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Apollonius of Perga

» Lived from about 262 BC to about 190 BC.
» Known as “The Great Geometer”.

» His famous book on Conics introduced the terms parabola,
ellipse and hyperbola.



Apollonius’ theorem

Theorem (Apollonius of Perga)

Given 3 mutually tangent circles, there exist exactly two circles
tangent to all three.






Proof of Apollonius’ theorem




4 mutually tangent circles

Four possible configurations




Construction of Apollonian circle packings

Beginning with 4 mutually tangent circles, we can keep adding
newer circles tangent to three of the previous circles, provided
by the Apollonius theorem. Continuing this process indefinitely,
we arrive at an infinite circle packing called an

Apollonian circle packing .

We’ll show the first few generations of this process:



Initial stage

Here each circle C is labelled with its curvature:
1
radius(C)"
The curvature of the outermost circle is —1 (oriented to have
disjoint interiors).

curv(C) =



First generation



Second generation




Third generation




Example of bounded Apollonian circle packing

The outermost circle has curvature —1.




Example of bounded Apollonian circle packing

The outermost circle has curvature —10.




Example of unbounded Apollonian circle packing

There are also other unbounded Apollonian packings
containing either only one line or no line at all. Since circles will
get enormously large, it is hard to draw them.



Circle-counting question

For a bounded Apollonian packing P, there are only finitely
many circles of radius bigger than a given number.

Foreach T > 0, we set

Np(T) :=#{CecP:curv(C) < T} < oo.
Clearly, Np(T) > o0 as T — .
Question

» Is there an asymptotic of Np(T) as T — co?
» If so, can we compute?



The study of this question involves notions related to metric
properties of the underlying fractal set called residual set.



Residual set

Definition (Residual set of P)

Res(P) := UgepC.

Equivalently, the residual set of P is the fractal set which is left
in the plane after removing all the open disks enclosed by
circles in P.




Residual dimension

The Hausdorff dimension of the residual set of P is called the
Residual dimension of P, which we denote by «.



Hausdorff dim. (Hausdorff and Carathéodory (1914))

Definition

Let s > 0. F ¢ R". The s-dim. Hausdorff meas. of F is def. by:
HE(F) = lim <inf{z d(B))S: F C UiB;, d(B)) < e}>

where d(B;) is the diameter of B;.

It can be shown that as s increases, the s-dim Haus measure
of F will be oo up to a certain value and then jumps to 0.

Definition
The Hausdorff dim of F is this critical value of s:

dimy(F) = sup{s: H°(F) = oo} = inf{s : H3(F) = 0}.



a = dimy(Res(P)): Residual dim

We observe
> 1 <a<?2

» «is independent of P: any two Apollonian packings are
equivalent to each other by a Mobius transformation.

» The precise value of « is unknown, but approximately,
a = 1.30568(8) (McMullen 1998)

In particular, Res(P) is much bigger than a c’ble union of
circles of P, but not too big in the sense that its Leb. area (=2
dimensional Haus. measure) is zero.



Confirming Wilker’s prediction based on computer experiments,
Boyd showed: (Np(T) := #{C € P :curv(C) < T})

Theorem (Boyd 1982)

jm 199 Ne(T) _
T—oo log T

Boyd asked whether Np(T) ~ ¢T® as T — oo, and wrote that
his numerical experiments suggest this may be false and
perhaps

Np(T) ~ c- T*(log T)?

might be more appropriate.



Theorem (Kontorovich-O. 2009)

For a bounded Apollonian packing P, there exists a constant
cp > 0 such that
Np(T) ~cp- T

where oo = 1.30568(8) is the residual dimension of P.

Theorem (Lee-O. 2012)

There exists n > 0 such that for any bounded Apollonian
packing P,
Np(T)=cp-T*+ O(T*")

where a = 1.30568(8) is the residual dimension of P.



Counting inside Triangle

For unbounded Apollonian packing P, Np(T) = cc.

Consider a curvilinear triangle R whose sides are given by
three mutually tangent circles in any Apollonian packing (either
bounded or unbounded):

Set
Ng(T):=#{CeR:curv(C) < T} < 0.



Theorem (O.-Shah 10)

For a curvilinear triangle R of any Apollonian packing P,

NR(T) ~cpr- T



Distribution of circles in Apollonian packing

Question

Can we describe the asymptotic distribution of circles in P of
curvature at most Tas T — o0?

