FUCHSIAN GROUPS AND COMPACT HYPERBOLIC SURFACES

YVES BENOIST AND HEE OH

Abstract. We present a topological proof of the following theorem of Benoist-Quint: for a finitely generated non-elementary discrete subgroup Γ_1 of $\text{PSL}(2, \mathbb{R})$ with no parabolics, and for a cocompact lattice Γ_2 of $\text{PSL}(2, \mathbb{R})$, any Γ_1 orbit on $\Gamma_2 \setminus \text{PSL}(2, \mathbb{R})$ is either finite or dense.

1. Introduction

Let Γ_1 be a non-elementary finitely generated discrete subgroup with no parabolic elements of $\text{PSL}(2, \mathbb{R})$. Let Γ_2 be a cocompact lattice in $\text{PSL}(2, \mathbb{R})$. The following is the first non-trivial case of a theorem of Benoist-Quint [1].

Theorem 1.1. Any Γ_1-orbit on $\Gamma_2 \setminus \text{PSL}(2, \mathbb{R})$ is either finite or dense.

The proof of Benoist-Quint is quite involved even in the case as simple as above and in particular uses their classification of stationary measures [2]. The aim of this note is to present a short, and rather elementary proof.

We will deduce Theorem 1.1 from the following Theorem 1.2. Let

- $H_1 = H_2 := \text{PSL}(2, \mathbb{R})$ and $G := H_1 \times H_2$;
- $H := \{(h, h) : h \in \text{PSL}_2(\mathbb{R})\}$ and $\Gamma := \Gamma_1 \times \Gamma_2$.

Theorem 1.2. For any $x \in \Gamma \setminus G$, the orbit xH is either closed or dense.

Our proof of Theorem 1.2 is purely topological, and inspired by the recent work of McMullen, Mohammadi and Oh [5] where the orbit closures of the $\text{PSL}(2, \mathbb{R})$ action on $\Gamma_0 \setminus \text{PSL}(2, \mathbb{C})$ are classified for certain Kleinian subgroups Γ_0 of infinite co-volume. While the proof of Theorem 1.2 follows closely the sections 8-9 of [5], the arguments in this paper are simpler because of the assumption that Γ_2 is cocompact. We remark that the approach of [5] and hence of this paper is somewhat modeled after Margulis’s original proof of Oppenheim conjecture [4]. When Γ_1 is cocompact as well, Theorem 1.2 also follows from [6].

2. Horocyclic flow on convex cocompact surfaces

In this section we prove a few preliminary facts about unipotent dynamics involving only one factor H_1.

Oh was supported in part by NSF Grant.
We recall that Γ_1 is a non-elementary finitely generated discrete subgroup with no parabolic elements of the group $H_1 = \text{PSL}_2(\mathbb{R})$, that is, Γ_1 is a convex cocompact subgroup. We will identify the boundary of the hyperbolic plane $\mathbb{H}^2 := \{ z \in \mathbb{C} : \text{Im} z > 0 \}$ with the extended real line $\partial \mathbb{H}^2 = \mathbb{R} \cup \{ \infty \}$ which is topologically a circle. Let S_1 denote the hyperbolic orbifold $\Gamma_1 \backslash \mathbb{H}^2$, and let $\Lambda_{\Gamma_1} \subset \partial \mathbb{H}^2$ be the limit set of Γ_1. Let A_1 and U_1 be the subgroups of H_1 given by

$$A_1 := \{ a_t = \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} : t \in \mathbb{R} \} \quad \text{and} \quad U_1 := \{ u_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \}. $$

The set

$$\Omega_{\Gamma_1} = \{ x \in \Gamma_1 \backslash H_1 : xA_1 \text{ is bounded} \}. \tag{2.1}$$

is called the renormalized frame bundle of Γ_1. As Γ_1 is a convex cocompact subgroup, Ω_{Γ_1} is a compact A_1-invariant subset and one has the equality

$$\Omega_{\Gamma_1} = \{ [h] \in \Gamma_1 \backslash H_1 : h(0), h(\infty) \in \Lambda_{\Gamma_1} \}. $$

The image of Ω_{Γ_1} in S_1 under the map $h \mapsto h(i)$ is equal to the convex core of S_1.

