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Abstract—We propose a multiscale approach to anomaly de-
tection in images, combining spectral dimensionality reduction
and a nearest-neighbor-based anomaly score. We use diffusion
maps to embed the data in a low dimensional representation,
which separates the anomaly from the background. The diffusion
distance between points is then used to estimate the local density
of each pixel in the new embedding. The diffusion map is
constructed based on a subset of samples from the image and
then extended to all other pixels. Due to the interpolative nature
of extension methods, this may limit the ability of the diffusion
map to reveal the presence of the anomaly in the data. To
overcome this limitation, we propose a multiscale approach
based on Gaussian pyramid representation, which drives the
sampling process to ensure separability of the anomaly from
the background clutter. The algorithm is successfully tested on
side-scan sonar images of sea-mines.

Index Terms—Anomaly detection, diffusion maps, nonlinear
dimensionality reduction, multiscale representation, similarity
measure, automated mine detection.

I. I NTRODUCTION

Anomaly detection is important in many applications in
image processing, such as target detection in hyperspectral [1],
[2] or sonar images [3], [4], mammographic image analysis [5]
and defect detection, for example in wafer or fabric inspec-
tion [6], [7]. A robust solution to this problem is important
in military applications and automation of quality assurance
processes, as the user will be shown only suspicious objects.

Anomaly detection in images is challenging due to several
factors:

• Large size of the data set: images have between tens of
thousands of pixels and up to millions of pixels.

• Noisy features which may be falsely detected as anoma-
lies.

• Lack of training data: it is usually very hard to attain
labeled data for anomaly detection. In addition, the data
sets are unbalanced due to the nature of anomalies:
there are many examples of normal data, but few of
the anomalies. This makes unsupervised methods more
desirable than supervised ones.

• High dimensionality of the data: images are usually
represented using high-dimensional features such as the
patch surrounding each pixel, histogram of gradients, etc.

• Multiple classes of normal data points: in many images
the normal datapoints do not belong to a single cluster.
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There are many approaches to anomaly detection in images
based on statistical models, machine learning, saliency based
methods, sparse representations, and more.

Statistical approaches model the data based on its statistical
properties and use this information to estimate whether a test
sample comes from the distribution describing the normal
datapoints [2]–[5]. The problem with statistical approaches
is that the choice of the distribution to model the image is
not obvious. In cases where the background is multi-class,
estimation of the parameters of the statistical model becomes
complex. Also, a statistical model which works well for
certain images will not necessarily be easily adapted to a new
application.

Anomaly detection methods based on machine learning
require training data, which is not always available, and they
may not be able to detect new types of anomalies they were not
trained on. The assumption in anomaly detection using sparse
representation is that an anomaly cannot be reconstructed in a
sparse manner using a dictionary learned from normal images.
In such an approach, it is necessary to learn a dictionary to
model the normal regions in the image, which requires training
data to model the background.

Chen, Nasrabadi and Tran [1] propose training an additional
dictionary to model the anomalies using training samples.
In [6], the algorithm proposed by Boiman and Irani is based
on the assumption that anomaly patches in an image cannot
be composed combining normal patches from the image or
from a reference image. The data (image or video) is divided
into ensembles of many small patches at multiple scales, along
with their relative spatial layout. Image regions that cannot be
composed from ensembles of other patches are detected as
anomalies. This algorithm presents impressive results, but it
has high computational complexity in regards to both memory
requirements and run-time. Zontak and Cohen [7] propose
an algorithm for wafer defect detection based on anisotropic
kernels. Patches from a test image are reconstructed using
patches taken from a reference image, and patches which can-
not be reconstructed from the reference patches are anomalous.
This algorithm requires a reference image or an image with a
periodic pattern.

The features used to describe images are typically high-
dimensional, but can be shown to lie on a low-dimensional
manifold. Dimensionality reduction techniques find a new,
lower-dimensional representation for the data, which reveals
meaningful structures. This is useful in anomaly detection
because such techniques can find a representation which sep-
arates the anomaly from the background. The detection itself
will then be easier in the reduced dimensionality. In addition,
such approaches are data-driven and do not depend on a model
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for the data. For example, Madar, Malah and Barzohar [8]
perform dimensionality reduction using the normalized eigen-
vectors of the Normalized Laplacian Matrix, constructed on
a hyperspectral image. In the lower dimensionality, spectral
clustering is employed to model different types of background
terrain. These clusters are then used in a combined local-
global statistical approach to model the background and detect
anomalies. Tsai and Yang [9] introduce a method for defect
detection using dimensionality reduction, in cases where a
clean reference image is available. Dimensionality reduction
is performed on the images using a 1-D vector of quantiles,
and the quantile of the input image is compared to that of the
template using a quantile-quantile (Q-Q) plot. Abnormalities
are detected in the Q-Q plot using Chi square distribution.

We propose using diffusion maps [10] for dimensionality re-
duction. Diffusion maps is a spectral dimensionality reduction
method based on the construction of the graph Laplacian on
the data. It has been used successfully in various applications
[11]–[16]. The computational burden of the diffusion maps
approach may be significant as it requires the computation of
an affinity matrix on the data. This requires calculations of
the distance between each pair of samples in the data set. The
burden can be reduced by sampling a subset of data points
for which the diffusion map is calculated and then extending
it to all points using an out-of-sample extension method [17],
[18]. Sampling and extension is common practice in applying
diffusion maps to images due to the large size of the data
set [15], [19].

The computational complexity of constructing the affinity
matrix can also be reduced by calculating a sparse affinity
matrix, using a k-nearest-neighbor search. Thus, instead of
calculating the kernel between each sample and all the rest
of the samples, the kernel is calculated only between each
sample and its nearest neighbors. This results in a sparse
matrix and complexity is further reduced by efficient spectral
decomposition algorithms adapted for sparse matrices. When
using exact nearest-neighbor search, it can still be necessary
to employ sampling and out-of-sample extension to reduce
run-time, dependent on the size of the data set. However, fast
algorithms forapproximate nearest neighbor (ANN) search in
which a degree of error is allowed in the query result can
enable calculating the matrix for all data-points. This removes
the need for sampling and extension. In such methods, the
exact k-nearest-neighbors are not necessarily obtained, but k
neighbors that are not too distant from the exact ones. These
approximate queries can greatly reduce the search time [20]–
[22]. For example, the computational complexity of the re-
cently proposed randomized approximate nearest neighborsal-
gorithm (RANN) search method proposed by Jones et al. [22]
scales nearly linearly with the number of patches. This is
useful when the dimensionality of the image features is not too
high, since the performance of ANN algorithms deterioratesas
the dimension increases. In practice, the performance depends
on the intrinsic dimension of the data, which often turns outto
be much smaller than the extrinsic dimension, as we assume
in our setting. Since often the intrinsic dimension of the data
is not known in advance, it is difficult to predict how well an
ANN algorithm will do in a specific application.

