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Abstract. Abelian covers of hyperbolic 3-manifolds are ubiquitous. We prove

the local mixing theorem of the frame flow for abelian covers of closed hyper-

bolic 3-manifolds. We obtain a classification theorem for measures invariant
under the horospherical subgroup. We also describe applications to the prime

geodesic theorem as well as to other counting and equidistribution problems.

Our results are proved for any abelian cover of a homogeneous space Γ0\G
where G is a rank one simple Lie group and Γ0 < G is a convex cocompact

Zariski dense subgroup.

1. Introduction

1.1. Motivation. Let M be a closed hyperbolic 3-manifold. We can present M
as the quotient Γ0\H3 of the hyperbolic 3-space H3 for some co-compact lattice
Γ0 of G = PSL2(C). The frame bundle F(M) is isomorphic to the homogeneous
space Γ0\G and the frame flow on F(M) corresponds to the right multiplication

of at =

(
et/2 0

0 e−t/2

)
on Γ0\G.

The strong mixing property of the frame flow [24] is well-known:

Theorem 1.1 (Strong mixing). For any ψ1, ψ2 ∈ L2(Γ0\G),

lim
t→∞

∫
ψ1(xat)ψ2(x) dx =

∫
ψ1dx ·

∫
ψ2 dx

where dx denotes the G-invariant probability measure on Γ0\G.

This mixing theorem and its effective refinements are of fundamental impor-
tance in homogeneous dynamics, and have many applications in various problems
in geometry and number theory. One recent spectacular application was found in
the resolution of the surface subgroup conjecture by Kahn-Markovic [25]. Based
on their work, as well as Wise’s, Agol settled the virtually infinite betti number
conjecture [1]:

Theorem 1.2. Any closed hyperbolic 3-manifold M = Γ0\H3 virtually has a Zd-
cover for any d ≥ 1.

That is, after passing to a subgroup of finite index, Γ0 contains a normal subgroup
Γ with Γ\Γ0 ' Zd, and hence the hyperbolic 3-manifold Γ\H3 is a regular cover of
M whose deck transformation group is isomorphic to Zd.
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On the frame bundle of the Zd-cover Γ\H3, the strong mixing property fails [24],
because for any ψ1, ψ2 ∈ Cc(Γ\G),

lim
t→∞

∫
Γ\G

ψ1(xat)ψ2(x) dx = 0.

The aim of this paper is to formulate and prove the local mixing property of
the frame flow for any abelian cover of a closed hyperbolic 3-manifold, or more
generally for any abelian cover of a convex cocompact rank one locally symmetric
space. The local mixing property is an appropriate substitute of the strong mixing
property in the setting of an infinite volume homogeneous space, and has similar
applications. We will establish a classification theorem for measures invariant under
the horospherical subgroup, extending the work of Babillot, Ledrappier and Sarig.
We will also describe applications to the prime geodesic theorem as well as other
counting and equidistribution problems.

1.2. Local limit theorem. In order to motivate our definition of the local mixing
property, we recall the classical local limit theorem on the Euclidean space Rd [11]:

Theorem 1.3 (Local limit theorem). For any absolutely continuous compactly
supported probability measure µ on Rd, and any continuous function ψ on Rd with
compact support,

lim
n→+∞

nd/2
∫
ψ dµ∗n = c(µ)

∫
Rd
ψ(x)dx

where µ∗n denotes the n-th convolution of µ and c(µ) > 0 is a constant depending
only on µ.

The virtue of this theorem is that although the sequence µ∗n weakly converges
to zero, the re-normalized measure nd/2µ∗n converges to a non-trivial locally finite
measure on Rd, which is the Lebesgue measure in this case.

1.3. Local mixing theorem. Let G be a connected semisimple linear Lie group
and Γ < G a discrete subgroup. Let {at : t ∈ R} be a one-parameter diagonalizable
subgroup of G, acting on Γ\G by right translations. Denote by Cc(Γ\G) the space
of all continuous functions with compact support. For a compactly supported
probability measure µ on Γ\G, we consider the following family {µt} of probability
measures on Γ\G translated by the flow at: for ψ ∈ Cc(Γ\G),

µt(ψ) :=

∫
Γ\G

ψ(xat)dµ(x).

We formulate the following notion, which is analogous to the local limit theorem
for Rd:

Definition 1.4. A probability measure µ on Γ\G has the local mixing property for
{at} if there exist a positive function α on R>0 and a non-trivial Radon measure
m on Γ\G such that for any ψ ∈ Cc(Γ\G),

lim
t→+∞

α(t)

∫
ψ(x) dµt(x) =

∫
ψ dm(x).