Definition 2.2. Let $K > 1$. A subset $I \subset \mathbb{R}$ is called K-thick if, for any $t > 0$, I meets $[-Kt, -t] \cup [t, Kt]$.

Lemma 2.3. There exists $K > 1$ such that for any $x \in \Omega_{\Gamma_1}$, the subset $I(x) := \{ t \in \mathbb{R} : xu_t \in \Omega_{\Gamma_1} \}$ is K-thick.

Proof. Using an isometry, we may assume without loss of generality that $x = [e]$ where e corresponds to a downward unit vector at i in the identification of $\text{PSL}_2(\mathbb{R})$ and $T^1(\mathbb{H}^2)$. As $x \in \Omega_{\Gamma_1}$, both points 0 and ∞ belong to the limit set Λ_{Γ_1}. Since $u_t(\infty) = \infty$ and $u_t(0) = t$, one has the equality $I(x) = \{ t \in \mathbb{R} : t \in \Lambda_{\Gamma_1} \}$. Write $\mathbb{R} - \Lambda_{\Gamma_1}$ as the union $\cup J_i$ where J_i's are maximal open intervals. Note that the minimum distance between the convex hulls

$$\delta := \inf_{t \neq m} d(\text{conv}(J_i), \text{conv}(J_m))$$

is positive, as 2δ is the length of the shortest closed geodesic of the double of the core of S_1. Choose the constant $K > 1$ so that for $t > 0$, one has

$$d(\text{conv}[-Kt, -t], \text{conv}[t, Kt]) = \delta/2.$$

Note that this choice of K is independent of t. If $I(x)$ does not intersect $[-Kt, -t] \cup [t, Kt]$ for some $t > 0$, then the intervals $[-Kt, -t]$ and $[t, Kt]$ must belong to two distinct intervals J_i and J_m, since $0 \in \Lambda_{\Gamma_1}$. This contradicts to the choice of K. \square

Lemma 2.4. Let $K > 1$ and let I be a K-thick subset of \mathbb{R}. For any sequence h_n in $H_1 \setminus U_1$ converging to e, there exists a sequence $t_n \in I$ such that the sequence $u_{-t_n} h_n u_{t_n}$ has a non-trivial limit point in U_1.

Proof. Write \(h_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \). We compute
\[
q_n := u_{-t_n} h_n u_{t_n} = \begin{pmatrix} a_n - c_n t_n & (a_n - d_n - c_n t_n) t_n + b_n \\ c_n & d_n + c_n t_n \end{pmatrix}.
\]
Since \(h_n \) does not belong to \(U_1 \), it follows that the \((1,2)\)-entries \(P_n := (a_n - d_n - c_n t_n) t_n + b_n \) are non-constant polynomials in \(t_n \) of degree at most 2 whose coefficients converge to 0. Hence we can choose \(t_n \in I \) going to \(\infty \) so that \(1 \leq |P_n| \leq k \), for some positive constant \(k \) depending only on \(K \). Then the product \(c_n t_n \) must converge to 0 and the sequence \(q_n \) has a limit point in \(U_1 - \{e\} \). \(\square \)

Lemma 2.5. Let \(U_1^+ \) be the semigroup \(\{u_t : t \geq 0\} \). If \(\Gamma_1 \) is cocompact, any \(U_1^+ \)-orbit is dense in \(\Gamma_1 \backslash H_1 \).

Proof. Consider \(xU_1^+ \) for \(x \in \Gamma_1 \backslash H_1 \). Set \(x_n := xu_n \). We then have \(x_n u_{-n} U_1^+ \subset xU_1^+ \). Hence if \(z \) is a limit point of the sequence \(x_n \), we have \(zU \subset xU_1^+ \). By Hedlund’s theorem [3], \(zU \) is dense, proving the claim. \(\square \)

3. **Proof of Theorems 1.1 and 1.2**

In this section, using minimal sets and unipotent dynamics on the product space \(\Gamma \backslash G \), we provide a proof of Theorem 1.2.