Rabin and Averbuch recently proposed using diffusion maps
for anomaly detection in a different application than image
processing: a sensor data fusion framework [23], [24]. Using
a hierarchical framework, diffusion maps are applied to the
nodes at every level, first fusing groups of sensors together,
and then fusing the groups together. The score function used
is also a nearest-neighbors based approach, determined by
the sum of the diffusion distances between each instance
and its nearest neighbors. The anomalies in this application
are contextual anomalies: the sensor measurements are not
necessarily anomalies by themselves, but their co-occurrence
in a particular form makes them anomalies [25]. In [24], the
assumption is that the anomaly is within normal levels for each
of the individual sensors and only becomes distinct throughthe
fusion of the sensors. At the bottom level of their framework,
i.e. the measurements, anomalies have values similar to the
normal instances. This assumption usually does not hold in
image anomaly detection where the data points are features of
image patches or the image patches themselves.

A disadvantage of using spectral dimensionality reduction
methods is that they are only useful if the normal and
anomalous instances are separable in the lower dimensional
embedding of the data [25]. This issue manifests itself in our
approach due to the process of sampling and out-of-sample
extension. We show how this process can limit the success
of the dimensionality reduction in revealing the presence of
anomalies in the data and propose an algorithm for overcoming
these limitations. We propose a multiscale approach which
drives the sampling process to ensure separability of the
anomaly from the background clutter. This approach enables
to effectively apply diffusion maps to the problem of anomaly
detection. We demonstrate on real images that this approach
greatly improves the anomaly detection, compared to methods
which are single-scale.

The main advantage of using diffusion maps in our frame-
work is that it induces a distance measure over the data set
which is robust to noise and preserves local neighborhoods.
This enables nearest-neighbor anomaly detection in the re-
duced dimensionality. Our assumption is that anomalies liein
low-density neighborhoods, whereas normal pixels lie in dense
neighborhoods. Based on the local density of the pixel on the
lower-dimensional manifold, we compute an anomaly score
for every pixel. This score conveys the degree to which the
pixel is considered an anomaly. Depending on the application,
the score can be thresholded to produce a binary map of
anomalies, or the pixels with top-ranking can be outputted to
be inspected by the user. The successful performance of our
algorithm is demonstrated for real images of side-scan sonar
where the anomalies are sea-mines.

Our approach is unsupervised and no prior knowledge is
required regarding the appearance of the anomaly or the
background. No assumptions are made on the statistical model
of the background pixels or if the background can be clustered
into several different classes. We do not use training data or a
reference image. Our approach is data-driven, and can be used
in different applications. The user needs to provide a feature
space for the data set and a distance measure which can be
used to compare the local similarity of data points. In addition,
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the size of meaningful anomaly regions in the image can also
serve as input, but it is not necessary.

The paper is organized as follows. Sec. II reviews the
diffusion map framework for dimensionality reduction and
Sec. III describes out-of-sample extension methods and their
limitations in anomaly detection. In Sec. IV, the proposed
multiscale algorithm is presented. Finally, Sec. V demonstrates
the application of the proposed algorithm to automatic target
detection in real images.

II. D IFFUSION MAPS

Real world data typically has high dimensionality. However,
these high dimensional data sets can be shown to lie on low-
dimensional manifolds. Finding a low-dimensional represen-
tation of the data is necessary to efficiently handle it and
usually reveals meaningful structures within the data. This
embedding of high-dimensional data into a low-dimensional
manifold is done by dimensionality reduction methods. In
recent years, a large number of nonlinear techniques for
dimensionality reduction have been proposed [10], [16], [26]–
[28]. Several of these methods are spectral methods, based
on the eigenvectors of adjacency matrices of graphs on the
data [10], [16], [28]. These methods take into account the
geometry of the data set and the representation they provide
preserves local neighborhood information. Diffusion maps[10]
is one such technique, based on the construction of the graph
Laplacian of the data set. It has been used successfully in
various applications such as spectral clustering [11], signal
denoising [12], speech enhancement [13], [14], hyperspectral
image representation [15] and word recognition based on lip-
reading [16].

Let Γ = {x1, .., xn} be a high-dimensional set ofn data
points. A weighted graph is constructed with the data points
as nodes and the weights of the edges connecting two node is
a measure of the similarity between the two data points. The
weight functionw(x, y), x, y ∈ Γ is required to be symmetric
and pointwise nonnegative. The choice of the weight function
should be determined by the application, since it conveys the
local geometry of the data set. A popular choice is to weight
the edge between the data pointsxi andxj using a Gaussian
kernel:

w(xi, xj) = exp(−‖xi − xj‖
2/σ2), (1)

whereσ > 0 is a scale parameter.
Then, a random walk is created on the data set by normal-

izing the kernel in an asymmetric manner:

p(x, y) =
w(x, y)

d(x)
, (2)

where d(x) =
∑

y∈Γ
w(x, y). The function p satisfies

p(x, y) ≥ 0 and
∑

y∈Γ
p(x, y) = 1. Therefore, it can be

interpreted as the probability for a random walker to jump
from x to y in a single time step. The matrixP ∈ R

n×n with
p(·, ·) as its entries is the transition matrix of this Markov
chain on the data setΓ. Taking powers of the matrix is
akin to running the Markov chain forward. The kernelpt(·, ·)
describes the probability of transition between two pointsin t
steps.

It can be shown thatP has a complete sequence of biorthog-
onal left and right eigenvectors,φj andψj respectively, with
a sequence of positive eigenvalues:|λ0| ≥ |λ1| ≥ .... The
spectral decomposition ofP, yields thatt steps of the Markov
chain can be presented as

pt(x, y) =
∑

l≥0

λtlψl(x)φl(y). (3)

Because of the fast decay of the spectrum, only a few terms are
required to achieve sufficient accuracy in the sum. A mapping
can be defined between the original space and the firstℓ
eigenvectors. The diffusion map is defined by

Ψt : x→
(

λt1ψ1(x), λ
t
2ψ2(x), ..., λ

t
ℓψℓ(x)

)T
. (4)

Note thatψ0 is not used in the embedding because it is a
constant vector. The mappingΨt embeds the data setΓ into
the Euclidean spaceRℓ. The spectrum decay of the eigenvalues
is the reason why dimensionality reduction can be achieved.
The dimension of the new representation depends only on the
random walk and is independent of the length of the feature
vector used in the original representation of the data.

