CLOSED GEODESICS AND HOLONOMIES FOR KLEINIAN
MANIFOLDS

GREGORY MARGULIS, AMIR MOHAMMADI, AND HEE OH

ABSTRACT. For a rank one Lie group G and a Zariski dense and geo-
metrically finite subgroup I' of G, we establish the joint equidistribution
of closed geodesics and their holonomy classes for the associated locally
symmetric space. Our result is given in a quantitative form for geo-
metrically finite real hyperbolic manifolds whose critical exponents are
big enough. In the case when G = PSLy(C), our results imply the
equidistribution of eigenvalues of elements of I' in the complex plane.

When I' is a lattice, the equidistribution of holonomies was proved
by Sarnak and Wakayama in 1999 using the Selberg trace formula.

1. INTRODUCTION

A rank one locally symmetric space X is of the form I'\G/K where G
is a connected simple linear Lie group of real rank one, K is a maximal
compact subgroup of G and I is a torsion-free discrete subgroup of G. Let
o := [K] € G/K and choose a unit tangent vector v, at o. Let M denote
the subgroup of G which stabilizes v,. The unit tangent bundle T'(X) of
X can be identified with I'\G/M. Each closed geodesic C' on T*(X) gives
rise to the holonomy conjugacy class h¢ in M which is obtained by parallel
transport about C.

Our aim in this paper is to establish the equidistribution of holonomies
about closed geodesics C' with length ¢(C) going to infinity, when T" is geo-
metrically finite and Zariski dense in G. We will indeed prove a stronger joint
equidistribution theorem for closed geodesics and their holonomy classes. A
discrete subgroup I' is called geometrically finite if the unit neighborhood
of its convex core in X is of finite Riemannian volume (cf. [6]). Lattices
are clearly geometrically finite, but there is also a big class of discrete sub-
groups of infinite co-volume which are geometrically finite. For instance, if
G /K is the real hyperbolic space H" and G = SO(n, 1)° is the group of its
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orientation preserving isometries, any discrete group I' admitting a finite-
sided convex fundamental domain is geometrically finite. The fundamental
group of a finite volume hyperbolic manifold with non-empty totally geodesic
boundary is also known to be geometrically finite. We denote by § = dr the
critical exponent of I'. It is well-known that § > 0 if I' is non-elementary.

In this paper, a closed geodesic in T1(X) is always meant to be a primitive
closed geodesic, unless mentioned otherwise. For T' > 0, we set

Gr(T) := {C : C is a closed geodesic in T*(X), £(C) < T}.

The following theorem follows from a stronger joint equidistribution the-
orem 5.1.

Theorem 1.1. Let I' be geometrically finite and Zariski dense in G. Then
for any continuous class function ¢ on M,

Z go(hc)rve/ edm asT — oo
0T Jur
Cegr(T)

where dm is the Haar probability measure on M.

The asymptotic of #Gp(T") was well-known, due to Margulis [11] for X
compact, to Gangolli and Warner [8] for X noncompact but of finite volume,
and to Roblin [18] for X geometrically finite:

6T

#Gr(T) ~ ST

We do not rely on this result in our proof of Theorem 1.1.
If we define gl]:(T ) to be the set of all primitive and non-primitive closed
geodesics of length at most T', then it is easy to see that

#GL(T) = #Gr(T) + O(T) - #Gr(T/2).

Therefore Theorem 1.1 remains the same if we replace Gp(T') by Q{L(T). It
is worth mentioning that if one considers all geodesics, then it follows from
the work of Prasad and Rapinchuk [17] that the set of all holonomy classes
about closed geodesics in T1(X) is dense in the space of all conjugacy classes
of M.

When G = SO(n,1)° and I' is a co-compact lattice, Theorem 1.1 was
known due to Parry and Pollicott [15], who showed that the topological
mixing of the frame flow on a compact manifold implies the equidistribution
of holonomies. When T is a lattice in a general rank one group G, Theorem
1.1 was proved by Sarnak and Wakayama [20]; their method is based on the
Selberg trace formula and produces an error term. Therefore Theorem 1.1
is new only when I' is of infinite co-volume in G. However our approach
gives a more direct dynamical proof of Theorem 1.1 even in the lattice case.

Recall the log integral function:

Todt x 1
i@) /2 logt logx [ + log z + ]
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Theorem 1.2. Let T’ be a geometrically finite subgroup of G = SO(n, 1)°
with n > 3. We suppose that § > max{n — 2, (n — 2+ k)/2} where k is the
mazximum rank of all parabolic fized points of I'. Then there exists n > 0
such that for any smooth class function @ on M,

Z o(he) = li(e‘ST)/ ©dm+ 0T as T — oo
Cegr(T) M

where the implied constant depends only on the Sobolev norm of .

Theorem 1.2 gives a quantitative counting result for closed geodesics of
length at most T'. This was known when I' is a lattice by the work of Sel-
berg, and Gangolli-Warner [8] by the trace formula approach, or when T’
is a convex co-compact subgroup of SO(2,1) by Naud [13] by the symbolic
dynamics approach. We remark that Theorem 1.2 can be extended to geo-
metrically finite groups in other rank one Lie groups for which Theorem 4.4
holds; this will be evident from our proof.

As is well-known, the set of closed geodesics in T*(X) is in one-to-one
correspondence with the set of conjugacy classes of primitive hyperbolic
elements of I'. If A = {a;} denotes the one parameter subgroup whose right
translation action on I'\G/M corresponds to the geodesic flow on T!(X),
then any hyperbolic element g € G is conjugate to agm, with ag € AT :=
{a; : t > 0} and my € M. Moreover a4 is uniquely determined, and my is
uniquely determined up to a conjugation in M. Denote by [v] the conjugacy
class of v in I' and by [I'ps] the set of all conjugacy classes of primitive
hyperbolic elements of I'. Given a closed geodesic C' in T!(X), if [y] € [[pn]
is the corresponding conjugacy class, then the holonomy class h¢ is precisely
the conjugacy class [m,]. Therefore Theorem 1.1 can also be interpreted as
the equidistribution of [m,]’s among primitive hyperbolic conjugacy classes
of I.

For G = PSLy(C), Theorem 1.1 implies the equidistribution of eigenvalues
of I'. If we denote by A, and )\;1 the eigenvalues of v € T' (up to sign) so
that |A,| > 1, then v is hyperbolic if and only if |A,| > 1.

The aforementioned result of Prasad and Rapinchuk says that any Zariski
dense subgroup I' contains a hyperbolic element v such that the argument
of the complex number A, is an irrational multiple of = [17]. We show
a stronger theorem that the arguments of \,’s are equidistributed in all
directions when I is geometrically finite.

Theorem 1.3. Let G = PSLy(C) and T be a geometrically finite and Zariski
dense subgroup of G.
For any 0 < 01 < 0y <, we have

(03 — 0,)T%

#{] € Tpn]  [M] < T, 01 < Arg(Xy) < b2} ~ 210 log T

as T — oo.
(1.4)
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If 6 > 1 and T has no rank 2 cusp, or if § > 3/2 in general, then there exists
go > 0 such that

#{[V] € [Tpn] - [N < T, 01 < Arg(\y) < b2} = (027T91)11(T25)+O(T25€0).
(1.5)

For a hyperbolic element v € T', the length of the corresponding geodesic
is 2log |\,| and the argument of A, is precisely the holonomy associated to
~. Hence Theorem 1.3 is a special case of Theorems 1.1 and 1.2.