3.1. **Unipotent dynamics.** We recall the notation \(G := \text{PSL}_2(\mathbb{R}) \times \text{PSL}_2(\mathbb{R}) \) and \(\Gamma := \Gamma_1 \times \Gamma_2 \). Set
- \(H_1 = \{(h,e)\}, H_2 = \{(e,h)\}, H = \{(h,h)\} \);
- \(U_1 = \{(u_t,e)\}, U_2 = \{(e,u_t)\}, U = \{(u_t,u_t)\} \);
- \(A_1 = \{(a_t,e)\}, A_2 = \{(e,a_t)\}, A = \{(a_t,a_t)\} \);
- \(X_1 = \Gamma \backslash H_1, X_2 = \Gamma \backslash H_2, X = \Gamma \backslash G = X_1 \times X_2 \).

Recall that \(\Gamma_1 \) is a non-elementary finitely generated discrete subgroup of \(H_1 \) with no parabolic elements and that \(\Gamma_2 \) is a cocompact lattice in \(H_2 \).

For simplicity, we write \(\tilde{u}_t \) for \((u_t,u_t)\) and \(\tilde{a}_t \) for \((a_t,a_t)\). Note that the normalizer of \(U \) in \(G \) is \(AU_1U_2 \).

Lemma 3.1. Let \(g_n \) be a sequence in \(G \times AU_1U_2 \) converging to \(e \), and let \(I \) be a \(K \)-thick subset of \(\mathbb{R} \) for some \(K > 1 \). Then for any neighborhood \(G_0 \) of \(e \) in \(G \), there exist sequences \(s_n \in I \) and \(t_n \in \mathbb{R} \) such that the sequence \(\tilde{u}_{-s_n} g_n \tilde{u}_t \) has a non-trivial limit point \(q \in AU_2 \cap G_0 \).

Proof. Fix \(\varepsilon > 0 \). Write \(g_n = (g_n^{(1)}, g_n^{(2)}) \) with \(g_n^{(i)} = \begin{pmatrix} a_n^{(i)} & b_n^{(i)} \\ c_n^{(i)} & d_n^{(i)} \end{pmatrix} \). Then the products \(q_n := \tilde{u}_{-s_n} g_n \tilde{u}_{t_n} \) are given by
\[
q_n^{(i)} = \begin{pmatrix} a_n^{(i)} - c_n^{(i)} s_n & (b_n^{(i)} - d_n^{(i)} s_n) - t_n (c_n^{(i)} s_n - a_n^{(i)}) \\ c_n^{(i)} & d_n^{(i)} + c_n^{(i)} t_n \end{pmatrix}.
\]
Set $t_n = \frac{b_n^{(1)} - a_n^{(1)} s_n}{c_n^{(1)} s_n - a_n^{(1)}}$. The differences $q_n - e$ are now rational functions in s_n of the form $q_n - e = \frac{1}{c_n^{(1)} s_n - a_n^{(1)}} P_n$, where P_n is a polynomial in s_n of degree at most 2 with values in $M_2(\mathbb{R}) \times M_2(\mathbb{R})$. Since the elements g_n do not belong to AU_1U_2, these polynomials P_n are non-constants. Hence we can choose $s_n \in I$ going to infinity so that $\varepsilon \leq \|P_n\| \leq k\varepsilon$ for some constant $k > 1$ depending only on K. We can also simultaneously impose that the denominators satisfy $1/2 \leq |c_n^{(1)} s_n - a_n^{(1)}| \leq k$ so that $\varepsilon/k \leq \|q_n - e\| \leq 2k\varepsilon$. By construction, when ε is small enough, the sequence q_n has a non-trivial limit point q in $A_1A_2U_2 \cap G_0$.