A diffusion distanceD2
t (x, z) between two pointsx, z in

the data setΓ is defined by

D2
t (x, z) =

∑

y∈Γ

(

pt(x, y))− pt(z, y)
)2

φ0(y)
. (5)

This measures the similarity of two points according to the
evolution of their probability distributions in the Markovchain.
The diffusion distance between two points is small if there is a
large number of short paths connecting them in the graph. This
metric is robust to noise, since the distance between two points
depends on all possible paths of lengtht between the points,
within the dataset. As opposed to the original distance between
two points which is independent of all other points in the
dataset, the diffusion distance depends on the location of the
other points in the dataset. Using the spectral decomposition
given in (3), the diffusion distance in (5) can also be calculated
using the eigenvectors by

D2
t (x, z) =

∑

j≥1

λ2tj (ψj(x)− ψj(z))
2. (6)

Taking into account the spectrum decay, the diffusion distance
can be calculated up to a certain accuracy using only the
first ℓ eigenvectors. Thus, the computational complexity of
the diffusion distance is low given the eigen-decomposition of
P. It was shown [11] that the diffusion distance is equal to
the Euclidean distance in the diffusion map space using all
eigenvectors in the decomposition:

D2
t (x, z) =

∑

j≥1

λ2tj (ψj(x) − ψj(z))
2 = ‖Ψt(x) −Ψt(z)‖

2.

(7)
In Sec. IV, we use this property of the diffusion distance to
define a measure of affinity in the diffusion coordinates.

Spectral embedding methods are commonly used in clus-
tering applications [11], [28]–[30]. Most methods suggestto
use the first non-trivial eigenvectors (the first eigenvector
corresponding toλ0 = 1 is constant) to find clusters in the
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dataset. This clustering property of the diffusion map is useful
for anomaly detection. We expect the background pixels in the
image to be clustered together and the anomaly to be distant
from this cluster in the new embedding.

A. Setting the Scale Parameter σ

The scale parameterσ is of great significance in construct-
ing the weighted graph. Settingσ to be too small results
in a disconnected graph, where many points are connected
only to themselves (local neighborhoods of size 1). However,
settingσ to be too large results in all the points in the graph
being connected. This is especially undesirable in the setting of
anomaly detection, where settingσ to be too large will connect
the anomalies with the cluttered background. Possibilities of
setting the scale parameter are using the median distance
between points in the dataset or the standard deviation of the
distances. These are global parameters.

Zelnik-Manor et al. [29] suggest calculating a location
dependentσ for each data point instead of selecting a single
scaling parameter. Then, the affinity between a pair of points
can be written as

w(xi, xj) = exp

(

−‖xi − xj‖
2

σiσj

)

, (8)

whereσi andσj are the local scale parameters forxi andxj ,
respectively. The selection of the local scaleσi is determined
by the local statistics of the neighborhood of pointxi. For
example, the scale can be set as

σi = ‖xi − xK‖
2 (9)

where xK is the K-th nearest neighbor. We adopt this ap-
proach in our algorithm, usingK = 7. This approach is local,
since the distance between two points is scaled according to
the local statistics of the neighborhoods surrounding the two
points. This is desirable since we expect the anomaly to be in
a low density neighborhood in contrast with the background,
which we expect to be in a dense neighborhood. Setting a
single global scale would not be able to address the differences
in density of the points.

III. F UNCTION EXTENSION

When the data set is very large, it is impractical to compute
a diffusion map for the entire datasetΓ. Instead, a diffusion
map is constructed for part of the samplesΓ ⊆ Γ and then
the embedding is extended to all points inΓ using an out-of-
sample extension method.

The Nyström extension method is a common method for
the extension of functions from a given training set to new
samples. Recently, methods have been proposed to approx-
imate the Nyström extension method [31] or improve upon
it, such as the Geometric Harmonics method [17]. In [17],
the authors state that low-complexity functions can be easily
extended very far from the training set as their behavior is
smooth and the extended values are easy to predict. A function
with many variations onΓ should have a limited range of
extension, as its values off the training set are more difficult
to predict.

A. Laplacian Pyramid Extension

Recently, a new algorithm was presented for out-of-sample
function extension using the multiscale Laplacian pyramid
[18]. At each iteration, the Laplacian pyramid algorithm con-
structs a coarse approximation of a functionf for a given scale
l. Then, the difference betweenf and the coarse approximation
is used as input for the next iteration. The difference is
approximated at each level using a Gaussian kernel with finer
and finer scales.

On the lowest level, the Gaussian kernel is defined onΓ by

W0 , w0(xi, xj) = exp
(

−‖xi − xj‖
2/ǫ0

)

, (10)

with ǫ0 set to be a large scale. A smoothing operator is
obtained by normalizingW0:

K0 = k0(xi, xj) = q−1

0 w0(xi, xj), (11)

where q0(xi) =
∑

j w0(xi, xj). On the next levels, the
Gaussian kernel is computed by

Wl = wl(xi, xj) = exp
(

−‖xi − xj‖
2/
ǫ0
2l

)

, (12)

and the smoothing operator is

Kl = kl(xi, xj) = q−1

l wl(xi, xj). (13)

The Laplacian Pyramid representation of a functionf on Γ
is defined iteratively by:

s0(xk) =
n
∑

i=1

k0(xi, xk)f(xi), l = 0 (14)

sl(xk) =

n
∑

i=1

kl(xi, xk)dl(xi), l ≥ 1 (15)

with the difference defined by

dl(xk) = f −

l−1
∑

m=0

sm, l ≥ 1. (16)

The Laplacian pyramid is iterated on finer and finer scales until
the difference‖f −

∑

k sk‖ is below a given error threshold.

The functionf is extended to a new data pointxk ∈ Γ by
the sumf(xk) =

∑

i si(xk), where

s0(xk) =
n
∑

i=1

k0(xi, xk)f(xi), l = 0 (17)

sl(xk) =

n
∑

i=1

kl(xi, xk)dl(xi), l ≥ 1. (18)

We perform this extension method for each diffusion coordi-
natef = Ψj separately. The number of levels in the pyramid
extension can differ between the coordinates, dependent on
their smoothness overΓ. A smooth function can be extended
using coarse scale, i.e. will not require many levels of the
pyramid. An oscillating function on the other hand will require
finer and finer levels of the pyramid to enable an accurate
extension.
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B. Limitations of Out-of-sample Extension for Anomaly De-
tection

The popular methods for out-of-sample extension are based
on interpolation. They are all a variety of calculating the
value for a new sample by weighted sum of the values of
the test data points inΓ, with the weights dependent on the
Euclidean distance between the data points. This is a limitation
of extension methods when applied to anomaly detection. In
a case where there are no anomalies inΓ and it consists
only of examples from a singlen-dimensional cluster (the
background), then the eigenvectors capture only the relaxation
process within this cluster [30]. If the anomaly is not at least
partially represented in the subsetΓ, the values of the diffusion
map will not capture the nature of the anomaly. Extension of
the diffusion map to anomaly data points will give these points
diffusion coordinates which are not meaningful in separating
them from the background. All anomalies or data points which
are far removed from the test set, will not be extended to
appropriate coordinates representing their distance fromthe
test set. Anomaly detection when the anomaly is not included
in the initial diffusion map, requires extrapolation of the
diffusion coordinates and not interpolation. However it isnot
clear how to perform extrapolation on the low-dimensional
manifold, if at all possible.

