion distance between each pixel to the pixels in
noise. a window surrounding it. Our method is similar to the one
presented in [7], [33], where anisotropic kernels were dsed
defect detection in images of wafers, given a clean referenc
. . ] i _image. There, anisotropic kernels were used to measure the

G|yen anilmagel, the Ga}uss_lan pyramid representation (gimilarity of a patch in a test image to patches in a window
the image is computed, yieldingG:}i—,, where Gy is the iy 4 reference image. In our approach, instead of calcgatin
original image and-, is the coarsest resolution. At each levej,o similarity between a patch in a test image and patches in a
[, Gy is calculated by convolving the image from the previougiean reference image, we compare the test image to itself. |
level G,—; with a Gaussian low-pass filter and then downsqgition, we compare the patches in the embedded diffusion
sampling by a factor of two. Starting witfi;,, a subsetf’;, of coordinatesl (z;), using the diffusion distanc®?2 , (z;, ;)
random pixels is sampled from the image. Since the imageRween patches as a similarity measure. B

this level is at very low resolution, the subset can include An affinity measure is calculated between each pixahd
all pixels, if it is feasible given memory constraints. Th(?hem pixels in the window surrounding the pixel. Similarly

diffusion map is_ calculated using this subset, .and exterde o [13], [14], the affinity measure is defined using a Gaussian
the remaining pixels. Then, an anomaly sc6teis calculated kernelw based on diffusion distances:

for all pixels. A thresholdr; on the anomaly score is used to

mark suspicious pixels. We then proceed to the image,. (i, j) = exp (—||¥(z;) — ¥(z;)||*/7), 0 <w(4,j) < 1.

On this level, pixels which correspond to the suspiciouglgix (19)

found in G, are included inl';,_;. The rest of the pixels in Unlike the kernel in (1) which relies on the Euclidean dis&n

the subset are chosen at random. between grayscale levels of the patch, this kernel relies on
The thresholdr; used at the output of each level is chosediffusion distances.

to be the95'" percentile of the anomaly score for that level. If As opposed to the local scale (9) used in the affinity measure

the image does not hold an anomaly this will result in randofi), here a single global scale is required forUsing a local

samples with the highest anomaly scores. If the image hoklisale as described in (9), which relies on the distance to the

an anomaly, the anomaly will have a high score compared ko-th nearest neighbors, would result in each point having

the rest of the image and it will be sampled more densedfpproximatelyX neighbors. Here we do not want to overcome

C. Implementation



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOLXXNO. Y, MONTH 2013 8

the difference in neighborhood densities between datatsoin
Instead, our purpose is to utilize this difference to dethet

anomalies by finding which data points are far removed fro
their neighbors on the low-dimensional manifold. This ecalé
greatly influences the results as it determines how closalgix :
are in the diffusion embedding. Too small a scale will result (a) (b) (©) )
in all pixels being different and too large a scale will resnl
the anomaly being considered similar to the background.

Fig. 3.  An example how the anomaly score for a certain levelthef
pyramid, affects the sampling in the next level. (a) AnomstpreC;. (b)

. spicious pixels obtained from thresholdiag. (c) I';y; is determined by
We set the scale by the following procedure. We Selegve suspicious pixels from levéand random pixels. (d) Anomaly scofg ;.

npair Pairs of pixels in the image and calculate the diffusion

distance for each pairf|¥(z;) — ¥(z;)||. Since these are

random pixels from the image, most, if not all of them, V. EXPERIMENTAL RESULTS
are background pixels. Thus, these distances represdoaltyp
diffusion distances between pixels in the image. The ewgdiri
variance of theseu,r distances is72.. . We set the scale to

We demonstrate the proposed algorithm on real sea-mine
side-scan sonar images, achieving a high detection rate wit
pair’ a low rate of false-alarms. We treat the sea-mines in the

T = 2 . i . . .
be o = rop,,. The parameter determines how close We ;.. aq as anomalies and the reflections from the seabed are

want two normal points to be in the diffusion embedding. Th'@onsidered normal background clutter. We compare the mul-
procedure enables a method of automatically setting tHe,sc

. - . ) ~“fiscale detector with five variations of a single-scale clete
with negligible computation time, and gave good eMpINcd, demonstrate the improvement gained by our multiscale
results. approach.

