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Abstract. Let P be a locally finite circle packing in the plane C in-
variant under a non-elementary Kleinian group Γ and with finitely many
Γ-orbits. When Γ is geometrically finite, we construct an explicit Borel
measure on C which describes the asymptotic distribution of small cir-
cles in P, assuming that either the critical exponent of Γ is strictly
bigger than 1 or P does not contain an infinite bouquet of tangent cir-
cles glued at a parabolic fixed point of Γ. Our construction also works
for P invariant under a geometrically infinite group Γ, provided Γ ad-
mits a finite Bowen-Margulis-Sullivan measure and the Γ-skinning size
of P is finite. Some concrete circle packings to which our result applies
include Apollonian circle packings, Sierpinski curves, Schottky dances,
etc.

1. Introduction

A circle packing in the plane C is simply a union of circles (here a line
is regarded as a circle of infinite radius). As we allow circles to intersect
with each other, our definition of a circle packing is more general than the
conventional definition of a circle packing.

For a given circle packing P in the plane, we are interested in counting
and distribution of small circles in P. A natural size of a circle is measured
by its radius. We will use the curvature of a circle, that is, the reciprocal of
its radius, instead.

We suppose that P is locally finite in the sense that for any T > 1,
there are only finitely many circles in P of curvature at most T in any fixed
bounded subset of C. Geometrically, P is locally finite if there is no infinite
sequence of circles in P converging to a fixed circle. For instance, if the
circles of P have disjoint interiors as in Fig. 1, P is locally finite.

For a bounded subset E of C and T > 1, we set

NT (P, E) := #{C ∈ P : C ∩ E 6= ∅, Curv(C) < T}

where Curv(C) denotes the curvature of a circle C. The local finiteness
assumption on P implies that NT (P, E) < ∞. Our question is then if
there exists a Borel measure ωP on C such that for all nice Borel subsets
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Figure 1. Apollonian circle packing and Sierpinski curve
(by C. McMullen)

E1, E2 ⊂ C,
NT (P, E1)
NT (P, E2)

∼T→∞
ωP(E1)
ωP(E2)

,

assuming NT (P, E2) > 0 and ωP(E2) > 0.
Our main theorem applies to a very general packing P, provided P is

invariant under a non-elementary (i.e., non virtually-abelian) Kleinian group
satisfying certain finiteness conditions.

Recall that a Kleinian group is a discrete subgroup ofG := PSL2(C) andG
acts on the extended complex plane Ĉ = C∪{∞} by Möbius transformations:(

a b
c d

)
z =

az + b

cz + d

where a, b, c, d ∈ C with ad − bc = 1 and z ∈ Ĉ. A Möbius transformation
maps a circle to a circle and by the Poincare extension, G can be identified
with the group of all orientation preserving isometries of H3. Considering
the upper-half space model H3 = {(z, r) : z ∈ C, r > 0}, the geometric
boundary ∂∞(H3) is naturally identified with Ĉ.

For a Kleinian group Γ, we denote by Λ(Γ) ⊂ Ĉ its limit set, that is,
the set of accumulation points of an orbit of Γ in Ĉ, and by 0 ≤ δΓ ≤ 2
its critical exponent. For Γ non-elementary, it is known that δΓ > 0. Let
{νx : x ∈ H3} be a Γ-invariant conformal density of dimension δΓ on Λ(Γ),
which exists by the work of Patterson [23] and Sullivan [30].

In order to present our main theorem on the asymptotic of NT (P, E) we
introduce two invariants associated to Γ and P. The first one is a Borel
measure on C depending only on Γ.
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Definition 1.1. Define a Borel measure ωΓ on C: for ψ ∈ Cc(C)

ωΓ(ψ) =
∫
z∈C

ψ(z)eδΓβz(x,(z,1)) dνx(z)

where x ∈ H3 and βz(x1, x2) is the signed distance between the horospheres
based at z ∈ C and passing through x1, x2 ∈ H3.

By the conformal property of {νx}, ωΓ is well-defined independent of the
choice of x ∈ Hn.

We have a simple formula: for j = (0, 1) ∈ H3,

dωΓ = (|z|2 + 1)δΓdνj .

For a vector u in the unit tangent bundle T1(H3), denote by u+ ∈ Ĉ (resp.
u− ∈ Ĉ) the forward (resp. backward) end point of the geodesic determined
by u. On the contracting horosphere H−∞(j) ⊂ T1(H3) consisting of upward
unit normal vectors on the horizontal plane {(z, 1) : z ∈ C}, the normal
vector based at (z, 1) is mapped to z via the map u 7→ u−. Under this
correspondence, the measure ωΓ on C is equal to the density of the Burger-
Roblin measure m̃BR (see Def. 2.3) on H−∞(j).

The second invariant is a number in [0,∞] measuring a certain size of P.

Definition 1.2 (The Γ-skinning size of P). For a circle packing P invariant
under Γ, define 0 ≤ skΓ(P) ≤ ∞ as follows:

skΓ(P) :=
∑
i∈I

∫
s∈StabΓ(C†i )\C†i

eδΓβs+ (x,π(s))dνx(s+)

where x ∈ H3, π : T1(H3) → H3 is the canonical projection, {Ci : i ∈ I}
is a set of representatives of Γ-orbits in P, C†i ⊂ T1(H3) is the set of unit
normal vectors to the convex hull Ĉi of Ci and StabΓ(C†i ) denotes the set-
wise stabilizer of C†i in Γ. Again by the conformal property of {νx}, the
definition of skΓ(P) is independent of the choice of x and the choice of
representatives {Ci}.

We remark that the value of skΓ(P) can be zero or infinite in general and
we do not assume any condition on StabΓ(C†i )’s (they may be trivial).

We denote by mBMS
Γ the Bowen-Margulis-Sullivan measure on the unit

tangent bundle T1(Γ\H3) associated to the density {νx} (Def. 2.2). When
Γ is geometrically finite, i.e., Γ admits a finite sided fundamental domain
in H3, Sullivan showed that |mBMS

Γ | < ∞ [31] and that δΓ is equal to the
Hausdorff dimension of the limit set Λ(Γ) [30]. A point in Λ(Γ) is called a
parabolic fixed point of Γ if it is fixed by a parabolic element of Γ.

Definition 1.3. By an infinite bouquet of tangent circles glued at a point
ξ ∈ C, we mean a union of two collections, each consisting of infinitely
many pairwise internally tangent circles with the common tangent point
ξ and their radii tending to 0, such that the circles in each collection are
externally tangent to the circles in the other at ξ (see Fig. 2).



ASYMPTOTIC DISTRIBUTION OF CIRCLES IN ORBITS OF KLEINIAN GROUPS 4

Figure 2. Infinite bouquet of tangent circles

Theorem 1.4. Let P be a locally finite circle packing in C invariant under a
non-elementary geometrically finite group Γ and with finitely many Γ-orbits.
If δΓ ≤ 1, we further assume that P does not contain an infinite bouquet of
tangent circles glued at a parabolic fixed point of Γ. Then skΓ(P) <∞ and
for any bounded Borel subset E of C with ωΓ(∂(E)) = 0,

lim
T→∞

NT (P, E)
T δΓ

=
skΓ(P)

δΓ · |mBMS
Γ |

· ωΓ(E).

If P has infinitely many circles, then skΓ(P) > 0.

Remark 1.5. (1) Given a finite collection {C1, · · · , Cm} of circles in
the plane C and a non-elementary geometrically finite group Γ <
PSL2(C), Theorem 1.4 applies to P := ∪mi=1Γ(Ci), provided P con-
tains neither infinitely many circles converging to a fixed circle nor
any infinite bouquet of tangent circles.

(2) In the case when δΓ ≤ 1 and P contains an infinite bouquet of tan-
gent circles glued at a parabolic fixed point of Γ, we have skΓ(P) =∞
[19]. In that case if the interior of E intersects Λ(Γ) non-trivially,
the growth order of NT (P, E) is T log T if δΓ = 1, and it is T if
δΓ < 1 [21].

(3) We note that the asymptotic of NT (P, E) depends only on Γ, ex-
cept for the Γ-skinning size of P. This is rather surprising in view
of the fact that there are circle packings with completely different
configurations but invariant under the same group Γ.

(4) Theorem 1.4 implies that the asymptotic distribution of small circles
in P is completely determined by the measure ωΓ: for any bounded
Borel sets E1, E2 with ωΓ(E2) > 0 and ωΓ(∂(Ei)) = 0, i = 1, 2, as
T →∞,

NT (P, E1)
NT (P, E2)

∼ ωΓ(E1)
ωΓ(E2)

.