The size of the data set for images is very large. Even
for a small image of100 × 100 pixels there are10, 000
data points. Therefore, it can be inefficient to construct a
diffusion map using all the pixels in the image, especially
for high-resolution images. Instead, it is a common approach
to construct the diffusion map for an image using a subset of
random samples [15], [19]. The subset is embedded in a lower
dimensional representation using the first several eigenvectors
and then the diffusion map coordinates are extended to all
patches in the image using an extension method. If the set of
random samples does not include the anomaly, the diffusion
map will not capture the difference between the anomaly and
the background. Therefore, the out-of-sample extension ofthe
diffusion map to the pixels in the anomaly region will not
succeed in separating them from the background. These pixels
will be assigned diffusion coordinates which represent the
background and the anomaly detection will fail.

IV. M ULTISCALE DIFFUSION BASEDANOMALY

DETECTION

We propose a multiscale approach combining spectral-based
dimensionality reduction and nearest-neighbor-based anomaly
detection. Diffusion maps are used to find a lower dimensional
representation of the image. Due to the successful use of
diffusion maps for spectral clustering, our assumption is that
the anomaly regions will be well separated from background
regions in the new embedding. In the embedding, background
pixels will have similar diffusion coordinates, lying in a
dense neighborhood, whereas the anomalies are separated
from the background and lie in a low density neighborhood.
This enables using a nearest-neighbors based approach in
the lower dimensional embedding to determine which pix-
els are anomalies and which are normal. This approach is

based on the assumption that normal data points appear in
dense neighborhoods, whereas anomalies lie in neighborhoods
with low density [25]. One challenge of such an approach
is the computational complexity of computing the distance
of each test instance with all other instances, in order to
compute its nearest neighbors. Calculating the distances using
the low-dimensional diffusion representation, greatly reduces
the complexity of the distance computation. Also, as noted
in Sec. II, calculating the distance between points in their
diffusion coordinates, i.e., the diffusion distance, has been
shown to be robust to noise. These steps are performed in
a multiscale framework to overcome limitations of under-
sampling the image and out-of-sample extension to the entire
image.

In Sec. IV-A we present three anomaly detection meth-
ods based on diffusion maps, using a single resolution of
the image. We describe the disadvantages of these methods
in terms of performance and computational complexity. In
Sec. IV-B, we propose a multiscale anomaly detection method
which overcomes the limitations of applying diffusion mapsto
images. In Sec. IV-C we describe the implementation detailsof
our algorithm. We compare the performance of our multiscale
method with each of the single-scale methods in Sec. V.

A. Single-scale Anomaly Detection

One may consider three simple methods for applying diffu-
sion maps to anomaly detection in images, while avoiding the
limitations of under-sampling. The first is to apply the process
of constructing a diffusion map and detecting anomalies in
the low-dimensional embedding several times, for different
subsets of random samples. The results can be fused together
to detect the anomalies. This method avoids the problem of
being too dependent on the random samples. However, it
is computationally intensive and the number of times this
would have to be performed until the anomaly was detected is
unknown, due to the randomness of the sampling. Therefore,
this method may result in a miss-detection. An example is
displayed in Fig. 1. Fig. 1(a) presents a side-scan sonar image
of a sea-mine on a periodic background. The sea-mine is
indicated by the red arrow. Two subsets of random samples are
used for the image, yielding very different detection results.
In the top row there is a miss-detection and in the bottom row
there is a positive detection. Note both subsets have the same
number of samples. The diffusion maps for the two sampling
schemes are shown in Fig. 1(b). The first three coordinates
in the diffusion map (4) are associated with RGB color in
order to display the connection between the location of the
pixel in the image, and its diffusion coordinates. Each point
in the three-dimensional space is assigned RGB values, by
applying a simple transform from the diffusion coordinatesto
RGB values[0, 255] × [0, 255] × [0, 255]. Then, each pixel
in the image is colored (Fig. 1(c)) according to the RGB
value assigned to its diffusion coordinates (Fig. 1(b)). Note
that this coloring is only for display purposes. In the top row,
the diffusion map (Fig. 1(b)) captures the periodic nature of
the data, but the anomaly is not sampled sufficiently and is
not distinct in the diffusion coordinates. When the diffusion
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(a) (b) (c) (d)

Fig. 1. Demonstration of the affect of random sampling on thediffusion
map and the detection results. Results are shown for two different sampling
distributions in the top and bottom row. (a) Side-scan sonarimage of a sea-
mine, visible as the dark shadow and indicated by a red arrow.In (b),(c) the
first three coordinates in the diffusion are associated withRGB color in order
to display the connection between the location of the pixel in the image,
and its diffusion coordinates. (b) First three diffusion map coordinates. (c)
Image pixels colored according to the RGB color associated with the first
three coordinates of the diffusion map given in (b). (d) Anomaly score.

map is extended to the entire image shown in Fig. 1(c), the
pixels of the anomaly are given coordinates representing the
background, and the anomaly is not visible. Calculating the
anomaly score, Fig. 1(d), yields there are no anomalies in
the image. In the example on the bottom row, a different
subset of random samples is used. In this case, the diffusion
map Fig. 1(b) captures both the anomaly and the periodic
nature of the background, and separates the anomaly from
the background. The anomaly score in Fig. 1(d) displays
the existence of an anomaly in the image. These examples
demonstrate that the success of the diffusion map in capturing
the nature of the anomaly is dependent on the pixels included
in Γ. For this image, in average only one out of every five
random subsets yielded a detection of the anomaly, when the
size of the subset was15% of the pixels.