We claim that this limit $q = (q^{(1)}, q^{(2)})$ belongs to the group AU_2. It suffices to check that the diagonal entries of $q^{(1)}$ and $q^{(2)}$ are equal. If not, the two sequences $c_n^{(i)} s_n$ converge to real numbers $c^{(i)}$ with $c^{(1)} \neq c^{(2)}$, and a simple calculation shows that the $(1, 2)$-entries of $q^{(2)}_n$ are comparable to $\frac{c^{(2)} - c^{(1)}}{1 - c^{(1)}} s_n$ which tends to ∞. Contradiction. Hence q belongs to AU_2. \hfill \Box

3.2. H-minimal and U-minimal subsets. Let

\[\Omega := \Omega_{\Gamma_1} \times X_2 \]

where Ω_{Γ_1} is the renormalized frame bundle of Γ_1 as in (2.1). Note that, since Γ_2 is cocompact, the renormalized frame bundle of Γ_2 is $\Omega_{\Gamma_2} = X_2$.

Let $x = (x_1, x_2) \in \Gamma \backslash G$ and consider the orbit xH. Note that xH intersects Ω non-trivially. Let Y be an H-minimal subset of the closure \overline{xH} with respect to Ω, i.e., Y is a closed H-invariant subset of \overline{xH} such that $Y \cap \Omega \neq \emptyset$ and the orbit yH is dense in Y for any $y \in Y \cap \Omega$. Since any H orbit intersects Ω, it follows that yH is dense in Y for any $y \in Y$. Let Z be a U-minimal subset of Y with respect to Ω. Since Ω is compact, such minimal sets Y and Z exist. Set

\[Y^* = Y \cap \Omega \quad \text{and} \quad Z^* = Z \cap \Omega. \]

In the following, we assume that

the orbit xH is not closed

and aim to show that xH is dense in X.

\textbf{Lemma 3.2.} For any $y \in Y$, the identity element e is an accumulation point of the set $\{g \in G \setminus H : yg \in \overline{xH}\}$.

\textbf{Proof.} If y does not belong to xH, there exists a sequence $h_n \in H$ such that xh_n converges to y. Hence there exists a sequence $g_n \in G$ converging to e such that $xh_n = yg_n$. These elements g_n do not belong to H; hence proving the claim.

Suppose now that y belongs to xH. If the claim does not hold, then for a sufficiently small neighborhood G_0 of e in G, the set $yG_0 \cap Y$ is included in the orbit yH. This implies that the orbit yH is an open subset of Y. The minimality of Y implies that $Y = yH$, contradicting the assumption that the orbit yH is not closed. \hfill \Box
Lemma 3.3. There exists a non-trivial element \(v \in U_2 \) such that \(Zv \subset \bar{xH} \).

Proof. Choose a point \(z = (z_1, z_2) \in Z^* \). By Lemma 3.2, there exists a sequence \(g_n \) in \(G \setminus H \) converging to \(e \) such that \(zg_n \in \bar{xH} \). We may assume without loss of generality that \(g_n \) belongs to \(H_2 \). If \(g_n \) belongs to \(U_2 \) for some \(n \), the Lemma follows. Suppose that \(g_n \) does not belong to \(U_2 \). Then, since the set \(I(z_1) \) is \(K \)-thick for some \(K > 1 \) by Lemma 2.3, it follows from Lemma 2.4 that there exist a sequence \(t_n \to \infty \) in \(I(z_2) \) such that, after extraction, the products \(\tilde{u}_{-t_n}g_n\tilde{u}_{t_n} \) converge to a non-trivial element \(v \in U_2 \).

Since the points \(z\tilde{u}_{t_n} \) belong to \(\Omega \), this sequence has a limit point \(z' \in Z^* \). Since one has the equality

\[
z'v = \lim_{n \to \infty} z\tilde{u}_{t_n}(\tilde{u}_{-t_n}g_n\tilde{u}_{t_n})
\]

the point \(z'v \) belongs to \(\bar{xH} \). Since \(v \) commutes with \(U \) and \(Z \) is \(U \)-minimal with respect to \(\Omega \), one has the equality \(Zv = z'vU \), hence the set \(Zv \) is included in \(\bar{xH} \).

