GEODESIC PLANES IN GEOMETRICALLY FINITE ACYCLINDRICAL 3-MANIFOLDS

YVES BENOIST AND HEE OH

Abstract. Let M be a geometrically finite acylindrical hyperbolic 3-manifold and let M^* denote the interior of the convex core of M. We show that any geodesic plane in M^* is either closed or dense, and that there are only countably many closed geodesic planes in M^*. These results were obtained in [22] and [23] when M is convex cocompact.

As a corollary, we obtain that when M covers an arithmetic hyperbolic 3-manifold M_0, the topological behavior of a geodesic plane in M^* is governed by that of the corresponding plane in M_0. We construct a counterexample of this phenomenon when M_0 is non-arithmetic.

Contents

1. Introduction 1
2. Preliminaries 8
3. Limit circle with non-elementary stabilizer 10
4. H-orbit closures containing a periodic U-orbit 13
5. Return times of U-orbits 15
6. Homogeneous dynamics 18
7. H-orbits are locally closed or dense 20
8. Locally closed H-orbits have non-elementary stabilizer 22
9. A uniformly perfect subset of a circle 25
10. H-orbits contained in RF M 25
11. Planes in geometrically finite acylindrical manifolds 27
12. Arithmetic and Non-arithmetic manifolds 33

References 38

1. Introduction

1.1. Geometrically finite acylindrical manifolds. Let $M = \Gamma \backslash \mathbb{H}^3$ be a complete, oriented hyperbolic 3-manifold presented as a quotient of hyperbolic space by a discrete subgroup

$$\Gamma \subset G = \text{Isom}^+(\mathbb{H}^3).$$

Oh was supported in part by NSF Grant.
We denote by $\Lambda = \Lambda(\Gamma)$ the limit set of Γ in the sphere at infinity S^2 and by Ω the domain of discontinuity; $\Omega = S^2 - \Lambda$. The convex core of M is the smallest closed convex subset containing all periodic geodesics in M, or equivalently

$$\text{core}(M) := \Gamma \backslash \text{hull}(\Lambda) \subset M$$

is the quotient of the convex hull of the limit set Λ by Γ. We denote by M^* the interior of the convex core of M. Note that M^* is non-empty if and only if Γ is Zariski dense in G.

A geodesic plane P in M is the image $f(H^2) \subset M$ of a totally geodesic immersion $f : H^2 \to M$ of the hyperbolic plane into M. By a geodesic plane P^* in M^*, we mean the non-trivial intersection

$$P^* = P \cap M^* \neq \emptyset$$

of a geodesic plane in M with the interior of the convex core. Note that a plane P^* in M^* is always connected and that P^* is closed in M^* if and only if P^* is properly immersed in M^* [23, §2].

We say M is geometrically finite if the unit neighborhood of core(M) has finite volume. When core(M) is compact, M is called convex cocompact.

The closures of geodesic planes in M^* have been classified for convex cocompact acylindrical manifolds by McMullen, Mohammadi and the second named author in [22] and [23]. The main aim of this paper is to extend those classification results to geometrically finite acylindrical manifolds. In concrete terms, the new feature of this paper compared to [22] and [23] is that we allow the existence of cusps in M^*.

For a geometrically finite manifold M, the condition that M is acylindrical is a topological one, it means that its compact core N (called the Scott core) is acylindrical, i.e., N has incompressible boundary, and every essential cylinder in N is boundary parallel [28].

In the case when the boundary of the convex core of M is totally geodesic, we call M rigid acylindrical. The class of rigid acylindrical hyperbolic 3-manifolds M includes those for which M^* is obtained by “cutting” a finite volume complete hyperbolic 3-manifold M_0 along a properly embedded compact geodesic surface $S \subset M_0$ (see §12.3 for explicit examples). We remark that a geometrically finite acylindrical manifold is quasiconformal conjugate to a unique geometrically finite rigid acylindrical manifold ([27], [21]).

1.2. Closures of geodesic planes. Our main theorem is the following:

Theorem 1.1. Let M be a geometrically finite acylindrical hyperbolic 3-manifold. Then any geodesic plane P^* is either closed or dense in M^*. Moreover, there are only countably many closed geodesic planes P^* in M^*.

In the rigid case, each geodesic boundary component has a fundamental group which is a cocompact lattice in $\text{PSL}_2(\mathbb{R})$, up to conjugation. This rigid structure forces any closed plane P^* in M^* to be a part of a closed plane P in M:
Theorem 1.2. If M is rigid in addition, then any geodesic plane P in M intersecting M^* non-trivially is either closed or dense in M.

We do not know whether Theorem 1.2 can be extended to a non-rigid M or not. This is unknown even when M is convex compact, as remarked in [23].

When M is a cover of an arithmetic hyperbolic 3-manifold M_0, the topological behavior of a geodesic plane in M^* is governed by that of the corresponding plane in M_0:

Theorem 1.3. Let $M = \Gamma \backslash \mathbb{H}^3$ be a geometrically finite acylindrical manifold which covers an arithmetic manifold $M_0 = \Gamma_0 \backslash \mathbb{H}^3$ of finite volume. Let $p : M \to M_0$ be the covering map. Let $P \subset M$ be a geodesic plane with $P^* = P \cap M^* \neq \emptyset$. Then

1. P^* is closed in M^* if and only if $p(P)$ is closed in M_0;
2. P^* is dense in M^* if and only if $p(P)$ is dense in M_0.

In the case when M is rigid, we can replace M^* by M in the above two statements.

Theorem 1.3 is not true in general without the arithmeticity assumption on M_0:

Theorem 1.4. There exists a non-arithmetic closed hyperbolic 3-manifold M_0, covered by a geometrically finite rigid acylindrical manifold M such that there exists a properly immersed geodesic plane P in M with $P \cap M^* \neq \emptyset$ whose image $p(P)$ is dense in M_0, where $p : M \to M_0$ is the covering map.

We also prove the following theorem for a general geometrically finite manifold of infinite volume:

Theorem 1.5. Let M be a geometrically finite hyperbolic 3-manifold of infinite volume. Then there are only finitely many geodesic planes in M that are contained in $\text{core}(M)$ and all of them are closed with finite area.

Theorem 1.5 is generally false for a finite volume manifold. For instance, an arithmetic hyperbolic 3-manifold with one closed geodesic plane contains infinitely many closed geodesic planes, which are obtained via Hecke operators.

1.3. Orbit closures in the space of circles. We now formulate a stronger version of Theorems 1.1 and 1.2. Let \mathcal{C} denote the space of all oriented circles in S^2. We identify $G := \text{Isom}^+(\mathbb{H}^3)$ with $\text{PSL}_2(\mathbb{C})$, considered as a simple real Lie group, and $H := \text{Isom}^+(\mathbb{H}^2)$ with $\text{PSL}_2(\mathbb{R})$, so that we have a natural isomorphism

$$\mathcal{C} \simeq G/H.$$
The following subsets of C play important roles in our discussion and we will keep the notation throughout the paper:

$$C_{\Lambda} = \{ C \in C : C \cap \Lambda \neq \emptyset \};$$

$$C^* = \{ C \in C : C \text{ separates } \Lambda \}. $$

The condition C separates Λ means that both connected components of $S^2 - C$ meet Λ. Note that C_{Λ} is closed in C and that C^* is open in C. If the limit set Λ is connected, then C^* is a dense subset of C_{Λ} [22, Corollary 4.5] but C^* is not contained in C_{Λ} in general.

The classification of closures of geodesic planes follows from the classification of Γ-orbit closures of circles (cf. [22]). In fact, the following theorem strengthens both Theorems 1.1 and 1.2 in two aspects: it describes possible orbit closures of single Γ-orbits as well as of any Γ-invariant subsets of C^*.

Theorem 1.6. Let $M = \Gamma \backslash \mathbb{H}^3$ be a geometrically finite acylindrical manifold. Then

1. Any Γ-invariant subset of C^* is either dense or a union of finitely many closed Γ-orbits in C^*;
2. There are at most countably many closed Γ-orbits in C^*; and
3. For M rigid, any Γ-invariant subset of C^* is either dense or a union of finitely many closed Γ-orbits in C_{Λ}.

We also present a reformulation of Theorem 1.5 in terms of circles:

Theorem 1.7. Let $M = \Gamma \backslash \mathbb{H}^3$ be a geometrically finite manifold of infinite volume. Then there are only finitely many Γ-orbits of circles contained in Λ. Moreover each of these orbits is closed in C_{Λ}.

1.4. Strategy and organization.

Our approach follows the same lines as the approaches of [22] and [23], and we tried to keep the same notation from those papers as much as possible.

Below is the list of subgroups of $G = \text{PSL}_2(\mathbb{C})$ which will be used throughout the paper:

$$H = \text{PSL}_2(\mathbb{R})$$

$$A = \left\{ a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} : t \in \mathbb{R} \right\}$$

$$K = \text{PSU}(2)$$

$$N = \left\{ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{C} \right\}$$

$$U = \left\{ u_t : t \in \mathbb{R} \right\} \text{ and}$$

$$V = \left\{ u_t : t \in i\mathbb{R} \right\}. $$

We can identify $M = \Gamma \backslash \mathbb{H}^3$ with the double coset space $\Gamma \backslash G/K$ and its oriented frame bundle FM with the homogeneous space $\Gamma \backslash G$. By the duality between Γ-orbits in C and H-orbits in FM, Theorem 1.6 follows from the
classification of H-invariant closed subsets in F^* where F^* is the H-invariant subset of FM such that $\Gamma \backslash C^* = F^*/H$ (cf. [22], [23]). Working in the frame bundle FM enables us to use the geodesic flow, the horocyclic flow as well as the “imaginary horocyclic flow” given by the right-translation actions of $A, U,$ and V in the space $\Gamma \backslash G$ respectively.

The results in §§2-6 hold for a general Zariski dense discrete subgroup Γ.

In §2, we review some basic definitions and notations to be used throughout the paper. The notation RFM denotes the renormalized frame bundle of M, which is the closure of the union of all periodic A-orbits in FM (see also (2.2)). We consider the H-invariant subset F_Λ of FM which corresponds to C_Λ:

$$\Gamma \backslash C_\Lambda = F_\Lambda/H.$$

We set $F_\Lambda^* = F_\Lambda \cap F^*$. When Λ is connected, $F_\Lambda^* = F^*$, but not in general.

In §3, we study the closure of an orbit xH in F_Λ which accumulates on an orbit yH with non-elementary stabilizer. We prove that xH is dense in F_Λ if $y \in F^*$ (Proposition 3.5), and also present a condition for the density of xH in F_Λ when $y \notin F^*$ (Proposition 3.8).

In §4, we prove that if the closure $x\overline{H}$ contains a periodic U-orbit in F_Λ^*, then xH is either locally closed or dense in F_Λ (Proposition 4.2).

In §5, we recall a closed A-invariant subset $RF_k M \subset RF M$, $k > 1$, with k-thick recurrence properties for the horocycle flow, which was introduced in [23]. This set may be empty in general. We show that the thick recurrence property remains preserved even after we remove a neighborhood of finitely many cusps from $RF_k M$. That is, setting

$$W_{k,R} := RF_k M - \mathcal{H}_R$$

where \mathcal{H}_R is a neighborhood of finitely many cusps in FM of depth $R \gg 1$, we show that for any $x \in W_{k,R}$, the set $T_x := \{ t \in \mathbb{R} : xu_t \in W_{k,R} \}$ is $4k$-thick at ∞, in the sense that for all sufficiently large $r > 1$ (depending on x),

$$T_x \cap ([-4kr, -4r] \cup [r, 4kr]) \neq \emptyset$$

(Proposition 5.4).

In §6, we present a technical proposition (Proposition 6.2) which ensures the density of xH in F_Λ when xH intersects a compact subset $W \subset F_\Lambda^*$ with the property that the return times $\{ t : xu_t \in W \}$ is k-thick at ∞ for every $x \in W$. The proof of this proposition uses the notion of U-minimal sets with respect to W, together with the polynomial divergence property of unipotent flows of two nearby points, which goes back to Margulis’ proof of Oppenheim conjecture [19]. In the context when the return times of the horocyclic flow is only k-thick (at ∞), this argument was used in [22] and [23] in order to construct a piece of V-orbit inside the closure of xH, which can then be pushed to the density of xH in F_Λ using Corollary 4.1.

In §§7-9, we make an additional assumption that Γ is geometrically finite, which implies that $RF M$ is a union of a compact set and finitely many
cusps. Therefore the set $W_{k,R}$ in (1.1) is compact when \mathcal{H}_R is taken to be a neighborhood of all cusps in FM.

In §7, we apply the result in §6 to an orbit $xH \subset F^*_\Lambda$ intersecting $W_{k,R}$ when xH does not contain a periodic U-orbit. Combined with the results in §4, we conclude that any H-orbit intersecting $RF_kM \cap F^*$ is either locally closed or dense in F^*_Λ (Theorem 7.1).

In §8, we prove that any locally closed orbit xH intersecting $RF_kM \cap F^*$ has a non-elementary stabilizer and intersects $RF_kM \cap F^*$ as a closed subset (Theorem 8.1).

In §9, we give an interpretation of the results obtained so far in terms of Γ-orbits of circles for a general geometrically finite Zariski dense subgroup. (Theorem 9.2).

In §10, we prove that any orbit xH included in $RF M$ is closed of finite volume, and that only finitely many such orbits exist, proving Theorem 1.5 (Theorem 10.1).

In §11, we specialize to the case where $M = \Gamma \backslash \mathbb{H}^3$ is a geometrically finite acylindrical manifold. We show that in this case, every H-orbit in F^* intersects a compact subset $W_{k,R}$ for k sufficiently large (Corollary 11.7). We prove Theorem 1.6 in terms of H-orbits on FM (Theorem 11.8).

In §12, we prove Theorem 1.3 and give a counterexample when M_0 is not arithmetic (Proposition 12.1), proving Theorem 1.4. We also give various examples of geometrically finite rigid acylindrical 3-manifolds.

1.5. Comparison of the proof of Theorem 1.1 with the convex co-compact case. For readers who are familiar with the work [23], we finish the introduction with a brief account on some of essential differences in the proofs between the present work and [23] for the case when M is a geometrically finite acylindrical manifold.

The main feature of M being geometrically finite acylindrical is that $RF M H = RF_k M H$ for all sufficiently large k (§11). The proof of this property requires new arguments. When M is a convex cocompact acylindrical manifold, Λ is a Sierpinski curve of positive modulus, that is, there exists $\varepsilon > 0$ such that the modulus of the annulus between any two components B_1, B_2 of $\Omega := S^2 - \Lambda$ satisfy

$$\text{mod}(S^2 - (B_1 \cup B_2)) \geq \varepsilon$$

[23, Theorem 3.1].