If Γ < G is a lattice, then any absolutely continuous probability measure µ has
the local mixing property for {at} [24]. If Γ = {e}, no probability measure has the
local mixing for {at}.
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Figure 1. Z-covers of convex cocompact surfaces

We focus on the rank one situation in which case the action of at induces the
geodesic flow on the corresponding locally symmetric space. Throughout the intro-
duction, suppose that G is a connected simple Lie group of real rank one, that is,
G is the group of orientation preserving isometries of a simply connected Riemma-
nian space X̃ of rank one. Let Γ0 < G be a Zariski dense and convex cocompact
subgroup of G, i.e. its convex core, which is the quotient of the convex hull of the
limit set of Γ0 by Γ0, is compact. For instance, Γ0 can be a cocompact lattice of
G. Let

Γ < Γ0

be a normal subgroup with Zd-quotient. Then X := Γ\X̃ is a regular cover of

X0 := Γ0\X̃ whose group of deck transformations is isomorphic to Zd. Let {at ∈
G : t ∈ R} be a one-parameter subgroup which is the lift of the geodesic flow Gt on

the unit tangent bundle T1(X). When X̃ is a real hyperbolic space, the at action
on Γ\G corresponds to the frame flow on the oriented frame bundle of X.

Denote by Pacc(Γ\G) the space of compactly supported absolutely continuous
probability measures on Γ\G with continuous densities.

Theorem 1.5 (Local mixing theorem). Any µ ∈ Pacc(Γ\G) has the local mixing
property for {at}: for ψ ∈ Cc(Γ\G),

lim
t→+∞

td/2e(D−δ)t
∫
ψ dµt = c(µ) ·

∫
ψ dmBR+

where D is the volume entropy of X̃, δ is the critical exponent of Γ0, mBR+ is
the Burger-Roblin measure on Γ\G for the expanding horospherical subgroup, and
c(µ) > 0 is a constant depending on µ.

We remark that the critical exponent δ of Γ0 is same as that of Γ by [16].
Denote by dx a G-invariant measure on Γ\G. Theorem 1.5 is deduced from

the following theorem, which describes the precise asymptotic of the correlation
functions.

Theorem 1.6. For ψ1, ψ2 ∈ Cc(Γ\G),

lim
t→+∞

td/2e(D−δ)t
∫

Γ\G
ψ1(xat)ψ2(x) dx =

mBR+(ψ1)mBR−(ψ2)

(2πσ)d/2mBMS(Γ0\G)
.

where mBMS is the Bowen-Margulis-Sullivan measure on Γ0\G, mBR− is the Burger-
Roblin measure on Γ\G for the contracting horospherical subgroup, and σ = σΓ > 0
is a constant given in (3.15).
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For the trivial cover, i.e. when d = 0, this theorem was obtained by Winter [65],
based on the earlier work of Babillot [3].

If Γ0 < G is cocompact, then D = δ and the measures mBR+ , mBR− and mBMS

are all proportional to the invariant measure dx. Hence the following is a special
case of Theorem 1.6:

Theorem 1.7. Let Γ\G be a Zd-cover of a compact rank one space Γ0\G. For
ψ1, ψ2 ∈ Cc(Γ\G), we have

lim
t→+∞

td/2
∫
ψ1(xat)ψ2(x) dx =

1

(2πσ)d/2

∫
ψ1dx

∫
ψ2dx.

Remark 1.8. (1) Let Sg be a compact hyperbolic surface of genus g and Γ0 <
PSL2(R) be a realization of the surface group π1(Sg). Then Γ := [Γ0,Γ0]
is a normal subgroup of Γ0 with Z2g-quotient, and Γ\H2 is the homology
cover of Sg. Theorem 1.7 is already new in this case.

(2) For any n ≥ 2, there is a congruence lattice of SO(n, 1) admitting co-abelian
subgroups of infinite index ([39], [35], [36]). Moreover, such a congruence
lattice can be found in any arithmetic subgroup of SO(n, 1) if n 6= 3, 7.

(3) An infinite abelian cover of a compact quotient Γ0\G may exist only when
G is SO(n, 1) or SU(n, 1), since other rank one groups have Kazhdan’s
property T , which forces the vanishing of the first Betti number of any
lattice in G. On the other hand, there are plenty of normal subgroups of
a convex cocompact subgroup Γ0 of any G with Zd-quotients; for instance,
if Γ0 is a Schottky group generated by g-elements, we have a Zd-cover of
Γ0\G for any 1 ≤ d ≤ g.

(4) All of our results can be generalized to any co-abelian subgroup Γ of Γ0

as there exists a co-finite subgroup Γ1 < Γ0, which is necessarily convex
cocompact and such that Γ\Γ1 is isomorphic to Zd for some d ≥ 0.

Remark 1.9. We expect Theorem 1.5 to hold in a greater generality where the
quotient group N := Γ\Γ0 is a finitely generated nilpotent group, and the exponent
d is the polynomial growth of N [7]: for a finite generating set S of N , there is
β > 1 such that β−1nd ≤ #Sn ≤ βnd for all n ≥ 1.

1.4. Ergodicity of the frame flow on abelian covers. We also establish the
following ergodic property of the A := {at}-action on Γ\G.

Theorem 1.10. The Bowen-Margulis-Sullivan measure mBMS on Γ\G is ergodic
for the A-action if and only if d ≤ 2.

