Geometric prime number theorems

Hee Oh

Yale University
Prime number theorem

Set

\[\pi(T) := \# \{ p : \text{prime} \leq T \} \]

Theorem (La Vallée-Poussin, Hadamard 1896)

As \(T \to \infty \),

\[\pi(T) \sim \text{Li}(T) := \int_2^T \frac{dt}{\log t}. \]

\[\text{Li}(T) \sim \frac{T}{\log T} \]
Prime number theorem

Set

\[\pi(T) := \# \{ p : \text{prime} \leq T \} \]

Theorem (La Vallée-Poussin, Hadamard 1896)

As \(T \to \infty \),

\[\pi(T) \sim \text{Li}(T) := \int_2^T \frac{dt}{\log t} \]

\[\text{Li}(T) \sim \frac{T}{\log T} \]
PNT is closely related to the analytic properties (in particular, zeros) of the Riemann zeta function \(\zeta(s) \)

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} (1 - p^{-s})^{-1} \quad \text{analytic for } \text{Re}(s) > 1
\]

In fact, PNT is equivalent to:

- \(\zeta \) is analytic and non-vanishing on \(\text{Re}(s) \geq 1 \) except for the simple pole at \(s = 1 \)
PNT is closely related to the analytic properties (in particular, zeros) of the Riemann zeta function $\zeta(s)$

$$
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p (1 - p^{-s})^{-1} \quad \text{analytic for } \Re(s) > 1
$$

In fact, PNT is equivalent to:

ζ is analytic and non-vanishing on $\Re(s) \geq 1$ except for the simple pole at $s = 1$
Non-vanishing of ζ on a half-plane $\text{Re}(s) > 1 - \epsilon$? (it would imply $\pi(T) = \text{Li}(T) + O(T^{1-\eta})$ for some $\eta > 0$)

Riemann Hypothesis: $\zeta(s) \neq 0$ on $\text{Re}(s) > 1/2$?
- Non-vanishing of ζ on a half-plane $\text{Re}(s) > 1 - \epsilon$? (it would imply $\pi(T) = \text{Li}(T) + O(T^{1-\eta})$ for some $\eta > 0$)

- Riemann Hypothesis: $\zeta(s) \neq 0$ on $\text{Re}(s) > 1/2$?
Gaussian primes

For an ideal $P = (a + bi) \subset \mathbb{Z}[i]$, $N(P) = a^2 + b^2$.

$$\pi(T) = \# \{ P : \text{prime ideal in } \mathbb{Z}[i] : N(P) \leq T \}$$
Gaussian primes in sectors

For an ideal $P = (a + bi) \subset \mathbb{Z}[i],$

$$\theta(P) = \text{Arg}(a + bi) \in [0, \pi/2).$$

A natural question is

- Are the **angular components** of Gaussian primes equidistributed?
Theorem (Hecke 1920)

For any $0 \leq \theta_1 < \theta_2 \leq \pi/2$,

$$\#\{ P : \text{prime in } \mathbb{Z}[i] : N(P) \leq T, \ \theta_1 < \theta(P) < \theta_2 \} \sim \left(\frac{\theta_2 - \theta_1}{\pi/2} \right) \text{Li}(T)$$
This result is a consequence of the following analytic properties of the family of Hecke L-functions twisted by characters of S^1. For each character χ of S^1,

$$L(s, \chi) = \prod_P (1 - \chi(e^{i\theta(P)}N(P)^{-s}))^{-1}$$

is analytic and non-vanishing on $\text{Re}(s) \geq 1$, with the only exception that $L(s, 1)$ has a simple pole at $s = 1$.
We will now discuss two geometric analogues of the prime number theorem:

- PNT for **geometrically finite** hyperbolic 3-manifolds
- PNT for **hyperbolic** rational maps
Upper half space model of Hyperbolic 3-space

\[\mathbb{H}^3 = \{ (x_1, x_2, y) : y > 0 \}, \quad ds = \frac{\sqrt{dx_1^2 + dx_2^2 + dy^2}}{y} \]

A complete hyperbolic 3-mfld \(M \) is given as

\[M = \Gamma \backslash \mathbb{H}^3 \]

where \(\Gamma \) is a discrete (torison-free) subgroup of \(\text{Isom}^+(\mathbb{H}^3) \).
Poincaré extension theorem

- $\text{PSL}_2(\mathbb{C})$ acts on $\partial(\mathbb{H}^3) = \hat{\mathbb{C}}$ by Möbius transformations;

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} z = \frac{az + b}{cz + d}.
\]

- $\text{PSL}_2(\mathbb{C}) = \langle \text{Inv} \mathbb{C} : \text{C circle} \rangle = \langle \text{Inv} \hat{\mathbb{C}} : \text{C circle} \rangle = \text{Isom}^+(\mathbb{H}^3)$
Definition

A Kleinian group Γ is a discrete subgp of $\text{PSL}_2(\mathbb{C}) = \text{Isom}^+(\mathbb{H}^3)$.

