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APOLLONIAN CIRCLE PACKINGS AND CLOSED
HOROSPHERES ON HYPERBOLIC 3-MANIFOLDS

ALEX KONTOROVICH AND HEE OH
(WITH APPENDIX BY HEE OH AND NIMISH SHAH)

ABSTRACT. We show that for a given bounded Apollonian circle packing
P, there exists a constant ¢ > 0 such that the number of circles of curva-
ture at most 7" is asymptotic to ¢- T* as T — co. Here o =~ 1.30568(8)
is the residual dimension of the packing. For P integral, let 7" (T') de-
note the number of circles with prime curvature less than 7. Similarly
let 75 (T) be the number of pairs of tangent circles with prime curva-
tures less than 7. We obtain the upper bounds n” (T) < T%/logT
and 73 (T) < T%/(logT)?, which are sharp up to constant multiple.
The main ingredient of our proof is the effective equidistribution of ex-
panding closed horospheres in the unit tangent bundle of a geometrically
finite hyperbolic 3-manifold 1"\]1-]13 under the assumption that the critical
exponent of I' exceeds one.
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APOLLONIAN CIRCLE PACKING 2

FI1GURE 2. A bounded Apollonian circle packing.

1. INTRODUCTION

A set of four mutually tangent circles in the plane with distinct points of
tangency is called a Descartes configuration. Given a Descartes configura-
tion, one can construct four new circles, each of which is tangent to three of
the given ones. Continuing to repeatedly fill the interstices between mutu-
ally tangent circles with further tangent circles, we arrive at an infinite circle
packing. It is called an Apollonian circle packing, after the great geometer
Apollonius of Perga (262-190 BC).

See Figure 1 showing the first three generations of this procedure, where
each circle is labeled with its curvature (that is, the reciprocal of its radius).
Unlike the inner circles, the bounding circle is oriented so that its “outward”
normal vector points into the packing. In Figure 2, the outermost circle has
curvature —1 (the sign conveys its orientation).

The astute reader would do well to peruse the lovely series of papers
by Graham, Lagarias, Mallows, Wilks, and Yan on this beautiful topic,
especially [16] and [15], as well as the recent letter of Sarnak to Lagarias
[40] which inspired this paper.
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FiGURE 3. An Apollonian circle packing bounded by two
parallel lines.

Counting circles in an Apollonian packing: Let P be either a bounded
Apollonian circle packing or an unbounded one which is congruent to the
packing in Figure 3.

For P bounded, denote by N7 (T) the number of circles in P in the
packing whose curvature is at most 7', i.e., whose radius is at least 1/7". For
P congruent to the packing in Figure 3, one alters the definition of N7 (T)
to count circles in a fixed period.

It is easy to see that N7 (T) is finite for any given 7' > 0. The main goal of
this paper is to obtain asymptotic formula for N7 (T) as T tends to infinity.
To describe our results, recall that the residual set of P is defined to be
the subset of the plane remaining after the removal of all of the interiors of
circles in P (where the circles are oriented so that the interiors are disjoint).
Let o = avp denote the Hausdorff dimension of the residual set of P. As any
Apollonian packing can be moved to any other by a Moébius transformation,
« does not depend on P. The current record towards the exact value of
a = 1.30568(8) is due to McMullen [29].

Boyd [6] showed in 1982 that

log N7 (T)
im ——= =
T—o0 lOg T

This confirmed Wilker’s prediction [48] based on computer experiments.

Regarding an asymptotic formula for N7 (T), it was not clear from the
literature whether one should conjecture a strictly polynomial growth rate.
In fact, Boyd’s numerical experiments led him to wonder whether “perhaps a
relationship such as N7 (T) ~ ¢-T%(log(T/¢'))” might be more appropriate”
(see [6] page 250).

In this paper, we show that N7 (T) has purely polynomial asymptotic
growth. By f(T') ~ g(T) with T' — oo, we mean that limp_, ? =1
Theorem 1.1. Given an Apollonian circle packing P which is either bounded
or congruent to Figure 3, there exists ¢ = ¢(P) > 0 such that as T — oo,

NP(T) ~ ¢ T
In [6], Boyd actually considered the more general problem of counting

those circles in a packing which are contained in a curvilinear triangle R; let
N®(T) count the circles having curvature at most T (see Fig. 4). For this
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Fi1Gure 4. Circles in a curvilinear triangle.

question, it does not matter whether or not the full packing is bounded; the
counting function N™®(T) is always well-defined. Since two such triangles
are bi-Lipschitz equivalent, it follows from Theorem 1.1 that there exist
constants ¢y, co > 0 such that for all T > 1,

c1-T* < NR(T) < ¢y - T®

Though we believe that the asymptotic formula N*(T) ~ ¢ - T always
holds, our techniques cannot yet establish this in full generality.

Primes and twin primes in an integral packing: A quadruple (a, b, ¢, d)
of the curvatures of four circles in a Descartes configuration is called a
Descartes quadruple. The Descartes circle theorem (see e.g. [9]) states that
any Descartes quadruple (a, b, ¢, d) satisfies the quadratic equation?:

1
(1.2) f+b?+8+dW:§m+b+c+@?

Given any three mutually tangent circles with distinct points of tangency
and curvatures a,b and c, there are exactly two circles which are tangent to

all of the given ones, having curvatures d and d’, say. It easily follows from
(1.2) that

(1.3) d+d =2(a+b+c).

In particular, this shows that if a Descartes quadruple (a, b, ¢, d) correspond-
ing to the initial four circles in the packing P is integral, then every circle in
P also has integral curvature, as first observed by Soddy in 1937 [43]. Such
a packing is called integral.

It is natural to inquire about the Diophantine properties of an integral
Apollonian packing, such as how many circles in P have prime curvatures.

1Arguably the most elegant formulation of this theorem is the following excerpt from
the poem “The Kiss Precise” by Nobel Laureate Sir Fredrick Soddy [44]:

Four circles to the kissing come. / The smaller are the bender. /

The bend is just the inverse of / The distance from the center. /

Though their intrigue left Euclid dumb / There’s now no need for rule of thumb. /
Since zero bend’s a dead straight line / And concave bends have minus sign, /

The sum of the squares of all four bends / Is half the square of their sum.
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By rescaling, we may assume that P is primitive, that is, the greatest com-
mon divisor of the curvatures is one. We call a circle prime if its curvature
is a prime number. A pair of prime circles which are tangent to each other
will be called twin prime circles. It is easy to see that a primitive integral
packing is either bounded or the one pictured in Fig. 3.

For P bounded, denote by 77 (T) the number of prime circles in P of
curvature at most 7', and by 75 (T) the number of twin prime circles in P
of curvatures at most 7. For P congruent to the packing in Figure 3, one
alters the definition of 77 (T) and 7} (T) to count prime circles in a fixed
period.

Sarnak showed in [40] that there are infinitely many prime and twin prime
circles in any primitive integral packing P, and that

T

P
™ (T)>» ———.
(log T)*/?
Using the recent results of Bourgain, Gamburd and Sarnak in [4] and [5]
on the uniform spectral gap property of Zariski dense subgroups of SLy(Z[i]),
together with the Selberg’s upper bound sieve, we prove:

Theorem 1.4. Given a primitive integral Apollonian circle packing P,

(1) 7P(T) < 175
(2) 7J(T) < ogry-

Remarks:

(1) The number of pairs of tangent circles in P of curvatures at most
T turn out to be equal to 3Np(T') up to an additive constant (see
Lemma 2.5). Therefore, in light of Theorem 1.1, the upper bounds
in Theorem 1.4 are only off by a constant multiple from the expected
asymptotics.

(2) A suitably modified version of Conjecture 1.4 in [4], a generalization
of Schinzel’s hypothesis, implies that for some ¢, co > 0,

T T

d 7P(T) ~ ey ——
logT and -y (T) ~ ez (logT)?

7 (T) ~ ¢-

(see the discussion in [4, Ex D]). The constants ¢ and ¢y are detailed
in [13].

Orbital counting of a Kleinian group in a cone: By Descartes’ theorem
(1.2), any Descartes quadruple (a,b,c,d) lies on the cone
Q(x) = 0, where @ denotes the quadratic form

1
Q(a,b,c,d):a2+62+02+d2—§(a+b+c+d)2.
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In light of (1.3), one can “flip” the quadruple (a,b, ¢, d) into (a,b,c,d’) via
multiplication by S4, where

-1 2 2 2 1 0 00
0 100 2 —1 2 2

Si=10o 010" *2=|0o 0 1 0]
0 0 0 1 0 0 0 1
10 0 0 100 0
01 0 0 010 0

S3=19 9 1 92| %=|0 01 0
00 0 1 2 2 2 —1

Let A denote the so-called Apollonian group generated by these reflections,
that is A = (51,52, 53, 54), and let Og be the orthogonal group preserving
Q. One can check that A < Og(Z) and that @ has signature (3,1). There-
fore A is a Kleinian group; moreover A turns out to be of infinite index in
O¢g(Z).

For a fixed packing P, there is a labeling by the Apollonian group A
of all the (unordered) Descartes quadruples in P. Moreover the counting
problems for N7 (T') and NJ(T) for P bounded can be reduced to counting
elements in the orbit &p - AY € R* of maximum norm at most 7', where &p
is the unique root quadruple of P (see Def. 2.2 and Lemma 2.5). For P
congruent to Figure 3, the same reduction holds with {p given by (0,0, ¢, c)
where c is the curvature of the largest circle in P.

We prove the following more general counting theorem: Let ¢ : PSLy(C) —
SOr(R) be a real linear representation, where F' is a real quadratic form in
4 variables with signature (3,1). Let I' < PSLy(C) be a geometrically finite
Kleinian group. The limit set A(T") of I' is the set of accumulation points
of I'orbits in the ideal boundary 9. (H?) of the hyperbolic space H?. We
assume that the Hausdorff dimension ér of A(T) is strictly bigger than one.

Theorem 1.5. Let vg € R* be a non-zero vector lying in the cone F = 0
with a discrete orbit volI' C R*. Then for any norm || - || on R%, as T — oo,

#{v el : |jv]| < T} ~c-TO°
where ¢ > 0 is explicitly given in Theorem 7.1.

There are two main difficulties preventing existing counting methods from
tackling the above asymptotic formula. The first is that I" is not required to
be a lattice in PSLa(C) (recall that the Apollonian group A has infinite index
in Og(Z)), so Patterson-Sullivan theory enters in the spectral decomposition
of the hyperbolic manifold I'\H?3. The second difficulty noted by Sarnak in
[40] stems from the fact that the stabilizer of vg in I' may not have enough
unipotent elements; in the application to Apollonian packings, the stabilizer
is indeed either finite or a rank one abelian subgroup, whereas the stabilizer
of vg in the ambient group G is a compact extension of a rank two abelian
subgroup.
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In the similar situation of an infinite area hyperbolic surface, that is when
I' < PSLy(R), the counting problem in a cone with respect to a Euclidean
norm was solved in Kontorovich’s thesis [21], under the assumption that the
stabilizer of vy in ' is co-compact in the stabilizer of vy in PSLa(R). The
methods developed here are quite different. Our approach to the counting
problem is via the equidistribution of expanding closed horospheres on hy-
perbolic 3-manifolds (see the next subsection for more detailed discussion).
Our proof of the equidistribution works for hyperbolic surfaces as well, and
in particular solves the counting problem in [21] for any norm and without
assumptions on the stabilizer. In [22], we apply the methods of this paper to
the problem of thin orbits of Pythagorean triples having few prime factors.

Equidistribution of expanding horospheres in hyperbolic 3-manifolds:
Let T' be a geometrically finite torsion-free discrete subgroup of PSLs(C).
The main ingredient of our proof of Theorem 1.5 is the equidistribution of
expanding closed horospheres in T'\H?.

The group G = PSLy(C) is the group of orientation preserving isometries
of the hyperbolic space H* = {(x1,z2,y) : y > 0}. The invariant measure
on H? for the action of G and the Laplace operator are given respectively
by
d$1d$2d 32 82 82 8
Ty and A:_y2<fw2+8aﬁ+8x§>+y8y
Set

(1.6) N = {ng = (é ff) .z eC),

A={ay:= <\6§ \/gl> cy >0},
K={9eG:3'g=1I} and

e? 0

By the Iwasawa decomposition G = NAK, any element g € G can be
written uniquely as g = ngya,k with n, € N, ay, € A, and k € K. Via the
map

nmay(ov 07 1) = (.ﬁU, y)7

the hyperbolic space H? and its unit tangent bundle T*(H?®) can be identified
with the quotients G/K and G /M respectively.