When M has cusps, the closures of some components of Ω meet each other, and hence Λ is not even a Sierpinski curve. Nevertheless, under the assumption that M is a geometrically finite acylindrical manifold, Λ is still a quotient of a Sierpinski curve of positive modulus, in the sense that we can present Ω as the disjoint union $\bigcup T_\ell$ where T_ℓ’s are maximal trees of components of Ω so that

$$\inf_{\ell \neq k} \text{mod}(S^2 - (T_\ell \cup T_k)) > 0$$
(Theorem 11.5). This analysis enables us to show that every separating circle \(C \) intersects \(\Lambda \) as a Cantor set of positive modulus (Theorem 11.6), which immediately implies \(\text{RF} M H = \text{RF}_k M H \) for all sufficiently large \(k \).

We now discuss new features of dynamical aspects of this paper. Consider an orbit \(xH \) in \(F^* \) and set \(X := xH \). When \(M \) is convex cocompact, the main strategy of [23] is to analyze \(U \)-minimal subsets of \(X \) with respect to \(\text{RF}_k M \). That is, unless \(xH \) is locally closed, it was shown, using the thickness principle and the polynomial divergence argument, that any such \(U \)-minimal subset is invariant under a connected semigroup \(L \) transversal to \(U \). Then pushing further, one could find an \(N \)-orbit inside \(X \), which implies \(X = F_\Lambda \). In the present setting, if \(X \cap F^* \) happens to contain a periodic \(U \)-orbit, which is a generic case a posteriori, then any \(U \)-minimal subset of \(X \) relative to \(\text{RF}_k M \) is a periodic \(U \)-orbit and hence is not invariant by any other subgroup but \(U \). Hence the aforementioned strategy does not work. However it turns out that this case is simpler to handle, and that’s what §4 is about. See Proposition 4.2.

Another important ingredient of [23] is that a closed \(H \)-orbit in \(F^* \) has a non-elementary stabilizer; this was used to conclude \(X = F_\Lambda \) whenever \(X \) contains a closed \(H \)-orbit in \(F^* \) properly, as well as to establish the countability of such orbits, and its proof relies on the absence of parabolic elements. In the present setting, we show that any locally closed \(H \)-orbit in \(F^* \) has a non-elementary stabilizer, regardless of the existence of parabolic elements of \(\Gamma \). This is Theorem 8.1.

When \(M \) is not convex cocompact, \(\text{RF} M \) is not compact and neither is \(\text{RF}_k M \), which presents an issue in the polynomial divergence argument. In Proposition 5.4, we show that the remaining compact set after removing horoballs from \(\text{RF}_k M \) has the desired thickness property for \(U \)-orbits and hence can be used as a replacement of \(\text{RF}_k M \). We remark that the \emph{global} thickness of the return times of \(U \)-orbits to \(\text{RF}_k M \) was crucial in establishing this step. The proof of Theorem 1.1 combines these new ingredients with the techniques developed in [23].

We would also like to point out that we made efforts in trying to write this paper in a greater general setting. For instance, we establish (Theorem 9.2):

Theorem 1.8. Let \(\Gamma \) be a geometrically finite Zariski dense subgroup of \(G \). Then for any \(C \in \mathcal{C}^* \) such that \(C \cap \Lambda \) contains a uniformly perfect Cantor set, the orbit \(\Gamma(C) \) is either discrete or dense in \(C_\Lambda \).

With an exception of §11, we have taken a more homogeneous dynamics viewpoint overall in this paper, hoping that this perspective will also be useful in some context.

Acknowledgement: The present paper heavily depends on the previous works [22] and [23] by McMullen, Mohammadi, and the second named author. We are grateful to Curt McMullen for clarifying the notion of the acylindricality of a geometrically finite manifold. We would like to thank
Curt McMullen and Yair Minsky for their help in writing §11, especially the proof of Theorem 11.5.

2. Preliminaries

In this section, we set up a few notations which will be used throughout the paper and review some definitions.

Recall that G denotes the simple, connected real Lie group $\text{PSL}_2(\mathbb{C}) = \text{Isom}^+(\mathbb{H}^3)$. The action of G on $\mathbb{H}^3 = G/K$ extends continuously to a conformal action of G on the Riemann sphere $S^2 = \hat{\mathbb{C}} \cup \{\infty\}$ and the union $\mathbb{H}^3 \cup S^2$ is compact.

The group G can be identified with the oriented frame bundle $F\mathbb{H}^3$. Denote by π the natural projection $G = F\mathbb{H}^3 \to \mathbb{H}^3$. If $g \in G$ corresponds to a frame $(e_1, e_2, e_3) \in F\mathbb{H}^3$, we define $g^+, g^- \in S^2$ to be the forward and backward end points of the directed geodesic tangent to e_1 respectively. The action of A on $G = F\mathbb{H}^3$ defines the frame flow, and we have

$$g^\pm = \lim_{t \to \pm \infty} \pi(ga_t)$$

where the limit is taken in the compactification $\mathbb{H}^3 \cup S^2$.

For $g \in G$, the image $\pi(gH)$ is a geodesic plane in \mathbb{H}^3 and

$$(gH)^+ := \{(gh)^+ : h \in H\} \subset S^2$$

is an oriented circle which bounds the plane $\pi(gH)$.

The correspondences

$$gH \to (gH)^+ \quad \text{and} \quad gH \to \pi(gH)$$

give rise to bijections of G/H with the space \mathcal{C} of all oriented circles in S^2, as well as with the space of all oriented geodesic planes of \mathbb{H}^3.

A horosphere (resp. horoball) in \mathbb{H}^3 is a Euclidean sphere (resp. open Euclidean ball) tangent to S^2 and a horocycle in \mathbb{H}^3 is a Euclidean circle tangent at S^2. A horosphere is the image of a U-orbit under π while a horocycle is the image of a U-orbit under π.

2.1. Renormalized frame bundle. Let Γ be a non-elementary discrete subgroup of G and $M = \Gamma\backslash\mathbb{H}^3$. We denote by $\Lambda = \Lambda(\Gamma) \subset S^2$ the limit set of Γ. We can identify the oriented frame bundle FM with $\Gamma\backslash G$. With abuse of notation, we also denote by π for the canonical projection $FM \to M$. Note that, for $x = [g] \in FM$, the condition $g^\pm \in \Lambda$ does not depend on the choice of a representative. The renormalized frame bundle $RF M \subset FM$ is defined as

$$RF M = \{[g] \in \Gamma\backslash G : g^\pm \in \Lambda\},$$

in other words, it is the closed subset of FM consisting of all frames (e_1, e_2, e_3) such that e_1 is tangent to a complete geodesic contained in the core of M.
We define the following H-invariant subsets of FM:

$$F_\Lambda = \{ [g] \in \Gamma \backslash G : (gH)^+ \cap \Lambda \neq \emptyset \} = \text{RF}_M NH,$$

$$F^* = \{ [g] \in \Gamma \backslash G : (gH)^+ \text{separates } \Lambda \},$$

$$F^*_\Lambda = F_\Lambda \cap F^*.$$

Note that $F^* = \{ x \in FM : \pi(xH) \cap M^* \neq \emptyset \}$ is an open subset of FM and that $F^*_\Lambda \subset F_\Lambda$ when Λ is connected. In particular, when Λ is connected, F_Λ has non-empty interior.

We recall that a circle $C \in C$ is separating or separates Λ if both connected components of $S^2 - C$ intersect Λ. By analogy, a frame $x \in F^*$ will be called a separating frame.

In the identification $C = G/H$, the sets F_Λ, F^* and F^*_Λ satisfy

$$\Gamma \backslash C_\Lambda = F_\Lambda / H, \quad \Gamma \backslash C^* = F^*/H \quad \text{and} \quad \Gamma \backslash C^*_\Lambda = F^*_\Lambda / H,$$

where

$$C^*_\Lambda := C_\Lambda \cap C^*.$$

Since Γ acts properly on the domain of discontinuity Ω, ΓC is closed in C for any circle C with $C \cap \Lambda = \emptyset$. For this reason, we only consider Γ-orbits in C_Λ or, equivalently, H-orbits in F_Λ.

2.2. Geometrically finite groups. We give a characterization of geometrically finite groups in terms of their limit sets (cf. [5], [16], [20]). A limit point $\xi \in \Lambda$ is called radial if any geodesic ray toward ξ has an accumulation point in M and parabolic if ξ is fixed by a parabolic element of Γ. In the group $G = \text{PSL}_2(\mathbb{C})$, parabolic elements are precisely unipotent elements of G; any parabolic element in G is conjugate to the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. When ξ is parabolic, its stabilizer $\text{Stab}_\Gamma \xi$ in Γ is virtually abelian, and its rank is called the rank of ξ. We denote by Λ_r the set of radial limit points and by Λ_p the set of parabolic fixed points. The fixed points of hyperbolic elements of Γ are contained in Λ_r and form a dense subset of Λ. More strongly, the set of pairs of attracting and repelling fixed points of hyperbolic elements is a dense subset of $\Lambda \times \Lambda$ [8].

A Zariski dense discrete subgroup Γ of G is called geometrically finite if it satisfies one of the following equivalent conditions:

1. the core of M has finite volume;
2. $\Lambda = \Lambda_r \cup \Lambda_p$.

If $\Lambda = \Lambda_r$, or equivalently, if the core of M is compact, then Γ is called convex cocompact.

We say that a horoball h is based at $\xi \in S^2$ if it is tangent to S^2 at ξ. If $\xi \in \Lambda_p$, then for any fixed horoball $h \subset \mathbb{H}^3$ based at $\xi \in S^2$, its Γ-orbit Γh is closed in the space of horoballs in \mathbb{H}^3. Given a horoball h and $R > 0$, we will write h_R for the horoball contained in h whose distance to the boundary of h is R.
Suppose that Γ is geometrically finite. Then there exist finitely many horoballs h^1, \ldots, h^m in \mathbb{H}^3 corresponding to the cusps in $\Gamma \setminus \mathbb{H}^3$ and such that the horoballs γh^i, for $\gamma \in \Gamma$ and $1 \leq i \leq m$, form a disjoint collection of open horoballs, i.e. γh^i intersects h^j if and only if $i = j$ and $\gamma h^i = h^j$.

We fix

\begin{equation}
\mathcal{H} := \{ [g] \in FM : \pi(g) \in \bigcup_{\gamma,i} \gamma h^i \}.
\end{equation}

For $R \geq 0$, we set

\begin{equation}
\mathcal{H}_R = \{ [g] \in FM : \pi(g) \in \bigcup_{\gamma,i} \gamma h^i \}.
\end{equation}

Then each \mathcal{H}_R provides a union of disjoint neighborhood of cusps in $RF M$ and hence the subset

$$RF M - \mathcal{H}_R$$

is compact for any $R \geq 0$.

3. **Limit circle with non-elementary stabilizer**

As noted before, the study of geodesic planes in $M = \Gamma \setminus \mathbb{H}^3$ can be approached in two ways: either via the study of H-orbits in FM or via the study of Γ-orbits in C. In this section we analyze a Γ-orbit ΓC in C^* which accumulates on a circle D with a non-elementary stabilizer in Γ. We show that ΓC is dense in C_Λ in the following two cases:

1. when D is separating Λ (Proposition 3.5);
2. when there exists a sequence of distinct circles $C_n \in \Gamma C$ such that $C_n \cap \Lambda$ does not collapse to a countable set (Proposition 3.8).

3.1. **Sweeping the limit set.** The following proposition is a useful tool, which says that, in order to prove the density of ΓC in C_Λ, we only have to find a “sweeping family” of circles in the closure of ΓC.

Proposition 3.1. [22, Corollary 4.2] Let $\Gamma \subset G$ be a Zariski dense discrete subgroup. If $\mathcal{D} \subset \mathcal{C}$ is a collection of circles such that $\bigcup_{C \in \mathcal{D}} C$ contains a non-empty open subset of Λ, then there exists $C \in \mathcal{D}$ such that $\overline{\Gamma C} = C_\Lambda$.

In the subsection 3.2, we will construct such a sweeping family \mathcal{D} using a result of Dalbo (Proposition 3.2).

In the subsequent sections, we will use other sweeping families \mathcal{D} (Corollary 4.1) that are constructed via a more delicate polynomial divergence argument.

3.2. **Influence of Fuchsian groups.** Let $B \subset S^2$ be a round open disk with a hyperbolic metric ρ_B. We set

$$G^B = \text{Isom}^+(B, \rho_B) \simeq \text{PSL}_2(\mathbb{R}).$$

A discrete subgroup of G^B is a Fuchsian group, and its limit set lies in the boundary ∂B. For a non-empty subset $E \subset \partial B$, we denote by $\text{hull}(E,B) \subset B$ the convex hull of E in B, and by $\mathcal{H}(B,E) \subset \overline{B}$ the closure of the set.
of horocycles in B resting on E. The only circle in $\mathcal{H}(B, E)$ which is not a horocycle is ∂B itself.

We first recall the following result of Dalbo [7]:

Proposition 3.2. Let $\Gamma \subset G^B$ be a non-elementary discrete subgroup with limit set Λ. Let $C \in \mathcal{H}(B, \Lambda)$. If $C \cap \Lambda$ is a radial limit point, then ΓC is dense in $\mathcal{H}(B, \Lambda)$.

The following proposition is a generalization of [22, Corollary 3.2] from Γ convex cocompact to a general finitely generated group. Note that a finitely general Fuchsian subgroup is geometrically finite.

Lemma 3.3. Let $\Gamma \subset G^B$ be a non-elementary finitely generated discrete subgroup. Suppose $C_n \rightarrow \partial B$ in C and $C_n \cap \text{hull}(\Lambda, B) \neq \emptyset$ for all n. Then the closure of $\bigcup \Gamma C_n$ contains $\mathcal{H}(B, \Lambda)$.

Proof. In view of Proposition 3.2, it suffices to show that the closure of $\bigcup \Gamma C_n$ contains a circle $C \subset \overline{B}$ resting at a radial limit point of Γ. Passing to a subsequence, we will consider two separate cases.

Case 1: $C_n \cap \partial B = \{a_n, b_n\}$ with $a_n \neq b_n$. Note that the angle between C_n and ∂B converges to 0. Since Γ is a finitely generated Fuchsian group, it is geometrically finite. It follows that there exists a compact set $W \subset \Gamma \setminus B$ such that every geodesic on the surface $\Gamma \setminus B$ that intersect its convex core also intersects W. Applying this to each geodesic joining a_n and b_n, we may assume that the sequences a_n and b_n converge to two distinct points $a_0 \neq b_0$, after replacing C_n by $\delta_n C_n$ for a suitable $\delta_n \in \Gamma$ if necessary. The open arcs $(a_n, b_n) := C_n \cap B$ converge to an open arc (a_0, b_0) of ∂B. We consider two separate subcases.