A complete hyperbolic 3-mfld M is of the form

$$M = \Gamma \backslash \mathbb{H}^3.$$

for a Kleinian group Γ.

Definition

$M = \Gamma \backslash \mathbb{H}^3$ is geometrically finite if \exists a finite-sided fund. domain.

$$\left\{ \text{finite-volume hyp. 3-mflds} \right\} \subset \left\{ \text{geometrically finite hyp. 3-mflds} \right\}$$
A Kleinian group Γ is a discrete subgp of $\text{PSL}_2(\mathbb{C}) = \text{Isom}^+(\mathbb{H}^3)$.

A complete hyperbolic 3-mfld M is of the form

$$M = \Gamma \backslash \mathbb{H}^3.$$

for a Kleinian group Γ.

Definition

$M = \Gamma \backslash \mathbb{H}^3$ is geometrically finite if \exists a finite-sided fund. domain.

$$\left\{\begin{array}{c}
\text{finite-volume} \\
\text{hyp. 3-mflds}
\end{array}\right\} \subset \left\{\begin{array}{c}
\text{geometrically finite} \\
\text{hyp. 3-mflds}
\end{array}\right\}$$
Ex of g.f. hyperbolic 3 mflds

For circles C_1, \cdots, C_n with mutually disj. interiors, set

$$\Gamma := \langle \text{Inversions w.r.t } C_i : i = 1, \cdots, n \rangle \lt PSL_2^\pm(\mathbb{C})$$

Poincare theorem says:

- Γ is discrete;
- common exterior of the hemispheres above C_i’s is a fund. domain for Γ.

$$\rightsquigarrow \Gamma \backslash \mathbb{H}^3 \text{ is a g.f mfld with } Vol(\Gamma \backslash \mathbb{H}^3) = \infty.$$
Geometrically finite hyperbolic 3 mflds

- Finite volume $M = \text{compact} \cup \{\text{f.m. cusps}\}$
- Geom. finite $M = \text{compact} \cup \{\text{f.m. cusps}\} \cup \{\text{f.m. flares}\}$
Mostow rigidity theorem implies there are only countably many hyperbolic 3-mflds of finite volume, up to isometry.

Density conjecture (Bers, Sullivan, Thurston)

Geometrically finite groups are open and dense in the space of all fin. generated Kleinian groups

Proved by Namazi-Suoto and Ohshika around 2011, using the tameness theorem (Agol, Calegari-Gabai) and the ending lamination theorem (Minsky-Canary-Brock).
Mostow rigidity theorem implies there are only countably many hyperbolic 3-mflds of finite volume, up to isometry.

Density conjecture (Bers, Sullivan, Thurston)

Geometrically finite groups are open and dense in the space of all fin. generated Kleinian groups

Proved by Namazi-Suoto and Ohshika around 2011, using the tameness theorem (Agol, Calegari-Gabai) and the ending lamination theorem (Minsky-Canary-Brock).
PNT for g.f. hyperbolic 3-mfld M

- Analogue of a prime: **primitive closed geodesic** C
- Size of a prime: $\exp(\ell(C))$
PNT for g.f. hyperbolic 3-mfld M

- Analogue of a prime: primitive closed geodesic C
- Size of a prime: $\exp(\ell(C))$
- Angular component of a prime: holonomy $\theta(C) \in S^1$
Closed geodesics in hyperbolic 3-mfld $M = \Gamma \backslash \mathbb{H}^3$

- $C \Leftrightarrow \Gamma$-conj. class of $\gamma_C \sim \begin{pmatrix} a + bi & 0 \\ 0 & (a + bi)^{-1} \end{pmatrix}$.
- $\exp \ell(C) = N(a + bi) = a^2 + b^2 > 1$
- $\theta(C) = \text{Arg}(a + bi)$.