Lemma 3.4. For any \(z \in Z^* \), there exists a sequence \(g_n \) in \(G \setminus U \) converging to \(e \) such that \(zg_n \in Z \).

Proof. Since the group \(\Gamma_2 \) is cocompact, it does not contain unipotent elements and hence the orbit \(zU \) is not compact. Since the orbit \(zU \) is recurrent in \(Z^* \), the set \(Z^* \setminus zU \) contains at least one point. Call it \(z' \). Since the orbit \(z'U \) is dense in \(Z \), there exists a sequence \(\tilde{u}_{t_n} \in U \) such that \(z = \lim z\tilde{u}_{t_n} \). Hence one can write \(z\tilde{u}_{t_n} = zg_n \) with \(g_n \) in \(G \setminus U \) converging to \(e \). \(\square \)

Proposition 3.5. There exists a one-parameter semi-group \(L^+ \subset AU_2 \) such that \(ZL^+ \subset Z \).

Proof. It suffices to find, for any neighborhood \(G_0 \) of \(e \), a non-trivial element \(q \) in \(AU_2 \cap G_0 \) such that the set \(Zq \) is included in \(Z \); then writing \(q = \exp w \) for an element \(w \) of the Lie algebra of \(G \), we can take \(L^+ \) to be the semigroup \(\{ \exp(sw) : s \geq 0 \} \) where \(w \) is a limit point of the elements \(\frac{w}{\|w\|} \) when the diameter of \(G_0 \) shrinks to 0.

Fix a point \(z = (z_1, z_2) \in Z^* \). According to Lemma 3.4 there exists a sequence \(g_n \in G \setminus U \) converging to \(e \) such that \(zg_n \in Z \).

Suppose first that \(g_n \) belongs to \(AU_1U_2 \) for infinitely many \(n \); then one can find \(\tilde{u}_{t_n} \in U \) such that the product \(q_n := g_n\tilde{u}_{t_n} \) belongs to \(AU_2 \) and is non-trivial, and \(zg_n \) belongs to \(Z \). Hence, since \(g_n \) normalizes \(U \) and since \(Z \) is \(U \)-minimal with respect to \(\Omega \), the set \(Zg_n \) is included in \(Z \).

Now suppose that \(g_n \) is not in \(AU_1U_2 \). By Lemmas 2.3 and 3.1, there exist sequences \(s_n \in I(z_1) \) and \(t_n \in \mathbb{R} \) such that, after passing to a subsequence, the products \(\tilde{u}_{-s_n}g_n\tilde{u}_{t_n} \) converge to a non-trivial element \(q \in AU_2 \cap G_0 \). Since the elements \(z\tilde{u}_{t_n} \) belong to \(Z^* \), they have a limit point \(z' \in Z^* \). Since we have

\[
z'q = \lim_{n \to \infty} z\tilde{u}_{s_n}(\tilde{u}_{-s_n}g_n\tilde{u}_{t_n})
\]
the element $z'q$ belongs to Z. As q normalizes U, it follows that Zq is contained in Z.

Proposition 3.6. There exist an element $z \in \overline{xH}$ and a one-parameter semigroup $U_2^+ \subset U_2$ such that $zU_2^+ \subset \overline{xH}$.

Proof. By Proposition 3.5 there exists a one-parameter semigroup $L^+ \subset AU_2$ such that $ZL^+ \subset Z$. This semigroup L^+ is equal to one of the following: U_2^+, A^+ or $v_0^{-1}A^+v_0$ for some non-trivial element $v_0 \in U_2$, where U_2^+ and A^+ are one-parameter semigroups of U_2 and A respectively.

When $L^+ = U_2^+$, our claim is proved.