In the case when I is contained in an arithmetic subgroup of PSLy(C), the
polynomial error term can be taken to be uniform over all congruence sub-
groups of I'; this follows from our approach based on the work of Bourgain,
Gamburd and Sarnak [2] and of Mohammadi and Oh [12]. In the case when
I' € PSLy(Op) where Op is the ring of integers of an imaginary quadratic
extension Q(v/—D) of Q, the eigenvalues of I' are fundamental units of Op
(cf. [19]), in which case Theorem 1.3 also bears an arithmetic application
on the distribution of such fundamental units arising from I'.

In proving Theorem 1.1, we consider the following measure pp on the
product space T(X) x M€ where M¢ denotes the space of conjugacy classes
of M: for f € C(TY(X)) and ¢ € C(MC), set

nmr(f @& = > Dc(f)é(he) (1.6)
Cegr(T)
where D¢ denotes the length measure on the geodesic C', normalized to be
a probability measure. Theorem 1.1 follows if we show that for any bounded
continuous function f and a continuous function &,

T . mBMS(f) . fM &dm
§ - |mBMS|.T

nr(f®E&) ~ as T — oo (1.7)

where mBMS is the Bowen-Margulis-Sullivan measure on T!(X).

We will deduce (1.7) from the following:

6T ., BMS( r) . d
pr(f®€) ~ < md_ ‘bej];)Ms{Mg T oasT o o0 (1.8)

where pp(f ® &) = > cegr(r) Lo(f)E(he) for Lo = €(C) - De (the length
measure on C).

Let N and N~ denote the expanding and contracting horospherical sub-
groups of G with respect to A, respectively. In studying (1.8), the following
e-flow boxes play an important role: for gy € G, set

B(go,£) = go(NF N~ N N_NtAM)M.A.. (1.9)

where A. (resp. M.) is the e-neighborhood of e in A (resp. M) and N=
denotes the e-neighborhood of e in N*. Let ‘3(90,5) denote the image
of B(go,e) under the canonical projection G — I'\G/M. Fixing a Borel
subset 2 of M which is conjugation-invariant, the main idea is to relate




HOLONOMY 5

the restriction of ur to B(go,e) ® Q with the counting function of the set
I' N B(go, ) AFQB(g0,¢)~+ with AL = {a; : 0 < ¢t < T} (see Comparison
lemma 5.14); we establish this relation using the effective closing lemma 3.1.
We remark that for the effective closing lemma, it is quite essential to use
a flow box which is precisely of the form given in (1.9). This flow box was
first used in Margulis’ work on counting closed geodesics [11]. The counting
function of I'NB(go, ) A5 QB (g0, ) ! can then be understood based on the
mixing result of Winter [24], which says that the A action on L?(I'\G, mBMS)
is mixing. An effective mixing statement for the cases mentioned in Theorem
1.2 was obtained in [12]. We also remark that if we restrict ourselves only to
those f with compact support, then (1.8) holds for any discrete subgroup I
admitting a finite BMS measure; that is, I' need not be geometrically finite.

Acknowledgement We would like to thank Dale Winter for helpful com-
ments on the preprint. We also thank the referee for the careful reading of
our manuscript and helpful comments.

2. PRELIMINARIES

Throughout the paper, let G be a connected simple real linear Lie group
of real rank one. As is well known, G is one of the following type: SO(n,1)°,
SU(n, 1), Sp(n,1) (n > 2) and F;?°, which are the groups of isometries of
the hyperbolic spaces Hp, H, Hy, H@ respectively. Let K be a maximal
compact subgroup of G. Then X := G /K is a symmetric space of rank one.
Let o € X be the point which is stabilized by K. The killing form on the Lie
algebra of G' endows a left G-invariant metric dg on X which we normalize

so that the maximum sectlonal curvature is —1.
The volume entropy D(X) of X is defined by

~ . log Vol(B(o,T))

D(X)=1 2.1

)= Jm =7 21)

where B(0,T) = {x € X : dg(o0,z) < T}. Tt is explicitly given as follows:
D(X)=n—1,2n,4n+ 2,22 (2.2)

respectively for SO(n,1)°, SU(n, 1), Sp(n, 1) and FZ20.

We denote by 0s(X) the geometric boundary of X and by TY(X) the
unit tangent bundle of X. Fixing a vector v, € T'(X) based at o, T'(X)
can be identified with G/M where M is the stabilizer of Vo in G. For a
vector v € TH(X), we denote by v € 950 (X) and v~ € D50 (X) the forward
and the backward end points of the geodesic determined by v. For g € G, we
set g& = (gv,)*. There exists a one parameter subgroup A = {a; : t € R}
of diagonalizable elements of G which commutes with M and whose right
translation action on G/M by a; corresponds to the geodesic flow for time
ton TH(X ) in fact, M is equal to the centralizer of A in K. We set

ti={a:t>0} and A} :={a:0<t<T}.
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We denote by NT and N~ the expanding and contracting horospherical
subgroups:
Nt ={g€G:limy o arga_; — e};
N~ ={g € G:lim_, o0 a_ga; — e}.
The stabilizer of v and v, in G are given respectively by
P :=MAN~, and P%':=MANT,
Hence the orbit map g — gvl (resp. g = guy ) induces a homeomorphism
between G/P~ (resp. G/P*) with 05 (X).
Let d = dg be a left G-invariant Riemannian metric on G which induces
the metric d; on X = G/K. For a subset S of G and gg > 0, we set

S:(go) :=={s € S :da(go,5) < e}

the intersection of the e-ball at gy with S. Hence the e-balls G.(go) form a
basis of open neighborhoods at gg.

Flow box: Following Margulis [11], we will define the flow-box around
go € G for all small € > 0. For this, we will use the following e-neighborhoods
ofein Nt*,N=, A M.

The groups N+ are connected unipotent groups and hence the exponential
map exp : Lie(N*) = N7 is a diffeomorphism. For € > 0, we set

N = {nf :=expzr e N*:|z| < e}

where ||z|| denotes a norm on the real vector space Lie(NT) which is M-
invariant under the adjoint action of M on Lie(N%).
For A and M, we simply put

A =ANGe(e) ={ar:t € (—¢,e)}, and M. = M N Ge(e).
We now define the e-flow box B(go,€) at gg as follows:
B(go, ) = go(NF N~ N NN+t AM)M. A.. (2.3)

For simplicity, we set B(e) := B(e,e). The product maps N x A x M x
N~ = Gand N~ x Ax M x NT — G are diffeomorphisms onto Zariski
open neighborhoods of e in G. Therefore the sets B(gg, ), € > 0 form a
basis of neighborhoods of gg in G.

We remark that this definition of the flow box is quite essential in our
proof of the effective closing lemma 3.1. We list the following properties of
the flow box which we will use later:

Lemma 2.4 (Basic properties of the flow box). Let go € G and € > 0.

(1) For any g € B(go,¢€), the set {t € R: ga; € B(go,e)} is of Lebesgue
length 2¢;

(2) B(go,€)vg = goN-vg and B(go,e)v, = goN:vg ;

(3) There exists ¢ > 1 such that

Ge-1:(90) C B(go,€) C Gee(90); (2.5)
here c is independent of go € G and all small € > 0.
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Considering the action of ¢ € G on the compactification X U 6()2' ), g
is called elliptic, parabolic, hyperbolic if the set Fix(g) = {x € X U9(X) :
g(x) = x} of fixed points by g is contained in X, is a singleton on 8(X),
and consists of two distinct points on 8(X' ) respectively. Any element g in
a rank one Lie group is one of these three types.

Equivalently, g € G is elliptic if g is conjugate to an element of K, and
parabolic if g is conjugate to an element of MNT — M, and hyperbolic if g
is conjugate to an element of ATM — M.