Denoting by [u] the image of u € G under the quotient map G — G/M,
the horospheres correspond to N-leaves [u]N = [uN] in G/M; note this
is well-defined as M normalizes N. For a closed horosphere I'\I'[u] N, the
translates I'\I'[u|Na, represent closed horospheres I'\I'[ua,|N which are
expanding as y — 0.

In the case of a hyperbolic surface I'\H? of finite area, it is a theorem of
Sarnak’s [39] that such long horocycle flows are equidistributed with respect
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FIGURE 5. Equidistribution of expanding horospheres

to the Haar measure. The equidistribution of expanding horospheres for
any finite volume hyperbolic manifold can also be proved using the mixing
of geodesic flows. This approach appears already in Margulis’s 1970 thesis
[25]; see also [12].

In what follows we describe our equidistribution result for expanding
closed horospheres on any geometrically finite hyperbolic 3 manifolds.

Assuming ép > 1, Sullivan [45] showed, generalizing the work of Patterson
[34], that there exists a unique positive eigenfunction ¢ of the Laplacian
operator A on I'\H? of lowest eigenvalue 6r(2—dr) and of unit L2-norm, that
is, fF\H3 ooz, y)Qy%dacdy = 1. Moreover the base eigenvalue-value dr(2—dr)
is isolated in the L?-spectrum of A by Lax-Phillips [24].

Note that the closed leaf I'\I'N inside T*(I"\H?) is an embedding of one
of the following: a complex plane, a cylinder, or a torus. As ¢g > 0, it is a
priori not clear whether the integral

o (a) = / bo(z, y)da
nz €(NNT)\N

converges. We show that for any y > 0, the integral gbév (ay) does converge
and is of the form

¢é\7(ay) = c¢0y2_5F + d¢oy6F
for some constants cg, > 0 and dg, > 0. By f(y) ~ g(y) with y — 0, we

mean that lim, o % = 1. The measure dn on N is given by dn, = dx.

Theorem 1.7. Let I' < G be a geometrically finite torsion-free discrete
subgroup with ép > 1 and let T\I'N be closed. There exists € > 0 such that
for any ¢ € C*(T\G)X = C(T'\H?), and for all small y > 0

/ Y(I\I'nay) dn = cg, - (¥, do) L2 (r\3) 270 (14 O(y))
(NAD)\N

where the implied constant depends only on the Sobolev norm of 1.

Thus as y — 0, the integral of any function ¢ € C.(I'\G)¥ along the
orthogonal translate I'\I'Va,, converges to 0 with the speed of order y>or,
It also follows that for v € C.(T\G)¥, as y — 0,

/ PY(I'\I'nay) dn ~ (1, ¢o) - / ¢o(I'\I'nay) dn.
(NAD)\N

(NAD)\N
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We denote by Qr the set of vectors (p, ¥) in the unit tangent bundle
T!(H?) such that the end point of the geodesic ray tangent to ¢ belongs to
the limit set A(T') and by Qp its image under the projection of T'(H?) to
THT\H?).

Roblin [38], generalizing the work of Burger [7], showed that, up to a
constant multiple, there exists a unique Radon measure i on T*(T'\H?)
invariant for the horospherical foliations which is supported on Qr and gives
zero measure to all closed horospheres.

In the appendix A written jointly by Shah and the second named au-
thor, the following theorem is deduced from Theorem 1.7, based on the
aforementioned measure classification of Burger and Roblin. In view of the
isomorphism TH(I"\H?) = T'\G/M, the following theorem shows that the
orthogonal translations of closed horospheres in the expanding direction are
equidistributed in TY(I'\H?) with respect to the Burger-Roblin measure /.

Theorem 1.8. For any v € C.(I'\G)M, as y — 0,
[ D) o gy ()
(NOND)\N

where [i is normalized so that fi(¢pg) = 1.

Theorem 1.8 was proved by Roblin [38] when (N NT)\N is compact with
a different interpretation of the constant cg,. His proof does not yield an
effective version as in Theorem 1.7 but works for any dr > 0.

We also remark that the quotient type equidistribution results for non-
closed horocycles for geometrically finite surfaces were established by Schapira
[41].

We conclude the introduction by giving a brief outline of the proof of
Theorem 1.7. By Dal’bo (Theorem 3.3), we have the following classification
of closed horospheres in terms of its base point in the boundary Ou (H?®):
I'\I'N is closed if and only if either co ¢ A(T") or oo is a bounded parabolic
fixed point (see Def. 3.1). This classification is used repeatedly in our
analysis establishing the following facts:

(1) For any bounded subset B C (N N T')\NN which properly covers
(NNT)\(A(T) — {oo}) (cf. Def. 4.5),

/ ¢o(nay) dn = / ¢o(nay) dn + O(y‘sr).
(NAD)\N B

(2) Denoting by pp,c € C.(I'\G) the e-approximation of B in the transver-
sal direction,

/Bqﬁo(nay) dn = (ay¢o, pB.c) + O(eyQ*‘SF) + O(y‘sr).
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(3) For ¢ € C,(I'\H?), there exists a compact subset B = B(supp(¢)) C
(N NT)\N such that forall 0 < y < 1

/ p(nay) dn = / P(nay) dn.
(NAD)\N B

These facts allow us to focus on the integral of i over a compact re-
gion, say, B, of (N NT')\N instead of the whole space. In approximating
J5 (nay) dn with (a1, pp.e), the usual argument based on the contracting
property along the stable horospheres is not sufficient: the error terms com-
bine with those coming from the spectral gap to overtake the main term! We
develop a recursive argument which improves the error upon each iteration,
and halts in finite time, once the main term is dominant. Using the spectral
theory of L*(T'\G) along with the assumption dr > 1, we get a control of
the main term of (a,v, pp.c) as (¥, ¢o) - (aydo, PB,e)-

For the application to Apollonian packings, we need to consider the max
norm, which necessitates the extension of our argument to the unit tangent
bundle, that is, the deduction of Theorem 1.8 from 1.7 as done in Appendix
A.

We finally remark that the power savings error term in (1) of Theorem
1.7 is crucial to prove Theorem 1.4.

After this paper was submitted, the asymptotic formula for counting cir-
cles in a curvilinear triangle of any Apollonian packing has been obtained
n [33]. See also [32] for similar counting results for hyperbolic and spheri-
cal Apollonian circle packings. We also refer to [31] for a survey on recent
progress on counting circles.

Acknowledgments. We are grateful to Peter Sarnak for introducing us to
this problem and for helpful discussions. We also thank Yves Benoist, Jeff
Brock and Curt McMullen for useful conversations.

2. REDUCTION TO ORBITAL COUNTING

2.1. Apollonian group. In a quadruple of mutually tangent circles the
curvatures a, b, ¢, d satisfy the Descartes equation:

a2+ 02+ d? = %(a+b+c+d)2
as observed by Descartes in 1643 (see [9] for a proof).

Any quadruple (a,b,c,d) satisfying this equation is called a Descartes
quadruple. A set of four mutually tangent circles with disjoint interiors is
called a Descartes configuration.

We denote by @) the Descartes quadratic form given by

1
Q(a,b,c,d):a2+62+c2+d2—§(a+b+c+d)2.
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Hence v = (a,b,c,d) is a Descartes quadruple if and only if Q(v) = 0.
The orthogonal group corresponding to @) is given by

Og = {g € GL4 : Q(vg") = Q(v) for all v € R*}.

One can easily check that the Apollonian group A := (S1, Sa, S3,S4) defined
in the introduction is a subgroup of Og(Z) := Og N GL4(Z).

Definition 2.1. (1) For P bounded, denote by N¥(T') the number of
circles in P in the packing whose curvature is at most 7', i.e., whose
radius is at least 1/7. Denote by NJ (T) the number of pairs of
tangent circles in P of curvatures at most 7T

(2) For P congruent to the packing in Figure 3, N¥(T) denotes the
number of circles between two largest tangent circles including the
lines and the largest circles. Similarly, NJ (T) denotes the number of
unordered pairs of tangent circles between two largest tangent circles
including the pairs containing the lines and the largest circles.

(3) For P bounded, denote by n”7(T') the number of prime circles in P
of curvature at most 7. Denote by 7} (T') the number of twin prime
circles in P of curvatures at most 7.

(4) For P congruent to the packing in Figure 3, one alters the definition
of 7P (T) and 75 (T) to count prime circles in a fixed period.

We will interpret N¥(T) and NJ (T) as orbital counting functions on £.A°*
for a carefully chosen Descartes quadruple £ of P.

Definition 2.2. A Descartes quadruple v = (a, b, ¢,d) with a+b+c+d >0
is a root quadruple if a <0<b<c<danda+b+c>d.

If P is bounded, Theorem 3.2 in [15] shows that P contains a unique
Descartes root quadruple £ := (a, b, c,d) with a < 0.

Theorem 2.3. [15, Thm 3.3] The set of curvatures occurring in P, counted
with multiplicity, consists of the four entries in &, together with the largest
entry in each vector &yt as v runs over all non-identity elements of the
Apollonian group A.

In [15], this is stated only for an integral Apollonian packing, but the same
proof works for any bounded packing. Let w(™ be a non-returning walk
away from the root quadruple & along the Apollonian group, i.e., w™® =
SSfl e an with S;, # S, 1 <k <n—1. Then the key observation in
the proof of above theorem is that w(™ is obtained from w(™~1) by changing
one entry, and moreover the new entry inserted is always the largest entry
in the new vector.

This theorem yields that for T' > 1,

NP(T) =#{yc A: |67 |lmax < T} + 3.

Consider the repeated generations of P with initial 4 circles given by the
root quadruple. Then a geometric version of Theorem 2.3 is that for n > 1,
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each reduced word v = S;, ---5;, of length n corresponds to exactly one
new circle, say C,, added at the n-th generation and the curvature of C, is
the maximum among the entries of the quadruple &% (cf. [16, Section 4]).
Thus the correspondence ¢ : v — C, establishes a bijection between the set
of all non-identity elements of 4 and the set of all circles not in the zeroth
generation, and the set {C,|y # e, [|£7!|] < T} gives all circles (excluding
those 4 initial circles) of curvature at most 7.
For each v # e in A, set

P2(v) = {{Cw Cv(1>}7 {Cw C“/<2)}v {Cw C’Y(?))}}

where C (i), ¢ = 1,2, 3, are the three circles corresponding to the quadruple
&+' besides C,,. Noting that each (C,, C,(i)) gives a pair of tangent circles,
we claim that every pair of tangent circles arise as one of the triples in the
image of ¢9, provided one of the circles in the pair does not come from the
zeroth stage. If C' and D form such a pair, they are from different stages of
generation as no two circles in the same generation level touch each other,
except for the initial stage. If, say, D is generated earlier than C| then for the
element v € A giving C' = C,, which is necessarily a non-identity element,
D must be one of C,(i)’s. This is because it is clear from the construction
of the packing that every circle is tangent only to three circles from previous
generations.

Therefore ¢9 yields a one to three correspondence from A\ {e} to the set
of all unordered pairs of tangent circles in P at least one circle of whose pair
does not correspond to the root quadruple. Since there are 6 pairs arising
from the initial 4 circles, we deduce that for 7> 1,

(2.4) NP(T) =3 #{7 € A+ €1 lmax < T} +3.

The above argument establishing (2.4) was kindly explained to us by Peter
Sarnak.

If P lies between two parallel lines, that is, congruent to Figure 3, there
exists the unique ¢ > 0 such that P contains a Descartes quadruple £ :=
(0,0,¢,c¢).

In this case, the stabilizer of £ in A" is generated by two reflections S}
and S%. One can directly verify that for all T > 1,

NP(T) = #{v € €A : [[vllmax < T} + 3;
and
NI(T) =3 - #{v € €A : ||v||lmax < T} + 3.
Lemma 2.5. Let P be either bounded or congruent to Fig. 3.
(1) For all T > 1,

NP(T) [ #Stab 4 (§) - #{v € EAY  |0|lmax < T} + 3 for P bounded
B #{v e A" ||v|lmax < T} +3 otherwise.
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(2) ForallT > 1,
NJ(T) = 3NP(T) —6.