(5) Suppose that all circles in P can be oriented so that they have dis-
joint interiors whose union is equal to the domain of discontinuity
Ω(Γ) := Ĉ− Λ(Γ). If either P is bounded or ∞ is a parabolic fixed
point for Γ, then δΓ is equal to the circle packing exponent eP defined
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as:

eP = inf{s :
∑
C∈P

Curv−s <∞} = sup{s :
∑
C∈P

Curv(C)−s =∞}.

This was proved by Parker [22] extending the earlier works of
Boyd [3] and Sullivan [31] on bounded Apollonian circle packings.

In the proof of Theorem 1.4, the geometric finiteness assumption on Γ is
used only to ensure the finiteness of the Bowen-Margulis-Sullivan measure
mBMS

Γ . We have the following more general theorem:

Theorem 1.6. Let P be a locally finite circle packing invariant under a
non-elementary Kleinian group Γ and with finitely many Γ-orbits. Suppose
that

|mBMS
Γ | <∞ and skΓ(P) <∞.

Then for any bounded Borel subset E of C with ωΓ(∂(E)) = 0,

lim
T→∞

NT (P, E)
T δΓ

=
skΓ(P)

δΓ · |mBMS
Γ |

· ωΓ(E).

If P is infinite, then skΓ(P) > 0.

Since there is a large class of geometrically infinite groups with |mBMS
Γ | <

∞ [24], Theorem 1.6 is not subsumed by Theorem 1.4.
We remark that the condition on the finiteness of mBMS

Γ implies that the
density {νx} is determined uniquely up to homothety (see [26, Coro. 1.8]).

Remark 1.7. (1) The assumption of |mBMS
Γ | <∞ implies that νx (and

hence ωΓ) is atom-free [26, Sec. 1.5], and hence the above theorem
works for any bounded Borel subset E intersecting Λ(Γ) only at
finitely many points.

(2) It is not hard to show that Γ is Zariski dense in PSL2(C) considered
as a real algebraic group if and only if Λ(Γ) is not contained in a
circle in Ĉ. In such a case, any proper real subvariety of Ĉ has zero
νx-measure. This is shown in [7, Cor.1.4] for Γ geometrically finite
but its proof works equally well if νx is Γ-ergodic, which is the case
when |mBMS

Γ | <∞. Hence Theorem 1.6 holds for any Borel subset E
whose boundary is contained in a countable union of real algebraic
curves.

We now describe some concrete applications of Theorem 1.4.

1.1. Apollonian gasket. Three mutually tangent circles in the plane de-
termine a curvilinear triangle, say, T . By a theorem of Apollonius of Perga
(c. 200 BC), one can inscribe a unique circle into the triangle T , tangent
to all of the three circles. This produces three more curvilinear triangles
inside T and we inscribe a unique circle into each triangle. By continuing
to add circles in this way, we obtain an infinite circle packing of T , called
the Apollonian gasket for T , say, A (see Fig. 3).
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Figure 3. Apollonian gasket

Figure 4. Dual circles

By adding all the circles tangent to three of the given ones, not only those
within T , one obtains an Apollonian circle packing P := P(T ), which may
be bounded or unbounded (cf. [10] [9], [27], [28], [12]).

Fixing four mutually tangent circles in P, consider the four dual circles
determined by the six intersection points (see Fig. 4 where the dotted circles
are dual circles to the solid ones), and denote by ΓP the intersection of
PSL2(C) and the group generated by the inversions with respect to those
dual circles. Then ΓP is a geometrically finite Zariski dense subgroup of the
real algebraic group PSL2(C) preserving P, and its limit set in Ĉ coincides
with the residual set of P (cf. [12]).

We denote by α the Hausdorff dimension of the residual set of P, which
is known to be 1.3056(8) according to McMullen [16].

Corollary 1.8. Let T be a curvilinear triangle determined by three mutually
tangent circles and A the Apollonian gasket for T . Then for any Borel subset
E ⊂ T whose boundary is contained in a countable union of real algebraic
curves,

lim
T→∞

NT (E)
Tα

=
skΓP (P)
α · |mBMS

ΓP
|
· ωΓP (E)

where NT (E) := #{C ∈ A : C ∩ E 6= ∅, Curv(C) < T} and P = P(T ).

Either when P is bounded and E is the disk enclosed by the largest circle
of P, or when P lies between two parallel lines and E is the whole period,
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Figure 5. Regions whose boundary intersects Λ(Γ) at
finitely many points (background pictures are reproduced
with permission from Indra’s Pearls, by D.Mumford, C. Se-
ries and D. Wright, copyright Cambridge University Press
2002)

it was proved in [12] that NT (P, E) ∼ c · Tα for some c > 0. This implies
that 1 NT (T ) � Tα. The approach in [12] was based on the Descartes circle
theorem in parameterizing quadruples of circles of curvature at most T as
vectors of maximum norm at most T in the cone defined by the Descartes
quadratic equation. We remark that the fact that α is strictly bigger than 1
was crucial in the proof of [12] as based on the L2-spectral theory of ΓP\H3.

1.2. Counting circles in the limit set Λ(Γ). If X is a finite volume
hyperbolic 3-manifold with totally geodesic boundary, then its fundamental
group Γ := π1(X) is geometrically finite and X is homeomorphic to Γ\H3 ∪
Ω(Γ) where Ω(Γ) := Ĉ − Λ(Γ) is the domain of discontinuity [11]. The
set Ω(Γ) is a union of countably many disjoint open disks in this case and
has finitely many Γ-orbits by the Ahlfors finiteness theorem [1]. Hence
Theorem 1.4 applies to counting these open disks in Ω(Γ) with respect to
the curvature.

1� means that the ratio of the two sides is between two uniform constants
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Figure 6. Schottky dance (reproduced with permission
from Indra’s Pearls, by D.Mumford, C. Series and D. Wright,
copyright Cambridge University Press 2002)

For example, for the group Γ generated by reflections in the sides of a
unique regular tetrahedron whose convex core is bounded by four π

4 triangles
and four right hexagons, Ω(Γ) is illustrated in the second picture in Fig. 1
(see [15, P.9] for details). This circle packing is called a Sierpinski curve,
being homeomorphic to the well-known Sierpinski carpet [5].

Two pictures in Fig. 5 can be found in the beautiful book Indra’s pearls
by Mumford, Series and Wright (see P. 269 and P. 297 of [17]) where one
can find many more circle packings to which our theorem applies. The book
presents explicit geometrically finite Schottky groups Γ whose limit sets are
illustrated in Fig. 5. The boundaries of the shaded regions meet Λ(Γ) only
at finitely many points. Hence our theorem applies to counting circles in
these shaded regions.

1.3. Schottky dance. Another class of examples is obtained by considering
the images of Schottky disks under Schottky groups. Take k ≥ 1 pairs of
mutually disjoint closed disks {(Di, D

′
i) : 1 ≤ i ≤ k} in C and for each

1 ≤ i ≤ k, choose a Möbius transformation γi which maps the interior of
Di to the exterior of D′i and the interior of D′i to the exterior of Di. The
group, say, Γ, generated by {γi : 1 ≤ i ≤ k} is called a Schottky group of
genus k (cf. [13, Sec. 2.7]). The Γ-orbit of the disks Di and D′i’s nests down
onto the limit set Λ(Γ) which is totally disconnected. If we denote by P the
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union ∪1≤i≤kΓ(Ci) ∪ Γ(C ′i) where Ci and C ′i are the boundaries of Di and
D′i respectively, then P is locally finite, as the nesting disks become smaller
and smaller. The common exterior of hemispheres above the initial disks Di

and D′i is a fundamental domain for Γ in the upper half-space H3, and hence
Γ is geometrically finite. Since P contains no infinite bouquet of tangent
circles, Theorem 1.4 applies to P; for instance, we can count circles in the
picture in Fig. 6 ([17, Fig. 4.11]).

On the structure of the proof. In [12], the counting problem for a
bounded Apollonian circle packing was related to the equidistribution of
expanding closed horospheres on the hyperbolic 3-manifold Γ\H3. For a
general circle packing, there is no analogue of the Descartes circle theorem
which made such a relation possible. The main idea in our paper is to relate
the counting problem for a general circle packing P invariant under Γ with
the equidistribution of orthogonal translates of a closed totally geodesic sur-
face in T1(Γ\H3). Let C0 denote the unit circle centered at the origin and
H the stabilizer of C0 in PSL2(C). Thus H\G may be considered as the
space of totally geodesic planes of H3. The important starting point is to
describe certain subset BT (E) in H\G so that the number of circles in the
packing P := Γ(C0) of curvature at most T intersecting E can be inter-
preted as the number of points in BT (E) of a discrete Γ-orbit on H\G. We
then describe the weighted limiting distribution of orthogonal translates of
an H-period (H ∩ Γ)\H (which corresponds to a properly immersed hyper-
bolic surface which may be of infinite area) along these sets BT (E) in terms
of the Burger-Roblin measure (Theorem 4.3) using the main result in [19]
(see Thm. 2.5). To translate the weighted limiting distribution result into
the asymptotic for NT (P, E), we relate the density of the Burger-Roblin
measure of the contracting horosphere H−∞(j) with the measure ωΓ.