For a bounded Borel subset E, set
Nr(P,E):=#{CeP:curv(C)< T,CnE #0}.
As we vary E C C, how does N7(P, E) depend on E?



Distribution of circles

Question

Does there exist a measure wp on C such that for any bdd

Borel E c C,

= ?
T—o0 e N ( E) '

Note that all the circles in P lie on the residual set of P.

Hence any measure describing the asymptotic distribution of
circles of P must be supported on the residual set of P.

What measure could that be?



We show that the a-dim. Hausd. measure H® on Res(P) does
the job.

Theorem (O.-Shah, 10)
For any bdd. Borel E C C with smooth bdry,

Nr(P,E) ~ ca-HY(ENRes(P)) - T¢

where 0 < ¢4 < oo is an absolute constant independent of P.



Distribution of circles

Thm says that circles in an Apollonian packing are uniformly
distributed w.r.t the a-dim. Hausdorff meas. on its residual set:

N7 (P, Ey) HY(Ey N Res(P))
N7(P,Es) ~ Ho(E> N Res(P))’




Integral Apollonian circle packings

We call an Apollonian packing P integral if every circle in P
has integral curvature.

Does there exist any integral P?

The answer is positive thanks to the following beautiful thm of
Descartes:



Descartes circle theorem, 1643

“I think — therefore, | am.”}

Theorem (in a letter to Princess Elisabeth of Bohemia)

A quadruple (a, b, c, d) is the curvatures of four mutually
tangent circles if and only if it satisfies the quadratic equation:

208+ b2+c*+d?) =(a+b+c+d>



E.g:2((—1)24+22+224+3%)=36=(—-1+2+2+3)?
E.g. 2(22 + 6% + 3% +23%) = 1156 = (24 6 + 3 + 23)?



Given three mutually tangent circles of curvatures a, b, c, if we
denote by d and @’ for the curvatures of the two circles tangent
to all three, then

2@+ b2+ +d?)=(a+b+c+d)?

and
2@+ +P+(d))=(a+b+c+d)

By subtracting one from the other, we obtain
d+d =2(a+b+c).

So, if a, b, ¢, d are integers, so is d'.



Theorem (Soddy 1936)

If the initial 4 circles in an Apollonian packing P have integral
curvatures, P is integral.

Therefore, for any integral solution of
2(a82 +b?+c®+d?) = (a+ b+ c+d)? Fanintegral
Apollonian packing!



Integral Apollonian circle packings

Any integral Apollonian packing is either bounded or lies
between two parallel lines:




Diophantine questions

For a given integral Apollonian packing P, it is natural to inquire
about its the Diophantine properties such as

Question
» Are there infinitely many circles with prime curvatures?
» Which integers appear as curvatures?
Assume that P is primitive, i.e.,g.c.dgcp(curv(C)) = 1.
Definition

1. Acircle is prime if its curvature is a prime number.
2. A pair of tangent prime circles is a tangent prime.



prime circles: 2,3, 11, 23,... Tangent prime circles: (2,3), (2,11),
(3, 23), ...



Infinitude of prime circles

Theorem (Sarnak 07)

In any primitive integral P, there are infinitely many prime
circles as well as tangent prime circles.

Set
M7 (P) := #{prime C € P :curv(C) < T}

FI(TZ)(P) = #{tangent primes C;,C, € P : curv(C;) < T}.



Analogue of Prime number theorem?

Using the sieve method based on heuristics on the randomness
of the Mobius function, Fuchs and Sanden conjectured:

Conjecture (Fuchs-Sanden)

Nr(P)
(log T)2

Nr(P). L@
Iog T’ I_IT (P) C2

M T(P) ~ Cq

where ¢y and ¢, can be given explicitly.



Using the breakthrough work of Bourgain, Gamburd, Sarnak on
expanders together with Selberg’s upper bound sieve, we
obtain upper bounds of true order of magnitude:

Theorem (Kontorovich-O. 09)

N
1. Ny(P) < lgg?

2) Nr(P
2. NP(P) < =& .

The lower bounds are still open and seem very challenging.



Question

For a primitive integral P, how many integers appear as
curvatures of circles in P?

l.e., how big is #{curv (C) < T,C € P} compared to T?
Our counting result for circles says

#{curv (C) < T counted with multiplicity : C € P} ~ ¢ T1-30%
So we may hope that a positive density (=proportion) of

integers arise as curvatures, conjectured by Graham, Lagarias,
Mallows, Wilkes, Yan (Positive density conjecture):



(Strong) Positive density conjecture

P: primitive integral Apollonian packing

Theorem (Bourgain-Fuchs 10)

#{eurv(C)<T:CeP}>T.