(3) The orbit A is discrete in R*.
(4) For all T > 1,

4
P (T) < Z#{v = (v1,v2,v3,v4) € EA : ||V|lmax < T, v; is prime}.
i=1
(5) For all T > 1,

7 (T) < Z #{v € EA" : ||v]|max < T, vi,vj are primes}.
1<izj<4

Proof. The first two claims follow immediately from the discussion above,
noting that the stabilizer of £ in A’ is finite for P bounded. The third claim
follows from the fact that N7 (T) < oo for any T > 0. For claims (4) and
(5), note that for P bounded,

7P (T) <3+ #{y € A: ||&7"||max is prime < T'}
4
< Z#{v = (v1,v2,v3,04) € EA" : ||0|lmax < T, v; is prime},
i=1
and

75 (T) <5+ #{y € A: ||€7||max is prime < T, one more entry of £+' is prime}

4
< ZZ#{U = (v1,v2,v3,v4) € EA" ¢ ||0]|max < T, vi, v are primes}.
i=1 j#i
The claim (4) and (5) for P congruent to Fig. 3 can be shown similarly.
O

We remark that there are bounded packings which are not multiples of
integral packings: for instance, & = (3 — 2v/3,1,1,1) is a Descartes root
quadruple which defines a bounded Apollonian packing. This is obvious
from the viewpoint of geometry, but it is not at all clear a priori that the
orbit £A! should be discrete. Note also that there are other unbounded
packings: by applying a suitably chosen Mobius transformation to a given
packing, one can arrive at a packing which spreads uncontrollably to the
entire plane, or one which is fenced off along one side by a single line.

2.2. The residual set. We consider the upper half-space model for the
hyperbolic space:
H? = {(21,22,9) € R* : y > 0}

with metric given by W. A discrete subgroup of Isom(H?) is called
a Kleinian group.
The ideal boundary O (H?) of H? can be identified with the set of geodesic

rays emanating from a fixed point zg € H3. The topology on 0. (H?) is
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defined via the angles between corresponding rays: two geodesic rays are
close if and only if the angle between the corresponding rays is small.

In the upper half-space model, we can identify Juo (H?) with the extended
complex plane {(z1,22,0)} U {ooc} = C U {oo}, which is homeomorphic to
the sphere S?. The space H? has the natural compactification H? U O, (H?)
(cf. 20, 3.2]).

Definition 2.6. For a Kleinian group I', the limit set A(T") of T" consists of

limit points of an orbit 'z, z € H? in the ideal boundary C = CU {co}. We
denote by dr the Hausdorff dimension of A(T").

By Sullivan, 6t is equal to the critical exponent of I" for geometrically
finite I'. In this subsection, we realize the action of A on Descartes quadru-
ples arising from P as the action of a subgroup, G4(P), of the Mdbius
transformations on C in a way that the residual set of P coincides with the
limit set of G 4(P). The residual set A(P) is defined to be the closure of all
the circles in P, or equivalently, the complement in C of the interiors of all
circles in the packing P (where the circles are oriented so that the interiors
are disjoint).

An oriented Descartes configuration is a Descartes configuration in which
the orientations of the circles are compatible in the sense that either the
interiors of all four oriented circles are disjoint or the interiors are disjoint
when all the orientations are reversed. Given an ordered configuration D
of four oriented circles (C1,Cq,C3,Cy) with curvatures (b1, be, b3, by) with
centers {(z;,y;) : 1 <1 < 4}, set

bi b1 bix1 by
| b2 b2 boxa bayo
W := by by bsrs bsys

by by baxy bays
where b; is the curvature of the circle which is the reflection of C; through
the unit circle centered at the origin, i.e., b; = b;(2? + y?) — b;l if b; # 0.
If one of the circles, say C;, is a line, we interpret the center (z;,y;) as the
outward unit normal vector and set b; = b; = 0.
Then by [16, Thm. 3.2], for any ordered and oriented Descartes configu-
ration D, the map g — W, LgWp gives an isomorphism

¥p : Og(R) — Oqy (R)
where Qw is the Wilker quadratic form:

0 -4 0 0
4 0 00
Qv=1|¢9 o 2 0
0 0 0 2

On the other hand, if M6b(2) denotes the group of Mobius transforma-
tions and GM*(2) := Mo6b(2) x {£I} denotes the extended Mdbius group,
we have the following by Graham et al:
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FIGURE 6. Action of A as Mobius transformations

Theorem 2.7. [16, Thm. 7.2] There exists a unique isomorphism
m: GM*(2) — Og,, (R)
such that for any ordered and oriented Descartes configuration D,
(1) Wypy = Wpn(y)™'  for any v € Mdb(2).
(2) Wop = —-Whp.

Let Dy = (C1, Cy, C5, Cy) denote the ordered and oriented Descartes con-
figuration corresponding to the root quadruple £ of P. We obtain the fol-
lowing isomorphism:

Bp, := 71 L otp, : Og(R) — GM*(2).

Denote by s; := 5;(Dp) the Mébius transformation given by the inversion
in the circle, say, C;, determined by the three intersection points of the circles
Cj, j # i. Figure 6 depicts the root quadruple (Ci,...,Cy) as solid-lined
circles and the corresponding dual quadruple (Cy,...,Cy) as dotted-lined

circles.
Note that s; fixes C}, j # i and moves C; to the unique other circle that

is tangent to C}’s, j # 1.
We set
GA(P) = <51,52,53,54>.
Lemma 2.8. For each 1 <i <4,
Op, (S;i) = si;

hence

(I)Do (A) = GA<P)-
Proof. If ~; := ®p,(S;), then by (2.7),
W%‘(Do) = Wp, (wDOS’i)il = SiWp,.
On the other hand, by [16, 3.25],

Wﬁi(po) = SiWDO-

Therefore
(Do) = si(Do);
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FIGURE 7. Fundamental domain

and hence y; = s;. U

Each inversion s; extends uniquely to an isometry of the hyperbolic space
H?3, corresponding to the inversion with respect to the hemisphere whose
boundary is C;. The intersection of the exteriors of these hemispheres is a
fundamental domain for the action of G4(P) on H?3.

The Hausdorff dimension of A(P), say «, is independent of P. Hirst
showed in [18] that « is strictly between one and two. For our purpose, we
only need to know that a > 1, though much more precise estimates were
made by Boyd in [6] and McMullen [29].

Proposition 2.9. (1) GA(P) is geometrically finite and discrete.
(2) We have A(Ga(P)) = A(P), and hence a = é¢ ,(p)-

Proof. For simplicity set I' := G 4(P). The group I is geometrically finite
(that is, it admits a finite sided Dirichlet domain) by [20, Thm.13.1] and
discrete since A is discrete and ®p, is a topological isomorphism.

Clearly, I' is non-elementary. It is well-known that A(I') is same as the
set of all accumulation points in the orbit o under T' for any (fixed) 2o € C.
On the other hand, by [16, Thm 4.2], A(P) is equal to the closure of all
tangency points of circles in P and is invariant under I'. This immediately
yields

A(T) C A(P).
If zg € A(P), then any neighborhood, say U, of xy contains infinitely many
circles. Since U1<;<4I'(C}) is the set of all circles in P, there exist j and an
infinite sequence ; € I" such that v;(C;) C U for all i. Therefore xy € A(T").
This proves that A(P) C A(T). O

Set I'p to be the subgroup of holomorphic elements, that is,
I'p := G4(P) N PSLy(C),

since M6b(2) is the semidirect product of complex conjugation with the
subgroup Mo6b, (2) = PSLa(C) of orientation preserving transformations.
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Then the above lemma holds with I'p in place of G_4(P) as both properties
are inherited by a subgroup of finite index. By the well known Selberg’s
lemma, we can further replace I'p a torsion-free subgroup of finite index.

2.3. Reduction to orbital counting for a Kleinian group. Let G :=
PSLy(C) and I' < G be a geometrically finite, torsion-free Kleinian sub-
group. Suppose we are given a real linear representation ¢ : G — SOp(R)
where F' is a real quadratic form in 4 variables with signature (3,1). As we
prefer to work with a right action, we consider R* as the set of row vectors
and the action is given by vg := 1(g)v? for g € G and v € R*.

By Lemma 2.5 and the discussions in the previous subsection, Theorem
1.1 follows from:

Theorem 2.10. Suppose dr > 1. Let vg € R* be a non-zero vector lying in
the cone F = 0 with a discrete orbit voI' C R*. Then for any norm || - || on
R*, there exists ¢ > 0 such that

#{v el : |jv]| < T} ~c-TO.
It also follows from Lemma 2.5 that this theorem implies
NP (T) ~ (3¢) - T®

for the same ¢ as in Theorem 1.1.

3. GEOMETRY OF CLOSED HOROSPHERES ON T*(T'\H?®)

Let G = PSLy(C) and H? = {(z1,72,y) : y > 0}. We use the notations
N, A, K, M, n, and a, as defined in (1.6). Throughout this section, we
suppose that I' < G is a torsion-free, non-elementary (i.e., A(I") consists of
more than 2 points) and geometrically finite Kleinian group.

Definition 3.1. (1) A point £ € A(T) is called a parabolic fized point if
¢ is fixed by a parabolic isometry of I' (that is, an element of trace
+2). The rank of a parabolic fixed point £ is defined to be rank of
the abelian group I'c which stabilizes &.

(2) A parabolic fixed point ¢ is called a bounded parabolic if it is of rank 2
or if there exists a pair of two open disjoint discs in C whose union,
say U, is precisely I'¢-invariant (that is, U is invariant by I'c and
¥(U)NU # 0 for all ¥ € I' not belonging to I'¢). Or equivalently, &
is bounded parabolic if I'¢\ (A(T") — {£}) is compact.

(3) A point £ € A(T") is called a point of approximation if there exist a
sequence v; € I' and z € H? such that v,z — & and ~;z is within a
bounded distance from the geodesic ray ending at &.

Since I' is geometrically finite, it is known by the work of Beardon and
Maskit [2] that any limit point £ € A(T") is either a point of approximation
or a bounded parabolic fixed point.

We denote by Vis the visual map from T!(H?) to the ideal boundary
Do (H?) which maps the vector (p, @) to the end of the geodesic ray tangent
to .
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Definition 3.2. e We denote by Qp C T!(H?) the set of vectors (p, 7)
whose the image under the visual map belongs to A(T).

e We denote by Qr the image of Qr under the projection TYHH3) —
THT\H?).

We note that Qp is a closed set consisting of horospheres. For comparison,
if T has finite co-volume, then Ap = CU {oo} and Qr = TY(T'\H?).

For u € PSLy(C), we denote by [u] its image in PSLy(C)/M, which we
may consider as a vector in T*(H?®). The horosphere determined by the
vector [u] in T'\ TY(H?) corresponds to I'\I'ulNM /M, which will be simply
denoted by I'\I'[u|N. We note that u(co) is identified with Vis[u].

Theorem 3.3 (Dal’Bo). [10] Let u € PSLa(C).
(1) If u(oo) € A(T') is a point of approximation, then T\I'[u]N is dense
mn Qr.
(2) The orbit I'\I'uN s closed in I'\G if and only if either u(oo) ¢ A(T)
or u(o0) is a bounded parabolic fixed point for T

The first claim was proved in [10, Prop. C and Cor. 1] under the condition
that the length spectrum of I" is not discrete in R. As remarked there, this
condition holds for non-elementary Kleinian groups by [17]. The second
claim follows from [10, Prop. C and Cor. 1] together with the following
lemma.

Lemma 3.4. (1) We have’'NNM =T NN.
(2) The orbit T\I'N M is closed if and only if T\I'N is closed.

Proof. If v € TN NM, but not in N, then Tr?(v) is real and 0 < Tr?(y) < 4
where Tr(y) denotes the trace of 7. Hence ~ is an elliptic element. As I is
discrete, v must be of finite order. However I is torsion-free, which forces
~v = e. This proves the first claim. The second claim follows easily since the
first claim implies the inclusion map 'NN\N — I'NNM\N M is proper. [

It follows that if I'\I'NV is closed in I'\ PSLy(C), then I'\I'N is either
(1) the embedding of a plane, if co ¢ A(T);
(2) the embedding of a cylinder, if co is a bounded parabolic fixed point
of rank one; or
(3) the embedding of a torus, if co is a bounded parabolic fixed point of
rank two.

For X C H3 U 04 (H?), X denotes its closure in H? U Oy (H?).