A version of Theorem 1.4 in a weaker form, and some of its applications
stated above were announced in [18]. We remark that the methods of this
paper can be easily generalized to prove a similar result for a sphere pack-
ing in the n-dimensional Euclidean space invariant under a non-elementary
discrete subgroup of Isom(Hn+1).

Acknowledgment. We would like to thank Curt McMullen for inspiring
discussions. The applicability of our other paper [19] in the question ad-
dressed in this paper came up in the conversation of the first named author
with him during her one month visit to Harvard in October, 2009. She
thanks the Harvard mathematics department for the hospitality. We would
also like to thank Yves Benoist for helpful discussions.

2. Expansion of a hyperbolic surface by orthogonal geodesic
flow

We use the following coordinates for the upper half space model for H3:

H3 = {z + rj = (z, r) : z ∈ C, r > 0}
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where j = (0, 1). The isometric action of G = PSL2(C), via the Poincare
extension of the linear fractional transformations, is explicitly given as the
following (cf. [6]):

(2.1)
(
a b
c d

)
(z + rj) =

(az + b)(c̄z̄ + d̄) + ac̄r2

|cz + d|2 + |c|2r2
+

r

|cz + d|2 + |c|2r2
j.

In particular, the stabilizer of j is the following maximal compact subgroup
of G:

K := PSU(2) = {
(
a b
−b̄ ā

)
: |a|2 + |b|2 = 1}.

We set

A := {at :=
(
et/2 0
0 e−t/2

)
: t ∈ R}, M := {

(
eiθ 0
0 e−iθ

)
: θ ∈ R}

and

N := {nz :=
(

1 z
0 1

)
: z ∈ C}, N− = {n−z :=

(
1 0
z 1

)
: z ∈ C}.

We can identify H3 with G/K via the map g(j) 7→ gK. Denoting by
X0 ∈ T1(H3) the upward unit normal vector based at j, we can also identify
the unit tangent bundle T1(H3) with G.X0 = G/M : here g.X0 is given by
dλ(g)(X0) where λ(g) : G/K → G/K is the left translation λ(g)(g′K) =
gg′K and dλ(g) is its derivative at j.

The geodesic flow {gt} on T1(H3) corresponds to the right translation by
at on G/M :

gt(gM) = gatM.

For a circle C in C, denote by Ĉ its convex hull, which is the northern
hemisphere above C.

Set C0 to be the unit circle in C centered at the origin. The set-wise
stabilizer of Ĉ0 in G is given by

H = PSU(1, 1) ∪
(

0 1
−1 0

)
PSU(1, 1)

where

PSU(1, 1) = {
(
a b
b̄ ā

)
: |a|2 − |b|2 = 1}.

Note that H is equal to the stabilizer of C0 in G and hence Ĉ0 can be
identified with H/H ∩K.

We have the following generalized Cartan decomposition (cf. [29]): for
A+ = {at : t ≥ 0},

G = HA+K

in the sense that every element of g ∈ G can be written as g = hak, h ∈
H, a ∈ A+, k ∈ K and h1a1k1 = h2a2k2 implies that a1 = a2, h1 = h2m and
k1 = m−1k2 for some m ∈ H ∩K ∩ ZG(A) = M .
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As X0 is orthogonal to the tangent space Tj(Ĉ0), H.X0 = H/M corre-
sponds to the set of unit normal vectors to Ĉ0, which we will denote by C†0.
Note that C†0 has two connected components, depending on their directions.
For t ∈ R, the set gt(C†0) = (H/M)at = (HatM)/M corresponds to a union
of two surfaces consisting of the orthogonal translates of Ĉ0 by distance |t|
in each direction, both having the same boundary C0.

Let Γ < G be a non-elementary discrete subgroup. As in the introduction,
let {νx : x ∈ H3} be a Γ-invariant conformal density on Ĉ of dimension δΓ,
that is, each νx is a finite measure on Ĉ satisfying that for any x, y ∈ H3,
z ∈ Ĉ and γ ∈ Γ,

γ∗νx = νγx; and
dνy
dνx

(z) = e−δΓβz(y,x).

Here γ∗νx(R) = νx(γ−1(R)) for a Borel subset R ⊂ Ĉ and the Busemann
function βz(y1, y2) is given by limt→∞ d(y1, ξt)− d(y2, ξt) for a geodesic ray
ξt toward z.

For u ∈ T1(H3), we define u+ ∈ Ĉ (resp. u− ∈ Ĉ) to be the forward (resp.
backward) end point of the geodesic determined by u and π(u) ∈ H3 to be
the basepoint. Fixing o ∈ H3, the map u 7→ (u+, u−, t := βu−(π(u), o)) is a
homeomorphism between T1(H3) and (Ĉ× Ĉ− {(ξ, ξ) : ξ ∈ Ĉ})× R.

Definition 2.2. The Bowen-Margulis-Sullivan measure mBMS
Γ associated to

{νx} ([2], [14], [31]) is the measure on T1(Γ\H3) induced by the following
Γ-invariant measure on T1(H3): for x ∈ H3,

dm̃BMS(u) = eδΓβu+ (x,π(u)) eδΓβu− (x,π(u)) dνx(u+)dνx(u−)dt.

By the conformal properties of {νx}, this definition is independent of the
choice of x ∈ H3.

We also denote by {mx : x ∈ H3} a G-invariant conformal density of
dimension 2, which is unique up to homothety: each mx a finite measure
on Ĉ which is invariant under StabG(x) and dmx(z) = e−2βz(y,x)dmy(z) for
any x, y ∈ H3 and z ∈ Ĉ.

Definition 2.3. The Burger-Roblin measure mBR
Γ associated to {νx} and

{mx} ([4], [26]) is the measure on T1(Γ\Hn) induced by the following Γ-
invariant measure on T1(Hn):

dm̃BR(u) = e2βu+ (x,π(u)) eδΓβu− (x,π(u)) dmx(u+)dνx(u−)dt

for x ∈ H3. By the conformal properties of {νx} and {mx}, this definition
is independent of the choice of x ∈ H3.

For any circle C, let

HC = {g ∈ G : gC = C} = {g ∈ G : gC† = C†}.
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We consider the following two measures on C†: Fix any x ∈ H3, and let

(2.4) dµLeb
C† (s) := e2βs+ (x,π(s))dmx(s) and dµPS

C†(s) := eδΓβs+ (x,π(s))dνx(s+).

These definitions are independent of the choice of x and µLeb
C†

(resp. µPS
C†

) is
left-invariant by HC (resp. HC ∩ Γ)). Hence we may consider the measures
µLeb
C†

and µPS
C†

on the quotient (H ∩ Γ)\C†.
We denote by skΓ(C) the total mass of µPS

C†
; that is,

skΓ(C) :=
∫
s∈Γ∩H\C†0

eδΓβs+ (x,π(s))dνx(s+).

In general, skΓ(C) may be zero or infinite.

Theorem 2.5 ([19, Theorem 1.9]). Suppose that the natural projection map
Γ ∩HC\Ĉ → Γ\H3 is proper. Assume that |mBMS

Γ | < ∞ and skΓ(C) < ∞.
Then for any ψ ∈ Cc(Γ\G/M), as t→∞,

e(2−δΓ)t

∫
s∈(Γ∩HC)\C†

ψ(sat)dµLeb
C† (s) ∼ skΓ(C)

|mBMS
Γ |

mBR
Γ (ψ).

Moreover skΓ(C) > 0 if [Γ : HC ∩ Γ] =∞.

Note that if |mBMS
Γ | < ∞, then Γ is of divergence type; that is, the

Poincare series of Γ diverges at δΓ. When Γ is of divergence type, the Γ-
invariant conformal density {νx} of dimension δΓ is unique up to homothety
(see [26, Remark following Corollary 1.8]): explicitly νx can be taken as the
weak-limit as s→ δ+

Γ of the family of measures

νx(s) :=
1∑

γ∈Γ e
−sd(j,γj)

∑
γ∈Γ

e−sd(x,γj)δγj .

Recall that g ∈ PSL2(C) is parabolic if and only if g has a unique fixed
point in Ĉ.