This strengthens the previous works of Rees [56] and Yue [66] on the equivalence
of the ergodicity of geodesic flow and the condition d ≤ 2

1.5. Measure classification for a horospherical subgroup action. Let N
denote the contracting horospherical subgroup of G:

N = {g ∈ G : a−tgat → e as t→ +∞}.

Let M be the compact subgroup which is the centralizer of A, so that G/M is

isomorphic to the unit tangent bundle T1(X̃).
Let (Γ\Γ0)∗ denote the group of characters of the abelian group Γ\Γ0 ' Zd.

Babillot and Ledrappier constructed a family {mχ : χ ∈ (Γ\Γ0)∗} of NM -invariant
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Radon measures on Γ\G ([4], [6]); see Def. 6.7 for a precise definition. Each mχ is
known to be NM -ergodic ([6], [51], [13]).

We show that mχ is N -ergodic and deduce the following theorem from the classi-
fication result of NM -ergodic invariant measures due to Sarig and Ledrappier ([59],
[33]):

Theorem 1.11. Let Γ0 < G be cocompact and Γ\Γ0 ' Zd. Any N -invariant
ergodic Radon measure on Γ\G is proportional to mχ for some χ ∈ (Γ\Γ0)∗.

1.6. Prime geodesic theorems and holonomies. For T > 0, let PT be the
collection of all primitive closed geodesics in T1(X) of length at most T . To each
closed geodesic C, we can associate a conjugacy class hC in M , called the holonomy
class of C.

We normalize mBMS so that mBMS(Γ0\G) = 1. We write f(T ) ∼ g(T ) if
limT→∞ f(T )/g(T ) = 1.

Theorem 1.12. Let Ω ⊂ T1(X) be a compact subset with BMS-negligible boundary
and ξ ∈ C(M) a class function. Then as T →∞,∑

C∈PT

`(C ∩ Ω)

`(C)
ξ(hC) ∼ eδT

(2πσ)d/2δT d/2+1
mBMS(Ω)

∫
M

ξdm

where dm is the probability Haar measure on M .

For d = 0, the above theorem was proved earlier in [38] (also [58] for Γ lattice).
Indeed, given Theorem 1.6, the proof of [38] applies in the same way. Another
formulation of the prime geodesic theorem in this setting would be studying the
distribution of closed geodesics in T1(X0) satisfying some homological constraints.
An explicit main term in this setting was first described by Phillips and Sarnak
[49]. See also ([27], [28], [31], [47], [2]) for subsequent works.

1.7. Distribution of a discrete Γ-orbit in H\G. Let H be either the trivial, a
horospherical or a symmetric subgroup of G (that is, H is the group of fixed points
of an involution of G). Another application of the local mixing result can be found
in the study of the distribution of a discrete Γ-orbit on the quotient space H\G.
That this question can be approached by a mixing type result has been understood
first by Margulis [37] at least when H is compact. It was further developed by
Duke, Rudnick and Sarnak [17], and Eskin and McMullen [19] when Γ is a lattice.
See [57], [44], [40], [42] for generalizations to geometrically finite groups Γ. The
following theorem extends especially the works of [44] and [40] to geometrically
infinite groups which are co-abelian subgroups of convex cocompact groups. We
give an explicit formula for a Borel measure M =MΓ (see Def. 7.5) on H\G for
which the following holds:

Theorem 1.13. Suppose that [e]Γ0 ⊂ H\G is discrete and that [H ∩Γ0 : H ∩Γ] <
∞. If BT is a well-rounded sequence of compact subsets in H\G with respect to M
(see Def. 7.6), then

#[e]Γ ∩BT ∼M(BT ).

In the case where H is compact, Γ0 is cocompact, and BT is the Riemannian
ball in G/K = X̃, this result implies that for any o ∈ X̃,

#{γ(o) ∈ Γ(o) : d(γ(o), o) < T} ∼ c e
DT

T d/2
.
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This was earlier obtained by Pollitcott and Sharp [52] (also see [18]). The novelty of
Theorem 1.13 lies in the treatment the homogeneous space H\G with non-compact
H and of sequence BT of very general shape (e.g. sectors).

We present a concrete example: let Q = Q(x1, · · · , xn+1) be a quadratic form
of signature (n, 1) for n ≥ 2, and let G = SO(Q) be the special orthogonal group
preserving Q. Let Γ be a normal subgroup of a Zariski dense convex cocompact
subgroup Γ0 with Zd-quotient.

Corollary 1.14. Let w0 ∈ Rn+1 be a non-zero vector such that w0Γ0 is discrete,
and [StabΓ0

(w0) : StabΓ(w0)] <∞. Then for any norm ‖ · ‖ on Rn+1,

#{v ∈ w0Γ : ‖v‖ ≤ T} ∼ c T δ

(log T )d/2

where c > 0 depends only on Γ and ‖ · ‖.

In this case, theG-orbit w0G is isomorphic toH\G whereH is either SO(n−1, 1),
SO(n) or MN according as Q(w) > 0, Q(w) < 0, or Q(w) = 0. Under this
isomorphism, the norm balls give rise to a well-rounded family of compact subsets,
say BT and the explicit computation of the M-measure of BT ⊂ H\G gives the
above asymptotic.