Proposition 3.5. Assume that T\I'N is closed. There exists a finite-sided
fundamental polyhedron F C H3 for the action of T', and also a fundamental
domain Fn C C for the action of N NI such that for some r > 1 and for
some finite subset It C T,

{(z1,22,y) € H? : 21 + ize € Fn, :c% +x% —I—y2 > 1} C UyerpyF.



APOLLONIAN CIRCLE PACKING 19

Proof. Choose a finite-sided fundamental polyhedron F for I' with co € F.
If oo ¢ A(I"), then oo lies in the interior of Uyer,yF for some finite It C
I". As the exteriors of hemispheres form a basis of neighborhoods of oo in
H3 U 0o (H?), and Fy = C, the claim follows.

Now suppose that oo is a bounded parabolic fixed point of rank one. Let
Ny, € I'N N be a generator for I' N N for v; € C, and fix a vector vy € C
perpendicular to v;. The set Fn := {sjv1 + s2v3 € C : 0 < 51 < 1} is
a fundamental domain in C for the action of I' N N. By replacing F if
necessary, we may assume that 7 C Fn X Rsg. Then by [26, Prop. A. 14
in VIJ, for all large ¢ > 1, the sets

S(c) := {(s1v1 + s2v2,y) € H? : yy > c or |sa| > ¢}

is precisely invariant by ' N and F — S(c) is bounded away from oco. Since
FNS(c)# 0 as oo € F and S(c) is precisely invariant by N N T, it follows
that

(3.6) {(z1,22,y) € S(c) : x1 +ixe € FNy} C F.
Since
{(z1,x2,y) : 1 +ixg € .7:N,$% +x§ +y? > r} C S(c)

for some large ¢ > 0, the claim follows in this case.

If oo is a bounded parabolic of rank two, S(c) := {(x1,z2,y) : y > ¢} is
precisely invariant by ' N and F — S(¢) is bounded away from oo by [26,
Prop. A. 13 in VI]. Choose Fy so that F C Fy x Rsg. Then (3.6) holds
for the same reason, and since Fy is bounded,

{(z1,2,y) : 1 +ix0 € Fy, 23 + 234+ y> > 1} C S(c)
for some large ¢ > 0. This proves the claim. O

Considering the action of N N T on O (H?) \ {c0} = C, we denote by
An(T") the image of A(T") \ {co} in the quotient (N NT')\C, that is,

AN(T) :={[ng] € (NNT)\N : 2 € AT) \ {oc}}.
Proposition 3.7. If T\I'N is closed, the set An(T") is bounded.

Proof. This is clear if oo is a bounded parabolic of rank two, as N NI\ N is
compact. If co ¢ A(T"), then A(T") is a compact subset of C, and hence the
claim follows. In the case when oo is a bounded parabolic of rank one, the
claim follows from the well-known fact that A(T") lies in a strip of finite width
(see [47, Pf. of Prop. 8.4.3]). This can also be deduced from Proposition 3.5
using the fact that the intersection of the convex core of I'\H?* and the thick
part of the manifold I'\H? is compact for a geometrically finite group. O

Proposition 3.8. Assume that I'\I'N is closed. For any compact subset
J C I'\G, the following set is bounded:

(3.9) N(J):={[n] € (NAT)\N :T\nAn.J 0}
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Proof. Let Fn and F be as in Proposition 3.5. If Fn is bounded, there
is nothing to prove. Hence by Theorem 3.3, we may assume that either
oo ¢ A(T) or oo is a bounded parabolic fixed point of rank one.

To prove the proposition, suppose on the contrary that there exist se-
quences nj € Fy — 00, a; € A, v; € I' and w; € J such that nja; = v,w;.
As J is bounded, we may assume w; — w € G by passing to a subsequence.
Then 'y;lnjaj — w. Let 79 € T be such that vow(0,0,1) € F. By the
geometric finiteness of T, there exists a finite union, say F’, of translates of
F such that yow;(0,0,1) € F' for all large j.

As nj — oo, the Euclidean norm of n;a;(0,0, 1) goes to infinity, and hence
by Proposition 3.5,

n;a;(0,0,1) € F' for all large j,
by enlarging F' if necessary.
Therefore for all large j,
'yovflnjaj(O, 0,1) = yw,(0,0,1) € F' N ’yo’y;l(]:').

Since F'N ”yo'yj_l(}"' ) # 0 for only finitely many +;’s, we conclude that {v;}
must be a finite set. As nja; = yw; € v;J, nja; must be a bounded
sequence, contradicting n; — oo. U

Note that N(J) is defined so that for all y > 0,
(NNT)\Nay,NJ C N(J).

Corollary 3.10. Let ¢ € C.(I'\G) have support J.
(1) The set N(J) defined in (3.9) is bounded.
(2) For any function n € Ce(N NT\N) with 0|y =1, we have for all
y >0,

/ Y(nay)dn = / Y(nay) n(n) dn.
(NAD)\N

(NNTY\N

Proof. The first claim is immediate from the above proposition. For (2), it
suffices to note that ¥ (na,) = 0 for n outside of N(.J), and hence

[ vt ) dn= [ w(na,) o) do.
(NND)\N N(J)
Using n =1 on N(J), the claim follows. O

4. THE BASE EIGENFUNCTION ¢q

In this section, we assume that I' < G = PSLy(C) is a geometrically finite
torsion-free discrete subgroup and that the Hausdorff dimension ér of the
limit set A(T") is strictly bigger than one. Assume also that I'\I'N is closed.

By Sullivan [45], there exists a positive L2-eigenfunction ¢g, unique up to a
scalar multiple, of the Laplace operator A on I'\H? with smallest eigenvalue
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dr(2 — dr) and which is square-integrable, that is,
1
oz, y)? < dedy < oo.
\H3 Y
In this section, we study the properties of ¢y along closed horospheres.
For the base point o = (0,0,1), we denote by v, a weak limit as s — dp of
the family of measures on H :

1
v(s) = — Z e_Sd(O’W)(SW.
Z’yef‘ € (0170) ~erl

The measure v, is indeed the unique weak limit of {v(s)} as s — or.
Sullivan [45] showed that v, is the unique finite measure (up to a constant
multiple) supported on A(T) with the property: for any v € T,

d(;i:o) () = - 0rPe(0)0)
where (¢(21,22) := lim,_¢ d(21, 2) — d(22, 2) is the Busemann function and
Yalo(A) := vo(7"1(A)). The measure v,, called the Patterson-Sullivan mea-
sure, has no atoms.

The base eigenfunction ¢y can be explicitly written as the integral of the
Poisson kernel against v,:

(4.1)

4.2 o(x,y) = e TPeRBY2 dyg (u
5 brBul(@w)0) g
ueA(T)
2 or
(4.3) :/ (W) dvy (),
weA(M\{oo} \ T —ull*+y

where A(T") is identified as a subset of C U {oco}. The main goal of this
section is to study the average of ¢ along the translates I'\I'Na,,.

Definition 4.4. For a given 1 € C(I'\G)¥, define

| ¥(nay) dn.
ne(NNL)\N

We will show that the integral ¢ (ay) above converges, and moreover that
all of the action in this integral takes place only over the following bounded
set (see Proposition 3.7):

An(D) = {[n.] € (NAD\N : = € AD) \ {c}}.

If oo is a bounded parabolic fixed point of rank one, then there exists a
vector v; € R? such that n,, is a generator for N N T. Fixing vector o
perpendicular to v, we can decompose = € R? as & = x1v1 + Z2vs.

Definition 4.5. We say that an open subset B C (NNI')\N properly covers
An(T) if the following holds:

(1) if oo ¢ A(T'), then eo(B) := infyep (r)o¢n |2 — ul >0
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(2) if oo is a bounded parabolic of rank one, then

B) = inf — > 0.
«o(B) x&B,ilLIEIAN(F)|U2 &l

(3) if oo is a bounded parabolic of rank two, then B = (N NI')\N.
Proposition 4.6. (1) ¢} (ay) > y*7" for all0 <y < 1.

(2) For any open subset B C (N NT')\N which properly covers An(T),
and all small y > 0,

(4.7) oY (ay) = /B d0(naty) dz + Oz ().

Proof. Choose a fundamental domain Fy C C for (NNIT)\N. We first show
that ¢{' (a,) > y?>~°" for all 0 < y < 1. For a subset Q C Fy, the notation
Q¢ denotes the complement of ) in Fy. Observe that for a subset Q C Fy,

(4.8) /eQ do(nzpay) dx

or
= ul> + 1 6F/ (y> dxdv,(u
[ i I (e o )

or
= ul|? 4 1)°r (y) dz | dv,(u
Lo (/xew(” AR TR T v

where the interchange of orders is justified since everything is nonnegative.
X

We observe that by changing the variable w = v

Y r 2—§ 1 or
w [ () e [ ()
zer2 \zlI* + [ly? wer? \ lw[? +1

_ ,2—6r r
=y 277/ ——dr
r>0 (12 +1)°"

_ T 24
or— 17
Case I: oo ¢ A(I"). In this case, we have

o —/ (lull? + 1) v (1) < vo(A(T)) < oc.
ueA(T)

Therefore for @ = C, we obtain from (4.8) and (4.9) that

N 2 0 z "
(4.10) ¢ (ay) = /ueA(F)(HUH + 1)’ duy(u) - /xeRQ <H$H2+Hy||2> dz

_ wo - T 2761_‘
or—1 '
This proves (1). To prove (2), let B be an open subset of C which properly
covers Ay(I'). Then we have

= inf — = inf rx € BE—An(I))} > 0.
o= nf e —ul = inf{]lal] 2 ()}
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By setting @ = B¢ in (4.8), we deduce

or
Yy
do(ngay) de < wy / () dx
/a;eBc Y lz)>e0 \ Nzl + lyl?

2§ 1 or
ot [ (i)
[|lw]|>eoy—1* ||U)H2 +1

r
= 27m10y2*‘SF . / ——dr
r>eqy ! (,r.2 + 1)6F

€2 1-6r
= 27rwoy27‘SF <yg + 1)

< y°r.

Case II: oo is a bounded parabolic fixed point of rank one.

We may assume without loss of generality that I' N NV is generated by
(1,0), that is, x — x + 1, and Fy = {(z1,22) : 0 < x1 < 1,29 € R}. There
exists T' > 0 such that A(T') C R x [T, T] by [47, Pf. of Prop. 8.4.3].

By computing the Busemann function, we deduce from (4.1) for k =
(k‘l, k‘g) e I'N N that

ul|? or
(4.11) d((n_x).vo) () = (M) v (1),

We have by changing orders of integrations of x1 and u; that

(4.12) /ef ooz, y)dr

2 1 Jy
= / / <(Hu”2+)2y> dxdvy(u)
uERX[-T,T] Jz€([0,1]XR)—u HxH +ty

or
- nis) | (]2 + 1) dvy (u)da
/.Z’ER2 <HxH2 + y2> u€[—z1,1—z1]X[-T,T]

We set ¢ and co to be, respectively, the infimum and the supremum of

oy = / (full? + 1% dvo(u)
€l—z1,1—z1|x[-T,T]

over all 1 € R. We claim that

0<c <cg < oo
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For any k1 € Z, by changing the variable u; — wu; + k1 and recalling
(4.11), we deduce

6o = / (lull? + 1)% do(u)
u€[—xz1,1—z1]|x[-T,T)

ui=ki1+1—x1 uo=T
- / / (Il — kII? + 150 d((ng) o) (u)

1=k1—11 o=—T

ui=ki1+1—z1 ug =T
-/ [ QP+ .

u1=k1—x1 ug=—T

Choosing k1 so that x1 € [k1 — 1, k1), we have ez, < 1,([0,2] x [-T,T])
and hence ¢ < co. Note that e, < ez, +1 where the implied constants is
independent of x; € R, and that

ui=ki1+1—z1 o=T
ot eni = | [ QP+ 1 d(w) 3 (0,1 % [-7.T]).
ui=k1—z1—1 ug=—T
On the other hand, since the N NT-translates of [0, 1] x [T, T cover the
support of v, except for co and v, is atom-free, we have v, ([0, 1] x [-T,T]) >
0. This proves ¢; = infe,, > 0.
We now deduce from (4.12) and (4.9) that

or
Yy 2—6
do(z,y)dw > 01/ () dr > y*°r,
/M were \ 2 £ 42

proving (1).
If B is an open subset of Fy = [0,1] x R which properly covers Ay (I),
we have

€ = inf |ug — 2| > 0.
zeBe,ucA(T)

Hence {(z,u) € R? x Ay(T') : # € B® — u} is contained in the set
{u1 ER,—u; <1 <1—uy, |UQ| <T, ‘$2| > 60}.