Theorem 2.6 ([19, Theorem 5.2]). Let Γ be geometrically finite. Suppose
that the natural projection map Γ∩HC\Ĉ → Γ\H3 is proper. Then skΓ(C) <
∞ if and only if either δΓ > 1 or any parabolic fixed point of Γ lying on C
is fixed by a parabolic element of HC ∩ Γ.

Proof. Note that in the notation of [19, Theorem 5.2], if we put E = Ĉ,
which is a complete totally geodesic submanifold of H3 of codimension 1,
then ∂(π(Ẽ)) = C, Ẽ = C†, ΓẼ = HC ∩ Γ, and |µPS

E | = skΓ(C). Hence the
conclusion is immediate. �

3. Reformulation into the orbital counting problem on the
space of hyperbolic planes

Let G = PSL2(C) and Γ < G be a non-elementary discrete subgroup. Let
C be a circle in Ĉ and HC denote the set-wise stabilizer of C in G.

It is clear:
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Lemma 3.1. If Γ(C) is infinite, then [Γ : HC ∩ Γ] =∞.

Lemma 3.2. The following are equivalent:
(1) A circle packing Γ(C) is locally finite;
(2) the natural projection map f : Γ ∩HC\Ĉ → Γ\H3 is proper;
(3) HC\HCΓ is discrete in HC\G.

Proof. We observe that the properness of f is equivalent to the condition
that only finitely many distinct hemispheres in Γ(Ĉ) intersects a given com-
pact subset of H3. Note that any compact subset of H3 is contained in a
compact subset the form E × [r1, r2] = {(z, r) : z ∈ E, r1 ≤ r ≤ r2} for
E ⊂ C compact and 0 < r1 < r2 < ∞, and that the radius of a circle in C
is same as the height of its convex hull in H3. Hence the properness of the
map f is again equivalent to the condition that for any r > 0 and a compact
subset E ⊂ C, there are only finitely many distinct circles in Γ(C) intersect-
ing E and of radii at least r, that is, Γ(C) being locally finite, proving the
equivalence of (1) and (2).

It is straightforward to verify that the properness of f and that of the
projection map Γ ∩HC\C† → Γ\T1(H3) are equivalent. Let XC ∈ C† such
that X+

C =∞ ∈ Ĉ. Let MC = {g ∈ G : gXC = XC}. Since Ĉ is the unique
totally geodesic submanifold of H3 orthogonal toXC , MC is contained inHC .
We identify G/MC with T1(H3) via gMC 7→ gXC . Since H/MC identifies
with C†, the canonical map Γ ∩HC\HC/MC → Γ\G/MC is proper. Since
MC is compact, it follows that Γ ∩HC\HC → Γ\G is proper. Equivalently
ΓHC is closed in G (see [19] for the equivalence). As Γ is countable, this is
again equivalent to the discreteness of HC\HCΓ in HC\G. This proves the
equivalence of (2) and (3). �

Remark 3.3. If Γ ∩HC is a lattice in HC , then ΓHC is closed in G ([25,
§1]), and hence Γ(C) is a locally finite circle packing. In this case, by [19,
Theorem 1.11], we have skΓ(C) <∞.

Proposition 3.4. Let ξ ∈ C be a parabolic fixed point of Γ. Suppose that
Γ(C) does not contain an infinite bouquet of tangent circles glued at ξ. Then
ξ is a parabolic fixed point for HC ∩ Γ.

Proof. Suppose that there exists a parabolic element γ ∈ Γ − HC fixing
ξ ∈ C. By sending ξ to ∞ ∈ Ĉ by an element of G, we may assume that
ξ = ∞ and γ acts as a translation on C. Since γC 6= C and C is a circle
passing through ∞, we have that {γkC : k ∈ Z} is an infinite collection of
parallel lines. By sending∞ back to the original ξ, we see that {γkC : k ∈ Z}
is an infinite bouquet of tangent circles glued at ξ. �

3.1. Deduction of Theorem 1.4 from Theorem 1.6. We only need to
ensure that skΓ(P) < ∞, or equivalently, skΓ(C) < ∞ for each C ∈ P. By
the assumption in Theorem 1.4, if ξ ∈ C is any parabolic fixed point of Γ,
then by Proposition 3.4, ξ is a parabolic fixed point for HC ∩ Γ. Therefore
by Theorem 2.6, skΓ(C) <∞. �
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3.2. Relating counting on a single Γ-orbit to a set BT (E) ⊂ H\G.
In the rest of this section, let C0 denote the unit circle in C centered at
the origin and let H := Stab(Ĉ0). We follow notations from Section 2. We
assume that Γ(C0) is a locally finite circle packing of C.

Let E be a bounded subset in C and set

NT (Γ(C0), E) := #{C ∈ Γ(C0) : C ∩ E 6= ∅, Curv(C) < T}.
For s > 0, we set

A+
s := {at : 0 ≤ t ≤ s}; A−s := {a−t : 0 ≤ t ≤ s}.

For a subset E ⊂ C, we set NE := {nz : z ∈ E}.

Definition 3.5 (Definition of BT (E)). For E ⊂ C and T > 1, we define the
subset BT (E) of H\G to be the image of the set

KA+
log TN−E = {katn−z ∈ G : k ∈ K, 0 ≤ t < log T, z ∈ E}

under the canonical projection G→ H\G.

For a bounded circle C in C, C◦ denotes the open disk enclosed by C. We
will not need this definition for a line since there can be only finitely many
lines intersecting a fixed bounded subset in a locally finite circle packing.

Definition 3.6. For a given circle packing P, a bounded subset E ⊂ C is
said to be P-admissible if, for any bounded circle C ∈ P, C◦∩E 6= ∅ implies
C◦ ⊂ E, possibly except for finitely many circles.

The following translation of NT (Γ(C0), E) as the number of points in
[e]Γ ∩BT (E), where [e] = H ∈ H\G, is crucial in our approach:

Proposition 3.7. If E is Γ(C0)-admissible, there exists m0 ∈ N such that
for all T � 1,

#[e]Γ ∩BT (E)−m0 ≤ NT (Γ(C0), E) ≤ #[e]Γ ∩BT (E) +m0.

Proof. Observe that

#[e]Γ ∩BT (E) = #{[γ] ∈ Γ ∩H\Γ : Hγ ∩KA+
log TN−E 6= ∅}

= #{[γ] ∈ Γ/Γ ∩H : γHK ∩NEA
−
log TK 6= ∅}

= #{γ(Ĉ0) : γHK ∩NEA
−
log TK 6= ∅}

where the second equality is obtained by taking the inverse. Since

NEA
−
log T j = {(z, r) ∈ H3 : T−1 < r ≤ 1, z ∈ E}

and K is the stabilizer of j in G, it follows that

#[e]Γ∩BT (E) = #{γ(Ĉ0) : γ(Ĉ0) contains (z, r) with z ∈ E, T−1 < r ≤ 1}.

By the admissibility assumption on E, we observe that γ(Ĉ0) contains
(z, r) with z ∈ E and T−1 < r ≤ 1 if and only if the center of γ(C0) lies in
E and the radius of γ(C0) is greater than T−1, possibly except for finitely
many number (say, m0) of circles. �
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4. Uniform distribution along the family BT (E) and the
Burger-Roblin measure

We keep the notations C0, H,K,M,A+, X0, G, {mx : x ∈ H3}, etc., from
section 2. Denoting by dm the probability invariant measure on M ,

(4.1) dh = dµLeb
C†0

(s)dm

is a Haar measure on H ∼= C†0×M as µLeb
C†0

is H-invariant, and the following

defines a Haar measure on G: for g = hark ∈ HA+K,

(4.2) dg = 4 sinh r · cosh r dhdrdmj(k)

where dmj(k) := dmj(k.X+
0 ).

We denote by dλ the unique measure on H\G which is compatible with
the choice of dg and dh: for ψ ∈ Cc(G),∫

G
ψ dg =

∫
[g]∈H\G

∫
h∈H

ψ(h[g]) dhdλ[g].

For a bounded set E ⊂ C, recall that the set BT (E) in H\G is the image
of the set

KA+
log TN−E = {katn−z ∈ G : k ∈ K, 0 ≤ t < log T, z ∈ E}

under the canonical projection G→ H\G.
The goal of this section is to deduce the following theorem 4.3 from The-

orem 2.5:

Theorem 4.3. Let Γ be a non-elementary discrete subgroup of G. Suppose
that |mBMS

Γ | < ∞ and skΓ(C0) < ∞. Suppose that the natural projection
map Γ∩H\Ĉ0 → Γ\H3 is proper. Then for any bounded Borel subset E ⊂ C
and for any ψ ∈ Cc(Γ\G), we have

lim
T→∞

1
T δΓ

∫
g∈BT (E)

∫
h∈Γ∩H\H

ψ(hg)dhdλ(g) =
skΓ(C0)

δΓ · |mBMS|
·
∫
n∈N−E

mBR
Γ (ψn) dn

where ψn ∈ Cc(Γ\G)M is given by ψn(g) =
∫
m∈M ψ(gmn)dm and dn is the

Lebesgue measure on N .