Case 1.A: $(a_0, b_0) \cap \Lambda \neq \emptyset$. Choose a hyperbolic element $\delta \in \Gamma$ whose repelling and attracting fixed points ξ_r and ξ_a lie inside the open arc (a_0, b_0). Denote by L the axis of translation of δ and choose a compact arc $L_0 \subset L$ which is a fundamental set for the action of δ on L. For n large, $C_n \cap L \neq \emptyset$. Pick $c_n \in C_n \cap L$. Then there exist $k_n \in \mathbb{Z}$ such that $\delta^{k_n} c_n \in L_0$. Note that $k_n \rightarrow \pm \infty$ since c_n converges to a point in $\partial(B)$. Hence $\delta^{k_n} C_n$ converges to a circle contained in \overline{B} resting at ξ_r or at ξ_a.

Case 1.B: $(a_0, b_0) \cap \Lambda = \emptyset$. In this case, one of these two points, say a_0, is in the limit set and (a_0, b_0) is included in a maximal arc (a_0, b'_0) of $\partial B \setminus \Lambda$. Let L be the geodesic of B that connects a_0 and b'_0. Its projection to $\Gamma \setminus B$ is included in the boundary of the surface $S := \text{core}(\Gamma \setminus B)$. Since Γ is geometrically finite, this projection is compact, and hence L is the axis of translation of a hyperbolic element $\delta \in \Gamma$. For n large, $C_n \cap L$ is non-empty, and we proceed as in Case 1.A.

Case 2: $C_n \cap \partial B = \emptyset$ or $\{a_n\}$. Choose any hyperbolic element $\delta \in \Gamma$ and let L be the axis of translation of δ. Then $C_n \cap L \neq \emptyset$ for all n, by passing to a subsequence. Hence we conclude as in Case 1.A. □

Corollary 3.4. Let $\Gamma \subset G$ be a Zariski dense discrete subgroup. Let $B \subset S^2$ be a round open disk that meets Λ and such that Γ^B is non-elementary and
finitely generated. If \(C_n \to \partial B \) in \(C \) and
\[
(3.1) \quad C_n \cap \text{hull}(B, \Lambda(\Gamma^B)) \neq \emptyset,
\]
then the closure of \(\bigcup \Gamma C_n \) contains \(C_\Lambda \).

Note that Condition 3.1 is always satisfied when \(\Gamma^B \) is a lattice in \(G^B \).

Proof. This follows from Proposition 3.1 and Lemma 3.3. \(\square \)

The following is a useful consequence of the previous discussion.

Proposition 3.5. Let \(\Gamma \subset G \) be a Zariski dense discrete subgroup. Let \(C \in C^*_\Lambda \). Suppose that there exists a sequence of distinct circles \(C_n \in \Gamma C \) converging to a circle \(D \in C^*_\Lambda \) whose stabilizer \(\Gamma^D \) is non-elementary. Then \(\Gamma C \) is dense in \(C_\Lambda \).

Proof. Observe that every circle \(C_n \) sufficiently near \(D \) intersects the set \(\text{hull}(B, \Lambda(\Gamma^B)) \) for at least one of the two disks \(B \) bounded by \(D \). Moreover \(B \cap \Lambda \neq \emptyset \) as \(D \) separates \(\Lambda \) and \(\Gamma^B = \Gamma^D \) as \(D \) is an oriented circle. Hence the claim follows from Corollary 3.4. \(\square \)

Corollary 3.6. Let \(\Gamma \subset G \) be a Zariski dense discrete subgroup. If \(C \in C^*_\Lambda \) has a non-elementary stabilizer \(\Gamma^C \), then \(\Gamma C \) is either discrete or dense in \(C_\Lambda \).

Proof. If the orbit \(\Gamma C \) is not locally closed, there exists a sequence of distinct circles \(C_n \in \Gamma C \) converging to \(C \), and hence the claim follows from Proposition 3.5. \(\square \)

We recall that a subset is *locally closed* when it is open in its closure and that a subset is *discrete* when it is countable and locally closed. Hence the conclusion of Corollary 3.6 can also be stated as the dichotomy that \(\Gamma C \) is either locally closed or dense in \(C_\Lambda \).

3.3. Planes near the boundary of the convex core.

We now explain an analog of Proposition 3.5 when the limit circle \(D \) is not separating \(\Lambda \). The following lemma says that its stabilizer \(\Gamma^D \) is non-elementary as soon as \(D \cap \Lambda \) is uncountable.

Lemma 3.7. Let \(M = \Gamma \setminus \mathbb{H}^3 \) be a geometrically finite manifold with limit set \(\Lambda \) and \(D \) be the boundary of a supporting hyperplane for \(\text{hull}(\Lambda) \). Then

1. \(\Gamma^D \) is a finitely generated Fuchsian group;
2. There is a finite set \(\Lambda_0 \) such that \(D \cap \Lambda = \Lambda(\Gamma^D) \cup \Gamma^D \Lambda_0 \).

Proof. This lemma is stated for \(\Gamma \) convex cocompact in [23, Theorem 5.1]. But its proof works for \(\Gamma \) geometrically finite as well with no change. \(\square \)

Proposition 3.8. Let \(M = \Gamma \setminus \mathbb{H}^3 \) be a geometrically finite manifold. Consider a sequence of circles \(C_n \to D \) with \(C_n \in C^*_\Lambda \) and \(D \notin C_\Lambda \). Suppose that \(\liminf_{n \to \infty} (C_n \cap \Lambda) \) is uncountable. Then \(\bigcup \Gamma C_n \) is dense in \(C_\Lambda \).
Proof. This proposition is stated for M convex cocompact with incompressible boundary [23, Theorem 6.1]. With Lemmas 3.3 and 3.7 in place, the proof extends verbatim to the case claimed. □

4. H-orbit closures containing a periodic U-orbit

In the rest of the paper, we will use the point of view of H-orbits in the frame bundle FM in our study of geodesic planes in M. This viewpoint enables us to utilize the dynamics of the actions of the subgroups A, U, and V of G on the space $FM = \Gamma \backslash G$.

In this section we focus on an orbit xH in F_Λ whose closure contains a periodic U-orbit yU contained in F^* and prove that such xH is either locally closed or dense in F_Λ (Proposition 4.2).

4.1. One-parameter family of circles. In proving the density of an orbit xH in F_Λ, our main strategy is to find a point $y \in F^*_\Lambda$ and a one-parameter subsemigroup $V^+ \subset V$ such that yV^+ is included in xH and to apply the following corollary of Proposition 3.1.

Corollary 4.1. Let $\Gamma \subset G$ be a Zariski dense discrete subgroup and V^+ a one-parameter subsemigroup of V. For any $y \in F^*$, the closure yV^+H contains F_Λ.

Proof. We choose a representative $g \in G$ of $y = [y]$ and consider the corresponding circle $C = (gH)^+$. The union of circles $(gvH)^+$ for $v \in V^+$ contains a disk B bounded by C. Since C separates Λ, B contains a non-empty open subset of Λ. Therefore, by Proposition 3.1, the set yV^+H contains F_Λ. □

When the closure of xH contains a periodic U-orbit Y, we will apply Corollary 4.1 to a point $y \in Y$.

4.2. Periodic U-orbits.

Proposition 4.2. Let $\Gamma \subset G$ be a Zariski dense discrete subgroup and $x \in F^*_\Lambda$. Suppose that $xH \cap F^*$ contains a periodic U-orbit yU.

Then either

(1) xH is locally closed and $yH = xH$; or
(2) xH is dense in F_Λ.

The rest of this section is devoted to a proof of Proposition 4.2. We fix x, y and $Y := yU$ as in Proposition 4.2 and set $X = \overline{xH}$.

Setting

$$S_y := \{ g \in G : yg \in X \},$$

we split the proof into the following three cases:

♠1. $S_y \cap O \not\subset VH$ for any neighborhood O of e;
♠2. $S_y \cap O \subset VH$ for some neighborhood O of e and $S_y \cap O \not\subset H$ for any neighborhood O of e;
♠3. $S_y \cap O \subset H$ for some neighborhood O of e.

Case ♠1. In this case, we will need the following algebraic lemma:

Lemma 4.3. Let S be a subset of $G - VH$ such that $e \in \overline{S}$. Then the closure of USH contains a one-parameter semigroup V^+ of V.

Proof. Let $M_2(\mathbb{R})$ denote the set of real matrices of order 2, and consider the Lie algebra $V = \begin{pmatrix} 0 & i \mathbb{R} \\ 0 & 0 \end{pmatrix}$ of V. Without loss of generality, we can assume that $S = SH$. Then the set S contains a sequence $s_n = \exp(M_n) \to e$ with $M_n \in iM_2(\mathbb{R}) - V$. Since M_n tends to 0 as $n \to \infty$, the closure of $\bigcup_n \{ uM_nu^{-1} : u \in U \}$ contains a half-line in V. Our claim follows. \(\square\)

Lemma 4.4. In case ♠1, xH is dense in F_Λ.

Proof. The assumption implies that S_y contains a subset S such that $S \cap VH = \emptyset$ and $e \in \overline{S}$. Therefore, by Lemma 4.3, the closure of US_yH contains a one-parameter semigroup V^+. Hence for any $v \in V^+$, one can write

$$v = \lim_{n \to \infty} u_ng_nh_n$$

for some $u_n \in U$, $g_n \in S_y$ and $h_n \in H$. By passing to a subsequence, we may assume that $yu_n^{-1} \to y_0 \in Y$. So

$$ygh_n = (yu_n^{-1})(u_ng_nh_n) \to y_0v.$$

Hence y_0v belongs to X, and $yv \in y_0UV = y_0vU$ belongs to X too. This proves the inclusion $yV^+ \subset X$. Therefore, by Corollary 4.1, since $y \in F^*$, the orbit xH is dense in F_Λ. \(\square\)

Case ♠2. In this case, we will use the following algebraic fact:

Lemma 4.5. If $w \in VH$ satisfies $wv \in VH$ for some $v \in V - \{e\}$, then $w \in AN$.

Proof. Without loss of generality, we can assume that $w = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$ and write $v = \begin{pmatrix} 1 & is \\ 0 & 1 \end{pmatrix} \in V$ with s real and non-zero. If the product uv belongs to VH, the lower row of the matrix wv must be real and this implies $c = 0$ as required. \(\square\)

Lemma 4.6. Case ♠2 does not happen.

Proof. Suppose it happens.

First step: We claim that xH contains a periodic U-orbit.

Indeed if $y \notin xH$, Condition ♠2 says that there exists a non-trivial $v \in V$ such that $y' := yv$ belongs to xH. Since v commutes with U, the orbit $y'U \subset xH$ is periodic.

Therefore, by renaming y' to y, xH contains a periodic orbit yU.

Second step: We now claim that yAU is locally closed.

If this is not the case, for any open neighborhood O of e in G, we can find $p \in AU$ and $w \in O - AU$ such that $yp = yw$. By Condition ♠2, we
know that \(w \in VH \) and we also know that there exists a sequence \(v_n \to e \) in \(V - \{ e \} \) such that \(yv_n \in X \). Therefore, we get
\[
yw(p^{-1}v_np) = yv_np \in X.
\]
If \(O \) is small enough, condition \(\spadesuit 2 \) implies that for \(n \) large,
\[
w(p^{-1}v_np) \in VH.
\]
Therefore, Lemma 4.5 implies that
\[
w \in AN.
\]
Hence the element \(s := wp^{-1} \) belongs to the stabilizer \(S := \text{Stab}_{AN}(y) \).

Let \(\varphi : AN \to AN/AU = N/U \) be the natural projection. Since the discrete group \(S \) intersects \(U \) cocompactly, it is included in \(N \) and its image \(\varphi(S) \) is discrete. Since \(w \) can be taken arbitrarily close to \(e \), its image \(\varphi(s) = \varphi(w) \) can be made arbitrarily close to \(e \) as well, yielding a contradiction.

Third step: We finally claim that \(xH \) is locally closed.

Since \(yAU \) is locally closed and \(K_H := \text{SO}(2) \) is compact, the set \(yAUK_H \) is also locally closed. Since \(y \in xH \), we have \(xH = yH \) is locally closed. This contradicts Condition \(\spadesuit 2 \). \(\square \)

Case \(\spadesuit 3 \). By the assumption, \(yO \cap X \subset yH \) for some neighborhood \(O \) of \(e \) in \(G \). Hence \(yH \) is open in \(X \), in other words, \(xH \) is closed. Hence if \(y \) didn’t belong to \(xH \), then \(xH \) is closed. Therefore \(yH = xH \) is locally closed. This finishes the proof of Proposition 4.2.

5. Return times of \(U \)-orbits

In Section 4, we have described the possible closures \(xH \) that contain a periodic \(U \)-orbit. In this section we recall, for each \(k > 1 \), a closed \(A \)-invariant subset \(RF_k M \subset RF M \) consisting of points which have a “thick” set of return times to \(RF_k M \) itself under the \(U \)-action; this set was introduced in [23].

The main result of this section (Proposition 5.4) is that for the set \(W_{k,R} := RF_k M - \mathcal{H}_R \) where \(\mathcal{H}_R \) is a sufficiently deep cusp neighborhood, every point \(x \in W_{k,R} \) has a thick set of return times to \(W_{k,R} \) under the \(U \)-action.

This information will be useful for the following reasons that will be explained in the next sections:
- When \(M \) is geometrically finite, these sets \(W_{k,R} \) are compact.
- When \(M \) is a geometrically finite acylindrical manifold, every \(H \)-orbit \(xH \) in \(F^* \) intersects \(W_{k,R} \) for all sufficiently large \(k > 1 \) (Corollary 11.7).
- One can develop a polynomial divergence argument for \(U \)-orbits \(yU \), \(y \in W \), with a thick set of return times to a compact set \(W \) (Proposition 6.2).
- This argument can be applied to a \(U \)-minimal subset \(Y = yU \subset xH \) with respect to \(W_{k,R} \) (Proposition 7.3).
5.1. Points with k-thick return times.

Definition 5.1. Let $k \geq 1$. Let T be a subset of \mathbb{R} and S be a subset of a circle $C \subset S^2$.

1. T is k-thick at ∞ if there exists $s_0 \geq 0$ such that, for all $s > s_0$,

\[
T \cap ([-ks, -s] \cup [s, ks]) \neq \emptyset
\]

2. T is k-thick if the condition (5.1) is satisfied for all $s > 0$.

3. T is globally k-thick if $T \neq \emptyset$ and $T - t$ is k-thick for every $t \in T$.

4. S is k-uniformly perfect if for any homography $\varphi : C \to \mathbb{R} \cup \{\infty\}$ such that $\varphi^{-1}(\infty) \in S$ the set $\varphi(S) \cap \mathbb{R}$ is globally k-thick.

5. S is uniformly perfect if it is k-uniformly perfect for some $k \geq 1$.

Let $\Gamma \subset G$ be a Zariski dense discrete subgroup and $M = \Gamma \backslash \mathbb{H}^3$. For $x \in FM$, let

$$T_x = \{t \in \mathbb{R} : xu_t \in RF M\}$$

be the set of return times of x to the renormalized frame bundle $RF M$ under the horocycle flow. Note that $T_{xu_t} = T_x - t$ for all $t \in \mathbb{R}$.