Since
{’LL1 ER, —up<x < 1—U1}:{£L'1 ER, —xri<u < 1—1’1},
we deduce from (4.8) by changing the order of integrations that

/ ¢0($,y)d$
reB¢
/ / < (Jul® + 1)y )‘* dedva(u)
weA(T) Jzepe—u \ [17[% + 92
Ul 1 $1 2:T 9 5
< (JJul]* 4+ 1) deo(u)> dzodxy
/xleR,|zz|>60 <||l’” +y > (/1L1——£E1 ug=—T

or
< 02'/ ( ) dzadxy.
z1€R,|z2|>€0 ||$||2+y
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The z7 integral can be evaluated explicitly and yields:

T(6p —1/2 1\ 12
/ bola,y)de <« Y LU /)yér/ <> 2
zEB° |za|>e€0

I'(ér) 3+ y?
v -T(6r —1/2) 5 / ( 1 )5F1/2
< yr — dxo
I'(or) (o >e0 \ L3
< yr.

Hence (2) is proved.
Case III: oo is a bounded parabolic fixed point of rank two. In this case
(2) holds for a trivial reason. But we still need to show (1). The argument
is similar to the case II. Without loss of generality, we assume that N NI is
generated by (1,0) and (0,1), so that Fy = [0,1] x [0, 1].

Similarly to (4.12) we have

or
Yy 2 5
e = [ (mis) | (lull? + 1 dv ()
0y zcR? Hl‘HQ + Z/2 u€[—z1,1—z1]X[—22,1—2]
By (4.9), it suffices to show that

co:= inf ([l + 1) duy(u) > 0.

z1,22€R /ue[—:cl,l—xl] X|—z2,1—xz2]

For (z1,x9) € [k1 — 1,k1) X [k2 — 1, k2), by changing the variables u; —
u; + k; for k; € Z and by using (4.11), we deduce

ur=1—x1 ug=1—x9 5
/ / (ull? + 1% dvo(u)

1=—21 2=—12
ur=k1+1—x1 pus=ko+1—x2
-/ / (Il + 1) du (u).
u U

1=k1—11 2=ko—x2

Hence
co > ki—ligafigki Vo([ki — i, ki — i + 1 — 1)) > 1,([0,1]) > 0.
O
Corollary 4.13. For any y > 0, there exist cy, > 0 and dg, > 0 such that
¢]Ov(ay) = C¢0y2_5r + d¢0y6F~
If oo ¢ A(T'), then dg, = 0.

Proof. Since A¢g = or(2 — dr)¢o, it follows that
2 82 N a N _ S5 (2 5 N
-y aiyg% +y87y¢0 =6r(2 —dr)¢p -

As both »°r and y?>~°" satisfy the above differential equation, we have

gbév(ay) = C¢0y2_6F + d¢oy6F
for some cg,, dg, > 0. Proposition 4.6 (1) implies that c4, > 0.
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In the case when Fn = C, the last claim is proved in (4.10). O

5. SPHERICAL FUNCTIONS AND SPECTRAL BOUNDS

We keep the notations set up in section 3. Let 0 < s < 2, and consider
the character x5 on the subgroup B := AM N of G defined by

xs(aymn) = y°

where a, € A is given as before, and m € M and n € N.

The unitarily induced representation (7g := Indg Xs, Vs) admits a unique
K-invariant unit vector, say vs.

By the theory of spherical functions,

falg) = (ma(g)ve, va) = /K s (kg)dk

is the unique bi K-invariant function of G with fs(e) = 1 and with Cfs =
s(2—s) fs where C is the Casimir operator of G. Moreover, there exist ¢; > 0
and € > 0 such that for all y small

(5.1) fs(ay) = s -y (1 + O(y"))

by [14, 4.6].
Since the Casimir operator is equal to the Laplace operator A on K-
invariant functions, this implies:

Theorem 5.2. Let T' < G be a discrete subgroup. Let ¢, € L2(T\G)X N
C*(I'\G) satisfy Aps = s(2 — s)¢ps and ||¢s||2 = 1. Then there exist cs > 0
and € > 0 such that for all small 0 <y < 1,

(ayds, ds)r2r\a) = ¢s - ¥ (1 + O(y)).

In the unitary dual of G, the spherical part consists of the principal
series and the complimentary series. We use the parametrization of s €
{1 +R,[1,2]} so that s = 2 corresponds to the trivial representation and
the vertical line 1 4 iR corresponds to the tempered spectrum. Then the
complimentary series is parametrized by Vi, 1 < s < 2 defined before.

Let {X;} denote an orthonormal basis of the Lie algebra of K with respect
to an Ad-invariant scalar product, and define w := 1 — ZXZQ This is a
differential operator in the center of the enveloping algebra of Lie(K) and
acts as a scalar on each K- isotypic component of V.

Proposition 5.3. Fiz 1 < s9 < 2. Let (V,m) be a representation of G
which does not weakly contain any complementary series representation Vi
with parameter s > sqg. Then for any € > 0, there exists cc > 0 such that for
any smooth vectors wi,we € V, and y < 1,

2—sp—¢€

[{aywr, wa)| < ce-y Nw(wi)] - flo(w2)]]
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Proof. (We refer to [42] for the arguments below) As a G-representation, 7
has a Hilbert integral decomposition 7 = [, ®"*p.dv(z) where G denotes
the unitary dual of G, p, is irreducible and m, is the multiplicity of p,, and v
is the spectral measure on G. By the assumption on 7, for almost all z, p, is
either tempered or isomorphic to 7 for 1 < s < sp. As 1 < 3—sy < 2, there
exists the complementary series (V3_g,,m3_5,). We claim that the tensor
product p, ® m3_g, is a tempered representation. Recall that a unitary
representation of GG is tempered if and only if there exists a dense subset
of vectors whose matrix coefficients are L?*“-integrable for any ¢ > 0. If
p. is tempered, it is clearly tempered. If p, is isomorphic to ms for some
1 < s < sg, and v, denotes the spherical vector of p, of norm one, then
the matrix coefficient g — (p.(g)v.,v.) is L?(2=s0)+<integrable for any
e > 0, by (5.1) together with the fact that the Haar measure on G satisfies
d(krayks) =< y~3dkidydks for all 0 < y < 1. Since p, is irreducible, it
follows that there exists a dense set of vectors whose matrix coefficients are
L?/(@=so)*< integrable for any ¢ > 0. Similarly there exists a dense set of
vectors in V3_,, whose matrix coefficients are L2/(so=1)+e integrable for any
€ > 0. Hence by the Holder inequality, there exists a dense set of vectors
in p, ® m3_s, whose matrix coefficients are L?**-integrable for any e > 0,
implying that p, ® m3_, is tempered.

Since m ® m3_g, = [, ®™*(p> @ M3—_g,)dr(2), we deduce that 7 ® m3_, is
tempered.

We now claim that for any ¢ > 0, there is a constant ¢, > 0 such that any
K-finite unit vectors wy and ws, we have

(5.4) {aywr, wa)| < e - y* %07 ¢ . H V (dim(Kw;)).

Noting that the K-span of w; ® v3_s, has the same dimension as the K-span
of w;, the temperedness of ™ ® m3_4, implies that for any e > 0, there exists
a constant ¢, > 0 such that

(ay (w1 ®@ v3—s,), (W2 ® V3—s5,)) = (aywi, w2) - (ayV3—sy, V3-s,)

<eo-ytte. H (dim(Kw;)).

As (ayv3-sy, V3—5,) = -y 1T50(14+0(y§)) for some €y > 0, the claim (5.4)
follows. Passing from the above bounds of (6.6) for K-finite vectors to those
for smooth vectors has been detailed in [28, Pf. of Thm 6]. In particular, in
the case of G = SL2(C), the above degree of Sobolev norm suffices. O

Definition 5.5. For a geometrically finite discrete subgroup I' of G with
or > 1, we fix 1 < spr < dr so that there is no eigenvalue of A between
sr(2 — sr) and the base eigenvalue \g = 6 (2 — dr) in L2(T\G).

By the theorem of Lax-Phillips [24], the Laplace spectrum on L?*(T\G)¥
has only finitely many eigenvalues outside the tempered spectrum. Therefore
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1 < sp < dr exists. The maximum difference between dr and sr will be
referred to as the spectral gap for T

Let {Z1,---,Zs} denote an orthonormal basis of the Lie algebra of G.
Let I' < G be a discrete subgroup of G. For f € C®°(I'\G) N L?(T'\G), we

consider the following Sobolev norm S, (f):
Sm(f) = max{||Zi, --- Zi,, (f)ll2: 1 <15 <6}
Corollary 5.6. Let I' be a geometrically finite discrete subgroup of G with

6r > 1. Then for any 1 € L*(T\G) N C®(T\G)X, ¢ € CX(T\G) and
0<y<1,

(ayr,2) = (Y1, o) {aydo, p2) + O(y* T Sa (1) - Sa(1h2)).

Here ¢o € L2(T\G)X is the unique eigenfunction of A with eigenvalue 6r(2—
or) with unit L?-norm.

Proof. We have

L*(T\G) =Ws. @V
where Wj,, is isomorphic to Vs, as a G-representation and V' does not con-
tain any complementary series V; with parameter s > sp. Write ¢; =
(1, do)do + wf-. Since ¢q is the unique K-invariant vector in Ws. up to a

constant multiple, we have ¥~ € VX. Hence by Proposition 5.3, for any
e>0and y <1,

(ay1,2) = (Y1, go)(aypo, 2) + (awaywﬁ
= (Y1, ¢0)(ayo, Ya2) + O(y**T Sa(ta) - Sa(th2))
since S2(¥;-) < S(¢).

6. EQUIDISTRIBUTION OF EXPANDING CLOSED HOROSPHERES WITH
RESPECT TO THE BURGER-ROBLIN MEASURE

Let I' < PSLy(C) be a geometrically finite Kleinian group with ép > 1.
Assume that T'\I'N is closed. Let p denote the Haar measure on G = NAK
given by

du(ngayk) =y 3dadydk
where dk is the probability Haar measure on K. We normalize ¢g so that
1
¢o(z,y)* —drdy = 1.
I'\H3 Yy

By Corollary 4.13, we have

/ $o(,y) dz = cyy” " + dpoy’"
ny €(NNI)\N

where cg, > 0 and dg, > 0.
In this section, we aim to prove the following theorem.
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Theorem 6.1. For any ¢ € C*(T'\G)¥,
/ Y(nzay) dz = (Y, do) - g, -y2_5f(1 + O(y%(‘sF_SF)))
ng €(NNI)\N

where the implied constant depends only on the Sobolev norms of v, the
volume of N (supp(v)) and the volume of an open subset of (NNT)\N which
properly covers An(T).

Most of this section is devoted to a proof of Theorem 6.1.

Definition 6.2. For a given 1 € C*(T'\G)¥ and n € C.((NNI')\N), define
the function I,,(¢) on G by

I () (ay) = / (naay)i(ng) de.

ng€(NNI)\N

We denote by N~ the strictly lower triangular subgroup of G:
_ 10
N —{<x 1).566@}.

The product map N x A x N™ x M — G is a diffeomorphism at a
neighborhood of e. Let v be a smooth measure on AN~ M such that dn ®
v(an~m) = dpu.

Fix a left-invariant Riemannian metric d on G and denote by U, the ball
of radius € about e in G.

Definition 6.3. e We fix a non-negative function n € C°((NNI')\N)
with 7 = 1 on a bounded open subset of Fn which properly covers
An(T).

e Fix ¢y > 0 so that for the ¢p-neighborhood U, of e, the multiplication
map

supp(n) X (U, N AN~ M) — supp(n) (U, NAN™ M) C I'\G

is a bijection onto its image.
e For each e < ¢, let 7. be a non-negative smooth function in AN~ M
whose support is contained in

W, := (U. N A) (U N N7)(Ue, N M)

and fWe re dv = 1.
e We define the following function p,. on I'\G which is 0 outside
supp(n)Ue, and for g = nyan™m € supp(n)(Ue, N AN™M),

pn,e(g) = 77(7%) ® Te(an_m)'
Recall from Proposition 4.6 that
¢6V(ay) = I,(¢0)(ay) + O(ylsr)-
Proposition 6.4. We have for all small 0 < € < €y and for all 0 <y < 1,
o} (ay) = (aydo, py.e) r2(m\a) + Onle - y* ) + O(y°)

where the first implied constant depends on the Lipschitz constant for 7.
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Proof. Let h = ay,n;m € We. Then for n € N and y > 0, we have
nhay = nayy,n,m.