A second approach is to perform the detection on a coarser
resolution of the image. The advantage of using a coarse
resolution is that a higher percentage of samples can be used
since the image is down-sampled, and it is more likely that
the anomaly will be properly sampled. A disadvantage of this
approach is that the chosen scale may limit the ability to detect
small anomalies. Also, since the fine details are blurred, the
anomaly may be less distinctive from the background. This
will require lowering the detection threshold which will result
in more false-alarms. An example of anomaly detection on a
coarse scale is shown in Fig. 2. The original side-scan sonar
images are presented in the top row and the anomaly score
for each image is displayed on the bottom. In Fig. 2(a) the
detection is successful. In Fig. 2(b), the anomaly is detected as
well as other regions in the background. Successful detection
of the anomaly in this case, would detect false alarms as well.
In Fig. 2(c), the anomaly received a low score. In order to keep
the detection rate high, a low threshold would be necessary,
which could cause false alarms in other images. The anomaly
in Fig. 2(d) is not detected at all.

A third possibility is to divide the image into several
sub-images, and perform anomaly detection on each sub-

(a) (b) (c) (d)

Fig. 2. Top row: original side-scan sonar images, the sea-mines are indicated
by red arrows. Bottom row: Anomaly score for detection basedon coarse
resolution of the images. The images were down-sampled by a factor of 2,
and a third of the pixels were sampled in the construction of the diffusion
map. In (a) the detection is successful. However, this method may result in
false alarms (b), low anomaly score (c) or a miss-detection (d).

image separately. For each sub-image, a high percentage of
samples can be used to avoid sub-sampling. This method is
computationally intensive since it requires the calculation of
a diffusion map for every sub-image. In addition, it can cause
a higher false alarm rate. The reason for this is that regions
which are unique in their immediate surroundings, yet similar
to other regions in the image, will be treated in separate sub-
images and can be detected as anomalies. Also, the anomaly
itself might be split between sub-images, making it smallerin
each sub-image and reducing the detection rate. To avoid this,
the image will have to be divided into overlapping sub-images,
raising the computation complexity even more. Finally, even if
the sub-image itself is rather homogeneous, the nature of the
diffusion maps is that the embedding for such a sub-image
will include the inner-cluster variations, and cause possible
false alarms.

B. Multiscale Anomaly Detection

Our method aims at reducing the computational complexity
while improving the detection rate. To overcome the limita-
tions of random sampling, we propose a multiscale approach.
Assume that the anomalies in the image are larger than a single
pixel. Therefore, they can be detected at several resolutions
of the image. At a lower resolution, it is computationally
possible to sample a larger percentage of the image. Thus,
detecting an anomaly at a lower resolution is less likely
to fail due to sampling. We propose to take advantage of
the anomaly detection at different scales to overcome the
limitations of random sampling. Since our method performs
anomaly detection at different resolutions of the image, even if
the anomaly is missed on a coarse level, for example since it is
too small at that level, it can still be detected on the following
finer levels. In addition, it is possible to lower the threshold
for anomaly detection on the coarser levels, since this willnot
harm the false alarm rate as a decision is only reached at the
full-scale level. Thus we are able to detect anomalies on the
higher levels, even at the cost of detecting more false alarms,
since these false alarms will be removed at the final level.
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Our multiscale approach is based on constructing a Gaussian
pyramid [32] representation of the image. Starting with the
coarsest scale, a diffusion map is constructed, based on a
subset of the data set. Since the image is smaller at this
scale, a larger percentage of the image can be sampled for
the construction of the diffusion map, perhaps even all pixels.
Then, an anomaly score is used to determine which pixels
are anomalies at this level. These pixels are used as input to
the next level as the pixels at the finer level corresponding to
the anomalous pixels at the coarser level are included inΓ.
The rest of the pixels inΓ are sampled randomly from the
image. This algorithm continues from level to level, with each
previous level providing prior information on which samples
of the data set are used to construct the diffusion map. This
approach greatly increases the detection rate of the diffusion-
based anomaly detector.

Our approach is less computationally intensive than a single-
scale detector using an equivalent amount of samples, since
on the coarser scales, smaller patches can be used as features,
reducing computation time of the calculation of the affinity
matrix. Also, the detection process is faster on a coarser scale.

The anomaly score itself is based on a nearest neighbor
approach. In the low dimensional embedding, background
pixels will have similar diffusion coordinates, lying in a
dense neighborhood, whereas the anomalies are separated from
the background and lie in a low density neighborhood. The
diffusion distances in the low dimensional embedding can
be used in a measure of the density of the neighborhood of
each pixel, determining which pixels are anomalies and which
pixels are normal. Using the diffusion distance in a nearest
neighbor approach is both computationally efficient compared
to the calculation in the original dimensionality and robust to
noise.

C. Implementation

Given an imageI, the Gaussian pyramid representation of
the image is computed, yielding{Gl}

L
l=0, whereG0 is the

original image andGL is the coarsest resolution. At each level
l, Gl is calculated by convolving the image from the previous
level Gl−1 with a Gaussian low-pass filter and then down-
sampling by a factor of two. Starting withGL, a subsetΓL of
random pixels is sampled from the image. Since the image at
this level is at very low resolution, the subset can include
all pixels, if it is feasible given memory constraints. The
diffusion map is calculated using this subset, and extendedto
the remaining pixels. Then, an anomaly scoreCL is calculated
for all pixels. A thresholdτl on the anomaly score is used to
mark suspicious pixels. We then proceed to the imageGL−1.
On this level, pixels which correspond to the suspicious pixels
found inGL are included inΓL−1. The rest of the pixels in
the subset are chosen at random.

The thresholdτl used at the output of each level is chosen
to be the95th percentile of the anomaly score for that level. If
the image does not hold an anomaly this will result in random
samples with the highest anomaly scores. If the image holds
an anomaly, the anomaly will have a high score compared to
the rest of the image and it will be sampled more densely

in the next level. An example of this process is shown in
Fig. 3. Fig. 3(a) shows the calculated anomaly score for level
l. Thresholding this score yields a group of suspicious pixels,
including both the anomaly and some background pixels. The
corresponding pixels on the next level,l − 1, are included in
Γl−1. The rest of the pixels are randomly sampled. Calculation
of the diffusion map and its extension to the image, yields the
anomaly scoreCl−1, in which only the anomaly received a
high score, separating it from the background.

The process of sampling, dimensionality reduction and
anomaly detection repeats for every level, with the output of
each level serving as input to the next level, determining the
samples inΓl. At the full-scale levelG0, the anomaly score
for each pixel determines the existence of anomalies in the
image. We use a hard thresholdτ on C0 and then smooth
the resulting image. Anomalies have a high score, close to 1.
Fig. 4 presents a flowchart of the algorithm.

