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Abstract. Let G be a connected semisimple real algebraic group. For
a Zariski dense Anosov subgroup Γ < G, we show that a Γ-conformal
measure is supported on the limit set of Γ if and only if its dimen-
sion is Γ-critical. This implies the uniqueness of a Γ-conformal measure
for each critical dimension, answering the question posed in our ear-
lier paper with Edwards [14]. We obtain this by proving a higher rank
analogue of the Hopf-Tsuji-Sullivan dichotomy for the maximal diagonal
action. Other applications include an analogue of the Ahlfors measure
conjecture for Anosov subgroups.

1. Introduction

Let G be a connected semisimple real algebraic group. In this paper, we
investigate properties of Γ-conformal measures on the Furstenberg boundary
ofG for a certain class of discrete subgroups Γ ofG, called Anosov subgroups.
Associated to each conformal measure does there exist a linear form on the
Cartan subspace of the Lie algebra of G, which may be regarded as the
dimension of the measure. We show that a Γ-conformal measure is supported
on the limit set of Γ if and only if this dimension is Γ-critical. We deduce
this result from a higher rank analogue of the Hopf-Tsuji-Sullivan dichotomy
for the maximal diagonal action, which relates the supports of conformal
measures, critical exponents of Poincare series, and the dynamical properties
of the action of a maximal diagonal subgroup on Γ\G relative to higher rank
generalizations of Bowen-Margulis-Sullivan measures. Applications include
an analogue of the Ahlfors measure conjecture for Anosov subgroups of G.

To state our main results precisely, we let P = MAN be a minimal
parabolic subgroup of G with a fixed Langlands decomposition, where A
is a maximal real split torus of G, M is the maximal compact subgroup
centralizing A and N is the unipotent radical of P . Let g = LieG, a = LieA
and a+ denote the positive Weyl chamber so that logN consists of positive
root subspaces. Let K be a maximal compact subgroup so that the Cartan
decomposition G = K(exp a+)K holds. Let µ : G → a+ denote the Cartan
projection map defined by the condition expµ(g) ∈ KgK for all g ∈ G.
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A finitely generated discrete subgroup Γ < G is called an Anosov subgroup
(with respect to P ) if there exist constants C,C ′ > 0 such that for all γ ∈ Γ
and all simple root α of (g, a),

α(µ(γ)) ≥ C|γ| − C ′

where |γ| denotes the word length of γ with respect to a fixed finite sym-
metric set of generators of Γ. The notion of Anosov subgroups was first
introduced by Labourie for surface groups [26], and was extended to gen-
eral word hyperbolic groups by Guichard-Wienhard [18]. Several equivalent
characterizations have been established, one of which is the above defini-
tion (see [17], [21], [22], [23]). Anosov subgroups are regarded as natural
generalizations of convex cocompact subgroups of rank one groups.

Uniqueness of conformal measures. We set F := G/P which is the
Furstenberg boundary of G. Let Γ < G be a Zariski dense discrete subgroup.
A Borel probability measure ν on F is called a Γ-conformal measure if, there
exists a linear form ψ ∈ a∗ such that for any γ ∈ Γ and ξ ∈ F ,

dγ∗ν

dν
(ξ) = eψ(βξ(e,γ)) (1.1)

where β denotes the a-valued Busemann function defined in Def. (2.2). We
call ν a (Γ, ψ)-conformal measure and ψ the dimension of ν. Although ψ is
a linear form instead of a number, we find it convenient to treat it as a sort
of dimension of the measure ν and hence the name.

If ρ denotes the half sum of all positive roots of (g, a), the K-invariant
probability measure on F (the Lebesgue measure) is the unique G-conformal
measure of dimension 2ρ [40].

We let ψΓ : a → R∪{−∞} denote the growth indicator function of Γ (see
Def. (2.3)). Let L ⊂ a+ denote the limit cone of Γ, which is the asymptotic
cone of the Cartan projection of Γ.

We mention that the dimension of a Γ-conformal measure is always bounded
below by ψΓ [36]. We call a linear form ψ ∈ a∗ Γ-critical, or simply, critical,
if it is tangent to ψΓ, i.e.,

ψ ≥ ψΓ and ψ(u) = ψΓ(u) for some u ∈ L ∩ int a+.

When G has rank one, ψΓ is simply the critical exponent δ of Γ and hence
a critical linear form is just given by δ. Note that the dimension ψ of a
Γ-conformal measure is either critical or ψ > ψΓ.

We denote by Λ the limit set of Γ, which is the unique Γ-minimal subset
of F . For each Γ-critical dimension ψ ∈ a∗, Quint constructed a (Γ, ψ)-
conformal measure supported on the limit set Λ, following the approach of
Patterson and Sullivan ([33], [43], [36]). Moreover, for any Anosov subgroup
of the second kind (see [15, Def. 5.1]), a (Γ, ψ)-conformal measure exists for
any dimension ψ ≥ max(ψΓ, ρ) by [15, Cor. 5.3].

Our first theorem gives a criterion on the support of a conformal measure
in terms of its dimension. This generalizes Sullivan’s theorem [43] that for
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Γ < SO(n, 1) convex cocompact, any Γ-conformal measure of dimension
equal to the critical exponent is necessarily supported on the limit set.

Theorem 1.2. Let Γ < G be a Zariski dense Anosov subgroup. For any
Γ-conformal measure λ on F , we have

λ(Λ) =

®
1 if its dimension is Γ-critical

0 otherwise.

In particular, for each Γ-critical linear form ψ ∈ a∗, there exists a unique
Γ-conformal measure on F with dimension ψ.

The second part follows from the first part together with the result in [28],
which showed that there exists a unique Γ supported measure supported on Λ
for each critical dimension. These results together also imply that the space
of all Γ-conformal measures on F is homeomorphic to the space of directions
in the interior of the limit cone of Γ. It also follows from [28, Thm. 10.20]
that conformal measures of distinct critical dimensions are mutually singular
to each other. The study of Γ-conformal measures is directly related to the
study of positive joint eigenfunctions on the associated locally symmetric
manifold Γ\G/K for the ring of G-invariant differential operators ([45], [15]).

Remark 1.1. When the rank of G is at most 3, it was proved in [14] that any
conformal measure of critical dimension is supported on Λ, and the general
case was posed as an open problem there (see Remark 1.2).

Analogue of the Ahlfors measure conjecture. The Ahlfors measure
conjecture [3] says that the limit set of a finitely generated discrete subgroup
of PSL2(C) is either S2 or has Lebesgue measure zero; this is now a theorem
following from the works of Agol [2], Calegari-Gabai [8] and Canary [9]. The
following theorem is analogous to the case of Ahlfors’ conjecture proved by
Ahlfors himself for convex cocompact subgroups [3]. We denote by Leb the
Lebesgue measure on F .

Theorem 1.3. For any Zariski dense Anosov subgroup Γ < G, we have
either

Λ = F or Leb(Λ) = 0.

In the former case, rank(G) = 1 and Γ is cocompact in G.

Higher rank analogue of the Hopf-Tsuji-Sullivan dichotomy. Both
theorems are deduced from a higher rank analogue of the Hopf-Tsuji-Sullivan
dichotomy for the action of the maximal diagonal subgroup A. To state this
dichotomy, we need to introduce some notations first. Letting F (2) denote
the unique open diagonal G-orbit in F×F , the quotient space G/M is home-

omorphic to F (2)×a via the Hopf parameterization. The notation i denotes
the opposition involution of a, and let db denote the Lebesgue measure on a.
For a given pair of Γ-conformal measures λψ and λψ◦i on F with respect to
ψ and ψ ◦ i respectively, one can use the Hopf parameterization to define a
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non-zero A-invariant Borel measure mλψ ,λψ◦i on the quotient space Γ\G/M ,
which is locally equivalent to dλψ ⊗ dλψ◦i ⊗ db in the Hopf coordinates. We
will call it the Bowen-Margulis-Sullivan measure (or simply BMS measure)
associated to the pair (λψ, λψ◦i). Each BMS measure mλψ ,λψ◦i on Γ\G/M
can be considered as an AM -invariant measure on Γ\G, for which we will
use the same notation. For example, for ψ = 2ρ = ψ ◦ i, the corresponding
measure mλ2ρ,λ2ρ is a G-invariant measure on Γ\G.