As the product map A x N x K — G is a diffeomorphism and hence
a bi-Lipschitz map at a neighborhood of e, there exists £ > 0 such that
the e-neighborhood of e in G is contained in the product Ay Ny Ky of Le-
neighborhoods for all small € > 0.

Therefore we may write

Nz = Qyy Ny k1 € AZyeONEyeOK

and hence

nhay = Nayygy, Ny K111
_ -1 .
= ”(ayyoylnmayyoyl)ayyoyl kim = n(ng,yyoyr ) ayyoys k1m.

As ¢g is K-invariant and dn is N-invariant,

/ do(nhay) - n(n)dn = / 60 (7 (Mg )y ) - 71()
NAD\N

NAT\N

- / b0ty ) (1(n) + O(e))dn
NAI\N

as n(n) —n(nn') = Oy(e) for all n € N and n’ € N NU.. By Corollary 4.13,
we deduce

/ ¢o(nhay) - n(n)dn
NAT\N

= / do(nayyy, )n(n)dn + On(fﬁbéV(ayyoyl))
NAC\N

= cao(yyoy1)> " + dyy (yyoy1)™™ + Op(ey®™"r)
= Coy? T (1 + O(1 — (yoy1)* ")) + Oy (ey®°r) + O(y°F)
= cpoy” T (14 O(e€)) + O(yr)

as [yo — 1] = O(e) and |y — 1| = O(ye).
As [redv(h) =1, we deduce

{ayo, py.e) = /W re(h) ( /N . ¢o(nhay)n(n) dn) dv(h)

= cgoy” T (14 Oy(€)) + O(y™)
= @0 (ay) + Oyley®™T) + O(y™).
U
Lemma 6.5. For ) € C°(T\G)X, there exists ) € C°(T\G)X such that
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(1) for all small e >0 and h € U,

[W(g) —(gh)| < e-v(g) for all g€ T\G.

(2) Si(v¥) < S5(v) for any m € N, where the implied constant depends
only on supp().
Proof. Fix ¢g > 0. Let fo € C®(I'\G)X such that fo(g) = 1 for all g €
supp(¢)U 'K and fo(g) =0 for all g € I'\G — supp(z/J)UQ_ggK.

Set Cy 1= SUPgesupp(y) 529 1Xi(1)(g)|. Then there exists a constant
¢p > 1 such that for all g € T'\G and h € U, for € < €,

[¥(9) — ¥(gh)| < € coCy.

Hence if we define 1) € C°(T\G)X by 1(g) = coCyfolg) for g € T\G,
then (1) holds.
Now by the Sobolev imbedding theorem (cf. [1, Thm. 2.30]), we have

Cy < S5(1).
Since S, (1)) < Cy, this proves (2). O

Proposition 6.6. Let ¢ € C°(I'\G)X. Then for any 0 < y < 1 and any
small € > 0,

| Ly ()(ay) — (ayh, pn.e)| < (e +y) - L(¥)(ay).
Proof. If an™m € W, = (U¢ N A)(Ue, N N7)(Ue, N M), then

(an”m)ay = aya(a,—1n"ay)m € a, W,

y—1 contracts N~ by conjugation as 0 <y < 1.

As 1 is M-invariant, for any h = an~m € W,, there exists an h' €
(Ue M A)(Uye, N N7) such that

[ (nay) — v (nhay)| = [¥(nay) — Y(nayh’)| < d(nay)(e +y).

Hence

since a

(nay) — /h , Vmhay)r()av(h)] < d(nay)(e+y).

Therefore

~

IT,(9)(ay) — (ayth, pe) saeren| < (€ +9) - / J(nay)(n)dn.

(NAD)\N
O

Proof of Theorem 6.1: Recall that 7, €, p, = N®r, are as in Def 6.3. For
simplicity, we set p. = p; . Noting that r. is essentially an e-approximation
only in the A-direction, we obtain that Sa(pc) = O, (e~%/?).

We may further assume that n = 1 on N(supp(¢)) by Corollary 3.10 so
that

/ P(nay) dn = 1,(¢)(ay).
(NAD)\N
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By Proposition 4.6, we also have
¢6V(ay) = L;(¢0)(ay) + O(yér)-
Set p=5/2. Fix ¢ € N so that

(2—=dr)(p+1)
(or —sr)

Setting 10(g) := 1¥(g), we define for 1 < i < ¢, inductively
i(g) = Pi-1(g)

where @Ei,l is given by Lemma 6.5.
Applying Proposition 6.6 to each 1;, we obtain for 0 < </¢—1

Iy (¥i)(ay) = (ayti, pe) + O((e + y) In(¥it1)(ay))

l>

and

L, (e)(ay) = (ayr, pe) + Oy((e + y)Sa ()

where the implied constant in the O, notation depends on [ 7 dn.
Note that by Corollary 5.6, we have for each 1 < i </,

(ayti, pe) = (i, d0){ayo, pe) + O(y* " Sa(pe)Sa (1))
= O({ay¢o, pe) - [[till2) + O(y**T Sa(pe) Sz (1))
= O({ay¢o, pe) - S5(1)) + O(y* T PS5(v))).
Hence for any y < €,

/-1

Iy(¥)(ay) = (ayth, pe) + Y O((ayn; pe) (e +y)*) + On(Ss(¥) (e +9)°)

k=1
= (ayh, pe) + O((aydo, pe)€S5(1h)) + O(85(1h)y> T e P) + O(S5(1h)e")
= (¥, o) - {aydo, pe) + O((aydo, peye) + O(y* T e P) + O(€")
= (¥, d0) - ¢ (ay) + OY™) + O(ey* ") + O(y* T ) + O(€")

by Proposition 6.4, where the implied constants depend on the Sobolev norm

S5(¢) and [ ndn.
Equating the two error terms O(ey®>~°r) and O(y>~*re~P) gives the choice

¢ = y0r—sr)/(+1) By the condition on ¢, we then have ¢/ < y275F+%(5F*SF).
Hence we deduce:

/ Bnay) dn = T,(@)(ay) = (i, do) - 6 (ay) - (1 + O@FEr=s1)).
(NAD)\N

Note that the implied constant depends on the Sobolev norm S5(%)) of ¢ and
the L'-norm [ ndn, which in turn depends only on the volumes N (supp(¢))
and any open subset of (N NI')\N which properly covers Ay (I).
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Burger-Roblin measure ji: In identifying 0, (H3) with K/M, we may
define the following measure /i on TH(H?) = G/M: for ¢ € C.(G/M),

(] — o—1
() = /k . / ynzeANw(kaan)y dydxdvy(k)

where we consider the Patterson Sullivan measure v, in section 4 as a
measure on K via the projection K — K/M: for f € C(K), vo(f) =
Jiex N Jinens f(km)dmduy,(k) for the probability invariant measure dm on
M.

By the conformal property of v,, the measure fi is left ['-invariant and
hence induces a Radon measure on T!(I"\H?) via the canonical projection.

Lemma 6.7. For a K-invariant function ¢ € C.(G), we have

(6.8) i(¥) = (¥, %)
Proof. Tt is easy to compute that for the base point o = (0,0,1) € H3,

Boo(aynz0,0) = —logy

for any 0 < y < 1 and 2 € C. We note that dg = y~'dydxdk for g = ayngzk
is a Haar measure on GG. Therefore, using ¢ is K-invariant,

[ = Ay N 6-1 rdy
Aw) = /K /A i /k _ Olagnko)dho)y”dydecr ()

_ / / Wb(kg)e95(600) 4y, (k)dg
geG JK

B / ¥(g) / e P00y () dg
G keK/M

- / (g) / e=584(e(999) 4y, (k) dg = (6, do)
G K/M

as ¢o(g) = [yejnp € P90 duo(k). O
Generalizing Burger’s result [7], Roblin [38, Thm 6.4] proved:

Theorem 6.9. The measure [i is, up to constant multiple, the unique Radon
measure on TH(T\H?) invariant for the horospherical foliations whose sup-
port is Qr and which gives zero measure to closed horospheres.

We call the measure i the Burger-Roblin measure.
In Appendix A, the following theorem is deduced from Theorem 6.1.

Theorem 6.10. For ¢ € C.(TH(T\H?)),

/ Y(ngay) de ~ cy, - 1(1) - 27 asy — 0.
nz€(NNL)\N
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7. ORBITAL COUNTING FOR A KLEINIAN GROUP

Let ¢ : G = PSLy(C) — SOp(R) be a real linear representation where F’
is a real quadratic form in 4 variables of signature (3,1). Let I' < G be a
geometrically finite torsion-free discrete subgroup with o > 1. Let vy € R?
be a non-zero (row) vector with F'(vg) = 0 such that the orbit vl is discrete
in R%.

Since the orthogonal group Or(R) acts transitively on the set of non-zero
vectors of the cone F' = 0, there exists g € Op(R) such that the stabilizer
of ghv is equal to N~ M where N~ is the strictly lower triangular subgroup.
In fact, ghv§ is unique up to homothety. Set

T'o = g5 'Tgo.
As vl is discrete, it follows that T'o\['¢/N M is closed. Hence by Lemma 3.4,
the orbit I'\I'goV is closed, equivalently T'o\I'g N is closed.

Denote by ¢o € L?(I'g\H?) the unique positive eigenfunction of A with
eigenvalue 6p(2 — ér) and of unit L?-norm fPO\Hg bo(x,y)?y 3drdy = 1. By
Corollary 4.13, we have

¢év(ay) = C¢0312_6F + dqboyér
where cg, > 0 and dg, > 0. Recall that the Patterson-Sullivan measure v,
on K which is normalized so that

5
(lull®+ 1y \*™"

do(x,y :/ ( dve(u).

olz:9) weA(M\{oo} \llz —ul[? + 32 o(u)

Theorem 7.1. For any norm || - || on R*, we have, as T — oo,
#{o € T ol < T}~ 67 - gy ( / uvo<gok—lgo1>\|—5quo<k>> 7,
keK
If || - || is goK go ' -invariant, then there exists € > 0 such that

#{v € vl « Joll < T} = 65 - dole) - g - ool ™ - T (1 +O(T ™))

where € depends only on the spectral gap dr — sr and the implied constant
depends only on An(T).

By replacing I'' with 'y = g, 1T gy, we may assume henceforth that gy = e,
and thus the stabilizer of vg in G is NM. By Lemma 3.4, the stabilizer of
vo in I is simply I' N N.

Note that N~ M fixes v, and that the highest weight /3 of the (irreducible)
representation of ¢ is given by 3(a,) = y~!. It follows that t(a,)vh =y~ vf,
and hence vpa, = v~ L.

Set

Br :={v € vG : ||v|]| < T}.

Define the following function on I'\G:

Pr(g):= > x5 (vov9).
~e(NAD\T
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Since vl is discrete, Frr(g) is well-defined and
Fr(e) = #{v eyl :||v|| <T}.
We use the notation: for ¢ € C.(T'\G),

VN (ay) = / (nay) dn.
(NAD)\N
Lemma 7.2. For any ¢ € C.(I'\G) and T > 0,

(Fr, ) = / / O (ay)y~ P dydk
ke M\K Jy>T—|vok||

where Yi(g) = [, cpp P (gmk)dm.
Proof. Observe:

/ / @ZJ(ngﬂ”lmy/’f)y_3 dx dm dy dk
keM\K Jy: ||v0aka<T nym€e(NNL)\NM

/ V(ngaymk) dmde | y~3dy dk
k:eM\K y>T—1|vok]| nzeNmF\N meM

:/ k(nxay)dac y3dy dk
k:eM\K y>T—1|vok]| nzeNmF

= / / N(ay)y3dy dk.
keM\K Jy>T— 1||v0kH

Define a function &,, : K — R by
Euo (k) = [lvok] T
For ¢ € C.(I'\G), the convolution &,, * 1 is then given by
6+ 0(9) = [ wlgm)look]| 5w a.
keK

Corollary 7.3. For any ¢ € C.(I'\G), we have, as T — oo,
(Pro ) ~ 0p " - ey - T - i8uq * ).
For ¢ € CX(T\G)X and || - || K-invariant,
(Fr,) = (1, 60) - 65 - gy - T - [luo| ~°F (1 4+ O(T 700 =)

where sr is as in Def. 5.5 and the implied constant depends only on the
Sobolev norm of 1, An(T") and N (supp())).
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Proof. Note that for any ¢ € C.(I'\G) and k € K, the function 1)y, defined
in Lemma 7.2, is M-invariant. Applying Theorem 6.10 to ¥, we obtain
that as y — 0,

(7.4) / i (ngay)da ~ cgy -y - i),
nz€(NNT)\N

Hence by applying Lemma 7.2, inserting the definition of 1y, and evalu-
ating the y-integral, we get

(Fr, ) ~ gy - / / Y~ ) dy di
M\K Jy>T~1|vok||

.- Tor /M\K / Y(gmk)) - |ook|| 70" dmdk
=6t cpy - T -
(Ewo * ),

proving the first claim.