In order to prove this result using Theorem 2.5, it is crucial to understand
the shape of the set BT (E) in the HA+K decomposition of G. This is one
of the important technical steps in the proof.

On the shape of BT (E): Fix a left-invariant metric on G. For ε > 0, let
Uε be the ε-ball around e in G. For a subset W of G, we set Wε = W ∩ Uε.

Proposition 4.4. (1) If at ∈ HKasK for s > 0, then |t| ≤ s.
(2) Given any ε > 0, there exists T0 = T0(ε) such that

{k ∈ K : atk ∈ HKA+ for some t > T0} ⊂ KεM.
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Proof. Suppose at = hk1ask2 for h ∈ H, k1, k2 ∈ K. We note that, as Aj is
orthogonal to Ĉ0 and j ∈ Ĉ0,

|t| = d(Ĉ0, atj) = d(Ĉ0, hk1asj)

= d(Ĉ0, k1asj) ≤ d(j, k1asj) = d(j, asj) = s,

proving the first claim. For the second claim, suppose atk ∈ HKas for some
s ≥ 0. Then ka−s ∈ a−tHK. Applying both sides to j ∈ H3, k(e−sj) ∈
a−tĈ0. Now a−tĈ0 = e−tĈ0 is the northern hemisphere of Euclidean radius
e−t about 0 in H3.

On the other hand A−j = (0, 1]j for A− = {a−s : s ≥ 0} and Kε{(0, 1]j}
consists of geodesic rays in H3 joining j and points of Kε(0) ⊂ C. Now
Kε(0) contains a disk of radius, say rε > 0, centered at 0 in C, and hence
Kε{(0, 1]j} contains a Euclidean half ball of radius rε > 0 centered at 0 in
H3.

Therefore for t > T0(ε) := − log(rε), k(e−sj) ∈ a−tĈ0 implies that
k(e−sj) ∈ Kε{(0, 1]j}, in other words, ka−sK ⊂ KεA

−K. By the unique-
ness of the left K-component, modulo the right multiplication by M , in the
decomposition G = KA−K, it follows that k ∈ KεM , proving the second
claim. �

For t ∈ R and T > 1, set

KT (t) := {k ∈ K : atk ∈ HKA+
log T }.

As a consequence of Proposition 4.4, we have the following.

Corollary 4.5. (1) For all 0 ≤ t < log T , e ∈ KT (t).
(2) For all t > log T , KT (t) = ∅.
(3) For any ε > 0, there exists T0(ε) ≥ 1 such that we have

KT (t) ⊂ KεM for all t > T0(ε).

Thus for any T > 1,

(4.6) HKA+
log T = ∪0≤t<log THatKT (t).

Since BT (E) = H\HKA+
log TN−E , (4.6) together with Corollary 4.5 shows

that BT (E) is essentially of the form H\Halog TKεMN−E . The follow-
ing proposition shows that BT (E) can be basically controlled by the set
H\Halog TN−E .

Proposition 4.7. Fix a bounded subset E of C. There exists ` = `(E) ≥ 1
such that for all sufficiently small ε > 0,

atkmnz ∈ H`εmatnzU`ε

holds for any m ∈M , t > 0, z ∈ E, and k ∈ Kε.

Proof. Recalling that N− denotes the lower triangular subgroup of G, we
note that the product map N− × A ×M ×N → G is a diffeomorphism at
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a neighborhood of e, in particular, bi-Lipschitz. Hence there exists `1 > 1
such that for all small ε > 0,

(4.8) Kε ⊂ N−`1εA`1εM`1εN`1ε.

Similarly due to the H×A×N product decomposition of Gε, there exists
`2 > 1 such that

(4.9) Uε ⊂ H`2εA`2εN`2ε

for all small ε > 0 ([8, Lem 2.4]). We also have `3 > 1 such that for all small
ε > 0,

(4.10) A(`1+`2)εN(`1+`2)εM`1ε ⊂ U`3ε.

Now let t > 0, k ∈ Kε,m ∈M,n ∈ N . Then by (4.8), we may write

k = n−1 b1m1n1 ∈ N−`1εA`1εM`1εN`1ε.

Since atn−1 a−t ∈ N−ε for t > 0, we have, by (4.9),

atn
−
1 a−t = h2b2m2n2 ∈ H`2εA`2εM`2εN`2ε.

Therefore

atkmn = (atn−1 a−t)(atb1m1n1)mn

= (h2b2m2n2)atb1m1n1mn

= h2b2m2(atb1b−1
1 a−t)n2atb1m1n1mn

= h2at(b2m2)b1(b−1
1 a−tn2atb1)m1n1mn

∈ h2atA(`1+`2)εM`2εN(`1+`2)εM`1εmn by (4.10)
⊂ h2atU`3εmn.

As E is bounded, there exists ` = `(E) > `2 such that for all small ε > 0
and for all z ∈ E,

U`3εmnz ⊂ mnzU`ε.
Since at commutes with m, we obatin for all z ∈ E that

atkmnz ⊂ H`εmatnzU`ε.

�

Proof of Theorem 4.3. Let ` = `(E) ≥ 1 be as in Proposition 4.7. For
ψ ∈ Cc(Γ\G) and ε > 0, we define ψ±ε ∈ Cc(Γ\G),

ψ+
ε (g) := sup

u∈U`ε
ψ(gu) and ψ−ε (g) := inf

u∈U`ε
ψ(gu).

For a given η > 0, there exists ε = ε(η) > 0 such that for all g ∈ Γ\G,

|ψ+
ε (g)− ψ−ε (g)| ≤ η

by the uniform continuity of ψ.



ASYMPTOTIC DISTRIBUTION OF CIRCLES IN ORBITS OF KLEINIAN GROUPS 18

On the other hand, by Theorem 2.5, we have T1(η)� 1 such that for all
t > T1(η), ∫

h∈Γ∩H\H
ψ+
ε (hatn)dh(4.11)

=
∫
s∈Γ∩H\C†0

∫
m∈M

ψ+
ε (satmn)dmdµLeb

C†0
(s)

= (1 +O(η))
skΓ(C0)
|mBMS|

mBR
Γ (ψ+

ε,n)e(δΓ−2)t

where ψ+
ε,n(g) =

∫
m∈M ψ+

ε (gmn)dm.
AsN−E is relatively compact, the implied constant can be taken uniformly

over all n ∈ N−E . Let T0(ε) > T1(η) be as in Proposition 4.4. For [e] = H ∈
H\G and s > 0, set

VT (s) := ∪s≤t<log T [e]atKT (t)N−E

so that
BT (E) = VT (s) ∪ (BT (E)− VT (s)).

Setting

ψH(g) :=
∫
h∈Γ∩H\H

ψ(hg)dh,

note that ψH is left H-invariant as dh is a Haar measure. We will show that

lim sup
T→∞

1
T δ

∫
[g]∈VT (T0(ε))

ψH(g)dλ(g) = (1+O(η))
skΓ(C0)

δΓ · |mBMS|
·
∫
n∈N−E

mBR
Γ (ψn)dn.

By Corollary 4.5, we have

VT (T0(ε)) ⊂ ∪T0(ε)≤t≤log T [e]atKεMN−E .

Let [g] ∈ VT (T0(ε)), so [g] = [e]atkmn with T0(ε) ≤ t ≤ log T , k ∈ Kε,
m ∈ M and n ∈ N−E . By Proposition 4.7, there exist h0 ∈ H and u ∈ U`ε
such that

atkmn = h0matnu

so that [g] = [e]atnu, since M ⊂ H.
We have

ψH(g) =
∫
h∈Γ∩H\H

ψ(hatnu)dh ≤
∫
h∈Γ∩H\H

ψ+
ε (hatn)dh.