The conical limit set of Γ is defined as

Λc = {gP ∈ F : gA+ accumulates on Γ\G},

in other words, Λc = {gP ∈ F : lim supΓgA+ ̸= ∅},1 where A+ = exp a+.
For Anosov subgroups, we have

Λ = Λc,

as proved in [22] using the Morse property.
For ψ ∈ a∗, let Mψ denote the collection of all (Γ, ψ)-conformal measures.

Theorem 1.4 (Dichotomy for the maximal diagonal action). Let Γ be a
Zariski dense Anosov subgroup of G. Let ψ ∈ a∗ be such that Mψ ̸= ∅.
Then the following are all equivalent to each other:

(1)
∑

γ∈Γ e
−ψ(µ(γ)) = ∞ (resp.

∑
γ∈Γ e

−ψ(µ(γ)) <∞);

(2) ψ is Γ-critical (resp. ψ > ψΓ);
(3) for any λψ ∈ Mψ, λψ(Λc) > 0 (resp. λψ(Λc) = 0);
(4) for any λψ ∈ Mψ, λψ(Λc) = 1 (resp. λψ(Λc) = 0);

(5) for any (λψ, λψ◦i) ∈ Mψ×Mψ◦i, the diagonal Γ-action on (F (2), λψ⊗
λψ◦i|F(2)) is ergodic and completely conservative (resp. non-ergodic
and completely dissipative);

(6) for any (λψ, λψ◦i) ∈ Mψ×Mψ◦i, the A-action on (Γ\G/M,mλψ ,λψ◦i)
is ergodic and completely conservative (resp. non-ergodic and com-
pletely dissipative);

(7) for any (λψ, λψ◦i) ∈ Mψ × Mψ◦i and any P ◦-minimal subset E0
of Γ\G, the A-action on (E0,mλψ ,λψ◦i |E0) is ergodic and completely
conservative (resp. either mλψ ,λψ◦i(E0) = 0, or non-ergodic and com-
pletely dissipative).

In the rank one case, the A-action on Γ\G/M corresponds to the geodesic
flow on the unit tangent bundle of the locally symmetric manifold Γ\G/K.
Therefore this theorem generalizes the Hopf-Tsuji-Sullivan dichotomy for
the geodesic flow in the rank one case ([46], [43], [44], [19], [1], [11], [31]);
we refer to Roblin’s article [41] for the most comprehensive exposition.

Theorem 1.3 is deduced from Theorem 1.4 and Theorem 7.1 proved by
Quint [38], using the matrix coefficient bounds for higher rank simple alge-
braic groups in [32]. This in turn implies that, unless Γ\G is compact, 2ρ

1For a sequence Sn of subsets of a topological space X, lim supSn is defined as the set
of all possible limits s = limi→∞ sni in X where sni ∈ Sni for some infinite sequence ni.
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is not Γ-critical and hence the Haar measure on Γ\G is non-ergodic for the
AM -action.

Since there exists a Γ-conformal measure supported on Λ for each critical
dimension, Theorem 1.2 immediately follows from Theorem 1.4 together
with the uniqueness of Γ-conformal measures supported on Λ [13, Thm.
7.9].

Remark 1.2. When rankG is at most 3, it was shown in [14] that any (Γ, ψ)-
conformal measure is supported on the u-directional conical limit set Λu
where u is the unique unit vector ψ(u) = ψΓ(u); this implies Theorem 1.2.
The proof of this result was based on the Hopf-Tsuji-Sullivan Dichotomy
for one dimensional diagonal flows {exp(tu) : t ∈ R} as established in [7].
When the rank of G exceeds 3, directional conical limit sets have negligible
conformal measures, and hence this result of [14] did not prove Theorem
1.2. We note that while the dichotomy for one dimensional diagonal flows
was obtained for any Zariski dense discrete subgroup, our proof of Theorem
1.4 is heavily based on the hypothesis that Γ is Anosov.

While some of the implications of Theorem 1.4 were previously obtained
in ([28], [29]), the implication (1) ⇒ (3) is the main new result of this
paper, which is needed for the application to Theorem 1.2. Fixing a (Γ, ψ)-
conformal measure λψ for a critical ψ ∈ a∗, we consider the generalized

Bowen-Margulis-Sullivan measure m = mBMS
λψ ,λψ◦i

on Γ\G for some conformal

measure λψ◦i of dimension ψ◦i (see (2.4) for the definition). We use a variant
of the Borel-Cantelli lemma for the A+ action (Lemma 5.3) by relating the

correlations functions of m with the Poincare series
∑

γ∈Γ,∥µ(γ)∥≤T e
−ψ(µ(γ)).

This requires a control on the multiplicity of certain shadows (Lemma 3.1),
the proof of which uses the following property of Anosov subgroups that
for any x ∈ Γ\G, accumulations of an orbit xA in Γ\G can occur only via
sequences in A+∪w0A

+w−1
0 where w0 is the longest Weyl element. In other

words, for any other Weyl element w ̸= e, w0, the subset xwA+w−1 is a
proper embedding of wA+w−1, as was first observed in [28, Lem. 8.13]. See
Lemmas 2.8 and 3.4. This phenomenon makes this higher rank situation a
bit more like a rank one situation where the one dimensional subgroup A
is simply the union A+ ∪ w0A

+w−1
0 . Based on this and other properties of

Anosov subgroups, we are able to extend the rank one argument in [41] to
this higher rank Anosov setting.

In a higher rank simple algebraic group, the conical limit set has Lebesgue
measure zero for a discrete subgroup of infinite co-volume (see Proposition
7.6). We end the introduction by the following question:

Question 1.5. Let G be a connected simple real algebraic group with rank
at least 2 and Γ < G be a Zariski dense discrete subgroup. Is the following
true?:

Λ = F if and only if Γ is a a lattice in G.
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We remark that Λ = F is equivalent to the minimality of the P -action on
Γ\G, which means that every P -orbit is dense in Γ\G. Hence a weaker (still
unknown) question than the above is whether Γ is necessarily a lattice if the
NM -action is minimal on Γ\G, or equivalently if F is equal to the set of
horospherical limit points of Γ, in the sense of [27]. In view of a theorem of
Fraczyk and Gelander [16], one can also ask whether the infinite injectivity
radius of Γ\G implies that Λ cannot be all of F in higher rank setting.

Organization. In section 2, basic definitions and properties of Anosov sub-
groups will be recalled. In section 3, we prove a uniform bound on the mul-
tiplicity of certain shadows, which is a main technical ingredient. In section
4, we show that if

∑
γ∈Γ e

−ψ(µ(γ)) = ∞, then for a large compact subset

Q ⊂ Γ\G, the events Pa = Q ∩ Qa−1, a ∈ A+ do not have a strong corre-
lation with respect to the BMS measures of the form mBMS

λψ ,λψ◦i
; this will be

used as a main input for the Borel-Cantelli lemma in section 5 to show that
any (Γ, ψ)-conformal measure is necessarily supported on the conical limit
set Λc. In section 6, we establish all the equivalences of Theorem 1.4. In
section 7, we prove Theorem 1.3.

Acknowledgements. We would like to thank Peter Sarnak and David
Fisher for useful comments.

2. Preliminaries

Let G be a connected semsimple real algebraic group. We let P =MAN ,
g, a, a+, etc, be as defined in the introduction. We fix a maximal compact
subgroup K < G so that the Cartan decomposition G = K(exp a+)K holds.
Denote by µ : G → a+ the Cartan projection, i.e., for g ∈ G, its Cartan
projection µ(g) ∈ a+ is the unique element such that

g ∈ K expµ(g)K. (2.1)

We fix a norm ∥ · ∥ on a which is induced from the Killing form on g. The
quotient space X = G/K is the associated Riemannian symmetric space.
We denote by d the Riemannian distance on X induced by ∥ · ∥. We also set
o = [K] ∈ X.

Denote by w0 ∈ K a representative of the unique element of the Weyl
groupW = NK(A)/M such that Adw0 a

+ = −a+. The opposition involution
i : a → a is defined by

i(u) = −Adw0(u) for u ∈ a.

We have i(µ(g)) = µ(g−1) for all g ∈ G.
The Furstenberg boundary F = G/P is isomorphic to K/M as K acts

on F transitively with K ∩ P = M . The a-valued Busemann function
β : F ×G×G→ a is defined as follows: for ξ ∈ F and g, h ∈ G,

βξ(g, h) := σ(g−1, ξ)− σ(h−1, ξ) (2.2)



DICHOTOMY AND MEASURES 7

where the Iwasawa cocycle σ(g−1, ξ) ∈ a is defined by the relation g−1k ∈
K exp(σ(g−1, ξ))N for ξ = kP , k ∈ K.