Now suppose that both ¢ and the norm || - || are K-invariant.

As ¢ = 1, by Theorem 6.1, we can replace (7.4) by an asymptotic
formula with power savings error term:

/ (naay)dz = cay® T (16, G} (1 + O(y7or=r))
nxG(NﬂF)\N

and the implied constant depends on the Sobolev norm of ¢ and Ay (T).
On the other hand,

vo ¥ ¥ = [[uo| 7 - ¢,
and hence
(Eup 1) = [lool| 7 - (b, o).

Therefore
(Fr,v) = cgy / Y00 (g, o) (1 + O(y7Or—=r))) dy
y>T~lwol|

=651 Cgo - T - [Jup|| T (1 + O(T~7Cr=sr)y)

where the implied constant depends only on the Sobolev norm of ¥ and the
set An(T). O

Theorem 7.5. As T — oo,
Fr(e) ~ 65t - cgy - (/ vk 1| ~°" duo(k:)> .Tor,
K

If || - || is K-invariant, then for some ¢ > 0 (depending only on the spectral
gap or — sr),
Fr(e) = 65" - do(e) - gy - [[oo]| = - T°T (1 + O(T™)).

where the implied constant depends only on An(T).
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Proof. For all small € > 0, we choose a symmetric e- neighborhood U, of e
in G, which injects to I'\G, such that for all 7> 1 and all 0 < e < 1,

BrUe C B(1yor and  B_¢r C Nuev, Bru.

For € > 0, let ¢. € C°(G) denote a non-negative function supported on
U and with [, ¢cdg = 1. We lift ¢. to I'\G' by averaging over I':

0.(Tg) = de(19)-

yel’
Then
(76) <F(1—E)T7 (I)6> < FT(B) < <F(1+6)Ta (I)E>
Note that
(7.7) (Fazar Pe) ~ 65" - cgq - (T(1£€))°T - &y, * ).

Considering the function R,, : G — R given by

Ry, (9) := 4" &uy (ko)
for g = aynyko € ANK, we have

A€y * B) = / . /k ok} (Fo)(ho) (o)
_/ / ¢e(kaynxk0)§fuo(ko)y(s_ld(ko)dydl'dvo(k)
kaynes EKANNUe J koK
- / 6. (kg) R(g)dgduo(k)
keK Jgea

= ¢e(9) R(k™'g)dv,(k)dg
geUe keK

_ / R(E~Y)dvo(k) + O(e)
keK

:/ lvok ||~ duy (k) 4+ O(e).
keK/M

as fG ¢ dg = 1, where the implied constant depends only on the Lipschitz
constant for R.
As € > 0 is arbitrary, we deduce that

Fr(e) ~ 0t veay - [k~ d(b) T
keK
If || - || is K-invariant, we may take both U and ¢, to be K-invariant.
Hence by Corollary 7.3, we may replace (7.7) by
2
(Faam ®e) = 60 - cgo - [0l T - (T(1£€))°F - (o, Be) - (1+O(T~7Cr 1))

where the implied constant depends on S5(®) = S5(¢¢), and the sets An (I)
and N(Ue) :={[n] € (NNT)\N : T'nANU, # 0}.
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Since

(0, @c) = do(e) + Oe),

we have

(Flrserrs ®e) = 07" - oo - 00|~ - T - go(e) + O(eT?r) + O(e~aT%r—3(0r—s0))

for some ¢ > 0 depending on S5(¢.). Therefore by setting !+ = T*%(&F*SF)7
Fr(e) = 85" - sy - ool 7 - T - go(e) - (1 +O(T))

for € = =) +q) (or — sr), where the implied constant depends only on Ay (T).

O

8. THE SELBERG SIEVE AND CIRCLES OF PRIME CURVATURE

8.1. Selberg’s sieve. We first recall the Selberg upper bound sieve. Let
A denote the finite sequence of real non-negative numbers A = {a,}, and
let P be a finite product of distinct primes. We are interested in an upper
bound for the quantity

S(A, P) = Z Q.
(n,P)=1

To estimate S(A, P) we need to know how A is distributed along certain
arithmetic progressions. For d { P, define

Ag:={a, € A:n=0(d)}
and set [Ag| := 3", 4 @n- We record

Theorem 8.1. [19, Theorem 6.4] Suppose that there exists a finite set S
of primes such that P has no prime factor in S. Suppose that there exist
X > 1 and a function g on square-free integers with 0 < g(p) < 1 for p|P
and g is multiplicative outside S (i.e., g(did2) = g(di1)g(da) if di and da are
square-free integers with no factors in S) such that for all d{ P square-free,

(8.2) |Ad| = g(d)X + ra(A).
Let h be the multiplicative function on square-free integers (outside S) given

by h(p) = 13(;()])). Then for any D > 1, we have that

SAP)<x [ Y wa@] + Y m@- Al

d</D,d|P d<D,d|P

where T3(d) denotes the number of representations of d as the product of
three natural numbers.
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8.2. Executing the sieve. Recall from section 2 that () denotes the Descartes
quadratic form and A denotes the Apollonian group in Og(Z). Fix a prim-
itive integral Apollonian packing P with its root quadruple & € Z*. Then P
is either bounded or given by the one in Figure 3.

To execute the sieve, it is important to work with a simply connected
group. Hence we will set I' 4 to be the preimage of SOg(R)° N A in the
spin double cover Sping (R) of SOg(R). Recall that o denotes the Hausdorff
dimension of the residual set of the packing P. As shown in section 2.5, « is
equal to dr ,, the Hausdorff dimension of the limit set of I'4. As Sping(R)
is isomorphic to SLa(C), we have a real linear representation ¢ : SLy(C) —
SO@(R) which factors through the quotient map SLy(C) — PSLy(C). By
setting I' to be the preimage of I' 4 under ¢, the counting results in the
previous section are all valid for I'.

As before, By denotes the ball in the cone:

Bri=f{veR': Q") =0, |lv] < T}

Since we are only looking for an upper bound, we may assume ||-|| is goK g, L
invariant, where gy € Og(R) is such that the stabilizer of g§vf is equal to
N~—M. We fix a small € > 0 and let ¢. € C°(H3) = C®(G)X be as in the
proof of Theorem 7.5 with G = SLy(C) and K = SU(2).

Definition 8.3 (Weight). We define the smoothed weight to each v € T,

wr(y) == /G I XBr(£79)de(g) du(g).

Let f be a primitive integral polynomial in 4 variables. Consider the
sequence A(T) = {a,(T)} where

an(T) = Z wr (7).

y€EStabp (§)\I

f(&v)=n
Clearly,
AN =@ = S wily)
n y€Stabr (§)\I'
and
(84) A= D an(T)= Y wr(y).
n=0(d) el
f(&v)=0(d)

For any subgroup I'y of I with
Stabr (&) = Stabr, (§),

we define

Fro(g):= Y. xs:.(&79),

y€Stabr (§)\I'o
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and for each element ; € I', we also define a function on I'o\H? by
oL (9) == > ¢l 'v9)
~v€lo
which is an e-approximation to the identity about [y; 1] in To\H3. The
function @Eg is simply the lift of ¢ to I'o\H? and will be denoted by ®L0.
For d € Z, let I'¢(d) be the subgroup of I' which stabilizes & mod d, i.e.,
Te(d) :=={yel: &y =¢(d)}.
Note that
Stabr(§) = Stabr,(a) (£)-
Lemma 8.5. (1) |A(T)| = (Ff, @)
(2) for any integer d,
Te(d) ~Te(d
AT = > (el

71 E e (@\F
F(€v1)=0(d)

L2 (F\H3) 7

>L2<Fg<d>\H3> '

Proof. We have
AD= Y wr(y)

y€Stabr (§)\I'

-z |, xor €)ooty

~€EStabr (E\I

_ / FE(g)ée(9) dulg)
G/K

_ / FL(9)®" () dp(g)
N\G/K

- <F71:’ (I>£>L2(I‘\H3)

Expand (8.4) as

|Aa(T)| = Z Z wr(y71)-

71 €L (\I yEStabr (£)\T'e (d)

F(ev1)=0(d)
The inner sum is

S e = Y[ xm(@g)edorts) dulg)
~EStabr (€)\e (d) ~€Staby (€)\Fe (d) ¥ &/ K

_ / Frf D (9)6c(v1 ) dp(g)
G/K

T'e(d T (d
= / ()5 (g) dug).
Te(d\G/K
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Thus

_ Le(d) Fle(d)
> wr(ym) = <FT » Pen >L2(F5(d)\H3) '
’YEStab[‘(f)\Fg(d)

O

Denote by Spec(I'\H?) the spectrum of the Laplace operator on L?(I'\H?).
As mentioned before, the work of Sullivan, generalizing Patterson’s, implies
that Spec(I'\H?)N[0, 1) # 0 in which case \g = a(2—a) is the base eigenvalue
of A. For the principal congruence subgroup

I'(d):={yel':y=1 (modd)}
of I of level d, we have
Spec(I'\H?) C Spec(I'(d)\H?).

The following is obtained by Bourgain, Gamburd and Sarnak in [4] and

[5].

Theorem 8.6. Let I' be a Zariski dense subgroup of Sping(Z) with dr > 1.
Then there exist 1 < 0 < dr such that we have for all square-free integers d,

Spec(D(d)\H?) N [0(2 — ), 0(2 — or)] = {5r(2 — or)}.

In order to control the error term for |Agz(T)|, we need a version of Corol-
lary 7.3 uniform over all congruence subgroups I'¢(d) of T'.

Proposition 8.7. There exists ¢g > 0, uniform over all square-free integers
d, such that for any y1 € I' and for any congruence subgroup T'¢(d) of ', we
have
< FLe@ rg(d>> _ oo de
T M S e@\ms)  Op - [Tz Te(d)]

for some d. > 0 where the implied constant depends only on An(T).

Il - T + O(e=?T )

Proof. Note that the congruence subgroup I'(d) of level d is a finite index
subgroup of I'¢(d). Since
Spec(T¢(d)\H?) C Spec(T'(d)\H?)

the spectral gap Theorem 8.6 holds for the family I'¢(d), d square-free, as
well.
As we are assuming || - || is goK g, Linvariant, by Corollary 7.3, we have

Te(d Te(d) Te(d), o_ o e
(88) (Fr, 25" = (@57, 00" 0l e reco TN (1+O(T7)),

where €y depends only on the spectral gap for L?(I'¢(d)\H?) and the implied
constant depends only on

An (g5 Te(d)go) = {[na] € (N N gy 'Te(d)go)\N : z € A(gy 'Te(d)go)}-
As T'¢(d) is a subgroup of finite index in T, Ore(a) = Or and

Algy 'Te(d)go) = Algg 'To),
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and moreover by the definition of I'¢(d), we have

Stabr (&) = Stabr, () (£),
implying
NnNgy ' Te(d)go= Nngg'Tao.
Hence
An (g5 'Te(d)go) = An(g5 ' T90),
yielding that the implied constant in (8.8) is independent of d.
By Theorem 8.6, ¢y can be taken to be uniform over all d. If 'y < T"is a

subgroup of finite index, the base eigenfunction in L?(I'g\H?) with the unit
L?-norm is given by

1
Lo .
¢0 . [F : FO] ¢O
with ¢g = d)E. Therefore
Te(d) ,Te(d) 1

(I)eS ¢ : = (I>e e . P N

( s 9o )¢ gg(d) ( , , $o) Coo e Fg(d)]
This finishes the proof as dr = «, by setting de = (Pe.e, ¢0)- O

Setting
X =0 cgy - de- €N - T,

the following corollary is immediate from Lemma 8.5 and Proposition 8.7.