To determine whether a pixel is an anomaly, we use theAutomatic detection of sea mines in side-scan sonar imagery
total similarity measure presented in [7], [33]. Our anomals & challenging task due to the high variability in the ap-

score of a tested pixelis defined as pearance of the target and sea-bed reverberations (bacidyro
1 clutter). Objects in side-scan sonar appear as a strongtbrig
Ci(i))=1-—— Z w(1, ). (20) region (highlight) aside a dark region (shadow). The shadow
JEN; is due to the object blocking the sonar waves from reaching

the seabed. Typically, the shadow region is larger than the
highlight region in the image.

Research in this field focuses on two aspects of the problem:

etection of mine-like-objects (MLO) in the image and clas-
rﬁ. ication of these objects as mine or non-mine. Algorithms
proposed for detection of the MLOs include MRF models
for modeling the background [34], [35], a 2-D multiscale
GMRF with matched subspace detector (MSD) [4], a multidi-

ensional GARCH model with MSD [3], non-linear matched

Pixel i is compared to its neighbofg} in the spatial neigh-
borhood denotedV;, with m being the number of pixel in
N;. The neighborhoodV; is a square window surrounding
pixel ¢ of size2WW + 1 in each dimension. The inner part o
the window surrounding the tested pixel is masked, and o
the pixels in the outer window are used. LZA/™MaK1 pe
the size of the mask in each dimension. Then the pixsl
compared to all pixel§;j € N;|M™Mk< d(i,7) < W}, where

d(i, 7) is the Manhattan distance. The reason for masking t ; 361, otc. The detection | e od b
inner pixels in the window is that we do not want to compariters [36], etc. The detection is sometimes accompanied by

the pixel to its immediate neighbors, since we assume fgiraction of the shadow, for example using snakes [34].

anomaly is larger than a single pixel. If a pixel belongs to a;ﬁ € Qetec_tlon of the shad_ow increases the ability to cdyrect
ssify mines and non-mines.

anomaly, its surrounding pixels are also anomalous and th 9

may all have similar diffusion coordinates, compared to the Most algorithms for Qe.tectlon of sea-mines n side-scan
background pixels. Therefore, if the window is too smale thSonar make use of a training set, based on real images and/or

anomalous pixel will receive a low anomaly score, due to i@/nthetlc ones [35.]' [37]. In [3], a few examples of sea-raine
affinity to its immediate spatial neighbors in the image. re used for creating the anomaly subspace for the MSD. Our

avoid this, the inner pixels are masked and ignored and t gfusmn—based approach doe; not require a training set an
window surrounding each pixel is chosen to be large enou kes no assumptions regarding the appearance of the mine

in comparison with the expected size of an anomaly. : nd its shadow in the image. The only_prlqr |nf0rma_t|on used
is that the expected size of the sea-mine is approximately 15

The suijGNi w(i,7) can be seen as a smoothed estimafexels by 3 pixels. This information is used in determinihg t
of the number of close neighbors the data painbas in size of the surrounding window and mask for each pixel, as
the window surrounding it, where the notion of closenesxplained in Sec. IV-C.
is determined by the diffusion distance. Pixels which are We evaluated our algorithm on a set of 28 side-scan sonar
anomalous have few close neighbors in the diffusion embethages with sea-mines, each image sized 200x200 pixels. For
ding and therefore a very high anomaly score. Pixels withe multiscale detector, we used a Gaussian pyramid-6f3
a low anomaly score are similar to the pixels in the windovevels. The parameters used in the multiscale detectorieera g
surrounding them. The size of the window and the masked aiparable I. To allow efficient computation times, the affinity
should be determined by the application and prior knowledgeatrix was calculated using exact k-nearest-neighborckear
of the size of possible anomalies. with 16 neighbors for each point, resulting in a sparse weigh
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Construct Sample Construct Extend Calculate
: =1L ) N e
Gaussian pixels for —| Diffusion —| Diffusion —| anomaly
Pyramid subsefl Map Map score(C)
Suspicious yes| output:
Pixels: )
l+—1—-1 Co>r1

Fig. 4. Flowchart of the multiscale algorithm.