Define

\[
RF_k M := \{x \in RF M : T_x \text{ contains a globally } k\text{-thick subset containing } 0\}
\]

It is easy to check that $RF_k M$ is a closed A-invariant subset such that for any $x \in RF_k M$, the set

$$T_{x,k} := \{t \in \mathbb{R} : xu_t \in RF_k M\}$$

is globally k-thick.

5.2. Disjoint Horoballs. When h is a horoball in \mathbb{H}^3 and R is positive, we denote by h_R the horoball contained in h whose distance to the boundary of h is R. Hence the bigger R is, the deeper the horoball h_R is.

For an interval $J \subset \mathbb{R}$, we denote by ℓ_J the length of J. The following basic lemma says that “the time spent by a horocycle in a deep horoball h_R is a small fraction of the time spent in the fixed horoball h”.

Lemma 5.2. For any $\alpha > 0$, there exists $R = R(\alpha) > 0$ such that for any horoball h in \mathbb{H}^3 and any $g \in G$, we have

\[
J_g = \alpha \cdot \ell_{J_g} \subset I_g
\]

where $I_g = \{t \in \mathbb{R} : \pi(gu_t) \in h\}$ and $J_g = \{t \in \mathbb{R} : \pi(gu_t) \in h_R\}$.

Proof. We use the upper half-space model of \mathbb{H}^3. Since

$$(gh)_R = gh_R \quad \text{for any } g \in G,$$

we may assume without loss of generality that the horoball h is defined by $x^2 + y^2 + (z - h)^2 \leq h^2$ and that $\pi(gU)$ is the horizontal line

$$L = \{\pi(gu_t) = (t, y_0, 1) : t \in \mathbb{R}\} \subset \mathbb{H}^3$$
of height one. As I_g and J_g are symmetric intervals, it suffices to show that
\[\ell_{I_g} \geq (\alpha + 1)\ell_{J_g} \]
assuming that $J_g \neq \emptyset$. The boundaries of h and h_R are
defined by $x^2 + y^2 = 2zh - z^2$ and $x^2 + y^2 = 2ze^{-R} - z^2$ respectively.
Hence the intersections $L \cap h$ and $L \cap h_R$ are respectively given by
\[t_1^2 = 2h - 1 - y_0^2 \quad \text{and} \quad t_2^2 = 2he^{-R} - 1 - y_0^2. \]
Note that $\ell_{I_g} = 2|t_1|$ and $\ell_{J_g} = 2|t_2|$. We compute
\[t_2^2 \leq e^{-R}t_1^2. \]
Therefore if we take R so that $e^R > (\alpha + 1)^2$, then we gets $\ell_{I_g} \geq (\alpha + 1)\ell_{J_g}$.

We will now use notations \mathcal{H} and \mathcal{H}_R as in (2.3) and (2.4), even though we do not assume Γ to be geometrically finite: we just fix finitely many horoballs h^1, \ldots, h^m in \mathbb{H}^3 such that the horoballs γh_i, for $\gamma \in \Gamma$ and $i \leq m$, form a disjoint collection of open horoballs and we set
\[\mathcal{H} := \{ [g] \in F : \pi(g) \in \bigcup_{\gamma,i} \gamma h_i \}, \]
\[\mathcal{H}_R := \{ [g] \in F : \pi(g) \in \bigcup_{\gamma,i} \gamma h^i_R \}. \]

Corollary 5.3. Given any $\alpha \geq 0$, there exists $R > 0$ satisfying the following:
for all $x \in FM$, we write the set of return times of xU in \mathcal{H} and \mathcal{H}_R as
disjoint unions of open intervals
\[\{ t \in \mathbb{R} : xu_t \in \mathcal{H} \} = \bigcup I_n \quad \text{and} \quad \{ t \in \mathbb{R} : xu_t \in \mathcal{H}_R \} = \bigcup J_n \]
so that $J_n \subset I_n$ for all n (J_n may be empty). Then
\[J_n \pm \alpha \ell_{J_n} \subset I_n. \]

5.3. Thickness of the set of return times in a compact set. The following proposition roughly says that for a point x for which the horocyclic flow returns often to $RF_k M$, its U-flow also returns often to the set
\[W_{k,R} := RF_k M - \mathcal{H}_R. \]

Proposition 5.4. Let $\Gamma \subset G$ be a Zariski dense discrete subgroup. Then,
there exists $R > 0$ such that for any $x \in W_{k,R}$, the set
\[\{ t \in \mathbb{R} : xu_t \in W_{k,R} \} \]
is $4k$-thick at ∞.

Proof. Writing $x = [g] \in RF_k M$, we may assume $g^+ = \infty$ and $g^- = 0$
without loss of generality. This means that gU is a horizontal line. It follows from the definition of $RF_k M$ that the set
\[T_{x,k} := \{ t \in \mathbb{R} : xu_t \in RF_k M \}. \]
is globally k-thick. Let $R = R(2k)$ be as given by Lemma 5.2. We use again
the decomposition (5.4) of the sets of return times as a union of disjoint open intervals:
\[\{ t \in \mathbb{R} : xu_t \in \mathcal{H} \} = \bigcup I_n \quad \text{and} \quad \{ t \in \mathbb{R} : xu_t \in \mathcal{H}_R \} = \bigcup J_n \]
with $J_n \subset I_n$. Since xU is not contained in \mathcal{H}_F, the intervals J_n have finite length. Write $\ell_n = \ell_{J_n}$. It follows from Corollary 5.3 that for each $n,$

(5.6) \[J_n \pm 2k\ell_n \subset I_n. \]

If $x \notin \mathcal{H}$, set $s_x = 0$. If $x \in \mathcal{H}$, let n be the integer such that $0 \in I_n = (a_n, b_n)$ and set $s_x = \max(|a_n|, |b_n|)$.

We claim that for all $s > s_x$,

(5.7) \[(T_{x,k} - \bigcup J_n) \cap ([-4ks, -s] \cup [s, 4ks]) \neq \emptyset. \]

This means that $\{u \in U : xu \in \text{RF}_k M - \mathcal{H}_R\}$ is $4k$-thick at ∞.

Since $T_{x,k}$ is k-thick, there exists

\[t \in T_{x,k} \cap ((-2ks, -2s] \cup [2s, 2ks]). \]

If $t \notin J_n$ for some $n,$ the claim (5.7) holds. Hence suppose $t \in J_n$. By the choice of s_x, we have

\[0 \notin I_n. \]

By (5.6) and by the fact that I_n does not contain 0, we have

\[2k\ell_n \leq |t|. \]

By the global k-thickness of $T_{x,k}$, there exists

\[t' \in T_{x,k} \cap (t \pm [\ell_n, k\ell_n]). \]

By (5.6), we have $t' \in I_n$. Clearly, $t' \notin J_n$. In order to prove (5.7), it remains to prove $s \leq |t'| \leq 4ks$. For this, note that $|t| - k\ell_n \leq |t'| \leq |t| + k\ell_n$. Hence

\[|t'| \leq 2|t| \leq 4ks \quad \text{and} \quad |t'| \geq |t|/2 \geq s, \]

proving the claim. \hfill \square

Note that in the above proof, we set $s_x = 0$ if $x \notin \mathcal{H}$. Therefore we have the following corollary of the proof:

Corollary 5.5. For any $x \in \text{RF}_k M - \mathcal{H}$, the set

\[\{t \in \mathbb{R} : xu_t \in \text{RF}_k M - \mathcal{H}_R\} \]

is $4k$-thick.

6. Homogeneous dynamics

In this section we explain the polynomial divergence argument for Zariski dense subgroups Γ. The main assumption requires that the set of return times of the horocyclic flow in a suitable compact set is k-thick at ∞.

We begin by the following lemma which is analogous to Lemmas 4.3 and 4.5 and that we will apply to a set T of return times in the proof of Proposition 6.2.

Lemma 6.1. Let $T \subset U$ be a subset which is k-thick at ∞.

1. If $y_n \to e$ in $G - VH$, then $\limsup_{n \to \infty} Tg_n H$ contains a sequence $v_n \to e$ in $V - \{e\}$.

Note that in the above proof, we set $s_x = 0$ if $x \notin \mathcal{H}$. Therefore we have the following corollary of the proof:

Corollary 5.5. For any $x \in \text{RF}_k M - \mathcal{H}$, the set

\[\{t \in \mathbb{R} : xu_t \in \text{RF}_k M - \mathcal{H}_R\} \]

is $4k$-thick.
(2) If \(g_n \to e \) in \(G - AN \), then \(\limsup_{n \to \infty} Tg_nU \) contains a sequence \(\ell_n \to e \) in \(AV - \{ e \} \).

Proof. Lemma 6.1 is a slight modification of [22, Thm 8.1 and 8.2] where it was stated for a sequence \(T_n \) of \(k \)-thick subsets instead of a single set \(T \). If all \(T_n \) are equal to a fixed \(T \), the \(k \)-thickness at \(\infty \) is sufficient for the proof. \(\square \)

For a compact subset \(W \) of \(FM = \Gamma \setminus G \), a \(U \)-invariant closed subset \(Y \subset \Gamma \setminus G \) is said to be \(U \)-minimal with respect to \(W \) if \(Y \cap W \neq \emptyset \) and \(yU = Y \) for any \(y \in Y \cap W \). Such a minimal set \(Y \) always exists.

Proposition 6.2. Let \(\Gamma \subset G \) be a Zariski dense discrete subgroup with limit set \(\Lambda \). Let \(W \subset F_\Lambda^* \) be a compact subset, and \(X \subset FM \) a closed \(H \)-invariant subset intersecting \(W \). Let \(Y \subset X \) be a \(U \)-minimal subset with respect to \(W \). Assume that

1. there exists \(k \geq 1 \) such that for any \(y \in Y \cap W \), \(T_y = \{ t \in \mathbb{R} : yt \in W \} \) is \(k \)-thick at \(\infty \);
2. there exists \(y \in Y \cap W \) such that \(X - yH \) is not closed;
3. there exists \(y \in Y \cap W \) such that \(yU \) is not periodic;
4. there exist \(y \in Y \cap W \) and \(t_n \to +\infty \) such that \(ya_{-t_n} \) belongs to \(W \).

Then \(X = F_\Lambda \).

The proof of this proposition is based on the polynomial divergence argument, which allows us to find an orbit \(yV^+ \) sitting inside \(X \). Combined with Corollary 4.1, this implies that \(X \) is dense.

Proof. First step: We claim that there exist \(v_n \to e \) in \(V - \{ e \} \) such that \(Yv_n \subset X \).

We follow the proof of [22, Lem. 9.7]. Let \(y \in Y \cap W \) be as in (2). Since \(yU \) is not open in \(X \), there exists a sequence \(t_n \in T_y \) tending to \(\infty \) such that \(yt_n \to y \in Y \cap W \). Write \(yt_n = yg_nh_n \) where \(g_n \to e \).

If \(g_n \notin VH \), the claim follows easily.

If \(g_n \notin VH \), then, by Lemma 6.1, there exist \(t_n \in T_y, h_n \in H \) such that \(u_{-t_n}g_nh_n \to v \) for some arbitrarily small \(v \in V - \{ e \} \). Since \(yt_n \in Y \cap W \) and \(Y \cap W \) is compact, the sequence \(yt_n \) converges to some \(y_0 \in Y \cap W \), by passing to a subsequence. It follows that the element \(y_0v = \lim_{n \to \infty} yg_nh_n \) is contained in \(X \), and hence \(Yv \subset X \) by the minimality. Since \(v \) can be taken arbitrarily close to \(e \), this proves our first claim.

Second step: We claim that there exists a one-parameter semigroup \(L \subset AV \) such that \(YL \subset Y \). Let \(y \in Y \cap W \) be as in (3). We follow the proof of [22, Theorem 9.4, Lemma 9.5]. By (1), there exists a sequence \(t_n \in T_y \) tending to \(\infty \) such that \(yt_n \to y_0 \in Y \cap W \). Write \(yt_n = y_0g_n \) where \(g_n \to e \). Since \(yU \) is not periodic, \(g_n \in G - U \).
If \(g_n \in AN \), then the closed semigroup generated by these \(g_n \)'s contains a one-parameter semigroup \(L \) as desired.

If \(g_n \notin AN \), then, by Lemma 6.1, there exist \(s_n \in T_{y_0}, u'_n \in U \) such that \(u_{-s_n} g_n u'_n \to \ell \) for some non-trivial \(\ell \in AV \). Since \(y_0 u_{s_n} \in Y \cap W \) and \(Y \cap W \) is compact, passing to a subsequence, the sequence \(y_0 u_{s_n} \) converges to some \(y_1 \in Y \cap W \). It follows that the point

\[y_1 \ell = \lim_{n \to \infty} y_0 g_n u'_n = \lim_{n \to \infty} y u_{t_n} u'_n \]

belongs to \(Y \), and hence \(Y \ell \subset Y \) by the minimality of \(Y \). As \(\ell \) can be taken arbitrarily close to \(e \), this yields the desired one-parameter semigroup \(L \) and proves our second claim.

Third step: We claim that there exists an interval \(V_I \) of \(V \) containing \(e \) such that \(YV_I \subset X \).

By an interval \(V_I \) of \(V \) we mean an infinite connected subset of \(V \).

We follow the proof of [23, Theorem 7.1]. We use the second step. A one-parameter semigroup \(L \subset AV \) is either a semigroup \(V^+ \subset V \), a semigroup \(A^+ \subset A \) or \(v^{-1} A^+ v \) for some non-trivial \(v \in V \).

If \(L = V^+ \) our third claim is clear.

If \(L = v^{-1} A^+ v \), we have \(Y v^{-1} A^+ vA \subset X \). Now the set \(v^{-1} A^+ vA \) contains an interval \(V_I \) of \(V \) containing \(e \). This proves our third claim.

If \(L = A^+ \), this semigroup is not transversal to \(H \) and we need to use also the first step. Indeed we have

\[Y \left(\bigcup A^+ v_n A \right) \subset X. \]

Now the closure of \(\bigcup A^+ v_n A \) contains an interval \(V_I \) of \(V \) containing \(e \). This proves our third claim.

Fourth step: We claim that there exist a one-parameter semigroup \(V^+ \subset V \) and \(w \in W \) such that \(wV^+ \subset X \).

Here \(V^+ \) is a one-parameter semigroup of \(V \) intersecting \(V_I \) as a non-trivial interval. Let \(y, t_n \) be as in (4). By the compactness of \(W \), the sequence \(y a_{-t_n} \) converges to a point \(w \in X \cap W \), by passing to a subsequence. For every \(v \in V^+ \), there exists a sequence \(v_n \in V_I \) such that \(a_{t_n} v_n a_{-t_n} = v \) for \(n \) large. It follows that

\[wv = \lim_{n \to \infty} y v_n a_{-t_n} \in X \]

and hence \(wV^+ \subset X \). This proves the fourth claim.