1.8. Discussion of the proof. The proof of Theorem 1.6 is based on extending
the symbolic dynamics approach of studying the geodesic flow on T1(X0) as the
suspension flow on Σ × R/ ∼ for a subshift of finite type (Σ, σ). The at flow on a
Zd-cover Γ\G can be studied via the suspension flow on

Σ̃ := Σ× Zd ×M × R/ ∼

where the equivalence is defined via the shift map σ : Σ → Σ, the first return
time map τ : Σ → R, the Zd-coordinate map f : Σ → Zd and the holonomy map
θ : Σ→M . The asymptotic behavior of the correlation function of the suspension
flow on Σ̃ with respect to the BMS measure can then be investigated using analytic
properties of the associated Ruelle transfer operators Ls,v,µ of three parameters

s ∈ C, v ∈ Ẑd, µ ∈ M̂ where Ẑd and M̂ denote the unitary dual of Zd and of
M respectively (see Def. 3.2). The key ingredient is to show that on the plane
<(s) ≥ δ, the map

s 7→ (1− Ls,v,µ)−1

is holomorphic except for a simple pole at s = δ, which occurs only when both v
and µ are trivial. To each element γ ∈ Γ0 we can associate the length `(γ) ∈ R and
the Frobenius element f(γ) ∈ Zd and the holonomy representation θ(γ) ∈M . Our
proof of the desired analytic properties of (1 − Ls,v,µ)−1 is based on the study of
the generalized length spectrum of Γ0 relative to Γ:

GL(Γ0,Γ) := {(`(γ), f(γ), θ(γ)) ∈ R× Zd ×M : γ ∈ Γ0}.

The correlation function for the BMS measure can then be expressed in terms of
the operator (1−Ls,v,µ)−1 via an appropriate Laplace/Fourier transform. We then
perform the necessary Fourier analysis to extract the main term coming from the
residue. Finally we can deduce the precise asymptotic of the correlation function
for the Haar measure from that for the BMS measure using ideas originated in
Roblin’s work (see Theorem 4.10).
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In order to prove Theorem 1.11, we first deduce from Theorem 1.6 and the closing
lemma that the group generated by the generalized length spectrum GL(Γ0,Γ) is
dense in R × Zd ×M . Using this, we show that for any generalized BMS measure
mΓ on Γ\G, any N -invariant measurable function on Γ\G is invariant by Γ\Γ0 on
the left and by AM on the right. Then the AM -ergodicity of mΓ, considered as a
measure on Γ0\G, implies Theorem 1.11, since the transverse measure of a Babillot-
Ledrappier measure mχ equals to the transverse measure of some generalized BMS
measure.

1.9. Organization. The paper is organized as follows. In section 2, we introduce
the suspension model for the frame flow on abelian covers. In section 3, we inves-
tigate the analytic properties of the Ruelle transfer operators Ls,v,µ. In section 4,
we deduce the asymptotic behavior of the correlation functions of the suspension
flow with respect to the BMS measure from the study of the transfer operators
made in section 3, and prove Theorem 1.6. In section 5, we study the ergodicity of
the frame flow with respect to generalized BMS-measures. In section 6, we discuss
the ergodicity of the Babillot-Ledrappier measures for the horospherical subgroup
action, and deduce a measure classification invariant under the horospherical sub-
group. Applications to the prime geodesic theorem, and to other counting theorems
1.12 and 1.13 are discussed in the final section 7.

Acknowlegment. We would like to thank Curt McMullen for useful comments.

2. Suspension model for the frame flow on abelian covers

2.1. Set-up and Notations. Unless mentioned otherwise, we use the notation
and assumptions made in this section throughout the paper. Let G be a connected
simple linear Lie group of real rank one and K a maximal compact subgroup of G.
Let X̃ = G/K be the associated simply connected Riemmanian symmetric space

and let ∂∞(X̃) be its geometric boundary. Choosing a unit tangent vector vo at

o := [K] ∈ G/K, the unit tangent bundle T1(X̃) can be identified with G/M where
M is the stabilizer subgroup of vo. We let d denote the right K-invariant and left
G-invariant distance function on G which induces the Riemannian metric on X̃
which we will also denote by d. Let A = {at} < G be the one-parameter subgroup
of semisimple elements whose right translation action on G/M gives the geodesic
flow. Then M equals to the centralizer of A in K. We denote by N+ and N− the
expanding and the contracting horospherical subgroups of G for the action of at:

N± = {g ∈ G : atga
−1
t → e as t→ ±∞}.

We denote by D > 0 the volume entropy of X̃, i.e.