Let Γ < G be a Zariski dense discrete subgroup of G. Denote by L ⊂ a+

the limit cone of Γ, which is the asymptotic cone of µ(Γ), i.e.,

L = {v ∈ a+ : v = lim
i→∞

tiµ(γi) for some ti → 0 and γi → ∞ in Γ}.

It is a convex cone with non-empty interior [4].
The growth indicator function ψΓ : a+ → R ∪ {−∞} is defined as a

homogeneous function, i.e., ψΓ(tu) = tψΓ(u) for all t ∈ R, such that for any
unit vector u ∈ a+,

ψΓ(u) := inf
u∈C,open cones C⊂a+

τC (2.3)

where τC is the abscissa of convergence of the series
∑

γ∈Γ,µ(γ)∈C e
−t∥µ(γ)∥.

We have ψΓ ≥ 0 on L and ψΓ = −∞ outside L.

The generalized BMS-measures mν1,ν2. For g ∈ G, we consider the
following visual images:

g+ := gP ∈ F and g− := gw0P ∈ F .
Let F (2) denote the unique open G-orbit in F×F under the diagonal action.
In fact,

F (2) = {(g+, g−) : g ∈ G}.
Then the map

gM 7→ (g+, g−, b = βg−(e, g))

gives a homeomorphism G/M ≃ F (2) × a, called the Hopf parametrization
of G/M .

For a pair of linear forms ψ1, ψ2 ∈ a∗ and a pair of (Γ, ψ1) and (Γ, ψ2) con-
formal measures ν1 and ν2 respectively, define a locally finite Borel measure
m̃ν1,ν2 on G/M as follows: for g = (g+, g−, b) ∈ F (2) × a,

dm̃ν1,ν2(g) = eψ1(βg+ (e,g))+ψ2(βg− (e,g)) dν1(g
+)dν2(g

−)db, (2.4)

where db = dℓ(b) is the Lebesgue measure on a. By abuse of notation, we
also denote by m̃ν1,ν2 theM -invariant measure on G induced by m̃ν1,ν2 . This
is always left Γ-invariant and right A quasi-invariant: for all a ∈ A,

a∗m̃ν1,ν2 = e(−ψ1+ψ2◦i)(log a) m̃ν1,ν2 ;

we refer to [13] for more details on these measures. We denote by mν1,ν2 the
M -invariant measure on Γ\G induced by m̃ν1,ν2 .

We will need the following notion:

Definition 2.5. Let gi ∈ G be a sequence whose Cartan decomposition is
given by gi = kiaiℓi ∈ KA+K. As i→ ∞,

(1) we say that gi → ∞ regularly if α(log ai) → ∞ for all simple root α
of (g, a);
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(2) we say that gi converges to ξ ∈ F , if gi → ∞ regularly and lim
i→∞

k+i =

ξ;
(3) we say that pi = gi(o) ∈ X converges to ξ ∈ F if gi does.

We then define the limit set Λ of Γ as the set of all accumulation points
of Γ(o) in F ; this is the unique Γ-minimal subset ([28, Lem. 2.13], [4]). As
in the introduction, we also define the conical limit set:

Λc =

ß
gP ∈ F :

there exist γi ∈ Γ and ai → ∞ in A+

such that γigai is bounded

™
.

In the rest of this section, we assume that Γ < G is a Zariski dense Anosov
subgroup (with respect to P ) as defined in the introduction. We collect some
important properties of Anosov subgroups that we will be using.

Lemma 2.6. ([22], [18]) If Γ < G is Anosov, then we have:

(1) (Regularity) If γi → ∞ in Γ, then γi → ∞ regularly as i→ ∞.

(2) (Antipodality) If ξ, η ∈ Λ are distinct, then (ξ, η) ∈ F (2).
(3) (Conicality) Λ = Λc.

Indeed, these three properties characterize Anosov subgroups [22, Thm.
1.1]. Note that the regularity of (1) implies that Γ(o)∪Λ is compact. More-
over, by [28, Lem. 2.10], we have:

Lemma 2.7. For any compact subset Q ⊂ G, the union Γ(Q)∪Λ is compact.

The following is a consequence of the antipodal property of Anosov sub-
groups, and plays a key role in this paper.

Lemma 2.8. [28, Lem. 8.13] Let Γ < G be Anosov. For x = [g] ∈ Γ\G, the
following are equivalent:

(1) lim supxA ̸= ∅;
(2) lim supxA+ ∪ lim supxw0A

+ ̸= ∅;
(3) {gP, gw0P} ∩ Λ ̸= ∅.

Theorem 2.9. [34] For Γ Anosov, we have

L ⊂ int a+ ∪ {0}.

Corollary 2.10. If Γ < G is Anosov and rank G ≥ 2, there exists no finite
A-invariant Borel measure on Γ\G.

Proof. Suppose there exists a finite A-invariant Borel measure m on Γ\G.
Let v ∈ int a+. By the Poincare recurrence theorem, m-almost all points are
recurrent for the action of expRv. In particular, there exist g ∈ G, γi ∈ Γ
and ti → +∞ such that γig exp(tiv) is bounded. Then the sequence µ(γ−1

i )
stays in a bounded distance from the ray R+v by [4, Lem. 4.6]; it follows
that v ∈ L. Therefore L = a+ ∪ {0}. If rank G ≥ 2, then a+ −{0} ≠ int a+.
Hence the claim follows from Theorem 2.9.

□
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3. Uniform bound on the multiplicity of shadows

For p ∈ X = G/K and S > 0, we set B(p, S) := {x ∈ X : d(x, p) < S}.
Recall the notation o = [K] ∈ X = G/K. For p ∈ X and S > 0, the

shadow of the ball B(p, S) as seen from o is defined by

OS(o, p) := {ξ ∈ F : for some k ∈ K with ξ = kP , kA+o ∩B(p, S) ̸= ∅}.

Lemma 3.1. Let Γ < G be a Zariski dense Anosov subgroup of G. For any
S,D > 0, there exists q = q(S,D) > 0 such that for any T > 0, the shadows

{OS(o, γo) : T < ∥µ(γ)∥ < T +D}
have multiplicity at most q.

The rest of this section is devoted to the proof of Lemma 3.1.
Throughout the section, we fix a compact subset Q of G. The notation

x ≈Q y means that x − y is contained in a bounded set that depends only
on Q. We will simply write x ≈ y if the implicit bounded set depends only
on Γ and G.

Lemma 3.2. [4, Lem. 4.6] For all g ∈ G and q1, q2 ∈ Q, we have

µ(q1gq2) ≈Q µ(g).

Lemma 3.3. Let a ∈ A and w ∈ W be such that waw−1 ∈ A+. If Q ∩
γQa−1 ̸= ∅, then µ(γ) ≈Q Adw log a.

Proof. If Q ∩ γQa−1 ̸= ∅, then there exists q0, q
′
0 ∈ Q such that q0a = γq′0.

The conclusion follows from Lemma 3.2. □

We set A− = w0A
+w−1

0 , and for any C > 0, set AC := {a ∈ A : ∥log a∥ ≤
C}. The following lemma is a key ingredient in the proof of Lemma 3.1; we
use the regularity and antipodality of Anosov subgroups.

Lemma 3.4. Let Γ < G be Anosov. There exists C0 > 1 depending only
on Q such that whenever Q ∩ γ1Qa

−1
1 ∩ γ2Qa

−1
2 ̸= ∅ for γ1, γ2 ∈ Γ and

a1, a2 ∈ A+, we have

(1) a−1
1 a2 ∈ (A+ ∪A−)AC0;

(2) µ(γ2) ≈Q µ(γ1) + µ(γ−1
1 γ2) or µ(γ1) ≈Q µ(γ2) + µ(γ−1

2 γ1).

Proof. We first prove (1). Suppose not. Then there exists a compact set
Q ⊂ G and sequences q0,i, q1,i, q2,i ∈ Q, a1,i, a2,i ∈ A+ and γ1,i, γ2,i ∈ Γ such
that

a−1
1,i a2,i ̸∈ (A+ ∪A−)Ai, (3.5)

q0,i a1,i = γ1,i q1,i, q0,i a2,i = γ2,i q2,i (3.6)

where Ai = {a ∈ A : ∥ log a∥ ≤ i}.
Observe that (3.5) implies a−1

1,i a2,i → ∞ in A and a1,i, a2,i → ∞ in A+.