Lemma 2.6. Suppose that for some h € G, haymih™' = aamo with a1, ay €
At and mi,ma € M. Then a1 = as, mi = mmam ™" for some m € M and
he AM.

Proof. For g € G, define
N*(g)={q€G:g'q9~" — e as { — +oo}.

Putting g; = a;m; € ATM for i = 1,2, we have N*(g;) = N*. On the
other hand, since g» = hgih™!, the above definition implies N*(g2) =
hN*(g)h~'. Hence h belongs to the common normalizer of N*, which
is equal to P N P~ = AM. Therefore h = am € AM. It now follows
that haymih™! = a;(mmim™') = agma. Hence ay'a; € ANM = {e}; so
a; = as, as well as mg = mmym™1. O

As an immediate corollary, we have:

Corollary 2.7. If a hyperbolic element g € G is of the form:

g= hgagmgh;1 (2.8)

with agmg € AT M, then agy is uniquely determined, mg, € M is determined
unique up to conjugation and Ry := hgAv, is independent of the choice of

hy.

The geodesic Ry := hgAv, C X is called the oriented azis of g: g preserves
Ry, and acts as a translation by T := d(ay, €).

Let T be a torsion-free and non-elementary discrete subgroup of G. A
closed geodesic C' of length T > 0 on T'(X) = I'\G/M is a compact set of
the form I'\I'gAM /M for some g € G such that gAMg~! NT is generated
by a hyperbolic element v = ga,m~g~! with T = d(ay,e). The conjugacy
class [m,] in M is called the holonomy class attached to C'. Note that if we
have

M\Tgmoar = T\T'gmom
for some mg,m € M, then [m] = [m,]. Geometrically, I'\I'gmy is a frame
which contains the tangent vector I'\I'¢M, and the element m measures
the extent to which parallel transport around the closed geodesic I'gmgar
differs from the original frame I'\I'gmy. If we choose a different base point
my from myg, then m changes by a conjugation; hence the holonomy class
attached to C is well-defined.
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FIGURE 1. Pictorial proof of Closing lemma

3. EFFECTIVE CLOSING LEMMA

Let I" be a torsion-free, non-elementary and discrete subgroup of G and
set X := I'\G/K, which is a rank one locally symmetric manifold whose
fundamental group is isomorphic to I'. We denote by = : G — I'\G the
canonical projection map.

For two elements hi,he € G, we will write hy ~¢ ho if dg(hi,h2) < &
and hy ~p( ha if dg(h1, he) < ce for some constant ¢ > 1 depending only
on G. For conjugacy classes [m1] and [ms] in M, we write [m1] ~. [mg]
and [m] ~0(e) [ma] if, respectively, mi ~¢ mg and my ~0(e) M2 for some
representatives m; € M of [my].

For a subset S of G and € > 0, we also use the notation Go(.)(S) for the
ce-neighborhood of S for some ¢ > 1 depending only on GG, and the notation
1g for the characteristic function of S.

For gy € G, we will define the injectivity radius of go in I'\G to be the
supremum ¢ > 0 such that the € flow box B(go, ¢) injects to I'\G. In what
follows, we will consider boxes B(go,e) only for those e which are smaller
than the injectivity radius of gg, without repeatedly saying so.

In this section, we consider the situation where a long geodesic comes
back to a fixed e-box m(B(go,€)), that is, there exist g1, g2 € B(go,e) such
that

gld'ym'y =792

for some v € I'" and a,m, € AM with T := d(ay,e) sufficiently large.
The so-called closing lemma for a negatively curved space (see [11, Lemma
6.2] and [18, Chapter 5]) says that there is a closed geodesic nearby; more
precisely, v is a hyperbolic element and its oriented axis 2, is nearby the
box 7(B(go,€)) in the space I'\G/M = T*(X). We will need more detailed
information on this situation. We will show that the oriented axis R, passes
through O(ce~T)-neighborhood of the box m(B(go,¢)) and @, and [fm,] are
O(e)-close to a, and [m,] respectively where a, and [m,] are defined as in
(2.8) for .

Lemma 3.1 (Effective closing lemma I). There exists Ty > 1, depending
only on G, for which the following holds: For any go € G and any small
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e > 0, suppose that there exist g1, g2 € B(go,€) and v € G such that
glavmv =792 (32)
for some ay, € A with T := d(a~, e) > Ty and m. € M.
Then there exists g € B(go,e + O(ee™T)) such that
v = ga,ymvgfl.
Moreover, a ~0p(c) Gy, and [my] ~o(c) [M].

Proof. The proof is divided into two parts.
Step 1: We will show that for some g3 := goh: € B(go,¢),

g3 tvgs = npalming (3.3)

where al,m/, € Gy, Aoy Mo(e), nay € Ng(e,Ts) and n; € Na(e*Ts)'
To prove this claim, note that there exist b.,d. € B.(e) such that g; =
gobe and g = god.. Recalling the definition

Be) = (NIN NN NTAM)M_A.,
we may write b, and d. as follows:
be = bin, b2 € NI N~ (AM.);
de =d_njd) € N NT(AM).
o Ny € Ng(a
the equality gia,m. = g2 can be rewritten as

By Lemma 2.4, we have n, € NO_( ) and d? € Ao@yMo(e)- Now

gob:n;d,(yl)m,(yl) = 'ygoda_n;' (3.4)

where a,(yl)rh,(yl) i= ba,m (d2) "1 € AM.
By the transversality between N~ and AMNT, we obtain a unique ele-
ment n_, € N, 5@ satisfying that

b;n; € d; (NJ(E)AO(E)MO(E)) (35)
Since b} € N and dZ € N7, we have
he :=bIn_, € (NIN"NNNtAM) C B(e)
and hence
gohs € B(go,¢).
Now setting g3 := gohe, we claim that (3.3) holds. By (3.5), he =
d-nta.m. € d;(Ng(E)AO(a)MO(E)). Rewriting (3.4), we have

gohe(ny) " tngaMml) = ygohemtaZt (n) " Ing

and hence

95 'vgs = (n) 'ny (dgl)ﬁ”t(#)aame) (az'mZ (n) " "ntacme)

= n=a@mn@,+
=N, a5 My Ny,
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2) ~ (2 ~(1) ~ (1 . N1, _
where ag)mg) = ag)mg)agmg, n,, = (ny) n, € NO(5)7 and nj =
aztmZt(nf) " tnfacm. € N+(

We have n_, := (a(vz)fn(f)) n, a(2)m£,2) € NO( o) and we can write

n;2n$1 = niZQaE men,, € N O(e )AO(E)MO( )N_( ~Tg)
Therefore
95 'vgs = alPmPn il =n a min,
where a’,m/, := a(7 )m(v )a’m ;and nf, = &32)7%%2%2;2 (a,(f)m'(f))_l € Nar(e*Ts)
This proves the claim (3.3).
Step 2: Set g := g5 1y gs so that g = nta 7 ’n_. We claim that
g € (nfny)al Apeym!, Mo (nfn, )~ (3.6)

with n) € Ng( 1 and n, € N&(Ee—T)-

For n; as above, for any n}” € N, there exists a unique element n+( ) €

Ng( ) such that (n J)nt e na(m)A M_N_. Moreover the map n;} — ny(y) is

a diffeomorphsim of N onto its image, which is contained in N O(E)
Therefore the implicit function theorem implies that the map n}

ny (a’vm’v)(n;r(x)) Y(alml )~ defines a diffeomorphism of N onto its im-

age N;O(E,TE). Since n}, € Ng(e,Ts), if T is large enough, we can find

ni € No(e-e such that

T =nl(alml)(n’ )_l(a;m;)_l.

n et a(z)

Fixing this element n;, we write (n;'(x))*ln; = a:meny, (n})~! with n;, €

N(;(e Tey Qe € Ao(e) and m. € Mp(.. Therefore, plugging in these,
a,m

g=mn n,

=N

+ £+

!/ !/
v
!/ !/

x Dy llhy z
2 (

a-m. (n:(x))_ln_

= n, (aimi)n, (n)!

where af; = aﬁya6 and mx = mvmg. Since the map

my =+ (almt) g (@) ()

is a diffeomorphism of N onto its image N;r O(e=Te)! for all large T, we can
find n, € N 1y such that

Ofee

ny = () () @l

This yields
+
x

g = nf (n,) " (ayml)ny (n

as desired.
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Hence
v = gaaymlig;!
with g4 = gan (n,)~' € B(go,e + O(ee™T)). Therefore a, = al ~o(e) Gy
and [m,] = [mf] ~o() [,]. O
Although we will only be using the above version of the closing lemma 3.1,
we record the following reformulation as well, which is of more geometric
flavor.