©) M

Cr>m7

© O

Fig. 5. Side-scan sonar images of sea-mines. The sea-nuatolas are marked with a red arrow.

matrix. For the k-nearest neighbors search we use the Matlab
function pdist2, which uses the exhaustive search method to
find the exact k-nearest neighbors. For the spectral decom-

position of sparse matrices we use the Matlab functigs.

We choose the global scale in (19) to be= 20033". Note

that the size of the images used in our results enables densér)
sampling of the image than what we used. We intentionally use
a small percentage of the pixels in the image to demonstrate

that this framework is applicable also for larger imagesnts

diffusion maps for larger images requires small subsethaat t

full scale level, due to memory constraints in calculatihg t
affinity matrix.

We compared the performance of our multiscale algorithm

(MS) with five single-scale sampling schemes:

images. A diffusion map is constructed for each sub-
image using all the pixels in the sub-image such that no
out-of-sample extension is necessary. Anomaly detection
is performed on each sub-image separately and for the
overlapping pixels, the maximal anomaly score is taken.
SS5: The diffusion map is calculated for the entire image
at once, without the need for performing sampling and
out-of-sample extension. This is done using RANN [22],
a recently proposed fast approximate nearest neighbors
algorithm. The sparse affinity matrix is calculated for
all 8 x 8 patches using 16 neighbors for each patch. We
used 5 iterations of RANN and supercharging; for details
about these parameters the reader is referred to [22].

In SS1 the parameters were chosen to be identical to that

1) SS1: 10% of the image was randomly sampled twf the multiscale detector for levél= 0, given in Table I.

construct the diffusion map.

SS2 is intended to demonstrate the effect of using more

2) SS2: 20% of the image was randomly sampled samples. In addition, the number of samples used in this

construct the diffusion map.

scheme is equivalent to the total number of samples used

3) SS3: The images were blurred with a Gaussian filtér the multiscale detector. We demonstrate that for the same
and down-sampled to 100x100. 30% of the image wamimber of samples, the multiscale detector achieves superi

randomly sampled to construct the diffusion map.

results. SS3 has identical parameters to the middle-seadé |

4) SS4: The image is divided into 16 overlapping suld- = 1, of the multiscale detector given in Table I. This
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. . . ' TABLE I
demonstrates the effect of a decimated scale, in which tlee finNyveer oF TRUE POSITIVE FORGIVEN NUMBER OF FALSE ALARMS

details are blurred, on the detection. In SS4, the deperdenc
on random samples is completely removed. In each sub-image, size=5 size=20

all pixels are used in the construction of the diffusion map. FA=7 | FA=4 | FA=0 || FA=7 | FA=3 | FA=0
Instead of using a window surrounding each pixel, the pixel$ MS | 100% | 89% | 89% || 100% | 86% | 82%
in a sub-image are compared to all other pixels in the sub-SS1| 61% | 39% | 0% 57% | 43% | 14%
image in the calculation of the anomaly score. To avoid borde SS2| 68% | 54% | 0% 68% | 61% | 29%
issues, the sub-images are overlapping. In SS5, the depemde | SS3| 61% | 61% | 29% || 61% | 57% | 29%
on random samples is completely removed. Comparing SS5SS4| 89% | 79% | 64% || 93% | 93% | 79%
with our method demonstrates the effect the multiscaleedriv | SS5| 93% | 93% * 93% | 93% | 86%
sampling has on the final full-scale diffusion map compare

to a diffusion map calculated for all points together.

Detections are found by thresholding the anomaly score the SS5 method. Therefore, there were more TPs for the
image resulting in a binary image. A detection is a connect&$5 method, for the larger anomaly size and low FAR rate.
component in the binary image. We considered detectioneof th Eight of the tested images are shown in Fig. 5. Each image
sea-mine to be a true positive (TP) and any other detect@mnscbntains one sea-mine on highly cluttered seabed backdroun
be false alarms (FA). The size of the connected component G&me background patterns are diverse. Some appear as noise
be used to reject noisy detections. We compare two thresho(fig. 5(b),(d), and (h)) whereas others contain relatiatw
on the size of the detection: 5 pixels and 20 pixels. Usinthanging backgrounds (Fig. 5(a)). Images with a rapidly
a larger threshold on the size rejects more FAs, but can atdmanging background (Fig. 5(g) and (c)) or dominant pefiodi
resultin a decreased amount of TPs, for small sized anosnalieal pattern (Fig. 5(e) and (f)) are especially difficult. @|she