D := lim
T→∞

log Vol(B(o, T ))

T

where B(o, T ) = {x ∈ X̃ : d(o, x) ≤ T}. For instance, if X̃ = Hn, then D = n− 1.
For a discrete subgroup Γ0 < G, we denote by Λ(Γ0) the limit set of Γ0, which

is the set of all accumulation points in X̃ ∪ ∂(X̃) of an orbit of Γ0 in X̃.
Let Γ0 be a Zariski dense and convex cocompact subgroup of G; this means that

the convex hull of Λ(Γ) is compact modulo Γ.
Let Γ < Γ0 be a normal subgroup with

Γ\Γ0 ' Zd.
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Set X0 = Γ0\X̃ and X = Γ\X̃. So we may identify T1(X0) = Γ0\G/M and
T1(X) = Γ\G/M . The critical exponents of Γ and Γ0 coincide [16], which we will
denote by δ. Then 0 < δ ≤ D, and δ = D if and only if Γ0 is co-compact in G by
Sullivan [64]. As Γ is normal, we have Λ(Γ) = Λ(Γ0).

We recall the construction of the Bowen-Margulis-Sullivan measure mBMS and
Burger-Roblin measures mBR± on Γ0\G.

We let {mx : x ∈ X̃} and {νx : x ∈ X̃} be Γ0-invariant conformal densities
of dimensions D and δ respectively, unique up to scalings. They are called the
Lebesgue density and the Patterson-Sullivan density, respectively.

The notation βξ(x, y) denotes the Busemann function for ξ ∈ ∂(X̃), and x, y ∈ X̃.

The Hopf parametrization of T1(X̃) as (∂2(X̃)−Diagonal)× R is given by

u 7→ (u+, u−, s = βu−(o, u))

where u± ∈ ∂(X̃) are the forward and the backward end points of the geodesic
determined by u and βu−(o, u) = βu−(o, π(u)) for the canonical projection π :

T1(X̃)→ X̃.
Using this parametrization, the following defines locally finite Borel measures on

T1(X̃):

dm̃BMS(u) = eδβu+ (o,u)+δβu− (0,u)dνo(u
+)dνo(u

−)ds;

dm̃BR+(u) = eDβu+ (o,u)+δβu− (0,u)dmo(u
+)dνo(u

−)ds;

dm̃BR−(u) = eδβu+ (o,u)+Dβu− (0,u)dνo(u
+)dmo(u

−)ds;

dm̃Haar(u) = eDβu+ (o,u)+Dβu− (0,u)dmo(u
+)dmo(u

−)ds;

They are left Γ0-invariant measures on T1(X̃) = G/M . We will use the same
notation for their M -invariant lifts to G, which are, respectively, right AM , N+M ,
N−M and G-invariant. By abuse of notation, the induced measures on Γ0\G will
be denoted by mBMS,mBR± ,mHaar respectively. If Γ0 is cocompact in G, these
measures are all equal to each other, being simply the Haar measure. In general,
only mBMS is a finite measure on Γ0\G. An important feature of mBMS is that it
is the unique measure of maximal entropy (which is δ) as a measure on T1(X0).

Since the measures m̃BMS, m̃BR± , m̃Haar are all Γ-invariant as Γ < Γ0, they also
induce measures on Γ\G for which we will use the same notation mBMS,mBR± ,mHaar

respectively.
We will normalize mBMS so that

mBMS(Γ0\G) = 1

which can be done by rescaling νo.

Remark 2.1. We remark that {νx} is also the unique Γ-invariant conformal density
of dimension δ whose support is Λ(Γ), up to a constant multiple; this can be
deduced from [48, Prop. 11.10, Thm. 11.17]). Therefore the BMS-measures and
BR measures on Γ\G can be defined canonically without the reference to Γ0.

2.2. Markov sections and suspension space Στ . Denote by Ω0 the non-wandering
set of the geodesic flow {at} in Γ0\G/M , i.e.

{x : for any neighborhood U of x, Uati ∩ U 6= ∅ for some ti →∞}.

The set Ω0 coincides with the support of mBMS and is a hyperbolic set for the
geodesic flow. In this subsection, we recall the well-known construction of a subshift
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of finite type and its suspension space which gives a symbolic space model for
(Ω0, at) (see [47], [9], [23], [54], [52] for a general reference).

For each z ∈ Ω0, the strong unstable manifold W su(z), the strong stable manifold
W ss(z), the weak unstable manifold Wu(z) and the weak stable manifold W s(z)
are respectively given by the sets zN+, zN−, zN+A, and zN−A in Γ0\G/M re-
spectively.

Consider a finite set z1, . . . , zk in Ω0 and choose small compact neighborhoods Ui
and Si of zi in W su(zi)∩Ω0 and W ss(zi)∩Ω0 respectively such that Ui = intu(Ui)

and Si = ints(Si). Here intu(Ui) denotes the interior of Ui in the set W su(zi) ∩Ω0

and ints(Si) is defined similarly. For x ∈ Ui and y ∈ Si, we write [x, y] for the unique
local intersection of W ss(x) and Wu(y). We call the following sets rectangles:

Ri = [Ui, Si] := {[x, y] : x ∈ Ui, y ∈ Si}
and denote their interiors by int(Ri) = [intu(Ui), ints(Si)]. Note that Ui = [Ui, zi] ⊂
Ri.