Lemma 3.7 (Effective closing lemma II). There exists Ty > 1, depending
only on G, for which the following holds: Let g9 € G and let € > 0 be
smaller than the injectivity radius of go in T'\G. Suppose that there exist
91,92 € B(go,e) and v € T such that

glé'ym'y =792 (38)
for some a, € A with T := d(a,e) > Ty and m~ € M. Suppose also that
v s primitive, i.e., v cannot be written as a power of another element of I
Then there exists an element g, € B(go,e + O(ce™1)) such that

(1) the AM-orbit I'\I'g, AM is compact;

(2) v is a generator of the group gWA]\Jg;1 Nnr;

(3) the length of the closed geodesic Cy = I'\I'g,A(v,) is T 4+ O(e);

(4) the holonomy class [m.] associated to C, is within O(c)-distance
from [m.].

4. COUNTING RESULTS FOR I' NB(go, e) ArQB(go, ) !

Let G,T', X, o, v, etc be as in the previous section. Recall A; ={a;:0<
t < T}. Our approach of understanding the distribution of closed geodesics
in T!(X) passing through the flow box B(go,€) and with holonomy class
contained in a fixed compact subset 2 of M is to interpret it as a counting
problem for the set T'NB(go, ) A+QB(go, &) ! as T — co. We will be able to
approximate #I' N B(go, €) AT Q2B (go,€) ! by the counting function for the
intersection of I' with a certain compact subset given in the ggNTAMN gy L
coordinates.

In the first part of this section, we will investigate the asymptotic behavior
of the following

#T N go=1 AT 000, !

for given bounded Borel subsets =1 € Nt, 2 € N~ and Q C M. In
the second part, we will use this result to obtain an asymptotic formula of
#I'N fB(go,E)A%Q%(go,&‘)fl.

4.1. On the counting for I' N goElATQEggal. This problem can be an-
swered under the extra assumption that I' is Zariski dense and that the
Bowen-Margulis-Sullivan measure, the BMS measure for short, on T*(X) =
I'"\G/M is finite. The key ingredient in this case is that the M-invariant
extension of the BMS measure on I'\G is mixing for the A-action.
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We begin the discussion by recalling the definition of the BMS measure.
Let A(T") denote the limit set of ", which is the set of all accumulation points
in X UA(X) of an orbit of I' in X. Denote by § = dr the critical exponent
of I'. Denote by {v, : # € X} a I-invariant conformal density of dimension
d supported on the limit set A(T"); such a density exists by the construction
given by Patterson [16]. For & # & € 9(X), and 2 € X, we denote by
(€1,&) the Gromov product at . Then the visual distance on 9(X) at z
is given by

de(€1,8) = e (€1.62)x
with the convention that d, (&, &) = 0. The Hopf parametrization of T'(X)
as (9%(X) — Diagonal) x R is given by u — (u,u~,s = B,-(0,u)) where
Be(z,y) denotes the Busemann function for ¢ € 9(X), and =,y € X. The
BMS measure on T'(X) with respect to {v,} is defined as follows:

- dv,(ut)dvg(u™)ds
BMS _ T T
dm°"(u) = e )®

The definition is independent of z € X and mBMS is right A-invariant and
left I'-invariant, and hence induces a geodesic flow invariant Borel measure
on T}(X), which we denote by mBMS. If [mBMS| < oo, then the geodesic
flow is ergodic with respect to mPMS, as shown by Sullivan [21] and moreover
mixing by Babillot [1].

As we are eventually interested in counting a I' orbit in a family 51A¥QEQ
with  any Borel subset in M, we need to understand the mixing phenome-
non for the A-action on I'\G, not only on I'\G/M. By abuse of notation, we
denote by mPMS the M-invariant lift of mPMS to I'\G. Winter [24] showed
that if T' is Zariski dense and |mBMS| < oo, then the A-action on T'\G is
mixing for this extension mPMS; this was earlier claimed in [7] for the case
of G =80(n,1)° and T" geometrically finite.

In the rest of this section, we assume that

I is Zariski dense and [mPMS| < oc.

For the application of the mixing in counting problems, it is easier to use
the following version on the asymptotic behavior of the matrix coefficients
in Haar measure. To state this result, we need to recall the Burger-Roblin
measures for the N and N~ actions.

Using the homemorphism of G with K/M x M x A x N*, we define
the Burger-Roblin measures /PR (invariant under the N*-action) and mBR
(invariant under the N~ -action) on G as follows:

dinPR (kmagnt) = e " dnT dsdv, (kv )dm  for kma,n® € (K/M)MAN™;
(4.1)

dimBR(kmagn™) = e dn~dsdvy (kv )dm for kma,n~ € (K/M)MAN~
(4.2)
where dm denotes the M-invariant probability measure on M; Since M fixes

v, and hence fixes v}, these measures are well-defined. The Haar measure
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on G is given by: for g = agntk € ANTK,
dg = dinf* (an*k) = dsdn*tdk

where dk is the probability Haar measure on K. These measures are all left
I-invariant and we use the notations mBR, mBR mHaar (or dg) respectively
for the corresponding induced right M-invariant measures on I'\G.

The following theorem can be deduced from the mixing of mBMS, as

observed first by Roblin for M-invariant functions ([18], see also [14]).
Theorem 4.3. ([18], [14], [24]) For any functions V1, V5 € C.(I'\G),

BR (g ).mBR(\IJ2)
lim e(D_‘S)t/ Uy (ga) ¥ gdg:m (T =
ne Lo ¥als) P

t—4o00
where D = D(X) is the volume entropy of X = G/K (see (2.1) and (2.2)).

The quotient by I' of the convex hull of A(T") is called the convex core
of I'. A discrete group I' is called geometrically finite if the volume of a
unit neighborhood of the convex core of I' is finite. Clearly lattices are
geometrically finite. If T' is geometrically finite, then mPMS is known to
be finite and the critical exponent is known to be equal to the Haudorff
dimension of A(T") ([22] and [4]).

We use the standard asymptotic ”big-O” and ”little-0” notations, where
for functions f,g: RT — R, we write f = O(g) if limsupy f(T)/g(T) < oo
and f = o(g) if limy f(T)/g(T) = 0. We sometimes write f = Op(g) and
f = or(g) in order to clarify the parameter T' going to infinity. The notation
f(T) ~ g(T) means that limy_, f(T)/9(T) = 1.