Suppose now $L^+ = A^+$. By Lemma 3.3 there exists a non-trivial element $v \in U_2$ such that $Zv \subset \overline{xH}$. Then one has the inclusions

$$ZA^+vA \subset ZvA \subset \overline{xH}A \subset \overline{xH}.$$ Choose a point $z' \in Z^+$ and a sequence $\tilde{a}_{t_n} \in A^+$ going to ∞. Since $z'\tilde{a}_{t_n}$ belong to Ω, after passing to a subsequence, the sequence $z'\tilde{a}_{t_n}$ converges to a point $z \in \overline{xH} \cap \Omega$. Moreover, since the Hausdorff limit of the sets $\tilde{a}_{-t_n}A^+$ is A, one has the inclusions

$$zAvA \subset \lim_{n \to \infty} z'\tilde{a}_{t_n}(\tilde{a}_{-t_n}A^+)vA = z'A^+vA \subset \overline{xH}.$$ Now by a simple computation, we can check that the set AvA contains a one-parameter semigroup U_2^+ of U_2, and hence the orbit zU_2^+ is included in \overline{xH} as desired.

Suppose finally $L^+ = v_0^{-1}A^+v_0$ for some $v_0 \in U_2$. We can assume without loss of generality that $A^+ = \{\tilde{a}_{et} : t \geq 0\}$ where $\varepsilon = \pm 1$ and that $v_0 = (e, u_1)$. A simple computation shows that the set $v_0^{-1}A^+v_0A$ contains the set $U_2^+ := \{(e, u_{et}) : 0 \leq t \leq 1\}$. Hence one has the inclusions

$$ZU_2^+ \subset Zv_0^{-1}A^+v_0A \subset ZA \subset \overline{xH}.$$ Choose a point $z' \in Z^*$ and let $z \in \overline{xH}$ be a limit of a sequence $z'\tilde{a}_{-t_n}$ with t_n going to $+\infty$. Since the Hausdorff limit of the sets $\tilde{a}_{t_n}U_2^+\tilde{a}_{-t_n}$ is the semigroup $U_2^+ := \{(e, u_{et}) : t \geq 0\}$, one has the inclusions

$$zU_2^+ \subset \lim_{n \to \infty} (z'\tilde{a}_{-t_n})\tilde{a}_{t_n}U_2^+\tilde{a}_{-t_n} \subset \overline{ZU_2^+A} \subset \overline{xH}.$$

3.3. Conclusion.

Proof of Theorem 1.2. Suppose that the orbit xH is not closed. By Proposition 3.6, the orbit closure \overline{xH} contains an orbit zU_2^+ of a one-parameter subsemigroup of U_2. Since Γ_2 is cocompact in H_2, by Lemma 2.5, this orbit zU_2^+ is dense in zH_2. Hence we have the inclusions

$$X = zG = zH_2H \subset HzU_2^+ \subset \overline{xH}.$$ This proves the claim.
Proof of Theorem 1.1. Let $x = [g]$ be a point of $X_2 = \Gamma_2 \backslash H_2$. By replacing Γ_1 by $g^{-1} \Gamma_1 g$, we may assume without loss of generality that $g = e$. One deduces Theorem 1.1 from Theorem 1.2 thanks to the following equivalences:

The orbit $[e]H$ is closed (resp. dense) in $\Gamma \backslash G \iff$

The orbit $\Gamma [e]$ is closed (resp. dense) in $G / H \iff$

The product $\Gamma_2 \Gamma_1$ is closed (resp. dense) in $\text{PSL}_2(\mathbb{R}) \iff$

The orbit $[e] \Gamma_1$ is closed (resp. dense) in $\Gamma_2 \backslash \text{PSL}_2(\mathbb{R})$. □

References

Université Paris-Sud, Batiment 425, 91405 Orsay, France

E-mail address: yves.benoist@math.u-psud.fr

Mathematics department, Yale university, New Haven, CT 06520 and Korea Institute for Advanced Study, Seoul, Korea

E-mail address: hee.oh@yale.edu