Given a disjoint union R = ∪iRi of rectangles such that RA = Ω0, the first
return time τ : R→ R>0 and the first return map P : R→ R are given by

τ(x) := inf{t > 0 : xat ∈ R} and P(x) := xaτ(x).

The associated transition matrix A is the k × k matrix given by

Alm =

{
1 if int(Rl) ∩ P−1int(Rm) 6= ∅
0 otherwise.

Fix ε > 0 much smaller than the injectivity radius of Γ0\G. By Ratner [54]
and Bowen [9], we have a Markov section for the flow at of size ε, that is, a family
R = {R1, . . . , Rk} of disjoint rectangles satisfying the following:

(1) Ω0 = ∪k1Ria[0,ε]

(2) the diameter of each Ri is at most ε, and
(3) for any i 6= j, at least one of Ri ∩Rja[0,ε] or Rj ∩Ria[0,ε] is empty.
(4) P([intu Ui, x]) ⊃ [Intu Uj ,P(x)] and P([x, Ints Si])) ⊂ [P(x), Ints Sj ] for

any x ∈ int(Ri) ∩ P−1(int(Rj)).
(5) A is aperiodic, i.e. for some N ≥ 1, all the entries of AN are positive.

Set R := ∪Ri and U := ∪Ui.
Let Σ be the space of bi-infinite sequences x ∈ {1, . . . , k}Z such that Axlxl+1

= 1
for all l. We denote by Σ+ the space of one sided sequences

Σ+ = {(xi)i≥0 : Axi,xi+1 = 1 for all i ≥ 0}.
Non-negative coordinates of x ∈ Σ will be referred to as future coordinates of x.
A function on Σ which depends only on future coordinates can be regarded as a
function on Σ+.

We will write σ : Σ → Σ for the shift map (σx)i = xi+1. By abuse of notation
we will also denote by σ the shift map acting on Σ+.

For β ∈ (0, 1), we can give a metric dβ on Σ (resp. on Σ+) by

dβ(x, x′) = βinf{|j|:xj 6=x′j}.

Definition 2.2 (The map ζ : Σ → R). Let R̂ be the set of x ∈ R such that

Pmx ∈ int(R) for all m ∈ Z. For x ∈ R̂, we obtain a sequence ω = ω(x) ∈ Σ such

that Pkx ∈ Rωk for all k ∈ Z. The set Σ̂ := {ω(x) : x ∈ R̂} is a residual set in

Σ. This map x 7→ ω(x) is injective on R̂ as the distinct pair of geodesics diverge
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from each other either in positive or negative time. We can extend ω−1 : Σ̂→ R̂ a
continuous surjective function ζ : Σ→ R, which intertwines σ and P.

Definition 2.3 (The map ζ+ : Σ+ → U). Let Û be the set of u ∈ U such that
σ̂mu ∈ intu(U) for all m ∈ N ∪ {0}. Similarly to the above, we can define an

injective map Û → Σ+, and then a continuous surjection ζ+ : Σ+ → U .

For β sufficiently close to 1, the embeddings ζ and ζ+ are Lipschitz. We fix such
a β once and for all. The space Cβ(Σ) (resp. Cβ(Σ+)) of dβ-Lipschitz functions on
Σ (resp. on Σ+) is a Banach space with the usual Lipschitz norm

(2.4) ||ψ||dβ = sup |ψ|+ sup
x 6=y

|ψ(x)− ψ(y)|
dβ(x, y)

.

We denote τ ◦ ζ ∈ Cβ(Σ) by τ by abusing the notation.
We form the suspension

Στ := Σ× R/(x, s) ∼ (σx, s− τ(x))

and the suspension flow on Στ is given by [(x, s)] 7→ [(x, t+ s)]. The map [(x, t)]→
ζ(x)at is a semi-conjugacy Στ → Ω0 intertwining the suspension flow and the
geodesic flow at.

For g ∈ Cβ(Σ), called the potential function, the pressure of g is defined as

Prσ(g) := sup
µ

(∫
gdµ+ entropyµ(σ)

)
over all σ-invariant Borel probability measures µ on Σ, where entropyµ(σ) denotes
the measure theoretic entropy of σ with respect to µ. The critical exponent δ
is the unique positive number such that Pr(−δτ) = 0. Let ν denote the unique
equilibrium measure for −δτ , i.e. δ

∫
τdν = entropyν(σ).

The BMS measure mBMS on Ω0 ' Στ being the unique probability measure of
maximal entropy for the geodesic flow, corresponds to the measure locally given by

1∫
τdν

(dν × ds) where ds is the Lebesgue measure on R.

For a map g on Σ or on Σ+ and n ≥ 1, we write

gn(x) = g(x) + g(σ(x)) + · · ·+ g(σ(n−1)(x)).

2.3. Zd×R-suspension space Σf,τ . Note that X is a regular Zd-cover of the con-
vex cocompact manifold X0. Let p denote the canonical projection map T1(X)→
T1(X0). Then

ΩX := p−1(Ω0) ' Zd × Ω0

is the support of the BMS measure in T1(X). We enumerate the group of deck
transformation Γ\Γ0 for the covering map X → X0 as {Dξ : ξ ∈ Zd} so that
Dξ1 ◦Dξ2 = Dξ1+ξ2 . Note Dξ acts on Γ\G/M as well as on Γ\G.