Theorem 4.4. [12] Suppose that T' is a geometrically finite subgroup of
SO(n,1)° with n > 2. Suppose that 6 > (n —1)/2 if n = 2,3 and that
0 >n—2ifn>4. Then there exists eg > 0 such that for any functions
Uy, Uy € CP(T\G), as t — 400,

BR V] ) . mBR(\I/ )

(n15)t/ I /] dg = m ( 1 * 2 O —eot

e ga g)ag + Ole
[ T1(6a0¥2(9) TS (e

where the implied constant depends only on the Sobolev norms of ¥y and
Usy.

Let Q ¢ M, 2y C Nt and 25 € N~ be bounded Borel subsets. For
T > 0, set

Sr(Z1,22,Q) = E1 A0, (4.5)
By Vol(£2), we mean the volume of {2 computed with respect to the prob-
ability Haar measure on M.

Theorem 4.6. Fiz go € G. If v,(3(E1w])) = 0 = v,(d(E5'v;)) and

Vol(0(R2)) = 0, then as T — oo,

Vgo(o) (gOElUj)Vgo(O) (goaglv;) Vol(Q2) ST
3|mBMS| e

#T' N goSt(E1,Za, Vg ' ~
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Under the assumption of Theorem 4.4, we will prove an effective version
of Theorem 4.6. As usual, in order to state a result which is effective, we
need to assume certain regularity condition on the boundaries of the sets
=1, 29, ) involved.

Definition 4.7. A Borel subset © C §(X) is called admissible with respect
to v, if there exists r > 0 such that for all small p > 0,

Vol€ € 0(X) 1 do(£,0(0)) < p} < p"

Remark 4.8. In the group G = SO(2,1)°, the boundary 9(X) is a circle,
and any interval of (X) is admissible. For G = SO(n,1)° with n > 3, if
d > max{n — 2, (n — 2 + k)/2} where k is the maximum rank of parabolic
fixed points of T', then any Borel subset w of §(X) such that v,(w) > 0 and
O(w) is a finite union of smooth sub manifolds is admissible; this is proved
in [12], using Sullivan’s shadow lemma.

Theorem 4.9. Let G and T be as in Theorem 4.4. Suppose that Z1v} and
Yoy are admissible, and that () is a finite union of smooth submani-
folds. Then for any go € G, there exists eg > 0 such that as T — oo,

#T N goSr(Z1,Z0, V) gy ' =

Vgo(0) (902108 )Vgo 0y (90Z5 05 ) VOI(Q)
§|mBMS|

The rest of this section is devoted to the proof of Theorems 4.6 and 4.9. In
the case when G = SO(n, 1)°, an analogous theorem for bisectors in K AT K
was proved in [12] (see also [3] for n = 2, [23] for n = 3 when § is big and
[9] when I' is a lattice). In view of Theorem 4.3 for a general rank one
homogeneous space admitting a finite BMS measure, the proof of Theorem
4.6 is very similar to the one given in [12] in principle.

For simplicity, we normalize [mBMS| = 1 by replacing v, by a suitable
scalar multiple. For a given compact subset B C G, consider the following
function on I'\G x I'\G:

Fg(g,h) =) 1g(g~'vh).

J—
=
—2

T 4+ O(el0==0)T),

vyel
Note that for Uy, ¥y € C.(T'\G)
(FB,¥1 @ Vo)m\ax\¢ = / Fg(g1,92)¥1(91)V2(g2)dg1dgs.
\GxI'\G

By a standard folding and unfolding argument, we have

(Fp,¥1 ® Uy) = / (¥1,9.92) 12(n\q) 49
geB

Let ¢ € C*°(G) be an e-approximation function of e, i.e., 1° is a non-
negative smooth function supported on G¢(e) and [¢°dg =1, and let ¢ €
C>°(I'\G) be its I'-average: W*(I'g) = > r ¥ (79).
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We deduce that
(FB, ¥° @ ¥¥)r\axr\a

_ /x . /F Y@ g dsds

writing * = nijagmneg € NTAMN™ and using dx = eDtdnldtdmdng

= / / Ue(g)Pe(gniaymng)dg ePtdtdn, dmdns
niarmnaEB NG

:/ / e (gny ) WE (gagmng)dg | ePldtdnydmdns
niarmnaEB NG

by applying Theorem 4.3

= / (1 + o(1))mBR (n 10 )mBR ((mng) U dtdn, dmdns
niazmns€B

:/ (1 + o(1))mBR (ny %)M BR (mngy®)dtdny dmdny.  (4.10)
niarmna€EB
If we define a function fg on N* x MN~ by
[B(n1,mn3) —/ etdt,
atenlenglm—lﬁA*‘

and a function on G x G by

(" @ ¢°) * f) (9, h)

/ Ve (gny e (hmns) f5(n1, mns)dmdnydns
nimnoENTMN—

/ ¥ (gn1)® (hmng) f5(nyt, mna)dmdni dna,
nimnoEN+TMN—

then we may write
(Fp, ¥ @ U¥)r\axr\a (4.11)
= (M @ P (0 @ ¢F) * fp) + o max_ e).
niagmns€B

Observe that
(M @ mP)((Y° @ ¢°) * fp) =
/ fB(nl_l,mng) </ ¢5(glnl)@/)a(hlmnz)drh*BR(gl)deR(hl)> dnidmdns.
N+MN- GxG
(4.12)
By (4.1) and (4.2), we have

dimBR(g1)dmPR (hy) = 0 dndrdmy dv, (kv ) dnodrodmodye (kov;) ).
(4.13)
for g = kmya,n € (K/M)MAN~ and hy = komoar,no € (K/M)MANT.
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For x € G, let ny(z) be the N component of z in MAN~ N decomposi-
tion and iz (z) be the M N~ component of z in ANT(MN~) decomposition.
The A-components of z in MAN~-NT and ANTM N~ decompositions are
respectively denoted by I1(z) and Iy(z).

Continuing (4.12), first change the inner integral using (4.13) and then
perform the change of variables by putting ¢ = mia,nn; € MAN-NT
and h = a,,ngmny € ANTMN~. Since dg = dmidrdndn,; and dh =
drodngdmdns, we obtain

(2t @M ) (07 @ ¥°) * fp) = (4.14)

/ ¥F (kg)y* (komoh) f5(ni(g) 1, ia(h))ed 19~ 12(1)
keK /M ko€ K/M,moeM JGXG

dgdhdv, (kv )dv,(kov, )dmg

U (9)v° (h) fe(m (k™ 'g) ™", fa(ky ' h))

/keK/M,kzoeK GxG
Sk )= Ia (kg 1) g dhdu, (kv ) dve (ko).
where dv, (ko) = dvy(kyv, )dm for ko = k{ x m € K/M x M.
In order to prove Theorem 4.6, we now put
St :=8r(E1,22,Q) and Fr := Fg,.
Observe that
Fr(e,e) = #(I'NSr(E1, E2,9Q)).
Let
S’;T,E = Ugy 926G (0)915T92 and Sy = Ny, g,¢G.(e)915T92-
We then have
<F5¥,s’ U @ U < Fr(e,e) < <F3+!€, Ue @ Ue). (4.15)

T

Together with the strong wave front property for the AN*K decompositions
[10], (4.14) with B = S%e now implies that

(" ©mP) (7 @ ¥°) * fsz ) (4.16)
—WHOEN) [ fn (b faln g v (o)
K/MxK
e(ST
=(1+ O(E’))TVO(EW;F)VO(E;U;) Vol(€2)

where & > 0 goes to 0 as € — 0. Hence, (4.15), (4.10) and (4.11) yield that

e&T

Fr(e,e) = (14 O(s’))Tuo(ij)yo(Eglv;) Vol(Q) + o(e7T).
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Since £ > 0 is arbitrary, we have
e(ST

TVO(E{UJF)VO( v, ) Vol(£2).
In order to prove Theorem 4.9 for gy = e, we note that o(e’”) in (4.10)
can be upgraded into O(e®=50)T) in view of Theorem 4.4, and that O(¢’)
in (4.16) can be taken as O(e?) for some fixed ¢ > 0 (we refer to [12] for
details).