![Diagram of a closed geodesic in hyperbolic 3-manifold](image)
Set

\[\mathcal{P}_T := \{ C : \text{prim. closed geodesic in } M \text{ of } e^{\ell(C)} < T \}. \]

For g.f. \(M \), \(\#\mathcal{P}_T < \infty \)

Question

- What is the asymptotic of \(\#\mathcal{P}_T \)?
- Is \(\{ \theta_C : C \in \mathcal{P}_T \} \) equidistributed in \(S^1 \)?
Set

\[\mathcal{P}_T := \{ C : \text{prim. closed geodesic in } M \text{ of } e^{\ell(C)} < T \} . \]

▶ For g.f. \(M \), \(\# \mathcal{P}_T < \infty \)

Question

▶ What is the asymptotic of \(\# \mathcal{P}_T \)?

▶ Is \(\{ \theta_C : C \in \mathcal{P}_T \} \) equidistributed in \(S^1 \)?
Set

\[P_T := \{ C : \text{prim. closed geodesic in } M \text{ of } e^{\ell(C)} < T \} . \]

▷ For g.f. \(M \), \(\#P_T < \infty \)

Question

▷ What is the asymptotic of \(\#P_T \)?
▷ Is \(\{ \theta_C : C \in P_T \} \) equidistributed in \(S^1 \)?
Definition (Limit set of Γ)

Λ_{Γ}: the set of all accum. pts of $\Gamma(z)$ for any $z \in \hat{\mathbb{C}}$

- If $\text{Vol}(M) < \infty$, $\Lambda_{\Gamma} = \hat{\mathbb{C}}$.
- If M is g.f. and $\text{Vol}(M) = \infty$, then $\dim_H(\Lambda_{\Gamma}) < 2$.
Definition (Limit set of Γ)

Λ_Γ: the set of all accum. pts of $\Gamma(z)$ for any $z \in \hat{\mathbb{C}}$

- If $\text{Vol}(M) < \infty$, $\Lambda_\Gamma = \hat{\mathbb{C}}$.
- If M is g.f. and $\text{Vol}(M) = \infty$, then $\dim_H(\Lambda_\Gamma) < 2$.
Theorem (Roblin 2003, Margulis-Mohammadi-O. 2014)

Let $M = \Gamma \backslash \mathbb{H}^3$ be geom. finite and let $\delta := \text{dim}_H(\Lambda \Gamma)$.

1. As $T \to \infty$,

 \[\# \mathcal{P}_T \sim \text{Li}(T^\delta) \]

2. If M is non-fuchsian (i.e. $\Lambda \not\subset S^1$), then for any $0 \leq \theta_1 < \theta_2 \leq \pi$

 \[\# \{ C \in \mathcal{P}_T : \theta_1 < \theta_C < \theta_2 \} \sim \left(\frac{\theta_2 - \theta_1}{\pi} \right) \text{Li}(T^\delta). \]

► For $\text{Vol}(M) < \infty$, these are due to Selberg, Margulis (1970) and Sarnak-Wakayama (1999) resp.
PNT for GF manifolds

Theorem (Roblin 2003, Margulis-Mohammadi-O. 2014)

Let $M = \Gamma \backslash \mathbb{H}^3$ be geom. finite and let $\delta := \dim_H(\Lambda \Gamma)$.

1. As $T \to \infty$,
 $$\#\mathcal{P}_T \sim Li(T^\delta)$$

2. If M is non-fuchsian (i.e. $\Lambda \not\subset S^1$), then for any $0 \leq \theta_1 < \theta_2 \leq \pi$
 $$\# \{C \in \mathcal{P}_T : \theta_1 < \theta_C < \theta_2 \} \sim \left(\frac{\theta_2 - \theta_1}{\pi} \right) Li(T^\delta).$$

For $\text{Vol}(M) < \infty$, these are due to Selberg, Margulis (1970) and Sarnak-Wakayama (1999) resp.
Theorem (Stoyanov 2011, M-M-O 2014, Sarkar-Winter 2021)

Let $M = \Gamma \backslash \mathbb{H}^3$ be geom. finite with no cusps.

1. As $T \to \infty$,

 $$\#\mathcal{P}_T = Li(T^\delta) + O(T^{\delta-\epsilon})$$

2. If M is non-fuchsian,

 $$\#\{C \in \mathcal{P}_T : \theta_1 < \theta_C < \theta_2\} = \left(\frac{\theta_2-\theta_1}{\pi}\right) Li(T^\delta) + O(T^{\delta-\epsilon}).$$

▶ For $\text{Vol}(M) < \infty$, Selberg (1970) and Sarnak-Wakayama (1999)
A rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is

$$f(z) = \frac{p(z)}{q(z)} = \frac{a_m z^m + \cdots + a_0}{b_n z^n + \cdots + b_0}$$

for relative prime poly. p and q.