Definition 2.5. Fix a precompact and connected fundamental domain F ⊂ Γ\G/M
for the Zd-action on T1(X).

(1) We define the Zd-coordinate of x ∈ T1(X) relative to F to be the unique
ξ ∈ Zd such that x ∈ Dξ(F), and write ξ(x : t) for the Zd-coordinate of
xat.
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(2) Choose a continuous section, say s, from R into F . Define f : Σ → Zd as
follows: for x ∈ Σ,

f(x) = ξ(s ◦ ζ(x) : τ(x)),

that is, the Zd-coordinate of s(ζ(x))aτ(x).

Note that f(x) depends only on the two coordinates x0 and x1, and if σn(x) = x,
then fn(x) is the Frobenius element of the closed geodesic in T1(X0) given by x.

Consider the suspension space

Σf,τ := Σ× Zd × R/(x, ξ, s) ∼ (σ(x), ξ + f(x), s− τ(x))

with the suspension flow [(x, ξ, s)]→ [(x, ξ, s+ t)]. The map Σf,τ → ΩX given by

[(x, ξ, t)] 7→ Dξ(s ◦ ζ(x))at

is a Lipschitz surjective map intertwining the suspension flow and the geodesic flow.
If σn(x) = x, then

(x, ξ, s+ τn(x)) ∼ (σn(x), ξ + fn(x), s) = (x, ξ + fn(x), s).

Hence [(x, ξ, s)] gives rise to a periodic orbit if and only if σn(x) = x and fn(x) = 0
for some n ∈ N.

2.4. Zd × M × R-suspension space Σf,θ,τ . The homogeneous space Γ\G is a
principal M -bundle over T1(X) = Γ\G/M . Now take a smooth section S : s(R)→
Γ\G by trivializing the bundle locally.

Definition 2.6. Define θ : Σ → M as follows: for x ∈ Σ, θ(x) ∈ M is the unique
element satisfying

(S ◦ s ◦ ζ)(x)aτ(x) = Df(x)(S ◦ s ◦ ζ)(σ(x))θ(x)−1.

We choose the section S a bit more carefully so that the resulting holonomy map
θ depends only on future coordinates: first trivialize the bundle over each s(Uj)
and extend the trivialization to s(Rj) by requiring (S ◦ s)([u, s1]) and (S ◦ s)([u, s2])
be forward asymptotic for all u ∈ Uj and s1, s2 ∈ Sj .

If x ∈ Σ has period n, then θn(x)−1 is in the same conjugacy class as the
holonomy associated to the closed geodesic ζ(x)A.

We set Ω to be the preimage of ΩX under the projection Γ\G→ Γ\G/M ; this is
precisely the support of mBMS defined as a measure on Γ\G in the previous section.
Consider the suspension space

Σf,θ,τ := Σ× Zd ×M × R/(x, ξ,m, s) ∼ (σx, ξ + f(x), θ−1(x)m, s− τ(x))

with the suspension flow [(x, ξ,m, s)] 7→ [(x, ξ,m, s+ t)]. Now the map π : Σf,θ,τ →
Ω given by

[(x, ξ,m, t)] 7→ Dξ(S ◦ s ◦ ζ(x))mat

is a Lipschitz surjective map intertwining the suspension flow and the at-flow.
The BMS measure mBMS on Ω corresponds to the measure locally given by the

product of ν and the Haar measure on Zd ×M × R:

dmBMS =
1∫
τdν

π∗(dνdξdmds).
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3. Analytic properties of Ruelle operators Lz,v,µ

We continue the setup and notations from section 2 for G,Γ,Γ0,Σ,M, τ, θ, δ etc.
In particular, Γ is a normal subgroup of a Zariski dense convex cocompact subgroup
Γ0 with Γ\Γ0 ' Zd for some d ≥ 0. We note that the functions τ : Σ → R>0 and
θ : Σ → M depend only on future coordinates, and hence we may regard them as
functions on Σ+.

For ψ ∈ Cβ(Σ+), the Ruelle operator Lψ : Cβ(Σ+)→ Cβ(Σ+) is defined by

Lψ(g)(x) =
∑

σ(y)=x

e−ψ(y)g(y).

The Ruelle-Perron-Frobenius theorem implies the following (cf. [47]):

Theorem 3.1. (1) 1 is the unique eigenvalue of the maximum modulus of Lδτ ,
and the corresponding eigenfunction h ∈ Cβ(Σ+) is positive.

(2) The remainder of the spectrum of Lδτ is contained in a disc of radius strictly
smaller than 1.

(3) There exists a unique probability measure ρ on Σ+ such that L∗δτ (ρ) = ρ,
i.e.

∫
Lδτψdρ =

∫
ψdρ, and hdρ = dν.