Now, since \(W \subset F^*_A \), Corollary 4.1 implies that \(X = F_A \). \(\square \)

7. \(H \)-orbits are locally closed or dense

In this section, we explain how the polynomial divergence argument can be applied to the orbit closure of \(xH \) for \(x \in RF_k M \cap F^* \), when \(\Gamma \) is geometrically finite. The main advantage of the assumption that \(\Gamma \) is geometrically finite is that \(RF_k M - \mathcal{H}_R \) is compact.

The key result of this section is the following theorem:
Theorem 7.1. Let $\Gamma \subset G$ be a geometrically finite Zariski dense subgroup. If $x \in \text{RF}_k M \cap F^*$ for some $k \geq 1$, then xH is either locally closed or dense in F_Λ.

In Theorem 7.1 the assumptions on Γ are very general, but we point out that the conclusion concerns only those H-orbits intersecting the set $\text{RF}_k M \cap F^*$.

Fix $R \geq 1$ as given by Proposition 5.4 and set

$$W_{k,R}^* := (\text{RF}_k M - \mathcal{H}_R) \cap F^*.$$

Proposition 7.2. Let $\Gamma \subset G$ be a geometrically finite Zariski dense subgroup. Let $x \in \text{RF}_k M \cap F^*$. If $xH \cap W_{k,R}^*$ is not compact, then xH is dense in F_Λ.

Proof. This follows from Proposition 3.8; see the proof of [23, Coro. 6.2]. □

Proposition 7.3. Let $\Gamma \subset G$ be a geometrically finite Zariski dense subgroup. Let $x \in \text{RF}_k M \cap F^*$. If $xH \cap W_{k,R}^*$ contains no periodic U-orbit and $(xH - xH) \cap W_{k,R}^*$ is non-empty, then xH is dense in F_Λ.

Proof. Using Proposition 7.2, we may assume that the set $xH \cap W_{k,R}^*$ is compact. By assumption, the set $(xH - xH) \cap W_{k,R}^*$ is non-empty.

We introduce the compact set

$$(7.1) \quad W = \begin{cases} (xH - xH) \cap W_{k,R}^* & \text{if } xH \text{ is locally closed} \\ xH \cap W_{k,R}^* & \text{if } xH \text{ is not locally closed.} \end{cases}$$

Let $Y \subset \overline{xH}$ be a U-minimal subset with respect to W. We want to apply Proposition 6.2. We check that its four assumptions are satisfied:

1. By Proposition 5.4, for any $y \in Y \cap W$, the set $T_y := \{ t \in \mathbb{R} : yu_t \in Y \cap W \}$ is $4k$-thick at ∞.

2. We can find $y \in Y \cap W$ such that $\overline{xH} - yH$ is not closed. To see this, if $Y \cap W \not\subset xH$, we choose $y \in Y \cap W - xH$. If $\overline{xH} - yH$ were closed, it would be a closed subset containing xH, contradicting $y \in X$.

3. If $Y \cap W \subset xH$, by (7.1), the orbit xH is not locally closed and we choose any $y \in Y \cap W$. The U-orbit of any point $y \in Y \cap W \subset \overline{xH} \cap F^*$ is never periodic.

4. Since T_y is uncountable while Λ_p is countable, there exists $y_0 := [g_0] \in yU \cap W$ such that g_0 defined in (2.1) is a radial limit point. Since g_0 is a radial limit point, there exists a sequence $t_n \rightarrow +\infty$ such that $y_0 a_{-t_n} \notin \mathcal{H}_R$. Since both $\text{RF}_k M \cap F^*$ and xH are A-invariant, we have $y_0 a_{-t_n} \in W$.

Hence Proposition 6.2 implies that xH is dense in F_Λ. □

Proof of Theorem 7.1. When $\overline{xH} \cap F^*$ contains a periodic U-orbit, the claim follows from Proposition 4.2.

We now assume that $\overline{xH} \cap F^*$ contains no periodic U-orbit. Suppose that xH is not dense in F_Λ. Then, by Proposition 7.3, the set

$$(7.2) \quad W := xH \cap W_{k,R}^*$$

...
is compact. We now repeat almost verbatim the same proof of Proposition 7.3, with this compact set W. Let $Y \subset \overline{xH}$ be a U-minimal subset relative to W. We assume that the orbit xH is not locally closed. The four assumptions of Proposition 6.2 are still valid:
1. For any $y \in Y \cap W$, $\{t : yu_t \in W\}$ is $4k$-thick at ∞.
2. For any $y \in Y \cap W$, the set $\overline{xH} - yH$ is not closed.
3. For any $y \in Y \cap W$, yU is not periodic.
4. Choose any $y = [g] \in Y \cap W$ such that g^- is a radial limit point. Then $ya_{-t_n} \in W$ for some $t_n \to \infty$.
Hence, by Proposition 6.2, the orbit xH is dense in F_Λ. Contradiction. □

8. Locally closed H-orbits have non-elementary stabilizer

In this section we give more information on locally closed H-orbits intersecting the set $RF_k M \cap F^*$. In particular we show that they have non-elementary stabilizer.

As in the previous section, let $k \geq 1$ and fix $R \geq 1$ as given by Proposition 5.4 and set $W_{k,R} := (RF_k M - \mathcal{H}_R) \cap F^*$. The main aim of this section is to prove the following:

Theorem 8.1. Let $\Gamma \subset G$ be a geometrically finite Zariski dense subgroup. Suppose that $xH \subset FM$ is a locally closed subset intersecting $RF_k M \cap F^*$. Then

1. $\overline{xH} \cap (RF_k M)H \cap F^* \subset xH$, i.e., xH is closed in $(RF_k M)H \cap F^*$;
2. The stabilizer H_x of x in H is non-elementary.

In particular, there are only countably many locally closed H-orbits intersecting $RF_k M \cap F^*$.

In Theorem 8.1 the assumptions on Γ are very general, but we again point out that the conclusion concerns only those orbits intersecting $x \in RF_k M \cap F^*$.

We will apply the following lemma with $L = U$.

Lemma 8.2. Let L be a one-parameter group acting continuously on FM, and $Y \subset FM$ be an L-minimal subset with respect to a compact subset $W \subset FM$. Fix $y \in Y \cap W$ and suppose that $\{\ell \in L : y\ell \in Y \cap W\}$ is unbounded. Then there exists a sequence $\ell_n \to \infty$ in L such that $y\ell_n \to y$.

Proof. The set $Z := \{z \in Y : \exists \ell_n \to \infty \text{ in } L \text{ such that } y\ell_n \to z\} \cap \omega$-limit points of the orbit yL is a closed L-invariant subset of Y that intersects W. Therefore, by minimality, it is equal to Y and hence contains y. □

We will also need the following lemma:

Lemma 8.3. For any $R \geq 0$, the set \mathcal{H}_R never contains an A-orbit. In particular, if xH intersects $RF_k M$, it also intersects $W_{k,R}$.

Proof. The claim follows because no horoball in \mathbb{H}^3 contains a complete geodesic and the set $RF_k M$ is A-invariant. □
Fix $R \geq 1$ as given by Proposition 5.4. The condition that xH is locally closed implies that the orbit map

$$H \backslash H \to xH$$

given by $[h] \mapsto xh$ is a proper map when xH is endowed with the induced topology from FM (cf. [30]).

Proof of Theorem 8.1. Let xH be a locally closed set with $x \in RF_k M \cap F^*$.

First case : $\overline{xH} \cap F^*$ contains no periodic U-orbit.

(1) In this case, since xH is locally closed, Propositions 7.2 and 7.3 imply that the intersection $W := xH \cap W^k,R$ is compact and is contained in xH. Since this is true for any R large enough, the intersection $xH \cap RF_k M \cap F^*$ is also contained in xH.

(2) As in the proof of Theorem 7.1, we will use the following compact set

$$W = xH \cap W^*_{k,R}.$$

By Lemma 8.3, W is non-empty.

We first construct a sequence of elements δ_n in the stabilizer H_x. As in the proof of Theorem 7.1, we introduce a U-minimal subset Y of \overline{xH} with respect to W, and fix a point

$$y \in Y \cap W \subset xH.$$

We may assume $y = x$ without loss of generality. By Proposition 5.4, $\{t \in \mathbb{R} : xu_t \in Y \cap W\}$ is unbounded. Hence by Lemma 8.2, one can find a sequence $u_n \to \infty$ in U such that $yu_n \to y$. By the properness of the map in (8.1), there exists a sequence $\delta_n \to \infty$ in H_x such that

$$\delta_n u_n \to e \quad \text{ in } H.$$

Let $J \subset H$ denote the Zariski closure of H_x. We want to prove $J = H$.

We first claim that $U \subset J$. Since the homogeneous space $J \backslash H$ is real algebraic, any U-orbit in $J \backslash H$ is locally closed [6, 3.18]. Therefore, since the sequence $[e]u_n$ converges to $[e]$ in $J \backslash H$, the stabilizer of $[e]$ in U is non trivial and hence $U \subset J$.

We now claim that $J \not\subset AU$. Indeed, if the elements δ_n were in AU one would write $\delta_n = a_n u'_n$ with $a_n \in A$ and $u'_n \in U$. Since xH contains no periodic U-orbit, the stabilizer H_x does not contain any unipotent element, and hence $a_n \neq e$. Since the sequence $a_n u'_n u_n$ converges to e, the sequence a_n also converges to e. Therefore, δ_n is a sequence of hyperbolic elements of a discrete subgroup of AU whose eigenvalues go to 1. Contradiction.

Since any algebraic subgroup of H containing U but not contained in AU is only H itself, we obtain $J = H$. Therefore H_x is Zariski dense in H.

Second case : $\overline{xH} \cap F^*$ contains a periodic U-orbit yU.

(1) By Proposition 7.2, the set $W := \overline{xH} \cap W^*_{k,R}$ is compact. We claim that W is contained in xH. If not, the set $(\overline{xH} - xH) \cap W^*_{k,R}$ would contain...
an element x'. Since xH is locally closed, it is not included in $x' \overline{H}$. By Proposition 4.2, any periodic U-orbit of $x' \overline{H}$ is contained in xH. Therefore

$$x' \overline{H} \text{ contains no periodic } U \text{-orbit.}$$

Since $x' \overline{H}$ can not be dense in F_Λ, Theorem 7.1 implies that $x' \overline{H}$ is locally closed. By the first case considered above, the stabilizer $H_{x'}$ is non-elementary. Therefore, since $x' \in F_\Lambda^*$, Proposition 3.5 implies that xH is dense in F_Λ. Since xH is locally closed, this is a contradiction. Therefore we obtain:

$$W = xH \cap W^*_{k,R}.$$

Since this is true for any R large enough, the intersection $xH \cap (RF_k M \cap F^*)$ is contained in xH.

(2) Since xH is locally closed, by Proposition 4.2, yU is contained in xH. This proves that the stabilizer H_x contains a non-trivial unipotent element.

We now construct a non-trivial hyperbolic element $\delta \in H_{x'}$. We write $x = [g]$ and denote by $C = (gH)^+$ the corresponding circle. We use again the compact set W given by (8.3). Since x is in $RF_k M$, the set

$$\{(gh)^+ \in C : h \in H \text{ with } xh \in W\}$$

is uncountable and hence contains at least two radial limit points. By considering an A-orbit which connects these two limit points, we get $z \in xH$ such that $zA \subset xH \cap (RF_k M \cap F^*)$. Since the set $\{t \in \mathbb{R} : za_t \in \mathcal{H}_R\}$ is a disjoint union of bounded open intervals, we can find a sequence $a_n \in A$ such that $za_n \in W$ and $a'_n := a_n^{-1}a_{n+1} \to \infty$.

Since $xH \cap W$ is compact, by passing to a subsequence the sequence $z_n := za_n$ converges to a point $z' \in xH \cap W$.

Therefore we have

$$z_n \to z' \text{ and } z_na'_n = z_{n+1} \to z'. $$

By the properness of the map in (8.1), we can write $z_n = z'e_n$ with $e_n \to e$ in H. Therefore the following product belongs to the stabilizer of z':

$$\delta_n := e_n a'_n e_n^{-1} \in H_{x'}. $$

Since $a'_n \to \infty$, the elements δ_n are non-trivial hyperbolic elements of $H_{x'}$ for all n large enough. Since $z' \in xH$, the stabilizer H_x also contains non-trivial hyperbolic elements.

Since a discrete subgroup of H containing simultaneously non-trivial unipotent elements and non-trivial hyperbolic elements is non-elementary, the group H_x is non-elementary.

If $x = [g]$, then $gHg^{-1} \cap \Gamma$ is non-elementary, and hence contains a Zariski dense finitely generated subgroup of gHg^{-1}. Now the last claim on the countability follows because there are only countably many finitely generated subgroups of Γ and H has index two in its normalizer. \square
9. A uniformly perfect subset of a circle

In this section we give an interpretation of Theorems 7.1 and 8.1 in terms of \(\Gamma \)-orbits of circles.

The union \(\text{RF}_\infty M := \bigcup_{k \geq 1} \text{RF}_k M \) can be described as
\[
\text{RF}_\infty M = \{ [g] \in \text{RF} M : (gH)^+ \cap \Lambda \supset S \supset \{g^\pm\} \text{ for a uniformly perfect set } S \}.
\]
Hence an \(H \)-orbit \([g]H\) intersects \(\text{RF}_\infty M \) if and only if the intersection \(C \cap \Lambda \) contains a uniformly perfect subset \(S \) where \(C \) is the circle given by \((gH)^+\).

Putting together Theorems 7.1 and 8.1, we obtain:

Corollary 9.1. Let \(\Gamma \subset G \) be a geometrically finite Zariski dense subgroup. If \(x \in \text{RF}_\infty M \cap F^* \), then \(xH \) is either locally closed or dense in \(F_\Lambda \). When \(xH \) is locally closed, it is closed in \((\text{RF}_\infty M)H \cap F^* \) and \(H_x \) is non-elementary.

Let \(C_{\text{perf}} \) denote the set of all circles \(C \in C \) such that \(C \cap \Lambda \) contains a uniformly perfect subset of \(C \), and let
\[
C^*_\text{perf} := C_{\text{perf}} \cap C^*.
\]
This is a \(\Gamma \)-invariant set and in general, this set is neither open nor closed in \(C \). The following theorem is equivalent to Corollary 9.1.

Theorem 9.2. Let \(\Gamma \subset G \) be a geometrically finite Zariski dense subgroup. For any \(C \in C^*_\text{perf} \), the orbit \(\Gamma C \) is either discrete or dense in \(C_\Lambda \). Moreover, a discrete orbit \(\Gamma C \) is closed in \(C^*_\text{perf} \) and its stabilizer \(\Gamma^C \) is non-elementary.