Therefore we get

Fr(e,e) ~

6
Fr(e,e) = (1+0(eQ));yo(uw+)%(u2 v;) Vol(Q2) + O(e0==0)T),

—eot

By taking € so that €7 = ™", we then obtain

oT
Fr(e,e) = %VO(ElU—F)Vo(_Q v5) Vol(Q) +O(e(6_€1)T)

for some positive €; > 0. This proves Theorems 4.6 and 4.9 for gy = e.
For a general gy € G, we note that if we set I'g := galfgo, then

#T' N goSr(E1,Z2, Vgy " = #T0 N Sr(Z1,22,9).

Moreover, if we set vr, o = g5Vgo(z), then {vry . : @ € X} is a ['p-invariant
conformal density of dimension = dr, and the corresponding BMS-measure

mlg‘})\/ls with respect to {vr, .} has the same total mass as mBMS. Therefore

V0.0 (1010, 0(E5105) _ Vao(o) (90Z105 ) Vg0 (o) (9055 05 )
Oy Img)'®| 5\mBMS! '

Hence the general case follows from gy = e.
4.2. On the counting for I' N B(e) AL QB()~ L. Recall the definition of
our flow box at gg € G with € > 0 smaller than the injectivity radius of g
in I'\G:

B(g0,€) = go(NT N~ NN NTAM)M_A.. (4.17)

Denote 7 : G — I'\G/M the canonical projection map. For simplicity,

we set

B(go,¢) = 7(B(go,¢)). (4.18)
For a Borel function f on I'\G/M and a Borel function £ on M, we set

BMS ._ BMS .
(g = [ g™ [ e

For Borel subsets B ¢ T\G/M and Q C M, we set mPM3(B @ Q) =
mBMS(15 ® 1g). We observe that:

Lemma 4.19. For all small € > 0,

mPMS(B (g0, £)20) = (140(6)) 25 00y (90N Ve i 0 (90 N2 )05 V()

where the implied constant is independent of € > 0.
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Proof. Clearly we have mPMS(B(go, ) @ Q) = mPMS(B(go,¢) ® Q). Recall

that the BMS measure on T!(X) is given as
_ Vg4 (o) (u+)dygo(0) (u”)ds

deMS (u)

dgo(o) (U+, u_)26

Note that
B(go.£)vg = goNvg

(which is equal to the image of B(go,¢) in G/(MANT)) and
B(g0,€)v, = goN: v,

(which is equal to the image of B(go,e) in G/(MANT)) . Hence for all
g € B(go,¢), we have dgy () (97, 97) = (1+0O(e)) where the implied constant
is independent of gy € G and ¢ > 0. Moreover, for all g € B(go,¢), {t €
R : ga; € B(go,e)} has length precisely 2¢ (see Lemma 2.4). Therefore the
claim follows, since the BMS measure on G is the M-invariant extension of
the BMS measure of G/M. O

For T > 1 and g9 € G, we define
Vr(g0,€,9Q) := B(go, e) AFQB(go,2) . (4.20)
We set
Vr(e, Q) :=Vr(e,e,Q)

and note that

Vr(g0,¢,9) == goVr(e, Vgy
Lemma 4.21. For all large T > 1 and small 0 < € < 1, we have

Sr(NX, (N2)™HQ) € Vr(e,Q) € Srye(NL oy (N 1) 71 Q)

where Qj = Um,em.m1dma.
Proof. Given g € B(¢) UB(e)~!, we decompose

9=9+909- € NT(AM)N™.
It easily follows from the definition of B(e) that

N:={g+:9€B(e)} and (N7)"' ={g-:9€B()'}

Hence
Sr(NF,(NJ)™L, Q) € Vr(e, Q). (4.22)
On the other hand, if g1 € B(), g2 € B(e)™!, a € A}, and m € M, then
gramgs € (91)+N:—TamAaMa(Ne_—T)71(92)—'
Therefore
VT(€7 Q) - 8T+€(N‘;:_67Ta (Na__efT)_l, Q:) (423)

This proves the claim. O
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Theorem 4.24. Let ¢ > 0 be smaller than the injectivity radius of gog. We
have

6(5T

-2 - [mBMS|
where the implied constants are independent of €.

Moreover if G and T' are as in Theorem 1.2, o(1) can be replaced by
O(e=51T) for some positive e1 > 0.

#I N Vr(g0,,Q2) = (1+0(e)) (mPMS(B(go,2) @ Q) + 0(1))

Proof. By Lemma 4.21, we have
gOST(Nngv (Ngi)ila Q)go_l C VT(gﬂv‘S? Q) C gOST(NS—:,E—Ta (N_ T)717 Q:)g()_l

eE—e—

By Theorem 4.6 and Lemma 4.19, we have

#I'N VT(gov €, Q)
= (14 0(1)) - ¥4y () (90N )05 gy (o) (90N vy ) Vol ()5~ e
— (14 0()(22) 15T - (PN (B(go, ) © D) + o(1),

implying the first claim. The second claim follows from Theorem 4.9, and
Remark 4.8.
O

5. ASYMPTOTIC DISTRIBUTION OF CLOSED GEODESICS WITH
HOLONOMIES

We keep the notations G, I', X, K, 0, v, etc. from section 3. In particular,
I is Zariski dense and [mPM3| < 0o, X = I'\G/K, and T!(X) = I'\G/M.
In this section, we will describe the distribution of all closed geodesics of
length at most T coupled together with their holonomy classes, using the
results proved in section 4. The main ingredient is the comparison lemma
5.14, which we obtain using the effective closing lemma 3.7.

By a (primitive) closed geodesic C' in T'(X), we mean a compact set of
the form
MN\I'gAM/M =T\I'gA(v,)
for some g € G. The length of a closed geodesic C' = I'\I'gAM /M is same
as the co-volume of AM N g~ 'T'g in AM. If we denote by vo a generator of
I'NgAMg~"! and denote by [y¢] its conjugacy class in I', then the map

C ~ [yl

is a bijection between between the set of all (primitive) closed geodesics and
the set of all primitive hyperbolic conjugacy classes of T'.

For each closed geodesic C, we denote by L the length measure on C' and
by h¢ the unique M-conjugacy class associated to the holonomy class of C.
For a primitive hyperbolic element v € T', we denote by ¢(7) its translation
length, or equivalently the length of the closed geodesic corresponding to

[]-
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Let M€ denote the space of conjugacy classes of M. It is known that M®
can be identified with Lie(S)/W where S is a maximal torus of M and W
is the Weyl group relative to S. For T' > 0, define

Gr(T) := {C : C is a closed geodesic in T'(X), £(C) <T}.
For each T' > 0, we define the measure pr on the product space (I'\G//M ) x
M¢€: for f € C(I'\G/M) and any class function £ € C'(M)7
r(f@&)= > Lo(f

Cegr(T)

We also define a measure 11 by
nm(f©& =Y, Dalf)élhe),
Cegr(T)

where Do (f) = £(C) Lo (f). If B is a subset of T\G/M and Q is a subset
of M, then we put ur(B®Q) := ur(lp®1q) and np(BRQ) := nr(1p®1q).