The measure e2tdtdn is a right invariant measure of AN and [e]AN is
an open subset in H\G. Hence dλ(atn) (restricted to [e]AN) and e2tdtdn
are constant multiples of each other. It follows from the formula of dg that
dλ(atn) = e2tdtdn. Therefore∫

[g]∈VT (T0(ε))
ψH(g)dλ(g) ≤

∫
n∈N−E

∫
T0(ε)<t≤log T

∫
h∈Γ∩H\H

ψ+
ε (hatn)dhe2tdtdn.
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By the choice of ε = ε(η), we also have

mBR
Γ (ψ+

ε,n) = (1 +O(η))mBR
Γ (ψn)

where the implied constant depends only on ψ. Hence by (4.11),∫
n∈N−E

∫
T0(ε)<t<log T

∫
h∈Γ∩H\H

ψ+
ε,n(hat)dhe2tdtdn

= (1 +O(η))
skΓ(C0)

δΓ · |mBMS|
·
∫
n∈N−E

mBR
Γ (ψn)dn · (T δΓ − eδΓT0(ε)).

Hence

lim sup
T

1
T δΓ

∫
[g]∈VT (T0(ε))

ψH(g)dλ(g) = (1+O(η))
skΓ(C0)

δΓ · |mBMS|
·
∫
n∈N−E

mBR
Γ (ψn)dn.

On the other hand, since Γ\ΓH is a closed subset of Γ\G, so is ∪0≤t≤sΓ\ΓHatKN−E
for any fixed s > 0; in particular, its intersection with a compact subset of
Γ\G is compact.

Since
∪[g]∈BT (E)−VT (s)Γ\ΓHg ⊂ ∪0≤t≤sΓ\ΓHatKN−E ,

and ψ has compact support, we have, as T →∞,∫
[g]∈BT (E)−VT (T0(ε))

∫
h∈Γ∩H\H

ψ(hg)dhdλ(g) = O(1).

Therefore

lim sup
T

1
T δ

∫
[g]∈BT (E)

ψH(g)dλ(g) ≤ (1+O(η))
skΓ(C0)

δΓ · |mBMS|
·
∫
n∈N−E

mBR
Γ (ψn)dn.

As η > 0 is arbitrary and ε(η)→ 0 as η → 0, we have

lim sup
T

1
T δ

∫
[g]∈BT (E)

ψH(g)dλ(g) ≤ skΓ(C0)
δΓ · |mBMS|

·
∫
n∈N−E

mBR
Γ (ψn)dn.

Similarly we can show that

lim inf
T

1
T δ

∫
[g]∈BT (E)

ψH(g)dλ(g) ≥ skΓ(C0)
δΓ · |mBMS|

·
∫
n∈N−E

mBR
Γ (ψn)dn.

�

5. On the measure ωΓ

In this section we will describe a measure ωΓ on C and show that the
term ∫

n∈N−E
mBR

Γ (Ψn) dn,

which appears in the asymptotic expression in Theorem 4.3, converges to
ωΓ(E) as the support of Ψ shrinks to [e] with

∫
Γ\G Ψ dg = 1.

We keep the notations G,K,M,A+, N,N−, at, nz, n
−
z , etc., from section

2. Throughout this section, we assume that Γ is a non-elementary discrete



ASYMPTOTIC DISTRIBUTION OF CIRCLES IN ORBITS OF KLEINIAN GROUPS 20

subgroup of G. Recall that {νx = νΓ,x : x ∈ H3} denotes a Γ-invariant
conformal density for Γ of dimension δΓ > 0.

Definition 5.1. Define a Borel measure ωΓ on C as follows: for ψ ∈ Cc(C),

ωΓ(ψ) =
∫
z∈C

eδΓβz(x,z+j)ψ(z)dνΓ,x(z)

for x ∈ H3 and z + j := (z, 1) ∈ H3.

In order to see that the definition of ωΓ is independent of the choice of
x ∈ H3, we observe that for any x1, x2 ∈ H3 and z ∈ C,

eδΓ(βz(x1,z+j)−βz(x2,z+j))dνx1

dνx2

(z) = eδΓ·βz(x1,x2)dνx1

dνx2

(z) = 1

by the conformality of {νx}.
Lemma 5.2. For any x = p+ rj ∈ H3 and ψ ∈ Cc(C),

ωΓ(ψ) :=
∫
z∈C

(r−1|z − p|2 + r)δΓψ(z)dνx(z).

Proof. It suffices to show that

βz(p+ rj, z + j) = log
|z − p|2 + r2

r
.

We use the fact that the hyperbolic distance d on the upper half space model
of H3 satisfies

cosh(d(z1 + r1j, z2 + r2j)) =
|z1 − z2|2 + r2

1 + r2
2

2r1r2

for zi + rij ∈ H3 (cf. [6]).
Note that

βz(z, z + j) = β0(j,−z + p+ rj)

= lim
t→∞

t− d(−z + p+ rj, e−tj)

= lim
t→∞

t− d(p+ rj, z + e−tj).

Now

cosh d(p+ rj, z + e−tj) =
et(|z − p|2 + r2) + e−t

2r
and hence

ed(p+rj,z+e−tj) + e−d(p+rj,z+e−tj) =
et(|z − p|2 + r2) + e−t

r
.

Therefore as t→∞,

d(p+ rj, z + e−tj) ∼ t+ log
|z − p|2 + r2

r
.

Hence

βz(p+ rj, z + j) = log
|z − p|2 + r2

r
.

�
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Definition 5.3. For a function ψ on C with compact support, define a
function Rψ on MAN−N ⊂ G by

Rψ(matn−x nz) = e−δΓtψ(−z)

for m ∈ M, t ∈ R, x, z ∈ C. If ψ is the characteristic function of E ⊂ C, we
put RE = RχE .

Since the product map M ×A×N−×N → G has a diffeomorphic image,
the above function is well-defined.

Proposition 5.4. For any ψ ∈ Cc(C),

ωΓ(ψ) =
∫
k∈K/M

Rψ(k−1)dνj(k(0)).

Proof. If k ∈ K with k−1 = matn
−
x nz ∈MAN−N , since MAN fixes 0,

k(0) = n−z(0) = −z.

We note that lims→∞ a−s(j) = 0 and compute

0 = β−z(k(j), j)

= β−z(n−zn−−xa−tj, j)

= β0(n−−xa−tj, nz(j))

= lim
s→∞

d(n−−xa−tj, a−sj)− d(nz(j), a−sj)

= lim
s→∞

d((asn−−xa−s)as−tj, j)− d(nz(j), a−sj)

= lim
s→∞

d(as−tj, j)− d(nz(j), a−sj)

= lim
s→∞

s− t− d(nz(j), a−sj)

and hence

−t = lim
s→∞

d(nz(j), a−sj)− s = β0(nz(j), j) = β−z(j,−z + j).

Hence for k−1 ∈ K ∩MAN−N ,

Rψ(k−1) = eδΓβk(0)(j,nk(0)(j))ψ(k(0)).
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Since the complement of NN−AM/M in K/M is a single point and νj is
atom-free, we have∫

k∈K/M
RE(k−1)dνj(k(0))

=
∫
k∈(K∩NN−AM)/M

RE(k−1)dνj(k(0))

=
∫
z∈C

eδΓβk(0)(j,k(0)+j)ψ(k(0))dνj(k(0))

=
∫
z∈C

eδΓβ−z(j,−z+j)ψ(−z)dνj(−z)

=
∫
z∈C

eδΓβz(j,z+j)ψ(z)dνj(z) = ωΓ(ψ).

�

Lemma 5.5. If (matn−x nz)(m1at1n
−
x1
nz1) = m0at0n

−
x0
nz0 in the MAN−N

coordinates, then

t0 = t+ t1 + 2 log(|1 + e−t1x1z
′|)

for some z′ ∈ C with |z| = |z′|.

Proof. Note that if m1 = diag(eiθ1 , e−iθ1), then

atn
−
x nzm1 = m1atn

−
eiθ1x

neiθ1z.

Hence we may assume m1 = m = e without loss of generality. We use the
following simple identity for z, x ∈ C:

(5.6) nzn
−
x =

(
1 + xz 0

0 (1 + xz)−1

)
n−x(1+xz)nz(1+xz)−1 .

Hence we have

(atn−x nz)(at1n
−
x1
nz1)

= (at+t1)(a−1
t1
n−x at1)(a−1

t1
nzat1)n−x1

nz1

= at+t1n
−
et1x

ne−t1zn
−
x1
nz1

= at+t1n
−
et1x

(
1 + e−t1x1z 0

0 (1 + e−t1x1z)−1

)
n−
x1(1+e−t1x1z)

ne−t1z(1+e−t1zx1)−1nz1

= mat+t1+2 log(|1+e−t1x1z|)n
−
x2
nz2

for appropriate m ∈M and x2, z2 ∈ C. �

Let E ⊂ C be a bounded subset and Uε ⊂ G a symmetric ε-neighborhood
of e in G. For ε > 0, set

(5.7) E+
ε := Uε(E) and E−ε := ∩u∈Uεu(E).
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Lemma 5.8. There exists ` > 0 such that for all small ε > 0 and any
g ∈ U`ε, ∫

k∈K/M
RE(k−1g)dνj(k(0)) = (1 +O(ε)) · ωΓ(E±ε )

where the implied constant depends only on E.