10. \(H \)-orbits contained in \(\text{RF} M \)

In this section, we prove Theorem 1.5. We assume that \(\Gamma \subset G \) is geometrically finite and of infinite co-volume. We describe the \(H \)-orbits \(xH \) which are contained in the renormalized frame bundle \(\text{RF} M \). Equivalently we describe the \(\Gamma \)-orbits \(\Gamma C \) contained in the limit set \(\Lambda \).

Theorem 10.1. Let \(\Gamma \subset G \) be a geometrically finite subgroup of infinite co-volume and let \(x \in F M \).

1. If \(xH \) is contained in \(\text{RF} M \), then \(xH \) is closed and has finite volume.
2. If \(xH \subset FM \) has finite volume then \(xH \) is closed and contained in \(\text{RF} M \).
3. There are only finitely many \(H \)-orbits contained in \(\text{RF} M \).

This theorem implies that the closed subset
\[
F_0 := \{ x \in F : xH \subset \text{RF} M \}
\]
is a union of finitely many closed \(H \)-orbits. Equivalently, the closed subset
\[
C_0 := \{ C \in C : C \subset \Lambda \}
\]
is a union of finitely many closed \(\Gamma \)-orbits.

We will deduce Theorem 10.1 from the following three lemmas. We write \(x = [g] \) and denote by \(C \) the corresponding circle \(C := (gH)^+ \).
Lemma 10.2. Let $\Gamma \subset G$ be a geometrically finite subgroup of infinite covolume. Any xH included in RFM is closed.

Proof. Remember that, by assumption, the circle C is contained in the limit set Λ. Let $F_0^* := F_0 \cap F^*$.

Case 1: $x \notin F_0^*$. In this case the circle C is a boundary circle. This means that C is included in Λ and bounds a disk B in $\Omega = S^2 - \Lambda$. The surface $\Gamma \backslash \hull(C)$ is then a connected component of the boundary of the core of M. Hence the orbit xH is closed.

Case 2: $x \in F_0^*$. By Definition 5.2, we have $F_0 \subset RF_k M$ for all $k \geq 1$. Since x belongs to $RF_k M \cap F^*$, Theorems 7.1 and 8.1 implies that either the orbit xH is dense in F_Λ or this orbit is closed in F_0^*. Since Γ is geometrically finite of infinite covolume, the limit set Λ is not the whole sphere S^2 and therefore RFM is strictly smaller than F_Λ. Therefore the orbit xH can not be dense in F_Λ. Hence xH is closed in F_0^*. If xH were not closed in F_0, there would exist an H-orbit $yH \subset xH \subset F_0$ which does not lie in F_0^*. By Case 1, the orbit yH corresponds to a boundary circle and hence it is of finite volume. Then by Corollary 3.4, the orbit xH has to be dense in F_Λ. Contradiction. \hfill \Box

Lemma 10.3. Let $\Gamma \subset G$ be a geometrically finite subgroup. Any closed xH contained in RFM has finite volume.

Proof. Since xH is closed, the inclusion map $xH \to RFM$ is proper, and the corresponding map $\Gamma \backslash \hull(C) \to \core(M)$ is also proper. Since $\core(M)$ has finite volume, using explicit descriptions of $\core(M)$ in the neighborhood of both rank-one cusps and rank-two cusps as in [16, §3], we can deduce that the surface $\Gamma \backslash \hull(C)$ has finite area. \hfill \Box

Lemma 10.4. Let $\Gamma \subset G$ be a discrete group with limit set $\Lambda \neq S^2$. Then the following set C_0 is discrete in C :

$$C_0 := \{ C \in C : \Gamma \backslash \hull(C) \text{ is of finite area} \}.$$

Proof. Suppose $C \in C_0$ is not isolated. Then there exists a sequence of distinct circles $C_n \in C_0$ converging to C. Since $\Lambda(\Gamma C) = C$, by Corollary 3.4, the closure of $\bigcup \Gamma C_n$ contains C_Λ. On the other hand, any circle in this closure is contained in Λ. This contradicts the assumption $\Lambda \neq S^2$. \hfill \Box

Proof of Theorem 10.1. (1) follows from Lemmas 10.2 and 10.3.

(2) Since the quotient $\Gamma \backslash \hull(C)$ has finite area, the limit set $\Lambda(\Gamma C)$ is equal to C and the orbit xH is contained in RFM. By (1), xH is closed.

(3) By (1) and (2) we have the equality $C_0 = C_\alpha$. Therefore by Lemma 10.4, the set C_0 is closed and discrete.

Now since Γ is geometrically finite, by Lemma 8.3, any H-orbit contained in RFM intersects the compact set $W := RFM - \mathfrak{H}$. Hence there exists a compact set $K \subset C$ such that, for any circle $C \in C_0$, there exists γ in Γ such
that \(\gamma C \) is in \(K \). Since the intersection \(C_0 \cap K \) is discrete and compact, it is
finite. Therefore \(\Gamma \) has only finitely many orbits in \(C_0 \), and there are only
finitely many \(H \)-orbits in \(F_0 \).

\[\square \]

11. Planes in geometrically finite acylindrical manifolds

In this section, we assume that \(M = \Gamma \setminus \mathbb{H}^3 \) is a geometrically finite acylindrical manifold, and we prove Theorems 1.1 and 1.2. Under this assumption, every separating \(H \)-orbit \(xH \) intersects \(RF_k M \cap F^* \) and hence \(W^*_{k,R} \) for \(k \) large enough (Corollary 11.7) which enables us to apply Theorems 7.1 and 8.1.

11.1. Geometrically finite acylindrical manifolds. We begin with the definition of an acylindrical manifold. Let \(D^2 \) denote a closed 2-disk and let \(C^2 = S^1 \times [0,1] \) be a cylinder. A compact 3-manifold \(N \) is called acylindrical

1. if the boundary of \(N \) is incompressible, i.e., any continuous map \(f : (D^2, \partial D^2) \to (N, \partial N) \) can be deformed into \(\partial N \) or equivalently if the inclusion \(\pi_1(R) \to \pi_1(N) \) is injective for any component \(R \) of \(\partial N \); and

2. if any essential cylinder of \(N \) is boundary parallel, i.e., any continuous map \(f : (C^2, \partial C^2) \to (N, \partial N) \), injective on \(\pi_1 \), can be deformed into \(\partial N \).

Let \(M = \Gamma \setminus \mathbb{H}^3 \) be a geometrically finite manifold, and consider the associated Kleinian manifold

\[\overline{M} = \Gamma \setminus (\mathbb{H}^3 \cup \Omega) \].

Recall that a compact connected submanifold of \(\text{Int}(\overline{M}) \simeq M \) is called a core of \(M \) if the inclusion \(\pi_1(N) \to \pi_1(M) \) is an isomorphism and each component of \(\partial N \) is the full boundary of a non-compact component of \(\text{Int}(\overline{M}) - N \) \([16, 3.12]\). This is sometimes called the Scott core of \(M \) and is unique up to a homeomorphism.

We say that a geometrically finite manifold \(M \) is acylindrical if its compact core \(N \) is acylindrical ([28], [16, §4.7])

Remark 11.1. The Apollonian manifold \(\mathcal{A} \setminus \mathbb{H}^3 \) is not acylindrical, because its compact core is a handle body of genus 2, and hence it is not boundary incompressible.

For the rest of this section, we let

\(M = \Gamma \setminus \mathbb{H}^3 \) be a geometrically finite acylindrical manifold of infinite volume.

It is convenient to choose an explicit model of the core of \(M \). As \(M \) is geometrically finite, \(\overline{M} \) is compact except for a finite number of rank one and rank two cusps. The rank one cusps correspond to pairs of punctures on \(\partial \overline{M} \) which are arranged so that each pair determines a solid pairing tube, and the rank two cusps determine solid cusp tori [16, §3]. We let \(N_0 \) be the
core of M which is obtained by removing the interiors of all solid pairing tubes and solid cusp tori which can be chosen to be mutually disjoint.

So N_0 is a compact submanifold of $\text{Int } M \simeq M$ whose boundary consists of finitely many closed surfaces of genus at least 2 with marked paring cylinders and torus boundary components.

Write the domain of discontinuity $\Omega = S^2 - \Lambda$ as a union of components:

$$\Omega = \bigcup_i B_i.$$

When all B_i are round open disks, M is called rigid acylindrical.

Let Δ_i denote the stabilizer of B_i in Γ.

A quasi-fuchsian group is a Kleinian group which leaves a Jordan curve invariant. A finitely generated quasi-fuchsian group whose limit set is the invariant Jordan curve is a quasi-conformal deformation of a lattice of $\text{PSL}_2(\mathbb{R})$ and hence its limit set is a quasi-circle.

Lemma 11.2.

1. For each i, Δ_i is a finitely generated quasi-fuchsian group and B_i is an open Jordan disk with $\partial B_i = \Lambda(\Delta_i)$.

2. There are countably infinitely many B_i’s with finitely many Γ-orbits and $\Lambda = \bigcup_i \partial B_i$.

3. For each $i \neq j$, $\overline{B_i} \cap \overline{B_j}$ is either empty or a parabolic fixed point of rank one; and any rank one parabolic fixed point of Γ arises in this way.

4. No subset of $\{\overline{B_i}\}$ forms a loop of tangent disks, i.e., if $B_{i_1}, \ldots, B_{i_\ell}$, $\ell \geq 3$ is a sequence of distinct disks such that $\overline{B_{i_j}} \cap \overline{B_{i_{j+1}}} \neq \emptyset$ for all j, then $\overline{B_{i_j}} \cap \overline{B_{i_1}} = \emptyset$.

Proof. Since N_0 is boundary incompressible, Λ is connected. This implies that each B_i is simply connected. By Ahlfors [3, Lemma 2], Δ_i is finitely generated and B_i is a component of $\Omega(\Delta_i)$. Since Δ_i has two invariant components, it is quasi-fuchsian and $\partial B_i = \Lambda(\Delta_i)$ (cf. [17, Theorem 3]).

For (2), since Γ is not quasi-fuchsian by the acylindrical assumption, there are countably infinitely many B_i’s. There are only finitely many Γ-orbits of B_i’s by Ahlfors’ finiteness theorem. Since $\bigcup_i \partial B_i$ is a Γ-invariant subset of Λ, the last claim in (2) is clear.

For (3), note that as Δ_i is a component subgroup of Γ, we have by [18, Theorem 3],

$$\Lambda(\Delta_i \cap \Delta_j) = \Lambda(\Delta_i) \cap \Lambda(\Delta_j).$$

(11.1)

On the other hand, as N_0 is acylindrical, a loxodromic element can preserve at most one of B_i’s. As no rank two parabolic fixed point lies in $\bigcup_i \partial B_i$, it follows that for all $i \neq j$, $\Delta_i \cap \Delta_j$ is either trivial or the stabilizer of a parabolic limit point of Γ of rank one. Therefore the first claim in (3) follows from (1) and (11.1). The second claim in (3) follows from a standard fact about a geometrically finite group [16, §3].
To prove (4), suppose not. Then one gets a non-trivial loop on ∂N_0 which bounds a disk in N_0, contradicting the boundary-incompressible condition on N_0.

11.2. Lower bounds for moduli of annuli and Cantor sets. The closures of the components of Ω may intersect with each other, but we can regroup the components of Ω into maximal trees of disks whose closures are not only disjoint but are uniformly apart in the language of moduli.

Fix a closed surface S of ∂N_0 of genus at least 2. Its fundamental group $\pi_1(S)$ injects to Γ as S is an incompressible surface. By the construction of N_0, S comes with finitely many marked cylinders P_i's and each connected component of $S - \bigcup P_i$ corresponds to a component of ∂M. In view of $\partial M = \Gamma \setminus \Omega$, those components of Ω invariant by the image of $\pi_1(S)$ in Γ can be described using the following equivalence relations: we let $B_i \sim B_j$ if their closures intersect each other. This spans an equivalence relation on the collection $\{B_i\}$. We write

$$\Omega = \bigcup T_\ell$$

where T_ℓ is the union of all disks in the same equivalence class, i.e., T_ℓ is a maximal tree of disks.

The T_ℓ's fall into finitely many Γ-orbits corresponding to non-toroidal closed surfaces of ∂N_0, and the stabilizer of T_ℓ in Γ is conjugate to $\pi_1(S_\ell) \subset \Gamma$ for a non-toroidal closed surface S_ℓ of ∂N_0 and has infinite index in Γ (cf. [1], [12], [29]). We denote by Γ_ℓ the stabilizer of T_ℓ in Γ.

The following lemma is a crucial ingredient of Theorem 11.5.

Lemma 11.3. We have:

1. For each ℓ, $\partial T_\ell = \Lambda(\Gamma_\ell)$.
2. For each ℓ, T_ℓ is connected, locally contractible and simply connected.
3. For each $k \neq \ell$, $T_k \cap T_\ell = \emptyset$.

Proof. Let $K := T_\ell$, and consider the set $\{p_{ij} = \overline{B_i} \cap \overline{B_j} : i \neq j, B_i, B_j \subset T_\ell\}$. Each p_{ij} is fixed by a parabolic element, say, $\gamma_{ij} \in \Gamma_\ell$.

By the uniformization theorem, $\pi_1(S_\ell)$ can be realized as a cocompact lattice Σ_ℓ in $\text{PSL}_2(\mathbb{R})$ acting on \mathbb{H}^2 as isometries. Let $c_{ij} \in \mathbb{H}^2$ be the geodesic stabilized by a hyperbolic element $\iota(\gamma_{ij})$ of Σ_ℓ for the isomorphism $\iota : \Gamma_\ell \simeq \Sigma_\ell$.

Let K_0 be the compact set obtained from $\overline{\mathbb{H}^2}$ by collapsing geodesic arcs c_{ij} to single points. We denote by ∂K_0 the image of S^1 in this collapsing process, so that K_0 is an "abstract tree of disks" while ∂K_0 is an "abstract tree of circles". As Γ_ℓ is a finitely generated subgroup of a geometrically finite group Γ, it itself is geometrically finite by a theorem of Thurston (cf. [20, Theorem 3.11]). So we can apply a theorem of Floyd [12] to Γ_ℓ to obtain a continuous equivariant surjective map $\psi_\ell : S^1 = \partial \mathbb{H}^2 \to \Lambda(\Gamma_\ell)$ conjugating Σ_ℓ to Γ_ℓ, which is 2 to 1 onto rank one parabolic fixed points of Γ_ℓ and injective everywhere else. Moreover, this map ψ_ℓ factors through
the map \(S^1 \to \partial K_0 \) described above, since each \(p_{ij} \) is a rank one parabolic fixed point of \(\Gamma_\ell \). It follows that \(\Lambda(\Gamma_\ell) \) is equal to the closure of \(\bigcup_{B_j \subset T_\ell} \partial B_j \), and hence \(\Lambda(\Gamma_\ell) = \partial K \) follows as claimed in (1).