Observe that a1,i, a2,i → ∞ regularly, by (3.6) and Lemmas 2.6 and 3.2.
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Passing to a subsequence, we may assume that for each m = 1, 2, qm,i
converges to some qm ∈ Q, and γ−1

m,iq0,io converges to some element ξ ∈ Λ

as i → ∞. Since γ−1
m,iq0,io = qm,ia

−1
m,io, it follows that ξ = q−m by [28, Lem.

2.11] for each m = 1, 2. Therefore q−m ∈ Λ. On the other hand, we have

γ−1
1,i γ2,i q2,i = q1,i a

−1
1,i a2,i. (3.7)

Note that γ−1
1,i γ2,i → ∞ and there exists wi ∈ W − {e, w0} such that

w−1
i a−1

1,i a2,iwi ∈ A+. Passing to a subsequence, we may assume that wi = w

is constant and γ−1
1,i γ2,i q2,i o converges to an element of Λ by Lemma 2.7.

By (3.7) and [28, Lem. 2.11], it follows that q1w
+ ∈ Λ. This contradicts

Lemma 2.6, as neither q1w
+ = q−1 nor (q1w

+, q−1 ) ∈ F (2), proving (1).
To prove (2), observe that we have µ(γ1) ≈Q log a1, µ(γ2) ≈Q log a2 by

Lemma 3.3, since Q ∩ γ1Qa−1
1 ∩ γ2Qa−1

2 ̸= ∅. On the other hand, it follows
from (1) that

µ(γ−1
2 γ1) ≈Q log a−1

1 a2 or µ(γ−1
1 γ2) ≈Q log a−1

2 a1.

Hence (2) is proved. □

The following lemma follows from Theorem 2.9 and the fact that the angle
between two walls of a Weyl chamber is at most π/2.

Lemma 3.8. There exist constants β1, β2 > 0 depending only on Γ such
that for all x, y ∈ µ(Γ), we have

∥x+ y∥2 ≥ ∥x∥2 + ∥y∥2 + β1∥x∥∥y∥ − β2.

Proof of Lemma 3.1. Suppose that there exist ξ ∈
⋂n
i=1OS(o, γio) and T <

∥µ(γi)∥ < T + D for some γi (i = 1, · · · , n). Set Q := KA+
SK. Choose

k ∈ K such that ξ = kP . Then d(kA+o, γio) ≤ S. It follows that there
exists a sequence a1, · · · , an ∈ A+ such that k ∈ Q∩γ1Qa−1

1 ∩ · · ·∩γnQa−1
n .

We claim that there exists D′ = D′(Q,D) > 0 such that

max
i,j

∥µ(γ−1
i γj)∥ < D′. (3.9)

This implies that n ≤ #{γ ∈ Γ : ∥µ(γ)∥ ≤ D′}.
To prove (3.9), we apply Lemma 3.4(2) to each pair (γi, γj); suppose

first that µ(γj) ≈Q µ(γi) + µ(γ−1
i γj). Since ∥µ(γj)∥ ≤ T +D, there exists

D1 = D1(Q) > 0 such that

∥µ(γi) + µ(γ−1
i γj)∥2 ≤ (∥µ(γj)∥+D1)

2 ≤ (T +D +D1)
2. (3.10)

Set D2 = D +D1. By Lemma 3.8 and (3.10), we deduce that

β1∥µ(γ−1
i γj)∥T + ∥µ(γ−1

i γj)∥2 < 2D2T +D2
2 + β2,

in particular, ∥µ(γ−1
i γj)∥ < max(

»
D2

2 + β2, 2D2β
−1
1 ). The other case of

Lemma 3.4(2) also yields the same conclusion by a symmetric argument.
This proves the claim (3.9). □
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We remark that the boundedness of the multiplicity of the intersection
of shadows and the limit set for projective Anosov representations, with
respect to the word length |γ| is given [35, Prop. 3.5].

4. Poincare series and the average of correlations

Let Γ < G be a Zariski dense Anosov subgroup. We fix ψ ∈ a∗ and a
(Γ, ψ)-conformal measure λψ on F (not necessarily supported on Λ). We
assume that ∑

γ∈Γ
e−ψ(µ(γ)) = ∞.

This implies that ψ is Γ-critical by [39, Lem. III.1.3]. Therefore, there exists
a (Γ, ψ ◦ i)-conformal measure, say λψ◦i, e.g., as constructed by Quint.

Let

m̃ = m̃BMS
λψ ,λψ◦i

denote the generalized BMS measure on G, which is left Γ-invariant and
right AM -invariant.

The notations x ≲z y (resp. x≪z y) are to be understood that x ≤ y+C
(resp. x ≤ Cy) for some constant C > 0 that depends on z.

The main aim of this section is to prove the following proposition. For
r > 0 and any subset S ⊂ A, we set Sr = {a ∈ S : ∥ log a∥ ≤ r}.

Proposition 4.1. Let Qr = KA+
r KAr for r > 0. For any sufficiently large

r > 1, the following holds: for any T ≥ 1,∫
A+
T

∫
A+
T

∑
γ1,γ2∈Γ

m̃(Qr∩γ1Qra−1
1 ∩γ2Qra−1

2 ) da1 da2 ≪
Å ∑

γ∈Γ,
∥µ(γ)∥≤T

e−ψ(µ(γ))
ã2

and ∫
A+
T

∑
γ∈Γ

m̃(Qr ∩ γQra−1) da≫
∑
γ∈Γ,

∥µ(γ)∥≤T

e−ψ(µ(γ))

where the implied constants depend only on r.

The rest of this section is devoted to the proof of this proposition, given
as the proofs of Propositions 4.11 and 4.14.

The a-valued Gromov product on F (2) is defined as follows: for (g+, g−) ∈
F (2),

G(g+, g−) := βg+(e, g) + i
(
βg−(e, g)

)
;

this is well-defined independent of the choice of g ∈ G.

Lemma 4.2. [5, Prop. 8.12] There exist c, c′ > 0 such that for all g ∈ G,

c−1∥G(g+, g−)∥ ≤ d(o, gAo) ≤ c∥G(g+, g−)∥+ c′.
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For r > 0, let

Gr = KA+
r K

and

Lr(o, go) := {(h+, h−) ∈ F (2) : h ∈ Gr, ha ∈ gGr for some a ∈ A+}.

Lemma 4.3. For any g ∈ G and r > 0, we have

Lr(o, go) ⊂ O2r(o, go)×O2r(go, o).

Proof. Let (ξ, η) ∈ Lr(o, go). Then there exists h ∈ Gr such that (h+, h−) =
(ξ, η) and d(hA+o, go) < r. Let k ∈ K be such that k+ = h+. Then the
Hausdorff distance between kA+o and hA+o is given by d(o, ho) < r [12,
1.6.6(4)] and hence d(kA+o, go) < 2r. It follows that ξ = k+ ∈ O2r(o, go).
A similar computation shows that η ∈ O2r(go, o). □

Lemma 4.4. Let r > 0. If g ∈ Qr ∩ γQra−1 for γ ∈ Γ and a ∈ A+, then

(1) (g+, g−) ∈ L2r(o, γo).
(2) |ψ(G(g+, g−))| < 2∥ψ∥cr where c is from Lemma 4.2.
(3) gA ∩Qr ∩ γQra−1 ⊂ gA4r.

Proof. (1) follows from the definition since Qr ⊂ G2r. (2) follows from
Lemma 4.2 and the fact that d(gAo, o) ≤ d(go, o) < 2r. (3) follows from
the stronger inclusion gA ∩ Qr ⊂ gA4r; if g, gb ∈ Qr for some b ∈ A, then
b ∈ Qr ·Qr ⊂ G4r since Qr ⊂ G2r. Note that G4r ∩A = A4r. □

We will need the following shadow lemma:

Lemma 4.5. [28, Lem. 7.8]: There exists S0 > 0 such that for all S ≥ S0
and all γ ∈ Γ, we have

e−ψ(µ(γ)) ≪ λψ(OS(o, γo)) ≪ e−ψ(µ(γ)).

with implied constants independent of γ.

Lemma 4.6. Let r > 0. For any a ∈ A+, we have

m̃(Qr ∩ γQra−1) ≪ r e
−ψ(µ(γ)).