Proof. Write k−1 = matn
−
x nz and g = m1at1n

−
x1
nz1 ∈ Uε. By Lemma 5.5,

we have k−1g = m0at0nx0nz0 where t0 = t+ t1 + 2 log(|1 + e−t1x1z|). Since
RE(k−1g) = e−δΓt0χE(g−1k(0)), we have∫

k∈K/M
RE(k−1g)dνj(k(0))

=
∫
k(0)∈g(E)

e−δΓt0dνj(k(0))

=
∫
k(0)∈g(E)

e−δΓte−δ(t1+2 log(|1+et1x1z|))dνj(k(0))

= (1 +O(ε))
∫
k(0)∈E±ε

e−δΓte−δ(t1+2 log(|1+et1x1z|))dνj(k(0)).

Since t1 = O(ε), x1 = O(ε) and z = −k(0) ∈ −g(E) ⊂ −E+
ε ,

t1 + 2 log(|1 + e−t1x1z|) = O(ε)

where the implied constant depends only on E. Hence∫
k∈K/M

RE(k−1g)dνj(k(0))

= (1 +O(ε))
∫
k(0)∈E±ε

e−δΓtdνj(k(0))

= (1 +O(ε))
∫
k∈K

RE±ε
(k−1)dνj(k(0))

= (1 +O(ε)) · ωΓ(E±ε ).

�

For ε > 0, let ψε be a non-negative continuous function in C(G) with
support in Uε with integral one and Ψε ∈ Cc(Γ\G) be the Γ-average of ψε:

Ψε(Γg) :=
∑
γ∈Γ

ψε(γg).

We define Ψε
E ∈ Cc(Γ\G)M by

Ψε
E(g) :=

∫
z∈−E

∫
m∈M

Ψε(gmnz)dmdz.

Lemma 5.9. For a bounded Borel subset E ⊂ C, there exists c = c(E) > 1
such that for all small ε > 0,

(1− c · ε) · ωΓ(E−ε ) ≤ mBR
Γ (Ψε

E) ≤ (1 + c · ε) · ωΓ(E+
ε ).
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Proof. Note that N− is the expanding horospherical subgroup for the right
action of at, i.e., N− = {g ∈ G : atga−t → e as t→∞}. We have for
ψ ∈ Cc(G)M ,

m̃BR
Γ (ψ) =

∫
KAN−

ψ(katn−)e−δΓtdndtdνj(k(0))

(cf. [19, 6.2]). We note that d(atn−xmnz) = dtdxdmdz is the restriction of
the Haar measure dg to AN−N ⊂ G/M .

We deduce

mBR
Γ (Ψε

E) =
∫
z∈−E

m̃BR(ψεnz)dz

=
∫
z∈−E

∫
KAN−

∫
m∈M

ψε(katn−xmnz)e
−δΓtdmdxdtdνj(k(0))dz

=
∫
k∈K

∫
AN−MN

ψε(k(atn−xmnz))χ−E(z)e−δΓtdxdtdmdzdνj(k(0))

=
∫
k∈K

∫
g∈G

ψε(kg)RE(g)dgdνj(k(0))

=
∫
g∈Uε

ψε(g)
(∫

k∈K
RE(k−1g)dνj(k(0))

)
dg.

Hence by Lemma 5.8 and the identity
∫
Uε
ψεdg = 1, we have

mBR
Γ (Ψε

E) = (1 +O(ε))ωΓ(E±ε ).

�

Corollary 5.10. If ωΓ(∂(E)) = 0, then

ωΓ(E) = lim
ε→0

mBR
Γ (Ψε

E).

Proof. For any η > 0, there exists ε = ε(η) such that ωΓ(E+
ε − E−ε ) < η.

Together with Lemma 5.9, it implies that

mBR
Γ (Ψε

E) = (1 +O(ε))(1 +O(η))ωΓ(E)

and hence the claim follows. �

6. Conclusion: Counting circles

Let Γ < G := PSL2(C) be a non-elementary discrete group with |mBMS
Γ | <

∞. Suppose that P := Γ(C) is a locally finite circle packing.
Recall that

skΓ(P) = skΓ(C) :=
∫
s∈StabΓ(C†)\C†

eδΓβs+ (x,s)dνΓ,x(s+),

where C† is the set of unit normal vectors to Ĉ. It follows from the conformal
property of {νΓ,x} that skΓ(C) is independent of the choice of C ∈ Γ(C),
and hence is an invariant of the packing Γ(C).

Theorem 1.6 is an immediate consequence of the following statement.
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Theorem 6.1. Suppose that skΓ(C) <∞. For any bounded Borel subset E
of C with ωΓ(∂(E)) = 0, we have

(6.2) lim
T→∞

NT (P, E)
T δΓ

=
skΓ(P)

δΓ · |mBMS
Γ |

· ωΓ(E).

Moreover skΓ(C) > 0 if P is infinite.

The second claim on the positivity of skΓ(C) follows from the second
claim of Theorem 2.5 and Lemma 3.1.

We will first prove Theorem 6.1 for the case when C is the unit circle C0

centered at the origin and deduce the general case from that.

The case of C = C0. Fix η > 0. As ωΓ(∂(E)) = 0, there exists ε = ε(η) > 0
such that

(6.3) ωΓ(E+
4ε − E

−
4ε) ≤ η

where E±4ε is defined as in (5.7): E+
4ε := U4ε(E) and E−4ε := ∩u∈U4εu(E).

We can find a P-admissible Borel subset Ẽ+
ε such that E ⊂ Ẽ+

ε ⊂ E+
ε by

adding all the open disks inside E+
ε intersecting the boundary of E. Similarly

we can find a P-admissible Borel subset Ẽ−ε such that E−ε ⊂ Ẽ−ε ⊂ E by
adding all the open disks inside E intersecting the boundary of E−ε . By
the local finiteness of P, there are only finitely many circles intersecting E
(resp. Ẽ−ε ) which are not contained in Ẽ+

ε (resp. E). Therefore there exists
qε ≥ 1 (independent of T ) such that

(6.4) NT (P, Ẽ−ε )− qε ≤ NT (P, E) ≤ NT (P, Ẽ+
ε ) + qε.

Recalling the set BT (Ẽ±ε ) = H\HKA+
log TN−Ẽ±ε ⊂ H\G, it follows from

Proposition 3.7 and (6.4) that for all T � 1,

(6.5) #[e]Γ ∩BT (Ẽ−ε )−m0 ≤ NT (Γ(C0), E) ≤ #[e]Γ ∩BT (Ẽ+
ε ) +m0

for some fixed m0 = m0(ε) ≥ 1.

Lemma 6.6. There exists ` > 0 such that for all T > 1 and for all small
ε > 0,

KA+
log TUε ⊂ KA

+
log T+εN`ε

where N`ε is the `ε-neighborhood of e in N .

Proof. We may write Uε = MεN
−
ε AεNε = KεAεNε up to uniform Lipschitz

constants. For u = mn−an ∈ MεN
−
ε AεNε, atu = m(atn−a−t)atan. Since

atn
−a−t ∈ Uε for t > 0, we may write it as k1a1n1 ∈ KεAεNε. Hence for

0 < t < log T , we have (a−1a−tn1ata) ∈ Nε and

atu = (mk1)(a1ata)(a−1a−tn1ata)n ∈ KA+
log T+2εN2ε.

This proves the claim. �
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Lemma 6.7 (Stability of KAN -decomposition). There exists `0 > 0 (de-
pending on E) such that for all T > 1 and for all small ε > 0,

KA+
log TN−Ẽ+

ε
U`0ε ⊂ KA

+
log T+εN−E+

2ε
;

KA+
log T−εN−E−2ε

⊂ KA+
log T (∩u∈U`0εN−Ẽ−ε u).

Proof. There exists `0 > 0 depending on E such that N−Ẽ+
ε
U`0ε ⊂ UεN−E+

2ε
.

Hence the first claim follows from Lemma 6.6. The second claim can be
proved similarly. �

For ε > 0, define functions F ε,±T on Γ\G:

F ε,+T (g) :=
∑

γ∈(H∩Γ)\Γ

χBeεT (N−E+
2ε

)([e]γg); F ε,−T (g) :=
∑

γ∈(H∩Γ)\Γ

χBe−εT (N−E−2ε
)([e]γg).

Let `0 be as in Lemma 6.7. Without loss of generality, we may assume
that `0 < ` for ` as in Lemma 5.8.