Denote by \(\psi_\ell^* : \partial K_0 \to \partial K \) the continuous surjective map induced by \(\psi_\ell \). We claim that \(\psi_\ell^* \) is injective by the acylindrical condition on \(N_0 \). Suppose not. Then there exists a point \(p \in \Lambda(\Gamma_\ell) - \bigcup_j \partial B_j \) over which \(\psi_\ell^* \) is not injective. By the aforementioned Floyd’s theorem, \(p \) is a fixed point of a parabolic element \(\gamma \in \Gamma_\ell \) and the geodesic in \(\mathbb{H}^2 \) whose two end points are mapped to \(p \) by \(\psi_\ell \) is stabilized by a hyperbolic element of \(\Sigma_\ell \) corresponding to \(\gamma \). Hence this gives rise to a non-trivial closed curve in \(S_\ell = \partial N_0 \) which is homotopic to a boundary component \(\beta \) of a pairing cylinder in \(\partial N_0 \). Since \(p \notin \bigcup_j \partial B_j \), \(\alpha \) and \(\beta \) are not homotopic within \(S_\ell \), yielding an essential cylinder in \(N_0 \) which is not boundary parallel. This contradicts the acylindrical condition on \(N_0 \).

Therefore \(\psi_\ell^* \) is injective. Now the map \(\psi_\ell^* : \partial K_0 \to \partial K \) can be extended to a continuous injective map \(K_0 \to K \) inducing homeomorphisms between each \(B_{0,j} \) and \(B_j \) where \(B_{0,j} \) denote the connected component of \(K_0 - \partial K_0 \) above \(B_j \). Hence \(K_0 \) and \(K \) are homeomorphic. This implies the claim (2).

For (3), note that for all \(\ell \neq k \),
\[
\Gamma_\ell \cap \Gamma_k = \{ e \}
\]
by the acylindrical condition on \(N_0 \).

By [20, Theorem 3.14], we have
\[
\Lambda(\Gamma_\ell) \cap \Lambda(\Gamma_k) = \Lambda(\Gamma_\ell \cap \Gamma_k) \cup P
\]
where \(P \) is the set of \(\zeta \in S^2 - \Lambda(\Gamma_\ell \cap \Gamma_k) \) such that \(\text{Stab}_{\Gamma_\ell} \zeta \) and \(\text{Stab}_{\Gamma_k} \zeta \) generates a parabolic subgroup of rank 2 and \(\text{Stab}_{\Gamma_\ell} \zeta \cap \text{Stab}_{\Gamma_k} \zeta = \{ e \} \).

If \(\zeta \in P \), then \(\zeta \), being a parabolic fixed point of \(\Gamma_\ell \), must arise as the intersection \(\overline{B_i} \cap \overline{B_j} \) for some \(i \neq j \) by Floyd’s theorem as discussed above. But every such point is a rank one parabolic fixed point of \(\Gamma \) by Lemma 11.2(3); so \(P = \emptyset \). Hence we deduce that \(\Lambda(\Gamma_\ell) \cap \Lambda(\Gamma_k) = \emptyset \), which implies the claim (3) by the claim (1).

An annulus \(A \subset S^2 \) is an open region whose complement consists of two components.

Corollary 11.4.

1. For each \(\ell \), \(S^2 - T_\ell \) is a disk.
2. For each \(\ell \neq k \), \(S^2 - (T_\ell \cup T_k) \) is an annulus.

Proof. We may assume without loss of generality that \(T_\ell \) contains \(\infty \) in \(\hat{C} = S^2 \). Now by (2) of Lemma 11.3, and by Alexander duality (cf. [9, §3, Theorem 3.44]), \(U := S^2 - T_\ell \) is a connected open subset of \(\hat{C} \). By the Riemann mapping theorem [2, §6.1], a connected open subset of \(\hat{C} \) whose complement in \(S^2 \) is connected is a disk. As \(T_\ell \) is connected, it follows that \(U \) is a disk, proving (1).

The claim (2) follows from (1) and Lemma 11.3(3).
When neither component of $S^2 - A$ is a point, an annulus A is conformally equivalent to a unique round annulus $\{ z \in \mathbb{C} : 1 < |z| < R \}$, and its modulus $\text{mod } (A)$ is defined to be $\frac{\log R}{2\pi}$ [14].

Theorem 11.5. There exists $\delta > 0$ such that

$$\inf_{\ell \neq k} \text{mod } (S^2 - (\overline{T_\ell} \cup \overline{T_k})) \geq \delta. \tag{11.2}$$

Proof. Suppose that the claim does not hold. Since there are only finitely many Γ-orbits on T_ℓ’s, and the Γ-action is conformal, without loss of generality, we may assume that there exists T_{k_0} and T_{ℓ_0} such that for some infinite sequence $T_\ell \in \Gamma(T_{\ell_0})$, $\text{mod } (S^2 - (\overline{T_{k_0}} \cup \overline{T_\ell})) \to 0$ as $\ell \to 0$. For ease of notation, we set $k_0 = 1$.

Consider the disk $V_1 := S^2 - T_1$. Since Γ_1 is the stabilizer of T_1 with $\Lambda(\Gamma_1) = T_1 - T_1$, Γ_1 acts on V_1 properly discontinuously. Hence by the uniformization theorem together with the fact that Γ_1 is conjugate to $\pi_1(S)$ of a non-toroidal closed surface S of ∂N_0, $V := \Gamma_1 \setminus V_1$ is a closed hyperbolic surface with $\pi_1(V) = \Gamma_1$.

Since T_ℓ’s have disjoint closures, each T_ℓ maps injectively into V. We denote its image by T'_ℓ.

We claim that the diameter of T'_ℓ, measured in the hyperbolic metric of V, goes to 0 as $\ell \to \infty$. As $T_\ell \in \Gamma(T_{\ell_0})$ by the assumption, we may write $T_\ell = \delta_\ell(T_{\ell_0})$ for $\delta_\ell \in \Gamma$. Since Γ_1 acts cocompactly on V_1, there is a compact fundamental domain, say F in V_1, such that $\gamma_\ell(\partial T_\ell) \cap F \neq \emptyset$ for some $\gamma_\ell \in \Gamma_1$. Suppose that the diameter of T_ℓ in the hyperbolic metric of V_1 does not tend to 0. Then by the compactness of F, up to passing to a subsequence, $\gamma_\ell(\partial T_\ell) = \gamma_\ell \delta_\ell(T_{\ell_0})$ converges to a closed set $L \subset \Lambda$ in the Hausdorff topology where L has positive diameter and intersects F non-trivially. In particular, $\text{hull}(L) \cap \mathbb{H}^3 \neq \emptyset$. Fixing $x_0 \in \text{hull}(L) \cap \mathbb{H}^3$, we have a sequence $s_\ell \in \text{hull}(\partial T_{\ell_0}) \cap \mathbb{H}^3$ such that $\gamma_\ell \delta_\ell(s_\ell) \to x_0$. Moreover, we can find $\gamma'_\ell \in \Gamma_{\ell_0}$ so that $(\gamma'_\ell)^{-1}s_\ell \in T_{\ell_0}$ belongs to a fixed compact subset, say, K, of \mathbb{H}^3. Indeed, if the injectivity radius of x_0 is $\epsilon > 0$, then all s_ℓ should lie in the $\epsilon/2$-thick part of the convex hull of $\Lambda(\Gamma_{\ell_0})$ on which Γ_{ℓ_0} acts cocompactly as it is geometrically finite.

Hence $\gamma_\ell \delta_\ell \gamma'_\ell(K)$ accumulates on a neighborhood of x_0. As Γ acts properly discontinuously on \mathbb{H}^3, this means that $\{ \gamma_\ell \delta_\ell \gamma'_\ell \}$ is a finite set, and hence $\gamma_\ell T_\ell = \gamma_\ell \delta_\ell \gamma'_\ell T_{\ell_0}$ is a finite set. It follows that, up to passing to a subsequence, for all ℓ, $\gamma_\ell T_\ell$ is a constant sequence, containing a point in F. As T_ℓ’s are disjoint, $\gamma_\ell \in \Gamma_1$ must be an infinite sequence. On the other hand, if γ_ℓ is an infinite sequence, $T_\ell \cap \gamma_\ell^{-1}F \neq \emptyset$ implies that $\overline{T_\ell} \cap \Lambda(\Gamma_1) \neq \emptyset$, yielding a contradiction. This proves the claim.

Now if the diameter of T'_ℓ is smaller than one quarter of the injectivity radius of V, then we can find a disk D_ℓ in V containing T'_ℓ whose diameter is $1/2$ of the injectivity radius of V; this gives a uniform lower bound, say, δ_0 for the modulus of $S^2 - (\overline{T_\ell_0} \cup \overline{T_\ell})$ for all $\ell \geq \ell_0$ for some $\ell_0 > 1$, contradicting our assumption. This proves the claim. □
If K is a Cantor set of a circle C, we say K has modulus ϵ if
\[(11.3) \quad \inf_{i \neq j} \mod \left(S^2 - (I_i \cup I_j) \right) \geq \epsilon \]
where $C - K = \bigcup I_j$ is a disjoint union of intervals with disjoint closures.
Note that a Cantor set $K \subset C$ has a positive modulus if and only if K is a
uniformly perfect subset as in Definition 5.1.

Theorem 11.6. Let M be a geometrically finite acylindrical manifold of
infinite volume. Then for any $C \in C^*$, $C \cap \Lambda$ contains a Cantor set of
modulus δ' where $\delta' > 0$ depends only on δ as in (11.2).

Proof. This can be proved by a slight adaptation of the proof of [23, Theorem
3.4], in view of Theorem 11.5. Recalling $\Omega = \bigcup_{\ell=1}^{\infty} T_{\ell}$, we write $U := C - \Lambda = \bigcup U_{\ell}$ where $U_{\ell} = C \cap T_{\ell}$. Note that distinct U_{ℓ} have disjoint closures. We
may assume that U is dense without loss of generality. We will say that an
open interval $I = (a, b) \subset C$ with $a \neq b$ is a bridge of type ℓ if $a, b \in \partial U_{\ell}$. We
can then construct a sequence of bridges I_j with disjoint closures precisely
in the same way as in proof of [23, Theorem 3.4]. We first assume that $|I_1| > |C|/2$ by using a conformal map $g \in G^C$. We let I_2 be a bridge of
maximal length among all those which are disjoint from I_1 and of a different
type from I_1. We then enlarge I_1 to a maximal bridge of the same type
disjoint from I_2. For $k \geq 3$, we proceed inductively to define I_k to be a
bridge of maximal length among all bridges disjoint from I_1, \cdots, I_{k-1}. We
have $|I_1| \geq |I_2| \geq |I_3| \cdots, |I_k| \to 0$ and $\cup I_k$ is dense in C. Now $K := C - \cup I_k$
is a desired Cantor set; pick two indices $i < j$.

If I_i and I_j have same types, then $\mod \left(S^2 - (I_i \cup I_j) \right) \geq \delta'$
for some universal constant $\delta' > 0$, using the fact that there must be a bridge I_k with
$1 < k < i$ such that $I_1 \cup I_k$ separates I_i from I_j.

Now if I_i and I_j have different types, say ℓ and k, then as the annulus
$S^2 - (T_{\ell} \cup T_k)$ separates ∂I_i from ∂I_j, we have by [14, Ch II, Thm 1.1],
\[\mod \left(S^2 - (T_{\ell} \cup T_k) \right) \geq \mod \left(S^2 - (T_{\ell} \cup T_k) \right) \delta \]
proving the claim. \hfill \Box

11.3. Applications to H-orbits. The following corollary follows directly
from Theorem 11.6 and Lemma 8.3.

Corollary 11.7. Let $M = \Gamma \backslash H^3$ be a geometrically finite acylindrical man-
ifold. Then for all sufficiently large $k > 1$,
\[F^* \subset (RF_k M) H. \]
In particular, every H-orbit in F^* intersects $W_{k,R}$ for any $R \geq 0$.

Theorem 11.8. Let $M = \Gamma \backslash H^3$ be a geometrically finite acylindrical man-
ifold.

1. For $x \in F^*$, xH is either closed in F^* or dense in F_{Λ}.
2. If xH is closed in F^*, the stabilizer $H_x = \{ h \in H : xh = x \}$ is
 non-elementary.
There are only countably many closed H-orbits in F^*.

(4) Any H-invariant subset in F^* is either a union of finitely many closed H-orbits in F^*, or is dense in F_Λ.

Proof. Claim (1) is immediate from Corollary 9.1 and Corollary 11.7. The statements (2) and (3) follow from Theorem 8.1 combined with Corollary 11.7.

To prove (4), let $E \subset F^*$ be an H-invariant subset, and let X be the closure of E. Suppose X is not F_Λ. Then every H-orbit in E is closed in F^*. We claim that there are only finitely many H-orbits in E. Suppose not. Then by Theorem 11.8, the set E consists of infinitely and countably many closed H-orbits in F^*, so $E = \bigcup_{i \geq 1} x_i H$. We claim that $X = F_\Lambda$, which would yield a contradiction. By Corollary 11.7 and Lemma 8.3, we may assume that all x_i belong to $W^*_k R$ for all sufficiently large $k > 1$ and $R > 0$. As in Proposition 7.2, the set $X \cap W^*_k R$ is compact, and hence the sequence x_i has a limit, say, $x \in X \cap W^*_k R$. We may assume x does not lie in E by replacing E by a smaller subset if necessary. Hence E is not closed. Now $(X - E) \cap W^*_k R$ is non-empty, and we can repeat the proof of Proposition 7.3 to get $X = F_\Lambda$. □

Theorem 1.2 is a special case of the following theorem:

Theorem 11.9. Let $M = \Gamma \backslash \mathbb{H}^3$ be a geometrically finite rigid acylindrical manifold. For any $x \in F^*$, the orbit $x H$ is either closed or dense in F_Λ.

Proof. We suppose $x H$ is not closed in F. By Theorem 11.8, there exists an H-orbit $y H \subset x H$ which does not lie in F^*. We write $y = [g]$ and set $C = (g H)^+$ to be the corresponding circle. Then the circle C is contained in the closure of a component of the domain of discontinuity Ω and is tangent to its boundary $\partial \Omega$. Hence, by Proposition 3.2 (due to Hedlund [10] in this case), the closure $\overline{y H}$ contains a compact H-orbit $z H$. By Corollary 3.4, this forces $x H = F_\Lambda$. □

12. **Arithmetic and Non-arithmetic manifolds**

In this section, we will prove Theorem 1.3 and present a counterexample to it when M_0 is not arithmetic.

A good background reference for this section is [15].