Theorem (Bourgain-Kontorovich 12)

#(P)
24

where k(P) > 0 is the number of residue classes mod 24 of
curvatures of P.

T

#{curv(C)< T:CeP}~

e There are congruence restriction: modulo 24, not all residue
classes appear.



Improving Sarnak’s result on the infinitude of prime circles,
Bourgain showed that a positive fraction of prime numbers
appear as curvatures in P.

Theorem (Bourgain, 2011)

) T
< I : —_—.
#{prime curv (C)< T:C € P} > B



Hidden symmetries

Question

How are we able to count circles in an Apollonian packing?

We exploit the fact that
an Apollonian packing has lots of hidden symmetries.
Explaining these hidden symmetries will lead us to explain the

relevance of the packing with a Kleinian group, called the
Apollonian group.



Symmetry group of P

Fixing 4 mutually tangent (black) circles in P, we obtain four
dual circles, each passing through 3 tangent points.

-7 ~s.



Inverting w.r.t a dual circle fixes the three circles that it meets
perpendicularly and interchanges the two circles which are
tangent to the three circles; indeed, it preserves P.




Apollonian group

-7 ~s.

......

The Apollonian group A associated to P is generated by 4
inversions w.r.t those dual circles:

A

A = (r,71,73,74) < Mob(C)

where Mob(C) = PSL(C)* the gp of Mobius transf. of C.



The Apollonian group A is a Kleinian group (= discrete
subgroup of PSLf((C)) and satisfies

P =UL A(G),

i.e., inverting the initial four (black) circles in P w.r.t the (red)
dual circles generate the whole packing P.



3 dim. hyp. geometry

The upper-half space model for hyp. 3 space H3:

dx2 + dx2 + dy?
H® = {(x1,%,y) : y > 0} with ds—\/ ! 2

y
and 9, (1) = C.

~
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For a circle C in C, put
C := the vertical hemisphere in H® above C.

Theorem (Poincare extension thm)

The map "Inversion w.r.t. C — Inversion w.r.t. C” extends to an
isomorphism

PSL,(C)* = Isom(H?)




The Apollonian gp A (now considered as a discrete subgp of
Isom(H?3)) has a fund. domain in H2, given by the exterior of
the hemispheres above the dual circles to P:

In particular, A\H? is an infinite vol. hyperbolic 3-mfld and has
finitely many sided fund. domain.



Orthogonal translates of geodesic surface

Counting circles of curvature at most T is same as counting
vertical hemispheres of height at least 1/T.

Noting that vertical hemispheres in H® are totally geodesic
subspaces, we relate the circle-counting problem with the
equidistribution of translates of a closed totally geodesic
surface in A\H5.



For a tot. geo. surface S of T' (LA\H?), what is the asymptotic
dist. of its orthogonal translates g!(S) as t — co0?




Difficulties lie in the fact that the Apollonian mfld is of infinite
volume, as the dynamics of flows in inf. volume hyp. mflds are
very little understood.

We show that this distribution in T'(A\H®) is described by a
singular measure, called the Burger-Roblin measure, whose
conditional measures on horizontal planes turn out to be equal
to the a-dim’l Haus. measures in this case, and this is why we
have the a-dim’l Haus. measure in our counting thm.



Main ingredients of our proofs include
» the Lax-Phillips spectral theory for the Laplacian on A\H?;

» Ergodic properties of flows on T'(A\H?) based on the
Patterson-Sullivan theory and the work of Burger-Roblin.



More circle packings

This viewpoint via the study of Kleinian groups allows us to deal
with more general circle packings, provided they are invariant
under a finitely generated Kleinian group T".



Here are some other pictures of circle packings for which we
can count circles of bounded curvature:



Ex. of Sierpinski curve (McMullen)

Here the symmetry group is
m1(cpt. hyp. 3-mfd with tot. geod. bdry).



The next pictures are reproduced from the book ”Indra’s pearls”
by Mumford, Series and Wright (Cambridge Univ. Press 2002).















Q>






For these circle packings, we have:

Theorem (O.-Shah)

Let$ := dimy(Res(P)). For any bdd. Borel E C C with nice
boundary,

N7 (P,E) ~ c-H(ENRes(P))- T°

for some absolute constant ¢ > 0.