Fundamental problem in the dynamics of rational maps is to understand the behavior of successive iterates f, f^2, f^3, \ldots where

$$f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ times}}.$$
Iterated Rational maps

A rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is

$$f(z) = \frac{p(z)}{q(z)} = \frac{a_mz^m + \cdots + a_0}{b_nz^n + \cdots + b_0}$$

for relative prime poly. p and q.

Fundamental problem in the dynamics of rational maps is to understand the behavior of successive iterates f, f^2, f^3, \ldots where

$$f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{--times}}.$$
Succesive iterations

Example

\[f_c(z) = z^2 + c, \]

\[f_c^2(z) = (z^2 + c)^2 + c = z^4 + 2cz^2 + c^2 + c, \]
\[f_c^3(z) = z^8 + 4cz^6 + 2c(3c + 1)z^4 + 4c^2(c + 1)z^2 + c^2(c + 1)^2 \]
\[\vdots \]
\[f_c^k(z) = z^{2^k} + \cdots \]

Definition

\(f, g \): conjugate if \(g = h \circ f \circ h^{-1} \) for some \(h \in \text{Mob}(\hat{\mathbb{C}}) \)
For $f = p/q$, $\text{deg}(f) = \max\{\text{deg } p, \text{deg } q\}$

- If $\text{deg}(f) = 1$, the dynamics of f^k is very simple.
- If $\text{deg}(f) \geq 2$, $\text{deg}(f^k) = d^k$ grows exp. fast which makes the dynamics of iterations quite complicated.

Ex: Any quad. poly. is conjugate to unique

$$f_c(z) = z^2 + c$$

so the quadratic parameter space is \mathbb{C}. Already for quad. poly, many fund. problems remain open.
For $f = p/q$, $\deg(f) = \max\{\deg p, \deg q\}$

- If $\deg(f) = 1$, the dynamics of f^k is very simple.
- If $\deg(f) \geq 2$, $\deg(f^k) = d^k$ grows exp. fast which makes the dynamics of iterations quite complicated.

Ex: Any quad. poly. is conjugate to unique

$$f_c(z) = z^2 + c$$

so the quadratic parameter space is \mathbb{C}. Already for quad. poly, many fund. problems remain open.
Both Kleinian gps and Iterated rational maps define dynamical system on $\hat{\mathbb{C}}$. Around 1980, Sullivan proposed a dictionary between the two:

<table>
<thead>
<tr>
<th>Finitely generated Kleinian gps</th>
<th>Rational maps of $d \geq 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit sets</td>
<td>Julia sets</td>
</tr>
<tr>
<td>Geom. finite gps without cusps</td>
<td>Hyp. rational maps</td>
</tr>
</tbody>
</table>

In view of this dictionary, it is natural to ask if we have an analogue of PNT for hyperbolic rational maps.
Both Kleinian gps and Iterated rational maps define dynamical system on \(\hat{\mathbb{C}} \). Around 1980, Sullivan proposed a dictionary between the two:

<table>
<thead>
<tr>
<th>Finitely generated Kleinian gps</th>
<th>Rational maps of (d \geq 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit sets</td>
<td>Julia sets</td>
</tr>
<tr>
<td>Geom. finite gps without cusps</td>
<td>Hyp. rational maps</td>
</tr>
</tbody>
</table>

\[
\vdots
\]

PNT \hspace{2cm} PNT?

In view of this dictionary, it is natural to ask if we have an analogue of PNT for hyperbolic rational maps.
Assume $\deg(f) \geq 2$.

Definition

J_f is the set of $z \in \hat{\mathbb{C}}$ around which $\{f^k : k = 1, 2, \cdots\}$ is chaotic (=not normal)

Ex: For $f(z) = z^2$, $f^k(z) = z^{2^k}$.

- If $|z| < 1$, $f^k \to 0$ uniformly in a nbd of z;
- If $|z| > 1$, $f^k \to \infty$ uniformly in a nbd of z.

So

$$J_f = \{|z| = 1\}$$
Assume \(\deg(f) \geq 2 \).

Definition

\(J_f \) is the set of \(z \in \mathbb{C} \) around which \(\{ f^k : k = 1, 2, \ldots \} \) is chaotic (=not normal).

Ex: For \(f(z) = z^2 \), \(f^k(z) = z^{2^k} \).