At each level, the affinity matrix is calculated for the subset
Γl using (8), with the scaling parameter set as explained in
Sec. II-A. In order to reduce computation time and mem-
ory requirements, the matrix is calculated usingk nearest
neighbors, i.e. patchxi is connected to patchxj if xi is
among thek nearest neighbors ofxj or vice-versa. Otherwise
w(xi, xj) = 0, as in [28]. This enables the matrix to be sparse.

The anomaly score for each level is calculated based on
a nearest-neighbor approach. This requires calculating the
distance to each point’s nearest neighbors. Calculating the
distances using the low-dimensional diffusion representation,
greatly reduces the complexity of the distance computation. To
further reduce the complexity, we take advantage of the spatial
nature of the original data. We limit ourselves to computing
the diffusion distance between each pixel to the pixels in
a window surrounding it. Our method is similar to the one
presented in [7], [33], where anisotropic kernels were usedfor
defect detection in images of wafers, given a clean reference
image. There, anisotropic kernels were used to measure the
similarity of a patch in a test image to patches in a window
in a reference image. In our approach, instead of calculating
the similarity between a patch in a test image and patches in a
clean reference image, we compare the test image to itself. In
addition, we compare the patches in the embedded diffusion
coordinatesΨ(xi), using the diffusion distanceD2

t=1(xi, xj)
between patches as a similarity measure.

An affinity measure is calculated between each pixeli and
them pixels in the window surrounding the pixel. Similarly
to [13], [14], the affinity measure is defined using a Gaussian
kernelw̄ based on diffusion distances:

w(i, j) = exp
(

−‖Ψ(xi)−Ψ(xj)‖
2/σ

)

, 0 < w(i, j) ≤ 1.
(19)

Unlike the kernel in (1) which relies on the Euclidean distance
between grayscale levels of the patch, this kernel relies on
diffusion distances.

As opposed to the local scale (9) used in the affinity measure
(1), here a single global scale is required forσ. Using a local
scale as described in (9), which relies on the distance to the
K-th nearest neighbors, would result in each point having
approximatelyK neighbors. Here we do not want to overcome
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the difference in neighborhood densities between data points.
Instead, our purpose is to utilize this difference to detectthe
anomalies by finding which data points are far removed from
their neighbors on the low-dimensional manifold. This scale
greatly influences the results as it determines how close pixels
are in the diffusion embedding. Too small a scale will result
in all pixels being different and too large a scale will result in
the anomaly being considered similar to the background.

We set the scale by the following procedure. We select
npair pairs of pixels in the image and calculate the diffusion
distance for each pair:‖Ψ(xi) − Ψ(xj)‖. Since these are
random pixels from the image, most, if not all of them,
are background pixels. Thus, these distances represent typical
diffusion distances between pixels in the image. The empirical
variance of thesenpair distances isσ2

pair. We set the scale to
be σ = rσ2

pair. The parameterr determines how close we
want two normal points to be in the diffusion embedding. This
procedure enables a method of automatically setting the scale,
with negligible computation time, and gave good empirical
results.

To determine whether a pixel is an anomaly, we use the
total similarity measure presented in [7], [33]. Our anomaly
score of a tested pixeli is defined as

Cl(i) = 1−
1

m

∑

j∈Ni

w(i, j). (20)

Pixel i is compared to its neighbors{j} in the spatial neigh-
borhood denotedNi, with m being the number of pixel in
Ni. The neighborhoodNi is a square window surrounding
pixel i of size 2W + 1 in each dimension. The inner part of
the window surrounding the tested pixel is masked, and only
the pixels in the outer window are used. Let2Mmask+1 be
the size of the mask in each dimension. Then the pixeli is
compared to all pixels{j ∈ Ni|M

mask≤ d(i, j) ≤W}, where
d(i, j) is the Manhattan distance. The reason for masking the
inner pixels in the window is that we do not want to compare
the pixel to its immediate neighbors, since we assume the
anomaly is larger than a single pixel. If a pixel belongs to an
anomaly, its surrounding pixels are also anomalous and they
may all have similar diffusion coordinates, compared to the
background pixels. Therefore, if the window is too small, the
anomalous pixel will receive a low anomaly score, due to its
affinity to its immediate spatial neighbors in the image. To
avoid this, the inner pixels are masked and ignored and the
window surrounding each pixel is chosen to be large enough
in comparison with the expected size of an anomaly.

The sum
∑

j∈Ni
w(i, j) can be seen as a smoothed estimate

of the number of close neighbors the data pointi has in
the window surrounding it, where the notion of closeness
is determined by the diffusion distance. Pixels which are
anomalous have few close neighbors in the diffusion embed-
ding and therefore a very high anomaly score. Pixels with
a low anomaly score are similar to the pixels in the window
surrounding them. The size of the window and the masked area
should be determined by the application and prior knowledge
of the size of possible anomalies.

(a) (b) (c) (d)

Fig. 3. An example how the anomaly score for a certain level ofthe
pyramid, affects the sampling in the next level. (a) AnomalyscoreCl. (b)
Suspicious pixels obtained from thresholdingCl. (c) Γl+1 is determined by
the suspicious pixels from levell and random pixels. (d) Anomaly scoreCl+1.

V. EXPERIMENTAL RESULTS

We demonstrate the proposed algorithm on real sea-mine
side-scan sonar images, achieving a high detection rate with
a low rate of false-alarms. We treat the sea-mines in the
images as anomalies and the reflections from the seabed are
considered normal background clutter. We compare the mul-
tiscale detector with five variations of a single-scale detector,
to demonstrate the improvement gained by our multiscale
approach.

Automatic detection of sea mines in side-scan sonar imagery
is a challenging task due to the high variability in the ap-
pearance of the target and sea-bed reverberations (background
clutter). Objects in side-scan sonar appear as a strong bright
region (highlight) aside a dark region (shadow). The shadow
is due to the object blocking the sonar waves from reaching
the seabed. Typically, the shadow region is larger than the
highlight region in the image.

Research in this field focuses on two aspects of the problem:
detection of mine-like-objects (MLO) in the image and clas-
sification of these objects as mine or non-mine. Algorithms
proposed for detection of the MLOs include MRF models
for modeling the background [34], [35], a 2-D multiscale
GMRF with matched subspace detector (MSD) [4], a multidi-
mensional GARCH model with MSD [3], non-linear matched
filters [36], etc. The detection is sometimes accompanied by
extraction of the shadow, for example using snakes [34].
The detection of the shadow increases the ability to correctly
classify mines and non-mines.