Corollary 8.9. There exists €9 > 0 uniform over all square-free integers d

such that
1
Ay(T)| = O%d (X+O xleo )
where
ohd)= > L
YET e (D\T
f(&v)=0(d)

8.3. Proof of Theorem 1.4. We set
fi(x1, 29,23, 24) =21 and  fo(x1, 22,23, 24) = T122.
For d square-free and 7 = 1, 2, set
gi(d) = 0%.(d)/[I" : Te(d)].
Proposition 8.10. There exists a finite set S of primes such that:

(1) for any square-free integer d = dydy with no prime factors in S and
for eachi=1,2,

gi(didz) = gi(dy) - gi(d2);
(2) for any prime p outside S,
g1(p) € (0,1) and  gi(p) =p " +O0(p~*?).
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(3) for any prime p outside S,
92(p) € (0,1)  and  ga(p) =2p~ " +O(p~*).

Proof. According to the theorem of Matthews, Vaserstein and Weisfeiler
[27], there exists a finite set of primes S so that

e for all primes p outside S, I' projects onto G(IF})

e for d = p; - - p; square-free with p; ¢ S, the diagonal reduction

I' - G(Z/dZ) — G(Fp,) x ---G(Fp,)
is surjective.

Enlarge S so that G(IF,)’s have no common composition factors for different
p’s outside S. This is possible because G = Spin(Q)) can be realized as SLo
over Q[v/—1]. Hence there exists a finite set S of primes such that for p
outside 5,

(8.11) G(Fp) = {SL?GFP) x SLa(FFp) for p = 1(4)

SLa(F,2) for p = 3(4).

It then follows from Goursat’s lemma [23, p.75] that I' surjects onto
G(Z/d1Z) x G(Z/d2Z) for any square-free d; and dy with no prime fac-
tors in S. This implies that for d = d1ds square-free and without any prime
factors in S, the orbit of & mod d, say O(d), is equal to O(d;) x O(dz)
in (Z/d17)* x (Z)dsZ)* = (Z/dZ)*. Tt also follows that O°(d) is equal to
0%dy) x O°%dy). Therefore g(d) = g(d1)g(ds) as desired.

Denote by V' the cone defined by ) = 0 minus the origin, i.e.,

4 4
V = {(w1,22,23,74) #0: 221'3 — (Zg;i)Q = 0}.
i=1 i=1

Note that
4 4
Wii={x €V : fi(x) =0} = {(0,2,23,24) #0: > 227 — (D 2:)> =0}.
i=2 i=2
Since both quadratic forms
4 4 4 4
Q(z1, 22,23, 24) = ZQ;U?—(Z z;)? and Q(0,29,x3,14) = 223322—(2 ;)?
i=1 i=1 i=2 i=2

are absolutely irreducible, we have by [3, Thm. 1.2.B],
#V (Fy) = p° + 0(0°7), #Wi(F,) =p* + 0("?).

Since V' is a homogeneous space of G with a connected stabilizer, by [35,
Prop 3.22],

O(p) = V(Fp), and hence (9531 (p) = Wi (Fyp).

09
Therefore we deduce g1 (p) = ##(f)l(g) = p~ 1 4+ O(p~3/?), proving (1).
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Now Wy := {x € V : fa(x) = 0} is the union of two quadrics given by
VNn{x; =0} and V N {zy = 0}. Hence

#Wa(F,) = 2p* + O(p*/?).
This yields that g(p) = 2p~ + O(p~3/2). 0

We are now ready to prove Theorem 1.4. First consider fi(z1, 2, x3,24) =
x1 so that A(T) = {a,(T)} where

an(T) = Y wr(y)
~EStabp(E)\T
f1(Ev)=n

is a smoothed count for the number of vectors (x1,x2,x3,x4) in the orbit
¢A* of max norm bounded above by T and z; = n.

By Lemma 8.9 and as #(9?1 (d) is multiplicative with #(901 (p) = p? +
O(p®/?), the quantity 74(A) in the decomposition (8.2) satisfies for some
€ > 0,

ra(A) < d*T* .

Thus for any 1 > 0,

> n@ra(A)] <, DT,
d<D,d|P
which is < T%/logT for D = T/* say. The key here is that D can be
taken as large as a fixed power of T. Let P be the product of all primes
p < D = T/* outside of the bad set S.
As h is a multiplicative function defined by h(p) = lf;(lp()p)
with g; in Proposition 8.10, we deduce that (cf. [19, 6.6]

> h(d)>logD > logT,
d<+/D,d|P

for p primes

and Theorem 8.1 gives
S(A(T),P) < T%/logT.
Therefore

t. . _
#{(v1, 22, 23, 74) € EA" : 1H<1?<>§1\93z| <T, (=, [[ =1
o p<Teo/4
< SA((14+6T),P) < T/ logT.
Hence

#{(x1, 10, 23,14) € EA max |z;| < T, x1: prime} < T%/logT.

Since this argument is symmetric in the x;’s, we have

#{(x1, 0, 23,74) € EA max |z;| = prime at most T} < T%/logT.
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By Lemma 2.5, this proves

P i
™ (T) < g T
In order to prove
P T
8.12 T —_—

we proceed the same way with the polynomial fo(x1,x2,x3,24) = x129 and
with the sequence A(T') = {an(T)} where

an(T) := Z wr (7).
yEStaby (€)\I'
f2(&y)=n

is a smoothed count for the number of vectors (x1,x2,x3,x4) in the orbit
£A! of max norm bounded above by T and z125 = n.
Note that gz(p) = 2p~" + O(p—3/2) by Proposition 8.10, and that
> h(d)> (logD)* > (log T)?
d<+v/D,d|P

for h(p) = 1 fz(f?p) for p primes.

Therefore Theorem 8.1 gives
S(A(T), P) < T*/(log T)?
which implies

#{(z1, 12,23, 74) € EA ax |z;| < T,z1, 29 : primes} <« T/ (log T)?.
Again by the symmetric prog)e_rty of x;’s, we have
#{r e A : max |zi| < T,;,; : primes for some i # j} < T/ (log T)?.
By Lemma 2_.5_, this proves
7} (T) < T/ (log T)?.



APOLLONIAN CIRCLE PACKING 46

A. APPENDIX: NON-ACCUMULATION OF EXPANDING CLOSED
HOROSPHERES ON SINGULAR TUBES (BY HEE OH AND NIMISH SHAH)

In this appendix, we deduce Theorem A.1 from Theorem 6.1: Recall that
I' < G = PSLy(C) is a torsion free discrete geometrically finite group with
6r > 1 and that ¢9 € L?(I'\H?) denotes the positive base eigenfunction of
A of eigenvalue dr(2 — dr) and of norm fF\HS ®3(g) du(g) = 1.

We continue the notations N,a,, N7, etc., from section 6. We assume
that I\I'N is closed. By Corollary 4.13, for some cg, > 0 and dg, > 0,

/ ¢o(nay)dn = c%yQ—(SF + d%y‘sf.
I\['N

We also recall the Burger-Roblin measure /i defined in Theorem 6.10 which
is normalized so that [i(¢g) = 1.

Theorem A.1. For ¢ € C.(THT\H?)),

/ Y(ngay) do ~ cg, - fl(¥) - y* " asy — 0.
nz€(NNL)\N

Proof. The idea of proof is motivated by the proof of Lemma 2.1 in [37]. For
each 0 < y < 1, define the measure p, on I'\G/M = TY(T'\H?) by

iy () = e 1y 2 /( oy VT

for ¢ € C.(I'\G/M).
Consider the family

Mi={p,:0<y <1}

We claim that M is relatively compact in the set of locally finite Borel
measures on I'\G/M with respect to the weak*-topology. For any compact
subset C' C I'\G/M, let ¢ be a K-invariant smooth non-negative function
of compact support which is one over C'. Then

My(o) < My(w)'

As py(¢) — () = (¥, ¢o) by Theorem 6.1, the claim follows.

It now suffices to show that every accumulation point of M is equal to fi.
Let po be an accumulation point of M, which is clearly N-invariant.

We denote by Ep the set of vectors v € TH(I'\H?) the horospheres deter-
mined by which is closed. In the identification of T'(I'\H?) with T\G /M,
the set Ep corresponds to the image under the projection I'\G — I'\G/M
of the sets I'\I'¢N A for I'\T'gN closed.

Fix a bounded parabolic fixed point & of I'. If & = go(o0) for gg €
PSLy(C), then a cusp, say, D(&), at & is the image of Uysy, goNa, for
some y1 > 1 under the projection 7 : G — I'\G /M.

There exists ¢g > 1 such that for any z = I'\I'gona, € D(&),

(A.2) Calyr_‘s < p(z) < coyr_‘;
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where r € {1,2} is the rank of &y (see [46, Sec. 5] as well as the proof of [8,
Lem. 3.5]).

Noting that Dy = Do(&) C Ep, we first claim that for any weak limit,
say, Ko, of M7

(A'3) Mo(Do) = 0.
Let @ be a relatively compact open subset of Dy. For y. > 1, setting
D, := Dyay, C Dy, we have that

(A.4) o8 du(g) < yr=>.
DK

For the part of D.K inside the unit neighborhood of the convex core of I,
this estimate follows from the proof of [8, Lem. 4.2]. When r = 1, the
integral of ¢3 over the part of D.K outside the unit neighborhood of the
convex core of I' is comparable to

(o] [o.¢]
/ / e~ Otdrdt =< yi_%.
log ye Jx=et

Fixing a neighborhood U of e in N~ M such that DoU C DK, the set
DJUa,, ! is a neighborhood of Q. Therefore if p,, weakly converges to i,

. 1
oo~ o(do - X@) < lim —— / (00 Xp.ra-1)(nay,) dn
b0y I'\['N ve

1

= lim =3 / do(nay,) - Xp.U(nayay, ) dn.
yi—0y IRV

Asye>1land U C N™ M,
ayEUay;1 cU.
Hence if nay,, € DU, then
nay € Dea,-1(ay.Ua,-1) C Dea,1U C DoU.
Moreover if nay,, € I'gon’a, MU for some n’ € N and y' >y,
(A.5) nay € Fgon’ay/a; (ayeMUay_sl) C gon'ay,yglMU.

Using the formula

onlg)= [ eIk (g
£eA(D)
for g € G (see (4.2)), it is easy to check that

¢ 04(40)g0(g) < do(gu) < gy (g)

for any g,u € G. Therefore we can deduce from (A.2) and (A.5) that for
some constant ¢’ > 1,

po(nay) < - y2™" - po(nayay,)
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for all naya,, € D.U. Hence

Coo - H0(P0 - XQ)

1
< oy lim / (90 - xp.v)(T\I'nay,a,,)dn
. vi=0 (iYe)*° Jryrw Ay y.)

< ooyl /F \H3(¢3 -XD.x)(9) du(g) by Theorem 6.1

< yr? by (A4).
Therefore

1o(¢o - x@) < y2 .

As § > 1, ye > 1 is arbitrary, and mingeg ¢o(g) > 0, we have po(Q) = 0.
This proves the claim (A.3).

We now claim that po(Ep) = 0 for any weak limit p10: 1y, — f10. Suppose
not. Since there are only finitely many cusps, there exist relatively compact
open subset @ C Ep and a bounded parabolic fixed point & € A(T") such
that po(Q) > 0 and its image a,(Q) = Qa, under the geodesic flow converges
to & as y — o0o. Fix yg > 1 such that

Qayo - DO(&))-

By passing to a subsequence, we may assume f,,, is convergent with a weak
limit, say, . Since Qay, C Do(&o), by (A.3), we have

N()(Qayo) =0.

Therefore for any € > 0, there exists a neighborhood U, C N~ M of e such
that

(A.6) 16(Qay,Ue) < yg *He.
Noting that Qay, Ueagjo1 is a neighborhood of @, we have

1
. 0) < lim —— _ d
Coo 1o(Q) < yil 0 yi2—6 /F\FN XQayOUeayO1 (nayz) n

1
(Wov) 20 /F - XQay, U (Ny; ay, )dn

= yg_(s,uf)(QayOUe)
<e by (A.6).
Since € > 0 is arbitrary, po(Q) = 0. This proves
po(€Ep) = 0.
We deduce from Theorem 6.9 that
po = aifi
for some ay > 0. On the other hand, by Theorem 6.1,
po(¢o) = fi(do) = 1.
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It follows that a = 1. [l
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