Proof. By Lemmas 4.3, 4.4 and 4.5, we have

m̃(Qr ∩ γQra−1)

=

∫
L2r(o,γo)

Å∫
A
1Qr∩γQra−1(gb)eψ(G(g

+,g−)) db

ã
dλψ(g

+) dλψ◦i(g
−)

≤
∫
O4r(o,γo)×O4r(γo,o)∩F(2)

Vol(A4r)e
2∥ψ∥cr dλψ(g

+) dλψ◦i(g
−)

≪ r e
−ψ(µ(γ)),

which proves the lemma. □

The following is easy to prove (cf. [7, Lem. 5.14]).
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Lemma 4.7. There exists ℓ0 > 0 such that any γ ∈ Γ with ∥µ(γ)∥ > ℓ0 and
any (ξ, η) ∈ OS0(o, γo)×OS0(γo, o) satisfies ∥G(ξ, η)∥ < ℓ0.

In the rest of this section, we fix constants S0, ℓ0 c, c
′ from Lemmas 4.2,

4.5 and 4.7. We set
r0 := S0 + cℓ0 + c′ + 1. (4.8)

Lemma 4.9. For all r > r0, there exists C2 = C2(r) > 0 such that for any
T ≥ C2 and any g ∈ G with

(g+, g−) ∈
⋃

{OS0(o, γo)×OS0(γo, o) : γ ∈ Γ, ℓ0 < ∥µ(γ)∥ < T − C2},

we have ∫
A+
T

∫
A
1Qr∩γQra−1(gb) db da ≥ Vol(Ar)Vol(A

+
1 ).

Proof. Let C ′
2 = C ′

2(r) be the implied constant in Lemma 3.3 associated to
Q = Qr. Set C2 := C ′

2 + 1. Let T > C2. Let g ∈ G and γ ∈ Γ be such that
ℓ0 < ∥µ(γ)∥ < T − C2 and (g+, g−) ∈ OS0(o, γo)× OS0(γo, o). By Lemmas
4.2 and 4.7, we have d(o, gAo) ≤ c∥G(g+, g−)∥+ c′ ≤ cℓ0 + c′. Therefore, we
may assume without loss of generality that d(o, go) ≤ cℓ0 + c′ by replacing
g by an element of gA.

Since g+ ∈ OS0(o, γo), there exists k ∈ K such that k+ = g+ and
d(kao, γo) < S0 for some a ∈ A+.

Since d(kao, gao) ≤ d(o, go) by [12, 1.6.6(4)], we get

d(γo, gA+o) ≤ d(γo, kao) + d(kao, gao)

≤ d(γo, kao) + d(ko, go)

≤ S0 + cℓ0 + c′ = r0 − 1.

Since r ≥ r0, we have g ∈ Gr−1 and ga0 ∈ γGr−1 for some a0 ∈ A+.
Therefore g ∈ Gr−1∩γGr−1a

−1
0 . By Lemma 3.3, this implies that ∥µ(γ)−

log a0∥ ≤ C ′
2. Since ∥µ(γ)∥ ≤ T − C ′

2 − 1, we have a0 ∈ A+
T−1, and hence

a0A
+
1 ⊂ A+

T . Since Qr = GrAr, we have gAr ⊂ Qr∩γQra−1 for all a ∈ a0A1.
Therefore∫

A+
T

∫
A
1Qr∩γQra−1(gb) db da ≥

∫
a0A

+
1

∫
A
1Qr∩γQra−1(gb) db da

≥
∫
a0A

+
1

∫
A
1gAr(gb) db da ≥ Vol(A+

1 )Vol(Ar).

This finishes the proof. □

We now deduce the following from Lemma 3.1 and the shadow lemma
4.5.

Lemma 4.10. For any D > 0, we have:

sup
T>0

∑
γ∈Γ,

T<∥µ(γ)∥<T+D

e−ψ(µ(γ)) <∞.
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Proof. For any T > 0,∑
T<∥µ(γ)∥<T+D

e−ψ(µ(γ)) ≪
∑

T<∥µ(γ)∥<T+D

λψ(OS0(o, γo)) ≤ q(S0, D)

where q(S0, D) is given by Lemma 3.1. This proves Lemma 4.10. □

We are now ready to give estimates for correlation functions in terms of
Poincaré series, which was the main goal of the section.

Proposition 4.11. For all r > r0, we have, for all T ≥ 1,∫
A+
T

∫
A+
T

∑
γ1,γ2∈Γ

m̃(Qr∩γ1Qra−1
1 ∩γ2Qra−1

2 ) da1 da2 ≪r

Å ∑
γ∈Γ,

∥µ(γ)∥≤T

e−ψ(µ(γ))
ã2
.

Proof. Let C0 > 0 be as in Lemma 3.4(1) associated to Q = Qr. Set

Eγ1,γ2 :=

ß
(a1, a2) ∈ A+

T ×A+
T :

Qr ∩ γ1Qra−1
1 ∩ γ2Qra−1

2 ̸= ∅
µ(γ2) ≈Qr µ(γ1) + µ(γ−1

1 γ2)

™
, (4.12)

where the implied constant for ≈Qr is chosen to be the one in Lemma 3.4(2)
with Q = Qr. Note that by Lemma 3.3, the subset Eγ1,γ2 is contained in
some bounded ball around (µ(γ1), µ(γ2)) whose radius depends only on r.
Hence the volume of Eγ1,γ2 has a uniform upper bound depending only on
r. Observe that if there exists (a1, a2) ∈ Eγ1,γ2 , then ∥µ(γi)∥ ≈ ∥ log a∥ ≤ T .
Since the angle between any two walls of a+ is at most π/2, we deuce
∥µ(γ−1

1 γ2)∥ ≤ ∥µ(γ1) + µ(γ−1
1 γ2)∥ ≲ r ∥µ(γ2)∥ ≲ T .

Therefore we get∫
A+
T

∫
A+
T

∑
γ1,γ2∈Γ

m̃(Qr ∩ γ1Qra−1
1 ∩ γ2Qra−1

2 ) da1 da2

≤ 2

∫
A+
T

∫
A+
T

∑
γ1,γ2∈Γ

m̃(Qr ∩ γ1Qra−1
1 ∩ γ2Qra−1

2 )1Eγ1,γ2 (a1, a2) da1 da2

≪ r

∫
A+
T

∫
A+
T

∑
γ1,γ2∈Γ

e−ψ(µ(γ2))1Eγ1,γ2 (a1, a2) da1 da2

≪ r

∑
γ1,γ2∈Γ,

∥µ(γ1)∥≲ rT,

∥µ(γ−1
1 γ2)∥≲ rT

e−ψ(µ(γ1))e−ψ(µ(γ
−1
1 γ2))

∫
A+
T

∫
A+
T

1Eγ1,γ2
(a1, a2) da1 da2

≪ r

Å ∑
γ∈Γ,

∥µ(γ)∥≲ rT

e−ψ(µ(γ))
ã2

; (4.13)

note here that the first inequality follows from Lemma 3.4(2) and the sym-
metricity of the expression with respect to γ1, γ2. The second inequality is
due to Lemma 4.6. The third inequality is valid again by Lemma 3.4(2).
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The last inequality is obtained by reindexing γ−1
1 γ2 ∈ Γ with a new variable.

Finally note that (4.13) together with Lemma 4.10 finishes the proof. □

Proposition 4.14. For all r > r0, we have, for all T > 0,∫
A+
T

∑
γ∈Γ

m̃(Qr ∩ γQra−1) da≫r

∑
γ∈Γ,

∥µ(γ)∥≤T

e−ψ(µ(γ)).

Proof. By Lemma 4.7, for all a ∈ A+ and γ ∈ Γ with ∥µ(γ)∥ ≥ ℓ0,

m̃(Qr ∩ γQra−1)

≫
∫
OS0 (o,γo)×OS0 (γo,o)∩F

(2)

∫
A
1Qr∩γQra−1(gb) db dλψ(g

+) dλψ◦i(g
−).

Hence by Lemmas 4.5 and 4.9,∫
A+
T

∑
γ∈Γ

m̃(Qr ∩ γQra−1) da≫r

∑
γ∈Γ

∥µ(γ)∥≤T−C2

e−ψ(µ(γ)).

This finishes the proof in view of Lemma 4.10. □

5. Conical limit points and Poincare series

We begin by recalling:

Lemma 5.1. [28, Lem. 7.11]. Let Γ < G be a Zariski dense discrete
subgroup and ψ ∈ a∗. If there exists a (Γ, ψ)-conformal measure λψ with
λψ(Λc) > 0, then ∑

γ∈Γ
e−ψ(µ(γ)) = ∞.

