Euclidean traveller in hyperbolic worlds

Hee Oh

Yale University

Erdos lecture for students

JMM 2022
We will discuss possible closures of a Euclidean line in various geometric spaces.

Imagine Euclidean traveller visiting many different geometric worlds.

Question

Which places does she get to see in each world?
Places that she will visit

1. Circle=1-dim torus
2. Euclidean torus (Kronecker, 1884)
3. Closed hyperbolic surface (Hedlund, 1936)
4. Closed hyp. mfld of higher dim (Ratner, 1991)
Rotations of the circle

\[S^1 = \{ |z| = 1 \} = \mathbb{R}/\mathbb{Z}, \quad \text{via} \quad e^{2\pi i \alpha} \mapsto \alpha \]

\[R_\theta : S^1 \to S^1, \quad R_\theta(x) = xe^{2\pi i \theta} \]

\[R_\theta : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}, \quad R_\theta(x) = x + \theta \mod \mathbb{Z}. \]

The orbit of \(x \in \mathbb{R}/\mathbb{Z} \) under \(R_\theta \) is

\[\{ x + n\theta \mod 1 : n \in \mathbb{Z} \} \]

Theorem

Any orbit of \(R_\theta \) is closed (\(\theta \in \mathbb{Q} \)) or dense (\(\theta \notin \mathbb{Q} \)).
Line on the torus

\[\mathbb{T}^2 = S^1 \times S^1 = \mathbb{R}^2 / \mathbb{Z}^2 \]

\[\pi : \mathbb{R}^2 \rightarrow \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2. \]

Line in \(\mathbb{T}^2 \): \(L_{\omega_1, \omega_2} = \pi(\mathbb{R}(\omega_1, \omega_2)) \).
Kronecker’s theorem, 1884

Theorem

Any line L_{ω_1,ω_2} in \mathbb{T}^2 is

- either closed ($\omega_1/\omega_2 \in \mathbb{Q}$)
- or dense (otherwise).
Line on the n-torus

$$\pi : \mathbb{R}^n \to \mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n.$$

Line in \mathbb{T}^n: $L_{\omega_1, \ldots, \omega_n} = \pi(\mathbb{R}(\omega_1, \ldots, \omega_n)).$

Theorem (Kronecker, 1884)

Line = a k-dim. subtorus of \mathbb{T}^n

where $k = \text{dim}_\mathbb{Q}(\mathbb{Q}\omega_1 + \cdots + \mathbb{Q}\omega_n)$.

$T^*_k \subset T^n$
Line on the n-torus

Let $\Gamma < \mathbb{R}^n$ be a cocompact discrete subgp, i.e., $\Gamma = \sum_{i=1}^{n} \mathbb{Z}v_i$.

$$\pi : \mathbb{R}^n \rightarrow \mathbb{T}^n = \mathbb{R}^n / \Gamma.$$

Theorem (Kronecker, 1884)

For any line $L \subset \mathbb{R}^n / \Gamma$, there exists a Euclidean subspace $V < \mathbb{R}^n$ s.t.

$$\overline{L} = V / (V \cap \Gamma).$$
Hyperbolic plane: unique simply connected two dim. mfld of sectional curvature ≤ 1

Hyperbolic surface \mathbb{H}^2

Upper half-plane

$$\mathbb{H}^2 = \{(x, y) : y > 0\}$$

$$ds = \frac{\sqrt{dx^2 + dy^2}}{y}$$

$$d(p, q) = \inf \int_0^1 \frac{\|c'(t)\|}{y(t)} \, dt \mid c : [0, 1] \to \mathbb{H}^2, c(0) = p, c(1) = q, c(t) = (x(t), y(t))$$

Geodesics $= \text{hyperbolic lines}$

$\mathbb{H}^2 = \{x \in \mathbb{R}^2 : y > 0\}$
Hyperbolic plane: unique simply connected two dim. mfd of sectional curvature \(-1\)

Disk

\[\mathbb{H}^2 = \{ x^2 + y^2 < 1 \} \]

\[ds = \frac{2\sqrt{dx^2 + dy^2}}{1 - (x^2 + y^2)} \]
How does a closed (=complete and compact) hyperbolic surface look like?