Lemma 6.8. For all g ∈ U`0ε and T � 1,

(6.9) F ε,+T (g)−m0 ≤ NT (Γ(C0), E) ≤ F ε,+T (g) +m0.

Proof. Note that, since U`0ε is symmetric, for any g ∈ U`0ε,

#[e]Γ ∩BT (Ẽ+
ε ) ≤ #[e]Γ ∩BT (Ẽ+

ε )U`0εg
−1 ≤ #[e]Γg ∩BeεT (N−E+

2ε
),

by Lemma 6.7, which proves the second inequality by (6.5). The other
inequality can be proved similarly. �

For ε > 0, let ψε be a non-negative continuous function in C(G) with
support in U`0ε with integral one and Ψε ∈ Cc(Γ\G) be the Γ-average of ψε:

Ψε(Γg) :=
∑
γ∈Γ

ψε(γg).

By integrating (6.9) against Ψε, we have

〈F ε,−T ,Ψε〉 −m0 ≤ NT (Γ(C0), E) ≤ 〈F ε,+T ,Ψε〉+m0.

Since

〈F ε,+T ,Ψε〉 =
∫

Γ\G

∑
γ∈Γ∩H\Γ

χBeεT (N−E+
2ε

)([e]γg)Ψε(g) dg

=
∫
g∈Γ∩H\G

χBeεT (N−E+
2ε

)([e]g)Ψε(g) dg

=
∫

[g]∈BeεT (N−E+
2ε

)

∫
h∈Γ∩H\H

Ψε(hg) dhdλ(g)

we deduce from Theorem 4.3 and Lemma 3.2 that

(6.10) 〈F ε,+T ,Ψε〉 ∼ skΓ(C0)
δΓ · |mBMS

Γ |
·
∫
n∈N−E+

2ε

mBR
Γ (Ψε

n)dn · T δΓ · eεδΓ
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where Ψε
n(g) =

∫
m∈M Ψε(gmn)dm.

Therefore by applying Lemma 5.9 to (6.10) and using (6.3), we deduce

lim sup
T

〈F ε,+T ,Ψε〉
T δΓ

≤ (1 + ε)
skΓ(C0)

δΓ · |mBMS
Γ |

·
∫
n∈N−E+

2ε

mBR
Γ (Ψε

n)dn

≤ (1 + ε)(1 + cε)
skΓ(C0)

δΓ · |mBMS
Γ |

· ωΓ(E+
4ε)

≤ (1 + c1η)(1 + c2ε)
skΓ(Γ(C0))
δΓ · |mBMS

Γ |
· ωΓ(E)

where the constants c, c1, c2 depend only on E.
Similarly, we have

lim inf
T

〈F ε,+T ,Ψε〉
T δΓ

≥ (1− c1η)(1− c2ε)
skΓ(C0)

δΓ · |mBMS
Γ |

· ωΓ(E).

As η > 0 is arbitrary and ε = ε(η)→ 0 as η → 0, we have

lim
T→∞

NT (Γ(C0), E)
T δΓ

=
skΓ(C0)

δΓ · |mBMS
Γ |

· ωΓ(E).

This proves Theorem 6.1 for C = C0.

The general case. Let r > 0 be the radius of C and p ∈ C the center of
C. Set

g0 = npalog r =
(

1 p
0 1

)(√
r 0

0
√
r−1

)
.

Then g−1
0 (z) = r−1(z − p) for z ∈ C and g−1

0 (C) = C0.

Setting Γ0 = g−1
0 Γg0, we have

NT (Γ(C), E) = #{C ∈ Γ(g0(C0)) : C◦ ∩ E 6= ∅,Curv(C) < T}
= #{g−1

0 (C) ∈ Γ0(C0) : C◦ ∩ E 6= ∅,Curv(C) < T}
= #{C∗ ∈ Γ0(C0) : C◦∗ ∩ g−1

0 (E) 6= ∅,Curv(C∗) < r−1T}
= Nr−1T (Γ0(C0), g−1

0 (E)).

We claim that
(6.11)

1
|mBMS

Γ0
|
· skΓ0(Γ0(C0)) · r−δΓ · ωΓ0(g−1

0 (E)) =
1

|mBMS
Γ |

· skΓ(Γ(C)) · ωΓ(E).

Note that the each side of the above is independent of the choices of confor-
mal densities of Γ0 and Γ respectively.

Fixing a Γ-invariant conformal density {νΓ,x} of dimension δΓ, set

νΓ0,x := g0
∗νΓ,g0(x)
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where g∗0νΓ,g0(x)(R) = νΓ,g0(x)(g0(R)). It is easy to check that νΓ0,x is sup-
ported on Λ(Γ0) = g0Λ(Γ) and satisfies

dνΓ0,x

dνΓ0,y
(z) = e−δΓβz(x,y); γ∗νΓ0,x = νΓ0,γ(x)

for all x, y ∈ H3, γ ∈ Γ0 and z ∈ Ĉ.
Hence {νΓ0,x : x ∈ H3} is a Γ0-invariant conformal density of dimension

δΓ = δΓ0 and satisfies that for f ∈ Cc(C)∫
g0(z)∈E

f(z)dνΓ0,x(z) =
∫
z∈E

f(g−1
0 (z))dνΓ,g0(x)(z).

We consider the Bowen-Margulis-Sullivan measures mBMS
Γ and mBMS

Γ0
on

Γ\T1(H3) and Γ0\T1(H3) associated to {νΓ,x} and {νΓ0,x}, respectively.

Lemma 6.12. For a bounded Borel function ψ on Γ\T1 (H3), consider a
function ψg0 on Γ0\T1(H3) given by ψg0(u) := ψ(g0(u)). Then

mBMS
Γ0

(ψg0) = mBMS
Γ (ψ).

In particular, |mBMS
Γ0
| = |mBMS

Γ |.

Proof. Note that if v = g(u), then

βu±(x, π(u)) = βv±(g(x), π(v)).

Since νΓ0,x = g∗0νΓ,g0(x), we have

mBMS
Γ0

(ψg0)

=
∫
u∈Γ0\T1(Hn)

ψ(g0(u))eδΓβu+ (x,π(u)) eδΓβu− (x,π(u)) dνΓ0,x(u+)dνΓ0,x(u−)dt

=
∫
v∈Γ\T1(Hn)

ψ(v)eδΓβv+ (g0(x),π(v)) eδΓβv− (g0(x),π(v)) dνΓ,g0(x)(v
+)dνΓ,g0(x)(v

−)dt

= mBMS
Γ (ψ).

�

Similarly, we can verify:

Lemma 6.13. For any x ∈ H3,∫
s∈StabΓ0

(C†0)\C†0
eδΓβs+ (x,s)dνΓ0,x(s+) =

∫
s∈StabΓ(C†)\C†

eδΓβs+ (g0(x),s)dνΓ,g0(x)(s
+);

that is, skΓ(Γ(C)) = skΓ0(Γ0(C0)).

Lemma 6.14. For any bounded Borel subset E ⊂ C,

ωΓ0(g−1
0 (E)) = rδΓωΓ(E).
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Proof. Since g−1
0 (z) = r−1(z−p), r is the linear distortion of the map g−1

0 in

the Euclidean metric, that is, r = limw→w0

|g−1
0 (w)−g−1

0 (w0)|
|w−w0| for any w0 ∈ C.

Hence

dνΓ,g0(j)(w) = rδΓ
(|w|2 + 1)δΓ

(|g−1
0 (w)|2 + 1)δΓ

dνΓ,j(w).

Since νΓ0,x = g∗0νΓ,g0(x), we deduce

ωΓ0(g−1
0 (E)) =

∫
z∈g−1

0 (E)
(|z|2 + 1)δΓdνΓ0,j(z)

=
∫
u∈E

(|g−1
0 (u)|2 + 1)δΓdνΓ,g0(j)(u)

= rδΓ
∫
u∈E

(|u|2 + 1)δΓdνΓ,j(u)

= rδΓωΓ(E).

�

This concludes a proof of (6.11). Therefore, since skΓ0(C0) < ∞ and
|mBMS

Γ0
| <∞, the previous case of C = C0 yields that

lim
T→∞

1
T δΓ

NT (Γ(C), E) = lim
T→∞

1
T δΓ

Nr−1T (Γ0(C0), g−1
0 (E))

=
1

δΓ0 · |mBMS
Γ0
|
· skΓ0(C0) · r−δΓ · ωΓ0(g−1

0 (E))

=
1

δΓ · |mBMS
Γ |

· skΓ(C) · ωΓ(E).

This completes the proof of Theorem 6.1. �
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