We compared the number of TPs for each method forsize of the mine and its shadow differ from image to image,
given FA rate. Results are given in Table II. Our multiscalas well as its orientation. For example, in Fig. 5(a) the mine
approach has the highest TP rate. In SS2, using twice as manyuite large, whereas in Fig. 5(h) the mine is very small and
samples than in SS1, results in a better detection rate, histshadow is also thin. In most images, the highlight iseath
at a high computational cost. In addition, the difference ibright, yet in image Fig. 5(d) its intensity is similar to thaf
detection for using twice as many samples is not dramattbe noise and in Fig. 5(f), the mine highlight is not visible a
Most importantly, it does not overcome the limitations obsu all, with only its shadow seen in the image.
sampling the image, as the multiscale detector which uses th Results of the multiscale detector are presented in Figd6 an
same number of samples, has a significantly better detectfonthe single scale detector SS1 in Fig. 7. Positive dedacti
rate. This is due to the propagation of information from levef the sea-mines is achieved in all displayed images using
to level. SS3 shows better results than both SS1 and S8% multiscale detector. The single scale detector on therot
as it has a lower FA rate. This demonstrates that differemand, does not detect any anomalies in Fig. 7(e)-(h). Thgesin
scales of the image are useful in detecting the anomalies audle detector also suffers from a higher false alarm rate, a
combining this information as in our multiscale approacltan be seen in Fig. 7(a). The multiscale detector has a single
gives the best results. SS4 demonstrates results which falee alarm in image Fig. 6(d), on a small shadow in the image.
comparable to that of our multiscale approach. However, @ihis same false alarm is detected by the single scale detecto
explained in Sec. IV-A, this method has various false alarms The multiscale detector performs very well in detectinghbot
the background, due to the limited region each diffusion mape sea-mine and its highlight in the image, demonstrated fo
is calculated for. This results in a higher false alarm rate tliverse, challenging backgrounds and various sea-mires siz
ensure positive detection of the anomalies. In additioohsu and orientations.
method faces scalability issues when applied to larger @sag In Table Ill, we report the average total running time and

The SS5 approach also gave results which are comparatle running time for the two parts of the MS algorithm: dimen-
to that of our multiscale approach. However, for two imagesionality reduction, including sampling the image, comsting
Fig. 5(g) and (h), the SS5 approach was unable to detect theliffusion map and out-of-sample-extension to all image
sea-mines at all, even for a detection threshold as low as patches, and anomaly detection in the reduced dimensipnali
0.3. In addition, the MS approach has better results for a sméllle compare the runtime of the MS algorithm with those of
threshold. In fact, for the low threshold on detection sihere two single-scale schemes: calculating the affinity mawixiie
was no threshold on the SS5 anomaly score which resulteckeintire image using RANN method (SS5) and using Matlab’s
zero FAs. For a threshold of = 1, the results of SS5 were 3exact NN method. In these schemes dimensionality reduction
FAs and43% detection rate. This because the SS5 results hsdbased only on constructing the diffusion map, without
more small FAs with very high anomaly score values, than thige need for out-of-sample-extension. Results are given in
MS algorithm. Therefore it is harder to get a good detectigeconds. Our algorithm has been implemented in Matlab and
rate with low FAR for a small size anomaly. On the othethe numerical experiments have been carried out on a Dell
hand, for the higher threshold on anomaly size, the restiltslaptop computer, with an Intel Core i5 QuadCore CPU 2.67
the SS5 approach are slightly better. This is because fova f&6Hz and 4.0GB RAM. It should be noted that this a Matlab
of the images, the number of anomalous pixels which receivedplementation and it has not been optimized for runtimes Th
a high anomaly score in the MS method was smaller compaf®ANN search been implemented in FORTRAN.
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TABLE |
PARAMETERSUSED INMULTISCALE DETECTOR
Pyramid || Image Patch Embedding Percentage of Window Mask
Level size size Dimension pixels in subset Size (V) Size (™4
0 200x200 8x8 6 0.10 41x41 (20) 9x9 (4)
1 100x100 4x4 6 0.33 21x21 (10) 5x5 (2)
2 50x50 2x2 3 0.5 13x13 (6) 5x5 (2)

—10.6

—10.5

0.4

(e) ® (&

Fig. 6. Results of Anomaly Detection for multiscale detectmrresponding to the images displayed in Fig. 5.