- If \(|z| < 1 \),
 \[f^k \rightarrow 0 \] uniformly in a nbd of \(z \);
- If \(|z| > 1 \),
 \[f^k \rightarrow \infty \] uniformly in a nbd of \(z \).

So

\[J_f = \{ |z| = 1 \} \]
Julia set of $z^2 - 1$: Basilica
Julia sets of $f_c(z) = z^2 + c$: totally disconnected or connected
Hyperbolic rational map

Definition

f is hyperbolic if for each z with $f'(z) = 0$,

$$\{f^k(z) : k = 1, 2, \ldots\} \cap J_f = \emptyset.$$

Equivalently, $f^k : J_f \to J_f$ is unif. expanding for all k.

Ex: $f = z^2$ has a uniq. critical pt 0. Since $f^k(0) = 0 \ \forall k$ and $J_f = \{|z| = 1\}$, f is hyp.

Alternatively, note that $|(f^k)'| = 2^k$ on J_f.
Hyperbolic rational map

Definition

f is hyperbolic if for each z with $f'(z) = 0$,

$$\{ f^k(z) : k = 1, 2, ... \} \cap J_f = \emptyset.$$

Equivalently, $f^k : J_f \rightarrow J_f$ is uniformly expanding for all k.

Ex: $f = z^2$ has a unique critical point 0. Since $f^k(0) = 0 \ \forall k$ and $J_f = \{|z| = 1\}$, f is hyperbolic.

Alternatively, note that $|(f^k)'| = 2^k$ on J_f.
Generic hyperbolicity conjecture

Hyperbolic rational maps are \textbf{dense} in \text{Rat}.

\textbf{Ex: Mandelbrot set}
\[M := \{ c \in \mathbb{C} : \text{Julia set of } f_c(z) = z^2 + c \text{ is connected} \} \]
\begin{itemize}
 \item For \(c \notin M \), \(f_c \) is hyp.;
 \item For \(c \in \partial(M) \), \(f_c \) is not hyp.;
 \item For \(c \in M \), \(f_c \) is hyp. iff \(c \in \text{Int}(M) \) (GHC).
\end{itemize}
Generic hyperbolicity conjecture

Hyperbolic rational maps are dense in Rat.

Ex: Mandelbrot set

$\mathcal{M} := \{ c \in \mathbb{C} : \text{Julia set of } f_c(z) = z^2 + c \text{ is connected} \}$

- For $c \notin \mathcal{M}$, f_c is hyp.;
- For $c \in \partial(\mathcal{M})$, f_c is not hyp.;
- For $c \in \mathcal{M}$, f_c is hyp. iff $c \in \text{Int}(\mathcal{M})$ (GHC).
PNT for a rational map \(f \) with \(d \geq 2 \)

Analogue of a prime: **primal periodic orbit**

\(\hat{z} = \{ z \mapsto f(z) \mapsto \cdots \mapsto f^{n-1}(z) \} \) of minimal period \(n \).

Definition

For a primal periodic orbit \(\hat{z} \) of period \(n \), the multiplier of \(\hat{z} \) is

\[\lambda(\hat{z}) := (f^n)'(z) \in \mathbb{C}. \]

- size of the periodic orbit \(\hat{z} \): \(|\lambda(\hat{z})| \)
- angular component (holonomy): \(\theta(\hat{z}) = \text{Arg} \lambda(\hat{z}) \in [0, 2\pi) \)
PNT for a rational map f with $d \geq 2$

Analogue of a prime: **primitive periodic orbit**

$\hat{z} = \{ z \mapsto f(z) \mapsto \cdots \mapsto f^{n-1}(z) \}$ of minimal period n.

Definition

For a prim. periodic orbit \hat{z} of period n, the multiplier of \hat{z} is

$$\lambda(\hat{z}) := (f^n)'(z) \in \mathbb{C}.$$

- size of the periodic orbit \hat{z}: $|\lambda(\hat{z})|
- angular component (holonomy): $\theta(\hat{z}) = \text{Arg } \lambda(\hat{z}) \in [0, 2\pi)$
Periodic orbits of f_c

$f_c(z) = z^2 + c = z$ gives $z = \frac{1 \pm \sqrt{1 - 4c}}{2}$: two periodic orbits of period 1 with multipliers

$$f'_c(z) = 1 \pm \sqrt{1 - 4c}$$

$f_c^2(z) = z^4 + 2cz^2 + c^2 + c = z$ gives one primitive periodic orbit of period 2: $z = \frac{1 \pm \sqrt{-3 - 4c}}{2}$ with multiplier

$$(f_c^2)'(z) = 2 - 4c$$

...
PNT for rational maps

\[\mathcal{P}_T := \{ \hat{z} \text{ prim. periodic orbit of } f : |\lambda(\hat{z})| < T \}. \]

- If \(f \) is hyperbolic, \(\# \mathcal{P}_T < \infty \).