The main goal of this section is to prove the following:
Theorem 5.1. Let I' be geometrically finite and Zariski dense. For any
bounded f € C(I'\G/M) and § € CI(M), we have, as T — oo,

65T

pr(f ®§&) ~ S[mBVs| mPMS(f ® ¢); (5.2)
and o1
nr(f ®§) ~ ST - [mBVS| mPMS(f @ €). (5.3)

Moreover if G and I' are as Theorem 1.2, then (5.2) holds with an expo-
nential error term O(e©®~)T) for some €1 > 0 with the implied constants
depending only on the Sobolev norms of f and &, and for some €5 > 0, we
have

BMS
R et e Y

Theorems 1.1 and 1.2 in the introduction follow immediately from Theo-
rem 5.1, whose proof occupies the rest of this section.

Fix a Borel subset © of M and gg € G. Recall the flow box B(gp,e) =
go(NF N~ NN N*tAM)M,A, and the notation B(go, €) = 7(B(go,€)) from
(4.17) and (4.18). We will first investigate the measure pp restricted to the
set B(go,€) ® Q. The main idea is to relate the measure uz(B(go, ) ® Q)
with the cardinality #I' N Vr(go, ¢, Q).

We fix go € supp(mPMS) and € > 0 (smaller than the injectivity radius of
go) from now on until Theorem 5.15. For a closed geodesic C' = I'\I'gAv, C
I'\G/M, we choose a complete geodesic C' C G/M, which is a lift of C. The
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stabilizer 'z = {y € I': 7(C) = C} is gAM g~ NT which is generated by a
primitive hyperbolic element of I'; and C' can be identified with I‘C\C. Set

I(C)={[o] e/T;: aC N B(go,e)v, # 0}, (5.5)
that is, I(C) = {qé’ : 0C'NB(go,)v, # ). Clearly #1(C) does not depend
on the choice of C.

Lemma 5.6. (1) For any closed geodesic C C TY(X), we have

Lc(Blgo, ) = 2 - #I(C);
(2) For any T > 0, we have
pr(Blgo.e)@Q) =22+ Y #I(C)-la(ho) (5.7)
Cegr(T)

where ho is the holonomy class about C.

Proof. (2) immediately follows from (1). To see (1), let C = I'\I'gAv,. We
may assume C' = gAv,. We have

EC(%(QOﬁ)) = / Z L3 (g0,e) (Tgatv,)dt

[gazvo] €T \C o1
= 3 [ el
[U]EF/F atUOEC
By Lemma 2.4, we have
2e, if Uéﬁ%(go,f‘:)vo 7& 0
) di — 5.8
/é B(g0,¢) (0gav,) { 0, otherwise. (58)

Therefore the claim follows. O

Set
Wigo,e,Q) := {gamg™" : g € B(go,¢),am € AQ}.
By definition, the set W(go, €, Q) consists of hyperbolic elements. For T' > 1,
we set
Wr(go, €, Q) := {gamg™" : g € B(go,&),am € AFQ}.
We denote by I'j, the set of hyperbolic elements and by I'y, the set of
primitive hyperbolic elements of T.

Proposition 5.9. For all large T' > 1, we have
MT(%(Q(]’ 6) & 19) =2e- #th N WT(g()v g, Q)
Proof. We use Lemma 5.6 (2):

MT(%(Q& )®1§2 —25 Z #I -1g hc).
Cegr(T)

with I(C) = {o(C) : 0C N B(go,e)v, # 0}
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Upper bound: Let C' € Gr(T) be with I(C) non-empty and hc € Q.
Without loss of generality, we may assume C' N B(go,e)v, # 0. Choose a
primitive hyperbolic element v := y¢ € I'5. We claim that for any [o] €
1(C),
Oy = cr’yo'_1 € Wr(go,,Q); (5.10)
note that o, is well-defined independent of the choice of a representative o
since I' 5 is commutative. Since CNB(go, €)v, # 0, there exists g1 € B(go,€)
such that gjv, € C, and v = glawmfygf1 where d(a,,e) = £(C) < T and
[my] € Q. If [o] € I(C), then there exist g2 € B(go, ) and a;m € AM such
that
0g1asm = g2.
Therefore, we have
ggavm_lmym = O”)/O'_lgg
and
oy = ggavm_lmvmngl € Wr(go,¢,Q).

proving (5.10).

To see that the map [o] — o, is injective on I(C'), it suffices to recall that
the centralizer of y in I' is I' z. Hence this proves the upper bound.
Lower bound: We write

#Lpn N Wr(go,€,2) Z# ] N Wr(g0,€, )

where the sum ranges over the conjugacy classes
[v] = {70 € T'pn : Y0 is conjugate to v by an element of I'}

of primitive hyperbolic elements of I'. Fix a primitive hyperbolic clement
v € Wr(go,&,9). So there exists g € B(go, ) such that v = ga,m,g~" with
a, € Af and [m,] € Q. Let C = I'\T'gaAv, and C' = gAv,. Then the length
of C is at most T'.

For each element o’ := oyo~! € [y] N Wr(go,¢,Q), we have oyo~! =
g2a,mgy " for some [m] € Q and g9 € B(go,e).

Since 0~ 1gyAv, is the oriented axis for v, 0 tgoAv, = C by Corollary
2.7. Therefore gav, € o(C') N B(go, €)vo, and hence o(C) € I(C). Since the
map o’ = oyo~ ! — ¢(C) is well-defined and injective, this proves the lower
bound by (5.7). O

Indeed the proof of Proposition 5.9 gives that if C is a closed geodesic
and [y¢] is the conjugacy class of primitive hyperbolic elements which cor-
responds to C, then

Lo(B(go,¢))la(he) = 26 #I(C)-1a(he) = 2e-#[vc]NW(go, €,9). (5.11)
Recall the notation

Vr(go, e, Q) := B(go, ) AL QB (g0, ).
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Let ¢ > 1 be a fixed upper bound for all implied constants involved in the
O symbol in Lemma 3.7 and the constant in (5.14).
The effective closing lemma 3.1 implies that for all large T > Ty,

Vr(go,e(1 — ce™7/?),Q2) — Y, (g0, €, 2) € Wr(go, €, Q). (5.12)
Lemma 5.13. For T > 1, we have
#I'N (Wr(go,€,Q2) — Waryz(g90,6,9)) < #Lpn N1 Wr(g0, €, Q).
Proof. Note that, since Wr(go, €, 2) consists of hyperbolic elements,
#Tpn N Wr(go, €, Q) = #I N Wr(go, £, Q) — #(Ur2Thy) 0 Wr(go, €, Q)

where F’;h ={o*: o€}
On the other hand, by Lemma 4.24 and (5.12), for some constant ¢y > 1,

cgle‘sT < #T N Wr(go,e, Q) < cpe’T

for all T > 1.
Hence for T > 1.

#(Ur=oT) W Wr(go,£,Q) <> #T 0 Wryi(go, 6, Q)
k>2

< ¢ Z Tk < 4N War/3(go,€,2)
k>2

proving the claim. O

By the ergodicity of the geodesic flow with respect to the BMS measure
on I'\G [24], for any gy € supp(mPM9), a random AM-orbit in T'\G comes
back to the flow box B(go, e) infinitely often. The effective closing lemma
implies that that there is an arbitrarily long closed geodesic nearby whose
holonomy class is O(e)-close to the M-component of gy in the NTN~AM
decomposition. Since the projection of supp(mBMS) to the M-components
is all of M, this shows not only the existence of a closed geodesic but also
the density of holonomy classes in the space of all conjugacy classes of M.

The comparison lemma below gives a much stronger control on the num-
ber of closed geodesics whose holonomy classes contained in a fixed subset of
M in terms of lattice points, whose cardinality is controlled by the mixing.