The goal of this section is to establish the converse for Anosov subgroups:

Proposition 5.2. Let Γ < G be a Zariski dense Anosov subgroup of G. Let
ψ ∈ a∗. If

∑
γ∈Γ e

−ψ(µ(γ)) = ∞, then for any (Γ, ψ)-conformal measure λψ,
we have

λψ(Λc) > 0.

We will need the following version of the Borel-Cantelli lemma:

Lemma 5.3. Let (Ω,M) be a Borel probability measure space. Let 1Pa(ω) be
a jointly measurable function of (a, ω) ∈ A+×Ω. Suppose that

∫
A+ M(Pa) da =

∞ and

lim inf
T→∞

∫
A+
T

∫
A+
T
M(Pa ∩ Pb) db da(∫

A+
T
M(Pa) da

)2 ≤ C (5.4)

for some C <∞. Then we have

M({ω :

∫
A+

1Pa(ω) da = ∞}) > 1

C
.
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Proof. The proof is an easy adaption of [1]. Set

b(t, ω) =

∫
A+
t
1Pa(ω) da∫

A+
t
M(Pa) da

and Ω0 = {ω :

∫
A+

1Pa(ω) da = ∞}.

Since
∫
A+ M(Pa) da = ∞, we have b(t, ω) → 0 as t → ∞ for all ω ∈ Ωc0. On

the other hand, by (5.4), there exists tn → ∞ such that

Cn :=

∫
Ω
b(tn, ω)

2 dM(ω) → C∞

for some C∞ ≤ C, as n → ∞. Since the family of functions ω 7→ b(tn, ω) is
uniformly bounded in their L2-norms, they are uniformly integrable. Hence∫
Ωc0
b(tn, ω) dM(ω) → 0 as n → ∞. Since

∫
Ω b(t, ω) dM(ω) = 1, it follows

that

lim
n→∞

∫
Ω0

b(tn, ω) dM(ω) = 1.

By the Cauchy-Schwartz inequality, for all n ≥ 1,

M(Ω0)Cn =

∫
Ω0

12 dM(ω)

∫
Ω0

b(tn, ω)
2 dM(ω) ≥

Å∫
Ω0

b(tn, ω) dM(ω)

ã2
.

Therefore

M(Ω0) ≥ lim
n→∞

1

Cn
=

1

C∞
≥ 1

C
and the conclusion follows. □

Let m denote the measure on Γ\G induced from m̃ = m̃BMS
λψ ,λψ◦i

. For r > 0,

set Gr := KA+
r K, Qr := GrAr and M := m|ΓQr . For all a ∈ A+, set

Pa := Γ(Qr ∩ ΓQra
−1) ⊂ Γ\G.

We will prove:

Proposition 5.5. For all sufficiently large r > 1, we have, for all T ≥ 1,∫
A+
T

M(Pa) da≫r

∑
γ∈Γ,

∥µ(γ)∥≤T

e−ψ(µ(γ)) and

∫
A+
T

∫
A+
T

M(Pa1 ∩ Pa2) da1 da2 ≪r

Å ∑
γ∈Γ,

∥µ(γ)∥≤T

e−ψ(µ(γ))
ã2
.

Proof. Note that for all a, a1, a2 ∈ A+,

M(Pa) ≫r

∑
γ∈Γ

m̃(Qr ∩ γQra−1) and

M(Pa1 ∩ Pa2) ≪r

∑
γ1,γ2∈Γ

m̃(Qr ∩ γ1Qra−1
1 ∩ γ2Qra−1

2 );

Indeed, ifQr is small enough so that it injects to Γ\G, then we have equalities
in the above by the definition of measures. In general, the above inequalities
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follow by covering Qr by finitely many subsets which inject to Γ\G and the
implied constants depend only on the multiplicity of the covering. With this
observation, the proposition follows from Propositions 4.11 and 4.14. □

Proof of Proposition 5.2. By Proposition 5.5 and Lemma 5.3, the fol-
lowing set has positive m-measure:

Wr := {[g] ∈ ΓQr :

∫
A+

1ΓQr(ga) da = ∞} (5.6)

for all r large enough. On the other hand, note that for all [g] ∈ Wr,
there exists ai → ∞ in A+ such that [g]ai is bounded; and hence g+ ∈ Λc.
Therefore λψ(Λc) > 0. This finishes the proof. □

6. Dichotomy theorem for the A-action

We begin by recalling the notion of complete conservativity and dissipa-
tivity. Let H be either a countable group or a connected closed subgroup
of A. We denote by dh the Haar measure on H. Consider the dynamical
system (Ω, µ,H) where Ω is a separable, locally compact and σ-compact
topological space on which H acts continuously and µ is a Radon measure
which is quasi-invariant by H.

A Borel subset B ⊂ Ω is called wandering if
∫
H 1B(h.w)dh < ∞ for µ-

almost all w ∈ B. The Hopf decomposition theorem says that Ω can be
written as the disjoint union ΩC ∪ ΩD of H-invariant subsets where ΩD
is a countable union of wandering subsets which is maximal in the sense
that ΩC does not contain any wandering subset of positive measure. If
µ(ΩD) = 0 (resp. µ(ΩC) = 0), the system is called completely conservative
(resp. dissipative). When (Ω, µ,H) is ergodic, H is countable and µ is
atom-less, then it is completely conservative (cf. [20, Thm. 14]).

The following is standard (cf. [7, Proof of Thm . 4.2])

Lemma 6.1. Suppose that µ is H-invariant. Then (Ω, H, µ) is completely
conservative if and only if for µ a.e. x ∈ Ω, there exists a compact subset
Bx ⊂ Ω such that

∫
h∈H 1Bx(h.x) dh = ∞.

Proof. Suppose (Ω, H, µ) is completely conservative. Suppose that there
exists a µ-positive measurable subset E ⊂ Ω such that for all x ∈ E,∫
h∈H 1B(h.x) dh < ∞ for any compact subset B. Then any compact sub-
set of E with positive measure is a wandering set. This proves the only
if direction. Now suppose that for µ a.e. x ∈ Ω, there exists a compact
subset Bx ⊂ Ω such that

∫
h∈H 1Bx(h.x) dh = ∞. Assume that there exists

a wandering set W ⊂ Ω with 0 < µ(W ) < ∞. By the σ-compactness of Ω,
there exists a compact subset B ⊂ Ω such that

µ{x ∈W :

∫
H
1B(h.x)dh = ∞} ≥ µ(W )/2. (6.2)

For any n ∈ N, set Wn :=
{
w ∈W :

∫
H 1W (h.w) dh ≤ n

}
. Fix n such

that µ(Wn) > µ(W )/2. For any compact subset C ⊂ H, we get, using the
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H-invariance of µ,∫
Wn

∫
C
1B(h.w) dh dµ =

∫
C

∫
Wn

1B(h.w) dµ dh

=

∫
C
µ(B ∩ hWn) dh =

∫
C

∫
B∩HWn

1Wn(h
−1.x)dµdh

=

∫
B∩HWn

∫
C
1Wn(h

−1.x) dh dµ ≤
∫
B∩HWn

∫
H
1Wn(h

−1.x) dh dµ

≤
∫
B∩HWn

n dµ ≤ n · µ(B) <∞.

Hence
∫
Wn

∫
H 1B(h.w) dh dµ <∞; so

µ{x ∈W :

∫
H
1B(h.w) dh <∞} ≥ µ(Wn) > µ(W )/2,

contradicting (6.2). □

Proof of Theorem 1.4. The equivalence (1) ⇔ (2) follows from [37, Prop.
2.8, Lem. 4.4] and [34, Prop. 2.10] (see also [28, Cor. 7.12]).

The equivalence (3) ⇔ (4) follows because the restriction of λψ to any
Γ-invariant measurable subset is again a (Γ, ψ)-conformal measure, up to a
positive constant multiple, if not-trivial.