- A Euclidean torus is \(\Gamma \backslash \mathbb{R}^2 \)
 where \(\Gamma \) is a cocompact discrete subgp of \(\mathbb{R}^2 \).

- A closed hyperbolic surface is \(\Gamma \backslash \mathbb{H}^2 \)
 where \(\Gamma \) is a cocompact discrete subgp of \(\mathbb{H}^2 \cong \text{Isom}^+(\mathbb{H}^2) \).
Isometry group of \mathbb{H}^2

$\text{PSL}_2(\mathbb{R})$ acts on $\mathbb{H}^2 = \{z = x + iy : y > 0\}$ by:

$$
\begin{pmatrix}
 a & b \\
 c & d
\end{pmatrix}
\begin{pmatrix}
 z
\end{pmatrix}
= \frac{az + b}{cz + d}
$$

- $\text{PSL}_2(\mathbb{R}) = \text{Isom}^+(\mathbb{H}^2)$
- $\text{PSL}_2(\mathbb{R})/\text{SO}(2) = \mathbb{H}^2$ via $g \mapsto g(i)$
Closed hyperbolic surfaces

Any closed hyp. surface is of the form

\[S = \Gamma \backslash \mathbb{H}^2 \]

where \(\Gamma < \text{PSL}_2(\mathbb{R}) \) is a co-cpt disc. subgp.

\[\Gamma = \langle \tau_A, \tau_B, \tau_C, \tau_D \rangle < \text{PSL}_2(\mathbb{R}) \]
Closed hyperbolic surfaces

Topologically, \(S = \Gamma \backslash \mathbb{H}^2 \cong S_g \) for some \(g \geq 2 \):

For each \(g \geq 2 \),

\[
\{ \text{closed hyp. surfaces} \cong S_g \} \cong \mathbb{R}^{6g-6}.
\]
Euclidean lines in \mathbb{H}^2

$$\mathbb{H}^2 = \{(x, y) : y > 0\} \quad ds = \frac{\sqrt{dx^2 + dy^2}}{y}$$

Euclidean lines = horocycles
Where does a Euclidean traveller get to visit in the hyperbolic surface?
Euclidean traveller in S_g

Theorem (Hedlund, 1936)

Any Euc. line in a closed hyp. surface is dense.
Hyperbolic lines can be very wild

\[\text{geod} \text{ can be very wild:} \]
$T^1(\mathbb{H}^2) = \text{PSL}_2(\mathbb{R}) \supset gU$

$\mathbb{H}^2 = \text{PSL}_2(\mathbb{R})/\text{SO}(2) \supset \text{Euc. line}$

$\mathbf{U} = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\}$
Homogeneous dynamics

\[U = \left\{ \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\} \]

\[T^1(\Gamma \setminus \mathbb{H}^2) = \Gamma \setminus \text{PSL}_2(\mathbb{R}) \supset xU \]

\[\Gamma \setminus \mathbb{H}^2 = \Gamma \setminus \text{PSL}_2(\mathbb{R}) / \text{SO}(2) \supset \text{Euc. line} \]
Hedlund’s theorem

Theorem (Hedlund, 1936)

For any $x \in \Gamma \backslash PSL_2(\mathbb{R})$,

$$\overline{xU} = \Gamma \backslash PSL_2(\mathbb{R}).$$
Hyperbolic n-manifold

\[\mathbb{H}^n = \{(x_1, \cdots, x_{n-1}, y) : y > 0\}, \quad ds = \sqrt{dx_1^2 + \cdots + dx_{n-1}^2 + dy^2} / y \]

- \[I \{ g \in SL_n(\mathbb{R}) \mid g(I_{n-1})g^{-1} = (I_{n-1})^3 \} \]

- $\text{Isom}^+(\mathbb{H}^n) = \text{SO}^0(n, 1)$;
- any closed hyp. n-mfld is

\[M = \Gamma \backslash \mathbb{H}^n \]

where $\Gamma < \text{SO}^0(n, 1)$ is a discrete cocpt subgp.
Mostow rigidity thm (1968) implies that \exists only c’bly many closed hyp. n-mflds for $n \geq 3$.