Lemma 5.14 (Comparison Lemma). For all T > 1, we have

2e-#I'N (VT(9075(1 —ce”T7%), Q) — Var3(g0, €, Q))

< ur(B(go, ) @ Q) < 2e - #I'NVr(go,e, Q).
where Q. = Nip,em,.m12me.

Proof. The upper bound is immediate from the definition of the sets and
Proposition 5.9.
Proposition 5.9, Lemma 5.13 and (5.12) imply the lower bound. O
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Theorem 5.15. We have

~ T

pr (B(go, €)@€2) = (1+0(5))m'(mBMS(%(907€)®Q)+0(1)) (5.16)

where the implied constants are independent of go and .
Moreover if G and T' are as in Theorem 1.2, o(1) can be replaced by
O(e=51T) for some positive €1 > 0.

Proof. This follows from the comparison lemma 5.14 and Theorem 4.24. [

We note that we do not require I' to be geometrically finite in the following
theorem.

Theorem 5.17. Let T' be Zariski dense with |mPMS| < oo. For any f €
C.(T\G/M) and £ € CI(M), we have, as T — oo,

ST .. BMS
ur(f® &) ~ & 5@|m31\(4";’® 3 (5.18)

Moreover if G and T' are as in Theorem 1.2, then (5.18) holds with an
exponential error term O(e™'Y) for some g1 > 0 with the implied constants
depending on the Sobolev norms of f and &.

Proof. We normalize |mPMS| = 1. Using a partition of unity argument, we
can assume without loss of generality that f is supported on %(QO,E) for
some gg € supp(mPMS) and ¢ > 0. Now for arbitrarily small 0 < p <
€, we can approximate f as step functions which are linear combination
of characteristic functions of B(h, p)’s with h € B(go,e). Now applying
Proposition 5.15 to each 1%(}1”0) ® 1o, we deduce that

(1= cp)m™(f © &) < liminfe T pr(f @ €) <
limsup de " pp(f @ £) < (1+ cp)m®MS(f @ €)
T

Since p > 0 is arbitrary, this implies the claim when £ is the characteristic
function of  whose boundary has a measure zero. Via the identification
M€¢ = Lie(S)/W where S is a maximal torus of M and W is the Weyl
group relative to S, extending the above claim from characteristic (class)
functions to continuous (class) functions is similar to the above arguments.
This establishes (5.18). When the effective version of Theorem 5.15 holds,
we also obtain an error term in this argument. ]

Contribution of the cusp and equidistribution for bounded func-
tions In order to extend Theorem 5.17 to bounded continuous functions,
which are not necessarily compactly supported, we now assume that I is
geometrically finite and use the following theorem of Roblin [18] (Theorem
5.20).

We denote by C(I') the convex core of I'. Let ¢y > 0 be the Margulis
constant for I'. Then {z € C(I') : injectivity radius at © > o} is called
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the thick part and its complement is called the thin part. We will denote
them C(T')¢pick and C(I')¢pin respectively. When T' is a geometrically finite
group, the thin part part consists of finitely many disjoint cuspidal regions
(called horoballs), say, Hi, - - , Hj based at parabolic fixed points p1,- - , pg
respectively. We denote by I',, the stabilizer of p; in I'. Also, fixing o in
the thick part of C(I"), let ¢; denote the point of intersection between the
geodesic ray connecting o and p; with the boundary of the horoball H,;.

Proposition 5.19. [5] If ' is geometrically finite, then for each parabolic
fized point p; € A(T"), we have

Z d(QZﬁo'qi)eia.d(qivo'qi) < 0.

o€l'p,

For any r > 0 denote by #;(r) the horoball contained in H; whose bound-
ary is of distance r to OH;. Put cusp(r) = U;H;(r).

Theorem 5.20 (Roblin, [18]). There exist absolute constants co,c1 > 0
such that for any T > 1,

k
e T pr(cusp(r)K) < ¢ Z Z (d(gi, 0q;)—2r+cp)eHa-06)
i=1 o€l'y,,d(g:,09:)>2r—co

In particular, if G = SO(n,1)°, then
e pp(cusp(r)K) < =20 (5.21)
where k = maxrank(p;).
These estimates and the proof for compactly supported functions imply
the result for bounded functions.

Proof of Theorem 5.1: We may assume |mPMS| = 1. By Proposition
5.19,

Z (g, qu)e*‘;'d(qz'ﬂqz') =0
o€ly,,d(qi,0q:)>s

as s — 00. Therefore by Theorem 5.20,

T - up(cusp(r)K) = o,(1).
If we denote by ®, a continuous approximation of the unit neighborhood
of C(T") — (UH;(r)) (that is, &, = 1 on the neighborhood and 0 outside a
slightly bigger neighborhood) then Theorem 5.17 implies that

e TSur(f- @ @ &) =mBM(f- @, ®€) + op(1).

Hence

e opr(f @ &) —mPM3(f @ €)| = or(1) + op(1) + m”M3 (cusp(r) K)
since the support of mBMS is contained in C(T"). By taking 7 — oo, we finish
the proof of the first claim (5.2). In view of (5.21) and Theorem 5.17, the
claim on the error term follows as well.
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We now deduce (5.3) from (5.2) ; this is done in [18, Section 5]; we recall
the proof for the convenience of the reader.

Without loss of generality we may assume f ® £ > 0. It follows from the
definition that

ST nr(f ©€) > 6™  pp(f ©¢€). (5.22)

Therefore (5.2) implies that

lim inf TeTnp(f &) >mBPMS(f®¢).

We now bound 7(f ® £) from above. Let ¢ > 0 be small fixed number. We
have

0Te " nr(f © &) = (5.23)

T [ ST Defethe)+ S Dolfelhe) | <
Gr((1-e)T) Gr(T)—Gr((1—e)T)

oTe (N UODeNEhe) + Y. ErDe(félhe) | <
Gr((1-e)T) Gr(T)—Gr((1—e)T)

—0T
Tt (3 gr(f 9.9) + T (0r( 99 = ma-ar(f = 6).

Therefore again by Theorem 5.1,

lim sup 5Te_5T77T(f®§) < mBMS(fe¢) <lim supTe %7 +
T T

1
< =
S 1

—eéT
1-¢ +e >
mM(f @ ¢)

Since € > 0 is arbitrary, this proves the claim.

When (5.2) is effective, we use Abel’s summation formula to deduce (5.4).
Given functions f and £ and T > 1, we note that the map a(t) := pu(f ® &)
defines a step function on (0,7] with finitely many jumps at values of ¢
where there is a closed geodesic of length ¢. The amount of jump at ¢ is given
by > ooyt Lo (f)E(he). Let ¢(t) = 1/t, we then compute the Riemann-
Stieltjes integral

/ t)da = Z Z *ﬁc E(he) =nr(f®E).
0 0<t<T C:4(C)= t

Let to > 0 be the length of the shortest geodesic. Using integration by parts
and the effective estimate for (5.2) we get the following: for simplicity, we
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. mBMS
write Crge 1= 7|mB1(\{SQ?§)
f®E fee "
m(fog =122 IS [T s 6w
T tO to
et T (f®f)
— R 7dt (5781)T
Cf@{ 5T + /to t2 + O(@ )
65T T eét 4 O ¢ )T
e _ J— t —€2
Cfee <5T + /to 522 ) + (e )
8 s
for some g9 > 0. Since li(e’?) = [, ! 13;15 = %5—;: — % + f(lTog2)/5 %ds, we

obtain

nr(f ® &) = cpgeli(e™) + 0(e=2)7T),

completing the proof.
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