Theorem (O.-Winter, 2016)

\(f \) is hyperbolic rational map of \(d \geq 2 \).

1. If \(f \not\sim z^\pm d \),

\[\# \mathcal{P}_T = \text{Li}(T^\delta) + O(T^{\delta - \epsilon}) \]

where \(0 < \delta = \text{dim}_H(J) < 2 \).

2. If \(J \not\subset S^1 \), for any \(0 \leq \theta_1 < \theta_2 \leq 2\pi \),

\[\#\{ \hat{z} \in \mathcal{P}_T : \theta_1 < \theta(\hat{z}) < \theta_2 \} = \text{Li}(T^\delta) \cdot \frac{\theta_2 - \theta_1}{2\pi} + O(T^{\delta - \epsilon}) \]
PNT for rational maps

\[\mathcal{P}_T := \{ \hat{z} \text{ prim. periodic orbit of } f : |\lambda(\hat{z})| < T \}. \]

- If \(f \) is hyperbolic, \(\# \mathcal{P}_T < \infty \).

Theorem (O.-Winter, 2016)

\(f \): hyperbolic rational map of \(d \geq 2 \).

1. If \(f \not\sim z^{\pm d} \),
 \[\# \mathcal{P}_T = \text{Li}(T^\delta) + O(T^{\delta - \epsilon}) \]
 where \(0 < \delta = \text{dim}_H(J) < 2 \).

2. If \(J \not\subset S^1 \), for any \(0 \leq \theta_1 < \theta_2 \leq 2\pi \),
 \[\#\{ \hat{z} \in \mathcal{P}_T : \theta_1 < \theta(\hat{z}) < \theta_2 \} = \text{Li}(T^\delta) \cdot \frac{\theta_2 - \theta_1}{2\pi} + O(T^{\delta - \epsilon}) \]
\[\mathcal{P}_T := \{ \hat{z} \text{ prim. periodic orbit of } f : |\lambda(\hat{z})| < T \}. \]

- If \(f \) is hyperbolic, \(\#\mathcal{P}_T < \infty \).

Theorem (O.-Winter, 2016)

\(f \): hyperbolic rational map of \(d \geq 2 \).

1. If \(f \not\sim z^{\pm d} \),
 \[\#\mathcal{P}_T = \text{Li}(T^{\delta}) + O(T^{\delta-\epsilon}) \]
 where \(0 < \delta = \text{dim}_H(J) < 2 \).

2. If \(J \not\subset S^1 \), for any \(0 \leq \theta_1 < \theta_2 \leq 2\pi \),
 \[\#\{ \hat{z} \in \mathcal{P}_T : \theta_1 < \theta(\hat{z}) < \theta_2 \} = \text{Li}(T^{\delta}) \cdot \frac{\theta_2 - \theta_1}{2\pi} + O(T^{\delta-\epsilon}) \]
This theorem is obtained by establishing a zero-free half plane of the associated zeta functions beyond the line \(\text{Re}(s) = \delta \):

Define

\[
\zeta(s) = \prod_{\hat{z} \in \mathcal{P}} (1 - |\lambda(\hat{z})|^{-s})^{-1}
\]

and for a character \(\chi \) of \(S^1 \),

\[
\zeta(s, \chi) = \prod_{\hat{z} \in \mathcal{P}} (1 - \chi(e^{i\theta(\hat{z})})|\lambda(\hat{z})|^{-s})^{-1};
\]

they are analytic on \(\text{Re}(s) > \delta \).
Theorem (O.-Winter, 2016)

1. If $f \not\sim z^{\pm \delta}$, $\exists \epsilon > 0$ s.t. ζ is non-vanishing on $\text{Re}(s) \geq \delta - \epsilon$ except for the simple pole $s = \delta$;

2. If $J \not\subset S^1$, then $\exists \epsilon > 0$ s.t. for any non-trivial character χ of S^1, $\zeta(s, \chi)$ is non-vanishing on $\text{Re}(s) \geq \delta - \epsilon$.

![Diagram of a plane with a shaded region and a vertical line at Re(s) = \delta - \epsilon]