Most algorithms for detection of sea-mines in side-scan
sonar make use of a training set, based on real images and/or
synthetic ones [35], [37]. In [3], a few examples of sea-mines
are used for creating the anomaly subspace for the MSD. Our
diffusion-based approach does not require a training set and
makes no assumptions regarding the appearance of the mine
and its shadow in the image. The only prior information used
is that the expected size of the sea-mine is approximately 15
pixels by 3 pixels. This information is used in determining the
size of the surrounding window and mask for each pixel, as
explained in Sec. IV-C.

We evaluated our algorithm on a set of 28 side-scan sonar
images with sea-mines, each image sized 200x200 pixels. For
the multiscale detector, we used a Gaussian pyramid ofL = 3
levels. The parameters used in the multiscale detector are given
in Table I. To allow efficient computation times, the affinity
matrix was calculated using exact k-nearest-neighbor search
with 16 neighbors for each point, resulting in a sparse weight
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Fig. 4. Flowchart of the multiscale algorithm.

(a) (d)(c)(b)

(e) (h)(f) (g)

Fig. 5. Side-scan sonar images of sea-mines. The sea-mine locations are marked with a red arrow.

matrix. For the k-nearest neighbors search we use the Matlab
function pdist2, which uses the exhaustive search method to
find the exact k-nearest neighbors. For the spectral decom-
position of sparse matrices we use the Matlab functioneigs.
We choose the global scale in (19) to beσ = 20σ2

pair. Note
that the size of the images used in our results enables denser
sampling of the image than what we used. We intentionally use
a small percentage of the pixels in the image to demonstrate
that this framework is applicable also for larger images. Using
diffusion maps for larger images requires small subsets at the
full scale level, due to memory constraints in calculating the
affinity matrix.

We compared the performance of our multiscale algorithm
(MS) with five single-scale sampling schemes:

1) SS1: 10% of the image was randomly sampled to
construct the diffusion map.

2) SS2: 20% of the image was randomly sampled to
construct the diffusion map.

3) SS3: The images were blurred with a Gaussian filter
and down-sampled to 100x100. 30% of the image was
randomly sampled to construct the diffusion map.

4) SS4: The image is divided into 16 overlapping sub-

images. A diffusion map is constructed for each sub-
image using all the pixels in the sub-image such that no
out-of-sample extension is necessary. Anomaly detection
is performed on each sub-image separately and for the
overlapping pixels, the maximal anomaly score is taken.

5) SS5: The diffusion map is calculated for the entire image
at once, without the need for performing sampling and
out-of-sample extension. This is done using RANN [22],
a recently proposed fast approximate nearest neighbors
algorithm. The sparse affinity matrix is calculated for
all 8× 8 patches using 16 neighbors for each patch. We
used 5 iterations of RANN and supercharging; for details
about these parameters the reader is referred to [22].

In SS1 the parameters were chosen to be identical to that
of the multiscale detector for levell = 0, given in Table I.
SS2 is intended to demonstrate the effect of using more
samples. In addition, the number of samples used in this
scheme is equivalent to the total number of samples used
in the multiscale detector. We demonstrate that for the same
number of samples, the multiscale detector achieves superior
results. SS3 has identical parameters to the middle-scale level,
l = 1, of the multiscale detector given in Table I. This
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demonstrates the effect of a decimated scale, in which the fine
details are blurred, on the detection. In SS4, the dependence
on random samples is completely removed. In each sub-image,
all pixels are used in the construction of the diffusion map.
Instead of using a window surrounding each pixel, the pixels
in a sub-image are compared to all other pixels in the sub-
image in the calculation of the anomaly score. To avoid border
issues, the sub-images are overlapping. In SS5, the dependence
on random samples is completely removed. Comparing SS5
with our method demonstrates the effect the multiscale driven
sampling has on the final full-scale diffusion map compared
to a diffusion map calculated for all points together.

Detections are found by thresholding the anomaly score
image resulting in a binary image. A detection is a connected
component in the binary image. We considered detection of the
sea-mine to be a true positive (TP) and any other detections to
be false alarms (FA). The size of the connected component can
be used to reject noisy detections. We compare two thresholds
on the size of the detection: 5 pixels and 20 pixels. Using
a larger threshold on the size rejects more FAs, but can also
result in a decreased amount of TPs, for small sized anomalies.

We compared the number of TPs for each method for a
given FA rate. Results are given in Table II. Our multiscale
approach has the highest TP rate. In SS2, using twice as many
samples than in SS1, results in a better detection rate, but
at a high computational cost. In addition, the difference in
detection for using twice as many samples is not dramatic.
Most importantly, it does not overcome the limitations of sub-
sampling the image, as the multiscale detector which uses the
same number of samples, has a significantly better detection
rate. This is due to the propagation of information from level
to level. SS3 shows better results than both SS1 and SS2,
as it has a lower FA rate. This demonstrates that different
scales of the image are useful in detecting the anomalies and
combining this information as in our multiscale approach,
gives the best results. SS4 demonstrates results which are
comparable to that of our multiscale approach. However, as
explained in Sec. IV-A, this method has various false alarmsin
the background, due to the limited region each diffusion map
is calculated for. This results in a higher false alarm rate to
ensure positive detection of the anomalies. In addition, such a
method faces scalability issues when applied to larger images.

The SS5 approach also gave results which are comparable
to that of our multiscale approach. However, for two images,
Fig. 5(g) and (h), the SS5 approach was unable to detect the
sea-mines at all, even for a detection threshold as low asτ =
0.3. In addition, the MS approach has better results for a small
threshold. In fact, for the low threshold on detection size,there
was no threshold on the SS5 anomaly score which resulted in
zero FAs. For a threshold ofτ = 1, the results of SS5 were 3
FAs and43% detection rate. This because the SS5 results had
more small FAs with very high anomaly score values, than the
MS algorithm. Therefore it is harder to get a good detection
rate with low FAR for a small size anomaly. On the other
hand, for the higher threshold on anomaly size, the results of
the SS5 approach are slightly better. This is because for a few
of the images, the number of anomalous pixels which received
a high anomaly score in the MS method was smaller compared

TABLE II
NUMBER OF TRUE POSITIVE FORGIVEN NUMBER OF FALSE ALARMS

size=5 size=20
FA=7 FA=4 FA=0 FA=7 FA=3 FA=0

MS 100% 89% 89% 100% 86% 82%
SS1 61% 39% 0% 57% 43% 14%
SS2 68% 54% 0% 68% 61% 29%
SS3 61% 61% 29% 61% 57% 29%
SS4 89% 79% 64% 93% 93% 79%
SS5 93% 93% ** 93% 93% 86%

to the SS5 method. Therefore, there were more TPs for the
SS5 method, for the larger anomaly size and low FAR rate.