. TABLE Il
The results first enable us to compare between the MS  AyeracE RUNNING TIMES OF THEALGORITHM IN SECONDS,

algorithm and SS1, which is equivalent to the runtime ofecalCoMPARING MULTISCALE APPROACH WITHSINGLE-SCALE EXACT AND
| = 0 of the MS approach. The MS takes abdat% longer APPROXIMATENN APPROACH
but with greatly improved detection results. Next, comperi

RANN with Matlab’s exact NN search, the improvement factor Pyramid D|men5|o_nal|ty Anome_lly Total
. . . . . . L Level Reduction Detection
in runtime using RANN for dimensionality reduction is araun
I 0 23.70 43.77 67.54

18. The diffusion maps constructed by the two methods are

. . 1 5.47 3.77 9.26
not identical, as RANN does not always return the true n¢ares > 1.00 0.66 167
neighbors, so the sparse affinity matrix is different. Oltera Total 30' 18 4é 0 7é 17
the detection statistics for both methods are very simave - ' '
do not report those for the exact NN search in Table II. Based | RANN || 10.53 | 43.70 | 54.30 |
on this comparison, we can assume that using RANN in our | Exact NN||  190.00 | 43.79 | 233.90|

multi-scale approach instead of the exact NN search should
improve the runtime of our algorithm, without affecting the
detection results. This will be verified empirically in fuéu VI. CONCLUSION

work. In such a framework, RANN will be used initially t0 \\e nave introduced an anomaly detection algorithm us-
construct the affinity matrix for the sampled pointslin and g giffusion maps representation of the data. Based on the
then a query will be run on each of the pointslin. The  ¢jystering properties of the diffusion map, we proposed to
improvement in runtime entails a cost in memory on the ordgptect anomalies in the reduced dimension based on a nearest
of O(n; -T)), with n; being the number of points ify, andT"  pejghbor approach. To improve the detection process and
being the number of iterations used by RANN [22]. For thgnsyre that the normal pixels and the anomaly regions are
lower-resolution scales of the pyramid the improvemeniiac separaple in the lower dimensional embedding of the data,
will be modest considering the small size Bfand the low e implemented a multiscale framework to overcome the
dimension of the points (small patches are used as fealur‘iﬁ)ssible limitations in using diffusion maps with out-afrsple
However, we expect a meaningful improvement for the high€tsiension.

resolution scale. The successful performance of the algorithm was demon-

strated in automatic target detection in side-scan sonagés,
which is a challenging task due to the high variability of
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(e) ®

Fig. 7.

the target and sea-bottom reverberation. The results shew t[2]
capability of the proposed model and algorithm to cope with a

variety of targets and background clutter patterns. Theltes

(3]

also demonstrate the advantage of the multiscale framework

over using only a single scale.

Although our algorithm is used in an unsupervised setting, i
also has implications for using diffusion maps in a supewis
setting, using out-of-sample extension to extend the siifii

[4]

(5]

map from a training set to a test set. Our results imply that
constructing a training set using only background datatgoin
will not be successful in a supervised anomaly detectioti-app [6]
cation. The anomalous data points will be assigned coadiena
similar to those of the background, and the detection will fa [7]

in the lower dimensional embedding.

A possibility for future research is combining the anomalyg

scores from the different multiscale levels into a single
anomaly score. We predict this will improve performance, as
the coarser levels have information on the presence of tHd
anomaly, which we currently disregard in our final output.
This can also assist in detecting anomalies whose sizer diffed]

from the expected size. In addition, computational comiplex
of the algorithm can be reduced by employing the RAN
algorithm for computing the affinity matrix for the diffugio

map, as explained in Sec. V.
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