The equivalence (5) ⇔ (6) follows from the Γ-equivariant homeomorphism

F (2) ≃ G/AM and Lemma 6.1. More precisely, for any Γ-invariant subset

Z ⊂ F (2), define a Γ-invariant subset Z̃ ⊂ G/M by

Z̃ := Z ×A ⊂ F (2) ×A

using the Hopf parametrization F (2) × A ≃ G/M . We may view Z̃ as
an A-invariant subset of Γ\G/M as well. It follows from Lemma 6.1 that

the assignment Z 7→ Z̃ preserves the conservativity (and complete dissi-

pativity) of the action of Γ on (F (2), λψ ⊗ λψ◦i|F(2)) and the action of A
on (Γ\G/M,mλψ ,λψ◦i). The equivalence (5) ⇔ (6) now follows in view of
the Hopf decompositions (see the beginning of Section 6) for the systems

(F (2), λψ ⊗ λψ◦i|F(2) ,Γ) and (Γ\G/M,mλψ ,λψ◦i , A).
The direction (3) ⇒ (1) is proved in [28, Lem. 7.11].
The direction (1) ⇒ (3) was shown in Proposition 5.2.
For the implication (4) ⇒ (5), we will use that all (1)−(4) are equivalent.

Suppose that λψ(Λc) = 1, and hence ψ is Γ-critical. In this case, see ([42],
[28, Cor. 4.9]) for the AM -ergodicity of mλψ ,λψ◦i . Hence λψ ⊗ λψ◦i|F(2) is
ergodic. To prove it is conservative, observe that since λψ(Λc) = 1, and
no point in Λc can be an atom by Lemma 4.5, λψ is atom-less. Therefore
λψ ⊗ λψ◦i|F(2) has no atom. This implies λψ ⊗ λψ◦i|F(2) is conservative by
[20, Thm. 14]. Therefore (5) follows. To show (5) ⇒ (4), suppose that
mλψ ,λψ◦i is completely conservative and ergodic. Fix any compact subset
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B ⊂ Γ\G/M . Then by Lemma 2.8, we have for g ∈ G,

lim supΓgAM ∩B ̸= ∅ if and only if lim supΓg(A+∪w0A
+w−1

0 )M ∩B ̸= ∅.
Therefore, it follows that max(λψ(Λc), λψ◦i(Λc)) > 0. On the other hand,

Since
∑

γ∈Γ e
−ψ(µ(γ)) =

∑
γ∈Γ e

−ψ◦i(µ(γ)), the equivalence (4) ⇔ (1) implies

that min(λψ(Λc), λψ◦i(Λc)) > 0. This proves (4).
If λψ(Λc) = 0, the measure λψ ⊗ λψ◦i|F(2) must be non-ergodic by the

previous argument, which shows that any ergodic measure would be con-
servative, which would then imply max(λψ(Λc), λψ◦i(Λc)) > 0 and hence
λψ(Λc) > 0 by the equivalence of (1) and (3). This completes the proof of
the equivalence (4) ⇔ (5).

These establish the equivalence of all (1)-(6). To see that these are all
equivalent to (7), we recall that for any Γ-critical ψ, the ergodicity of the
A-action on (E0,mλψ ,λψ◦i |E0) is proved in [29, Thm. 1.1]. The conservativity
(resp. dissipativity) in (6) and the conservativity in (7) (resp. dissipativity)
are equivalent as the projection E0 → Γ\G/M has the compact fiber, which
is a closed subgroup between M◦ and M . Hence (E0, A,mλψ ,λψ◦i |E0) is con-
servative only when ψ is Γ-critical by (2) ⇔ (6). This completes the proof
of Theorem 1.4.

We also show the following:

Proposition 6.3. If ψ is Γ-critical, then for any (λψ, λψ◦i) ∈ Mψ ×Mψ◦i,
the diagonal Γ-action on (F × F , λψ ⊗ λψ◦i) is ergodic and completely con-
servative.

Proof. By Theorem 1.4, it suffices to show that

(λψ × λψ◦i)((Λ× Λ)− Λ(2)) = 0.

Set Q := Λ× Λ− Λ(2) and Q(x) := {y ∈ Λ : (x, y) ∈ Q} for each x ∈ Λ. By
Lemma 2.6(2), we have

Q(x) = {x} for all x ∈ Λ.

On the other hand, the conical property of an Anosov subgroup (Lemma
2.6(3)) implies that λψ is not atomic (Prop. 7.4 and Lem. 7.8 of [28]), and
hence λψ(Q(x)) = 0 for all x ∈ Λ. Therefore

(λψ × λψ◦i)(Q) =

∫
x∈Λ

λψ(Q(x)) dλψ◦i(x) = 0, (6.4)

proving the proposition. □

7. Growth indicator function and Lebesgue measure of Λ

We denote by ρ the half sum of all positive roots of (g, a). A subset S of
positive roots is called strongly orthogonal if any any two distinct roots α, β
in S are strongly orthogonal to each other, i.e., neither of α±β is a root. Let
Θ denote the half sum of all roots in a maximal strongly orthogonal system
of (g, a); this does not depend on the choice of a maximal strongly orthogonal
system (see [32] where Θ is explicitly given for each simple algebraic group).
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Theorem 7.1. Let G be a connected simple real algebraic group with no rank
one simple factors. Let Γ < G be a discrete subgroup of infinite co-volume.
Then

ψΓ ≤ 2ρ−Θ.

Proof. This is proved by Quint [38], but the above explicit bound was not
formulated, although his proof certainly gives that. We give a slightly dif-
ferent and more direct proof for the sake of completeness.

Note that the right translation action of G on Γ\G gives a unitary repre-
sentation L2(Γ\G) with no non-zero fixed vector as Γ\G has infinite volume.
We may then use [32, Thm. 1.2] which gives that for any K-invariant func-
tions f ∈ L2(Γ\G), any v ∈ a+, and any ε > 0,

⟨(exp v)f, f⟩ ≤ dεe
−(1−ε)Θ(v)∥f∥22 (7.2)

where dε > 0 depends only on ε. Therefore this theorem follows from Propo-
sition 7.3. □

Proposition 7.3. Suppose that there exists a function θ : a+ → R such that
for any K-invariant functions f ∈ L2(Γ\G), any v ∈ a+, and any ε > 0,

⟨(exp v)f, f⟩ ≤ dεe
−(1−ε)θ(v)∥f∥22 (7.4)

where dε > 0 depends only on ε. Then

ψΓ ≤ 2ρ− θ.

Proof. Fix u ∈ a+ be a unit vector such that ψΓ(u) > 0. Fix an open cone
C ⊂ a+ containing u, and set CT = {v ∈ C : ∥v∥ ≤ T} and BT = K exp(CT )K
for each T > 1.

Define

FT (g, h) :=
∑
γ∈Γ

1BT (g
−1γh)

which we regard as a function on Γ\G× Γ\G. Let ε > 0. Let Uε = KUεK
be a symmetric open neighborhood of e which injects to Γ\G such that
UεBTUε ⊂ BT+ε for all T > 1. Let Φε be a non-negative K-invariant
continuous function supported in Γ\ΓU with

∫
Γ\GΦεdx = 1.

Let

η = ηC := sup{|2ρ(v)− 2ρ(u)| : v ∈ C, ∥v∥ = 1}.
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Using that for g = k1(exp v)k2, dg = Ξ(v)dk1dvdk2 with Ξ(v) ≍ e2ρ(v), and
(7.4), we compute

#Γ ∩BT = FT (e, e)

≤
∫
Γ\G×Γ\G

FT+ε([g], [h])Φε([g])Φε([h])dgdh

=

∫
Γ\G×Γ\G

∑
γ∈Γ

1BT+ε
(g−1γh)Φε([g])Φε([h]) dg dh

=

∫
Γ\G

∫
G
1BT+ε

(g−1h)Φε([g])Φε([h]) dg dh

=

∫
Γ\G

∫
G
1BT+ε

(g−1)Φε([h]g)Φε([h]) dg dh

=

∫
K exp(CT+ε)K

Ç∫
Γ\G

Φε([h]g)Φε([h]) dh

å
dg

≍
∫
v∈CT+ε

⟨exp v.Φε,Φε⟩e2ρ(v)dv

≤ dε

∫
v∈CT+ε

e(2ρ−(1−ε)θ)(v)dv · ∥Φε∥22

≤ dε

∫ T+ε

0

∫
v∈C,∥v∥=1

e(2ρ−(1−ε)θ)(tv)dvdt · ∥Φε∥22

≪ e(2ρ−(1−ε)θ)((T+ε)u)+2(T+ε)η

where the implied constants are independent of T > 1. Therefore

lim sup
T→∞

log#(Γ ∩BT )
T

≤ (2ρ− θ)(u) + εθ(u) + 2η.