12.1. **Proof Theorem 1.3.** Recall $G = \text{PSL}_2(\mathbb{C})$ and $H = \text{PSL}_2(\mathbb{R})$. A real Lie group $G \subset \text{GL}_N(\mathbb{R})$ is said to be a real algebraic group defined over \mathbb{Q} if there exists a polynomial ideal $I \subset \mathbb{Q}[a_{ij}, \det(a_{ij})^{-1}]$ in $N^2 + 1$ variables such that

$$
\tilde{G} = \{(a_{ij}) \in \text{GL}_N(\mathbb{R}) : p(a_{ij}, \det(a_{ij})^{-1}) = 0 \text{ for all } p \in I\}.
$$

Let $\Gamma_0 \subset G$ be an arithmetic subgroup. This means that there exist a semisimple real algebraic group $\tilde{G} \subset \text{GL}_N(\mathbb{R})$ defined over \mathbb{Q} and a surjective
real Lie group homomorphism $\psi : G \to \tilde{G}$ with compact kernel such that $\psi(\Gamma_0)$ is commensurable with $\tilde{G} \cap \text{GL}_N(\mathbb{Z})$ (cf. [4]).

Let $\Gamma \subset \Gamma_0$ be a geometrically finite acylindrical group, and denote by $p : \Gamma \backslash G \to \Gamma_0 \backslash G$ the canonical projection map. In order to prove Theorem 1.3, we first note that the orbit xH is either closed in F^* or dense in F_Λ by Theorem 11.8.

Suppose that xH is closed in F^*. Write $x = [g]$ and let $C := (gH)^+$ be the corresponding circle. Then, by Theorem 11.8, the stabilizer Γ^C of C in Γ is a non-elementary subgroup and hence is Zariski dense in G^C. Hence the group $\psi(G^C)$ is defined over \mathbb{Q} and the group $\psi(\Gamma^C_0)$ is commensurable with $\psi(G^C) \cap \text{GL}_N(\mathbb{Z})$. By Borel and Harish-Chandra’s theorem [4, Corollary 13.2], Γ^C_0 is a lattice in G^C. Hence the orbit $p(x)H$ has finite volume and is closed in $\Gamma_0 \backslash G$.

When xH is dense in F_Λ, its image $p(x)H$ is dense in $p(F_\Lambda)$. On the other hand, F_Λ has non-empty interior as Λ is connected. Therefore $p(F_\Lambda) \subset \Gamma_0 \backslash G$ is an A-invariant subset with non-empty interior. Since $\Gamma_0 \backslash G$ contains a dense A-orbit, it follows that the set $p(F_\Lambda)$ is dense in $\Gamma_0 \backslash G$. Therefore the image $p(x)H$ is also dense in $\Gamma_0 \backslash G$. The other implications are easy to see.

12.2. Cutting finite volume hyperbolic manifolds. In the rest of this section, we will construct an example of a non-arithmetic manifold M_0 and a rigid acylindrical manifold M which covers M_0 for which Theorem 1.3 fails, as described in Proposition 12.1.

We first explain how to construct a geometrically finite rigid acylindrical manifold M starting from a hyperbolic manifold M_0 of finite volume. We also explain the construction of an arithmetic hyperbolic manifold M_0 which admits a properly immersed geodesic surface. Let Γ_0 be a lattice in G such that $\Delta := H \cap \Gamma_0$ is a cocompact lattice in H. This gives rise to a properly immersed compact geodesic surface $S_0 = \Delta \backslash \mathbb{H}^2$ in the orbifold $M_0 = \Gamma_0 \backslash \mathbb{H}^3$. According to [15, Theorem 5.3.4], by passing to a subgroup of finite index in Γ_0, we may assume that M_0 is a manifold and that S_0 is properly embedded in M_0.

We cut M_0 along S_0. The completion N_0 of a connected component, say, M', of the complement $M_0 - S_0$ is a hyperbolic 3-manifold whose boundary ∂N_0 is totally geodesic and is the union of one or two copies of S_0.

Note that the fundamental group Γ of N_0 can be considered as a subgroup of Γ_0. Indeed, let $p_0 : \mathbb{H}^3 \to M_0$ be the natural projection and E_0 be the closure of a connected component of $p_0^{-1}(M')$. Since E_0 is convex, Γ can be identified with the stabilizer of E_0 in Γ_0. The complete manifold $M = \Gamma \backslash \mathbb{H}^3$ is a geometrically finite manifold whose convex-core boundary is isometric to ∂N_0, and which does not have any rank one cusp. The domain of discontinuity Ω is a dense union of round open disks whose closures are mutually disjoint, that is, Λ is a Sierpinski curve. It follows that M is a rigid geometrically finite acylindrical manifold.
Conversely, any rigid acylindrical geometrically finite manifold M is obtained that way. Indeed, the double M_0 of the convex core N_0 of M along its totally geodesic boundary ∂N_0 is a finite volume hyperbolic 3-manifold.

12.3. Comparing closures of geodesic planes. Let

$$q = q(x_1, x_2, x_3, x_4)$$

be a quadratic form with real coefficients and signature (3, 1). The hyperbolic space can be seen as

$$H^3 \simeq \{ [v] : v \in \mathbb{R}^4, \quad q(v) < 0 \}$$

where $[v]$ denotes the real line containing v, and the group G is isomorphic to the identity component $SO(q)^\circ$ of the special orthogonal group. When $v \in \mathbb{R}^4$ is such that $q(v) > 0$, the restriction $q|_{v^\perp}$ is a quadratic form of signature (2, 1) where v^\perp denotes the orthogonal complement to v with respect to q. Therefore

$$H_v := v^\perp \cap H^3$$

is a totally geodesic plane in H^3 and the stabilizer $G_v = SO(q|_{v^\perp})^\circ$ is isomorphic to $PSL_2(\mathbb{R})$. Hence the space C of circles $C \subset S^2$ or, equivalently, of geodesic planes in H^3, can be seen as

$$C \simeq \{ H_v : v \in \mathbb{R}^4, \quad q(v) > 0 \}.$$

We now assume that the coefficients of the quadratic form q belong to a totally real number field K of degree d such that for each non-trivial embedding σ of K in \mathbb{R}, the quadratic form q^σ has signature (4, 0) or (0, 4), so that the orthogonal group $SO(q^\sigma)$ is compact.

Now any arithmetic subgroup $\Gamma_0 \subset G$ which contains a cocompact Fuchsian group is commensurable with

$$G \cap SL_4(\mathbb{O})$$

where $G = SO(q)^\circ$ and \mathbb{O} is the ring of integers of K (cf. [15, Section 10.2]). In this case, the corresponding finite volume hyperbolic orbifold $M_0 = \Gamma_0 \backslash H^3$ is an arithmetic 3-orbifold with a properly immersed totally geodesic arithmetic surface. This orbifold is compact if and only if q does not represent 0 over K.

We introduce the set of rational positive lines:

$$C_K := \{ [v] : v \in K^4, \quad q(v) > 0 \},$$

which can also be thought as the set of rational planes $\{ H_v : v \in K^4, \quad q(v) > 0 \}$.

For $v \in C_K$, the restriction $q|_{v^\perp}$ is defined over K. The group $G_v(\mathbb{O}) := G_v \cap SL_4(\mathbb{O})$ is an arithmetic subgroup of G_v. We call $P_v := G_v(\mathbb{O}) \backslash H^2$ an arithmetic geodesic surface of M_0. We recall that every properly embedded geodesic plane Q of M_0 is arithmetic, i.e. we have $Q = P_v$ for some $[v] \in C_K$.
By passing to a finite cover, we assume P_v is properly imbedded in M_0, and let $\Gamma \subset \Gamma_0$ be the fundamental group of a component $M_0 - P_v$ as discussed in the subsection 12.2.

12.4. Arithmetic examples. We begin by a very explicit example of arithmetic lattice with $K = \mathbb{Q}$. We consider the following family of quadratic forms

$$q_a := q_0(x_1, x_2, x_3) + ax_4^2$$

where $q_0(x_1, x_2, x_3) = 7x_1^2 + 7x_2^2 - x_3^2$ and a is a positive integer.

One can check, using the Hasse-Minkowski principle [25, Theorem 8 in Chapter 4], that

1. q_0 does not represent 0 over \mathbb{Q};
2. q_a represents 0 over \mathbb{Q} iff a is a square mod 7 and $a \neq -1$ mod 8;

We choose a positive integer a satisfying condition (2). For instance $a = 1$ or $a = 2$ will do. We denote by $\Gamma_{a,0} := \text{SO}(q_a, \mathbb{Z})^\circ$ the corresponding arithmetic lattice and by $M_{a,0} = \Gamma_{a,0} \backslash \mathbb{H}^3$ the corresponding arithmetic hyperbolic orbifold.

We introduce the geodesic plane \mathbb{H}_{v_0} associated to the vector

$$v_0 = (0, 0, 0, 1).$$

Note that, seen in the model (12.1) of \mathbb{H}^3 given by the quadratic form q_a, the geodesic plane \mathbb{H}_{v_0} does not depend on a. We fix the geodesic orbifold $S_{a,0} := P_{v_0}$. Passing as above to a finite cover, we may assume that $M_{a,0}$ is a hyperbolic manifold and that $S_{a,0}$ is a properly embedded compact geodesic surface. After cutting along $S_{a,0}$, we get a hyperbolic 3-manifold $N_{a,0}$ whose geodesic boundary $\partial N_{a,0}$ is a union of one or two copies of $S_{a,0}$. We denote by Γ_a the fundamental group of $N_{a,0}$ and by

$$M_a := \Gamma_a \backslash \mathbb{H}^3$$

the corresponding geometrically finite rigid acylindrical hyperbolic manifold whose convex core has compact boundary. As we have seen, the group Γ_a is naturally a subgroup of $\Gamma_{a,0}$ and there is a natural covering map

$$p_a : M_a \to M_{a,0}$$

to which Theorem 1.3 applies.

12.5. Non-arithmetic examples. The class of non-arithmetic hyperbolic 3-manifolds that we will now construct are some of those introduced by Gromov and Piatetski-Shapiro in [13].

Choose two positive integers a, a' such that $a/a' \notin \mathbb{Q}^2$, for instance $a = 1$ and $a' = 2$. Since the surfaces $S_{a,0}$ and $S_{a',0}$ are isometric, and the boundaries $\partial N_{a,0}$ and $\partial N_{a',0}$ are union of one or two copies of these surfaces, we can glue one or two copies of the 3-manifolds $N_{a,0}$ and $N_{a',0}$ along their boundaries and get a connected finite volume hyperbolic manifold M_0 with no boundary. We write

$$M_0 = \Gamma_0 \backslash \mathbb{H}^3.$$
By [13], the lattice \(\Gamma_0 \) of \(G \) is non-arithmetic. The group \(\Gamma_a \) is also naturally a subgroup of \(\Gamma_0 \) and there is a natural covering map
\[
p : M_a \rightarrow M_0.
\]

Theorem 1.4 follows from the following:

Proposition 12.1. Let \(S \) denote the boundary of the convex core of \(M_a \). Let \(P \subset M_a \) be a geodesic plane that intersects \(S \) but is neither contained in \(S \) nor orthogonal to \(S \). Then the image \(p(P) \) is dense in \(M_0 \).

In particular, there exists a closed geodesic plane \(P \subset M_a \) that intersects \(M^*_a \) and whose image \(p(P) \) is dense in \(M_0 \).

We first need to compute the angle \(0 \leq \theta_{a,v} \leq \pi/2 \) between two rational planes in \(\mathbb{H}^3 \); the following lemma follows from a direct computation.

Lemma 12.2. Let \(v = (w,x_4) \) with \(w \in \mathbb{R}^3, x_4 \in \mathbb{R} \) with \(q_a(v) > 0 \).

The intersection of the two geodesic planes \(\mathbb{H}_v \) and \(\mathbb{H}_{v_0} \) is a geodesic line \(D_w \), independent of \(a \) and \(x_4 \).

The angle \(\theta_{a,v} := \angle(\mathbb{H}_v, \mathbb{H}_{v_0}) \) between these geodesic planes is given by

\[
\cos^2(\theta_{a,v}) = \frac{\langle v_0, v \rangle^2_{q_a}}{q_a(v_0)q_a(v)} = \frac{ax_4^2}{q_0(w) + ax_4^2}.
\]

Therefore we have:

Corollary 12.3. Fix \(w \in \mathbb{Q}^3 - \{0\} \) and set
\[
\Theta_{a,w} := \{\theta_{a,(w,x)} : x \in \mathbb{Q} - \{0\}\}.
\]

If \(a/a' \) is not a square in \(\mathbb{Q} \), then
\[
\Theta_{a,w} \cap \Theta_{a',w} = \emptyset.
\]

Proof. For \(v = (w,x_4) \) and \(v' = (w',x'_4) \) with \(x_4 \) and \(x'_4 \) in \(\mathbb{Q} - \{0\} \), by Formula (12.2), an equality \(\theta_{a,v} = \theta_{a',v'} \) would imply \(ax_4^2 = a'x'_4^2 \), and hence \(a/a' \in \mathbb{Q}^2 \). This proves the claim. \(\square \)

Proof of Proposition 12.1. By Theorem 1.2, which is due to Shah and Ratner independently ([26], [24]) for a hyperbolic manifold of finite volume, the geodesic plane \(Q := p(P) \) is either closed or dense in \(M_0 \). We assume by contradiction that \(Q \) is closed in \(M_0 \).

Since \(Q \cap N_{a,0} \) is closed, as explained in Theorem 1.3, \(Q \) must be the image in \(M_0 \) of a rational plane \(\mathbb{H}_v \) with \(v = (w,x_4) \in \mathbb{Q}^4 \), in the model (12.1) of \(\mathbb{H}_3 \) given by the quadratic form \(q_a \). Similarly, since \(Q \cap N_{a',0} \) is closed, \(Q \) must be the image in \(M_0 \) of a rational plane \(\mathbb{H}_{v'} \) with \(v' = (w',x'_4) \in \mathbb{Q}^4 \), in the model of \(\mathbb{H}_3 \) given by the quadratic form \(q_{a'} \).

We can choose these lifts such that the two intersection geodesics \(\mathbb{D}_w = \mathbb{H}_v \cap \mathbb{H}_{v_0} \) and \(\mathbb{D}_{w'} = \mathbb{H}_{v'} \cap \mathbb{H}_{v_0} \) are equal and the corresponding two angles between these intersecting planes are equal. This says that \(w \) and \(w' \) are equal up to a multiplicative factor, and that \(\theta_{a,v} = \theta_{a',v'} \). This contradicts Corollary 12.3. \(\square \)
Remark 12.4. After seeing the result proven in the paper of Fisher, Lafont, Miller and Stover [11], we realized that Proposition 12.1, and the main result in [26] together can also be used to show that the non-arithmetic manifolds in section 12.5 can have at most finitely many properly immersed geodesic planes. To see this using the notation of Proposition 12.1, note that by [26], all but finitely many closed planes in M_0 intersect $p(S)$. By Proposition 12.1, they must intersect $p(S)$ orthogonally. On the other hand, for any infinite collection of planes in M_0, their normal bundles form a dense subset in the tangent bundle of M by [26]. Therefore it follows that there are at most finitely many closed planes in M_0. For a more general result in this direction, see [11].

References

[29] F. Waldhausen, *On irreducible 3-manifolds which are sufficiently large*. Annals. Math. 87 (1968), 56-88