Question

What are the possible closures of a Euclidean line in M?
Orbit closures

G : simple Lie gp (e.g., $\text{SL}_n(\mathbb{R})$, $\text{SO}^\circ(n, 1)$), $\Gamma < G$ a discrete subgp.

Any subgp $U < G$ acts on

$$\Gamma \backslash G \curvearrowright U$$

Question

For a given $x \in \Gamma \backslash G$, what is \overline{xU}?

Moore's ergodicity thm (1966): If $\text{Vol}(\Gamma \backslash G) < \infty$ and U non-cpt, for a.e. $x \in \Gamma \backslash G$,

$$\overline{xU} = \Gamma \backslash G.$$
Let $\text{Vol}(\Gamma \backslash G) < \infty$ and $U < G$ be a conn subgp gen. by unipotent elts. For any $x \in \Gamma \backslash G$,

$$xU = xH$$

for some closed $H < G$.

A matrix u is unipotent if all of its eigenvalues are 1.

E.g., $u = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ is not unipotent.
Euc. lines in closed hyp. mflds

\[
F(\Gamma \backslash \mathbb{H}^n) = \Gamma \backslash SO^\circ(n, 1) \supset \overline{xU} \\
\downarrow \quad \downarrow \\
\Gamma \backslash \mathbb{H}^n \supset \text{Euc. line}
\]

\[
U = \left\{ \begin{pmatrix} 1 & (t, 0, \cdots, 0) \\ 0 & I_{n-1} \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} -t^2/2 \\ -t, 0, \cdots, 0 \end{pmatrix}^T : t \in \mathbb{R} \right\}
\]
Theorem (Ratner, Shah 1991)

Let $M = \Gamma \backslash \mathbb{H}^n$ be a closed hyp. mfld.

Euc. line = closed hyp. submfd, up to some translation.

Recall (Kronecker’s thm): In $\mathbb{T}^n = \Gamma \backslash \mathbb{R}^n$,

Euc. line = subtorus.
What about in ∞-volume hyperbolic manifolds? Does the topological rigidity of a Euclidean line persist?

- **No** for a general hyp. mfld of ∞-volume (e.g., $M \simeq S_g \times \mathbb{R}$); some Euclidean lines have wild closures.

- **Yes** for hyperbolic mflds with "Fuchsian ends"
Hyp. surfaces with Fuchsian ends

For $n = 2$,

Theorem (Dalbo, 2000)

If S is a hyp. surface with Fuchsian ends, any Euclidean line in S is closed or dense.
For $n \geq 3$,

\[
\begin{align*}
\{ & \text{c’bly many closed} \\
& \text{hyp. } n\text{-mflds} \} \supset \{ & \text{clsd hyp. } n\text{-mflds} \\
& \text{with codim 1 hyp. submflds} \} \sim \{ & \text{hyp. } n\text{-mflds} \\
& \text{with Fuchsian ends} \}
\end{align*}
\]
Hyperbolic mflds with Fuchsian ends
Theorem (McMullen-Mohammadi-O. 2015, Lee-O. 2020)

Let \(M = \Gamma \backslash \mathbb{H}^n \) be a hyp. mfld with Fuchsian ends. Any Euc. line in \(M \) is closed or

\[\text{Euc. line} = \text{hyp. submfld} \quad \text{up to translations.} \]