On the other hand, when ψΓ(u) > 0,

ψΓ(u) = inf
u∈C

lim sup
T→∞

log#(Γ ∩K exp(CT )K)

T

where the infimum is taken over all open cones C containing u. Since η =
ηC → 0 as C shrinks to the ray R+u, we get

ψΓ(u) ≤ (2ρ− θ)(u) + εθ(u).

Since ε > 0 was arbitrary, this implies

ψΓ(u) ≤ (2ρ− θ)(u)

as desired. □

Remark 7.1. (1) Corlette’s theorem [10] shows a uniform gap theorem
as above for rank one groups with property (T).

(2) We remark that in a recent work [24], a stronger bound ψΓ ≤ ρ was
conjectured for Γ Anosov.



22 MINJU LEE AND HEE OH

A connected simple real algebraic group is isomorphic to one of the follow-
ing groups: SO(n, 1), SU(n, 1), Sp(n, 1), F4, which are groups of isometries
of real, complex, quarternionic hyperbolic spaces and the Cayley plane re-
spectively. If X denotes the corresponding Riemannian symmetric space as
listed above, the Hausdorff dimension of ∂X with respect to the Riemannian
metric is given by k(n + 1) − 2 where k = 1, 2, 4, and 22 respectively([10],
[30]) ; they are equal to the volume entropy DX of X with respect to a
properly normalized Riemannian metric on X.

The following theorem is well-known due to the works of Sullivan ([43],
[45]), Corlette [10] and Corlette-Iozzi [11].

Theorem 7.5. Let G be a connected simple algebraic group of rank one.
Let Γ < G be a convex cocompact subgroup such that Γ\G is not compact.
Then

dimH(Λ) < dimH(∂X).

where dimH denotes the Hausdorff dimension with respect to the Riemannian
metric on ∂X.

Proof. Let δ denotes the critical exponent of Γ. By [11, Thm. 6.1, Cor. 6.2],
δ is equal to dimH(Λ) and the bottom, say, λ0 of the L2-spectrum of the
negative Laplacian is given by δ(DX − δ). Now suppose that δ = DX . By
([10, Thm. 5.5], [45]), there exists a unique harmonic function on Γ\X, and
it is square-integrable. Since the constant function is a harmonic function,
it follows that Γ\X has finite volume, and hence compact, as Γ is assumed
to be convex cocompact. This proves the claim. □

We now deduce Theorem 1.3 from Theorems 1.4 and 7.1.

Proof of Theorem 1.3. Let Γ < G be Zariski dense and Anosov. If
rankG = 1 and Γ < G is cocompact, then it is immediate that Λ = F . We
now suppose that Γ is not a cocompact lattice in a rank one group G. We
claim that the Lebesgue measure of Λ is zero. We write G = G1G2 where G1

is a product of all simple factors of rank one, and G2 is a product of all simple
factors of rank at least 2. Consider first the case when G2 is trivial. Then Γ
is of the form: Γ =

(∏k
i=1 πi

)
(Σ) where Σ is a Gromov hyperbolic group and

πi is a convex cocompact representation of Σ into a rank one simple factor
of G. If k = 1, it follows from Theorem 7.5. If k ≥ 2, then the Hausdorff
dimension of Λ is at most the maximum of the Hausdorff dimension of
the boundary of a rank one factor of G (cf. proof of [25, Theorem 3.1]);
therefore it is strictly smaller than the Hausdorff dimension of G/P . Hence
the Lebesgue measure of Λ is zero. Now suppose that G2 is not trivial. Let
p : G → G2 denote the canonical projection. By the Anosov property of Γ,
the projection p(Γ) < G2 is again an Anosov subgroup. It suffices to prove
that the limit set of p(Γ) has Lebesgue measure zero. Therefore, we may
assume without loss of generality that G = G2 and G2 is simple. Since Γ
has infinite co-volume in G, as π(Γ) is Gromov hyperbolic, it follows from
Theorem 7.1 that the growth indicator function ψΓ of Γ satisfies ψΓ < 2ρ,
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i.e., 2ρ is not Γ-critical. Since the Lebesgue measure on F is the (G, 2ρ)-
conformal measure, Theorem 1.4 implies the claim.

Remark 7.2. Note that it is the consequence of Theorem 1.3 that ψΓ < 2ρ
for all Anosov subgroups of G which is not cocompact in G.

For a general discrete subgroup Γ < G, we record the following:

Proposition 7.6. If Γ < G is a discrete subgroup with ψΓ < 2ρ, then the
Lebesgue measure of the conical limit set Λc is zero. In particular, if Γ and
G are as in Theorem 7.1, Leb(Λc) = 0.

Proof. If ψΓ < 2ρ, then
∑

γ∈Γ e
−2ρ(µ(γ)) < ∞ by [39, Lem. III 1.3]. By [28,

Lem. 7.11] (Lemma 5.1), this implies that Leb(Λc) = 0. □
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[17] F. Guéritaud, O. Guichard, F. Kassel and A. Wienhard. Anosov representations and

proper actions. Geom. Topol. 21 (2017), no. 1, 485-584.
[18] O. Guichard and A. Wienhard. Anosov representations: Domains of discontinuity

and applications. Invent. Math. Volume 190, Issue 2 (2012), 357–438.
[19] E. Hopf. Ergodic theory and the geodesic flow on surfaces of constant negative curva-

ture Bull. Amer. Math. Soc. (N.S.) 77 (1971), 863-877.
[20] V. Kaimanovich Hopf decomposition and Horospheric limit sets. Ann. Acad. Sci. Fenn.

Math. 35 (2010), 335-350.



24 MINJU LEE AND HEE OH

[21] M. Kapovich and B. Leeb. Discrete isometry groups of symmetric spaces. Handbook of
group actions. Vol. IV, 191-290, Adv. Lect. Math. (ALM), 41, Int. Press, Somerville,
MA, 2018.

[22] M. Kapovich, B. Leeb, and J. Porti. Anosov subgroups: dynamical and geometric
characterizations. Eur. J. Math. 3 (2017), no. 4, 808-898.

[23] M. Kapovich, B. Leeb and J. Porti. A Morse lemma for quasigeodesics in symmetric
spaces and Euclidean buildings. Geom. Topol. 22 (2018), no. 7, 3827-3923.

[24] D. Kim, Y. Minsky and H. Oh. Tent property of the growth indicator functions and
applications. Preprint, arXiv:2112.00877

[25] D. Kim, Y. Minsky and H. Oh. Hausdorff dimension of directional limit sets for
self-joinings of hyperbolic manifolds. J. Mod. Dyn. Vol 19 (2023), 433-453

[26] F. Labourie. Anosov flows, surface groups and curves in projective space. Invent.
Math. 165 (2006), no. 1, 51–114.

[27] O. Landesberg and H. Oh. On denseness of horospheres in higher rank homogeneous
spaces. Preprint (arXiv:2202.05044).

[28] M. Lee and H. Oh. Invariant measures for horospherical actions and Anosov groups.
Preprint, arXiv: 2008.05296, To appear in Int. Math. Res. Not. IMRN

[29] M. Lee and H. Oh. Ergodic decompositions of geometric measures on Anosov homo-
geneous spaces. Preprint, arXiv:2010.11337, To appear in Israel J. Math.

[30] J. Mitchell. On Carnot-Caratheodory metrics. J. Differential Geom. 21, 35-45 (1985).
[31] P. Nicholls. The ergodic theory of discrete groups. London Math. Soc. Lecture Notes,

vol. 143, Cambridge Univ. Press, Cambridge and New York, 1989.
[32] H. Oh.Uniform pointwise bounds for matrix coefficients of unitary representations

and applications to Kazhdan constants.Duke Math. J. 113 (2002), no. 1, 133–192.
[33] S. Patterson. The limit set of a Fuchsian group. Acta Math. 136 (1976), 241–273.
[34] R. Potrie and A. Sambarino. Eigenvalues and entropy of a Hitchin representation.

Invent. Math. 209 (2017), no. 3, 885-925.
[35] B. Pozzetti, A. Sambarino and A. Wienhard. Anosov representations and with Lips-

chitz limit set. Preprint, arXiv:1910.06627
[36] J.-F. Quint. Mesures de Patterson-Sullivan en rang superieur. Geom. Funct. Anal.

12 (2002), p. 776–809.
[37] J.-F. Quint. L’indicateur de croissance des groupes de Schottky. Ergodic Theory Dy-

nam. Systems. Systems 23 (2003), no. 1, 249-272.
[38] J.-F. Quint. Propriété de Kazhdan et sous-groupes discrets de covolume infini.Travaux
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