Eight of the tested images are shown in Fig. 5. Each image
contains one sea-mine on highly cluttered seabed background.
The background patterns are diverse. Some appear as noise
(Fig. 5(b),(d), and (h)) whereas others contain relativelyslow
changing backgrounds (Fig. 5(a)). Images with a rapidly
changing background (Fig. 5(g) and (c)) or dominant periodi-
cal pattern (Fig. 5(e) and (f)) are especially difficult. Also, the
size of the mine and its shadow differ from image to image,
as well as its orientation. For example, in Fig. 5(a) the mine
is quite large, whereas in Fig. 5(h) the mine is very small and
its shadow is also thin. In most images, the highlight is rather
bright, yet in image Fig. 5(d) its intensity is similar to that of
the noise and in Fig. 5(f), the mine highlight is not visible at
all, with only its shadow seen in the image.

Results of the multiscale detector are presented in Fig. 6 and
for the single scale detector SS1 in Fig. 7. Positive detection
of the sea-mines is achieved in all displayed images using
the multiscale detector. The single scale detector on the other
hand, does not detect any anomalies in Fig. 7(e)-(h). The single
scale detector also suffers from a higher false alarm rate, as
can be seen in Fig. 7(a). The multiscale detector has a single
false alarm in image Fig. 6(d), on a small shadow in the image.
This same false alarm is detected by the single scale detector.
The multiscale detector performs very well in detecting both
the sea-mine and its highlight in the image, demonstrated for
diverse, challenging backgrounds and various sea-mine sizes
and orientations.

In Table III, we report the average total running time and
the running time for the two parts of the MS algorithm: dimen-
sionality reduction, including sampling the image, constructing
a diffusion map and out-of-sample-extension to all image
patches, and anomaly detection in the reduced dimensionality.
We compare the runtime of the MS algorithm with those of
two single-scale schemes: calculating the affinity matrix for the
entire image using RANN method (SS5) and using Matlab’s
exact NN method. In these schemes dimensionality reduction
is based only on constructing the diffusion map, without
the need for out-of-sample-extension. Results are given in
seconds. Our algorithm has been implemented in Matlab and
the numerical experiments have been carried out on a Dell
laptop computer, with an Intel Core i5 QuadCore CPU 2.67
GHz and 4.0GB RAM. It should be noted that this a Matlab
implementation and it has not been optimized for runtime. The
RANN search been implemented in FORTRAN.
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TABLE I
PARAMETERSUSED IN MULTISCALE DETECTOR

Pyramid
Level

Image
size

Patch
size

Embedding
Dimension

Percentage of
pixels in subset

Window
Size (W )

Mask
Size (Mmask)

0 200x200 8x8 6 0.10 41x41 (20) 9x9 (4)
1 100x100 4x4 6 0.33 21x21 (10) 5x5 (2)
2 50x50 2x2 3 0.5 13x13 (6) 5x5 (2)

(a) (d)(c)(b)

(e) (h)(f) (g)

Fig. 6. Results of Anomaly Detection for multiscale detector, corresponding to the images displayed in Fig. 5.

The results first enable us to compare between the MS
algorithm and SS1, which is equivalent to the runtime of scale
l = 0 of the MS approach. The MS takes about15% longer
but with greatly improved detection results. Next, comparing
RANN with Matlab’s exact NN search, the improvement factor
in runtime using RANN for dimensionality reduction is around
18. The diffusion maps constructed by the two methods are
not identical, as RANN does not always return the true nearest
neighbors, so the sparse affinity matrix is different. Overall,
the detection statistics for both methods are very similar so we
do not report those for the exact NN search in Table II. Based
on this comparison, we can assume that using RANN in our
multi-scale approach instead of the exact NN search should
improve the runtime of our algorithm, without affecting the
detection results. This will be verified empirically in future
work. In such a framework, RANN will be used initially to
construct the affinity matrix for the sampled points inΓl, and
then a query will be run on each of the points inΓl. The
improvement in runtime entails a cost in memory on the order
of O(nl ·T )), with nl being the number of points inΓl andT
being the number of iterations used by RANN [22]. For the
lower-resolution scales of the pyramid the improvement factor
will be modest considering the small size ofΓ and the low
dimension of the points (small patches are used as features).
However, we expect a meaningful improvement for the higher-
resolution scale.

TABLE III
AVERAGE RUNNING T IMES OF THEALGORITHM IN SECONDS,

COMPARING MULTISCALE APPROACH WITHSINGLE-SCALE EXACT AND
APPROXIMATENN APPROACH

Pyramid
Level

Dimensionality
Reduction

Anomaly
Detection

Total

0 23.70 43.77 67.54
1 5.47 3.77 9.26
2 1.00 0.66 1.67

Total 30.18 48.20 78.47

RANN 10.53 43.70 54.30

Exact NN 190.00 43.79 233.90

VI. CONCLUSION

We have introduced an anomaly detection algorithm us-
ing diffusion maps representation of the data. Based on the
clustering properties of the diffusion map, we proposed to
detect anomalies in the reduced dimension based on a nearest-
neighbor approach. To improve the detection process and
ensure that the normal pixels and the anomaly regions are
separable in the lower dimensional embedding of the data,
we implemented a multiscale framework to overcome the
possible limitations in using diffusion maps with out-of-sample
extension.

The successful performance of the algorithm was demon-
strated in automatic target detection in side-scan sonar images,
which is a challenging task due to the high variability of
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(a) (d)(c)(b)

(e) (h)(f) (g)

Fig. 7. Results of Anomaly Detection for single scale detector, corresponding to the images displayed in Fig. 5.

the target and sea-bottom reverberation. The results show the
capability of the proposed model and algorithm to cope with a
variety of targets and background clutter patterns. The results
also demonstrate the advantage of the multiscale framework
over using only a single scale.

Although our algorithm is used in an unsupervised setting, it
also has implications for using diffusion maps in a supervised
setting, using out-of-sample extension to extend the diffusion
map from a training set to a test set. Our results imply that
constructing a training set using only background data points
will not be successful in a supervised anomaly detection appli-
cation. The anomalous data points will be assigned coordinates
similar to those of the background, and the detection will fail
in the lower dimensional embedding.

A possibility for future research is combining the anomaly
scores from the different multiscale levels into a single
anomaly score. We predict this will improve performance, as
the coarser levels have information on the presence of the
anomaly, which we currently disregard in our final output.
This can also assist in detecting anomalies whose size differ
from the expected size. In addition, computational complexity
of the algorithm can be reduced by employing the RANN
algorithm for computing the affinity matrix for the diffusion
map, as explained in Sec. V.
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