3.1. Three-parameter Ruelle operators on vector-valued functions. De-
note by M̂ the unitary dual of M , i.e. the space of all irreducible unitary repre-
sentations (µ,W ) of M up to isomorphism. As M is compact, they are precisely
irreducible finite dimensional representations of M . We write µ = 1 for the trivial
representation. Similarly, Ẑd denotes the unitary dual of Zd. We identify Ẑd with
Td := (R/(2πZ))d via the isomorphism Td → Ẑd given by χv(ξ) = ei〈v,ξ〉.

In our study of the correlation function of the suspension flow on Ω = Σ×Zd ×
M × R/ ∼ with respect to the BMS measure, an understanding of the spectrum

of three parameter Ruelle operators indexed by triples (z, v, µ) ∈ C×Td × M̂ will
play a crucial role.

Definition 3.2. For each triple (z, v, (µ,W )) ∈ C × Td × M̂ , define the transfer
operator

(3.3) Lz,v,µ : Cβ(Σ+,W )→ Cβ(Σ+,W )

by

Lz,v,µ(g)(x) =
∑

σ(y)=x

e−zτ(y)+i〈v,f(y)〉µ(θ(y))g(y),

where Cβ(Σ+,W ) denotes the Banach space of W -valued Lipschitz maps with Lip-
schitz norm defined analogously as (2.4) using a Hermitian norm on W .

We write Lz,v for Lz,v,1 and Lz for Lz,0,1 for simplicity.
Denoting the center of M by Z(M), the following is well-known:

Lemma 3.4. The group Z(M) is at most 1-dimensional and

M = Z(M)[M,M ].

Hence we may identify Z(M) with M/[M,M ]. We denote by [m] ∈ Z(M) =
M/[M,M ] for the projection of m ∈ M . If µ is one-dimensional, then µ is deter-
mined by µ|Z(M). If Z(M) is non-trivial, then Z(M) ' R/(2πZ), which we may
identify with [0, 2π), and hence any one dimensional unitary representation µ is of
the form χp(m) = eip[m] for some integer p ∈ Z. In this case, we write Lz,v,p for
Lz,v,µ.
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3.2. Spectrum of Ruelle operators. The aim of this subsection is to prove
Theorem 3.13 on analytic properties of Lδ+it,v,µ. We denote by Fix(σn) the set of
y ∈ Σ+ fixed by σn. The following proposition is a key ingredient in understanding
the spectrum of Lδ+it,v,µ’s.

Proposition 3.5. (1) There exists y ∈ Σ+ such that {(σn(y), θn(y)) ∈ Σ+ ×
M : n ∈ N} is dense in Σ+ ×M .

(2) There exists y ∈ Fix(σn) for some n with fn(y) = 0 such that [θn(y)]
generates a dense subgroup in Z(M).

Proof. Claim (1) follows from the existence of a dense A+ orbit in Ω0 ⊂ T1(X0)
which is a consequence of the A-ergodicity of mBMS on Ω0 [65] (cf. Appendix of
this paper).

The claim (2) is non-trivial only when Z(M) is non-trivial; in this case, Z(M) =
SO(2) by Lemma 3.4. Applying the work of Prasad and Rapinchuk [53] to Γ,
we obtain a hyperbolic element γ ∈ Γ that is conjugate to aγmγ ∈ AM and
mγ generates a dense subset in Z(M) = M/[M,M ]. The element γ defines a
closed geodesic in Ω0 which again yields an element y ∈ Fix(σn), fn(y) = 0 and
[θn(y)] = [mγ ] for some n. This implies the claim.

�

Lemma 3.6. The subgroup generated by ∪n≥1{(τn(y), fn(y)) ∈ R × Zd : y ∈
Fix(σn)} is dense in R× Zd.

Proof. Denote by H the subgroup in concern. The projection of H to Zd is surjec-
tive by the construction of f . Therefore it suffices to show that H ∩ (R × {0}) is
R. This follows because the length spectrum of Γ is non-arithmetic [29].

�

We will denote by σ0(Lz,v,µ) the spectral radius of the operator Lz,v,µ on Cβ(Σ+,W ).

Proposition 3.7. Let (µ,W ) ∈ M̂ , and (t, v) ∈ R×Td.

(1) We have σ0(Lδ+it,v,µ) ≤ 1.
(2) If σ0(Lδ+it,v,µ) = 1, then Lδ+it,v,µ has a simple eigenvalue of modulus one

and µ is 1-dimensional.

Proof. (1) and the first part of (2) follow from Theorems 8.1 and 8.3 of [47].
Suppose σ0(Lδ+it,v,µ) = 1. Then for some w ∈ Cβ(Σ+,W ) and b ∈ R,

Lδ+it,v,µw = eibw.

Using the convexity argument (as in p.54 of [47]), it follows that

ei(−t·r(y)+〈v,f(y)〉)µ(θ(y))w(y) = eibw(σ(y))

for all y ∈ Σ+. In other words,

ei(−t·r(y)+〈v,f(y)〉−b)w(y) = µ(θ(y))−1w(σ(y)).

Consider the function g on Σ+ ×M :

g(y,m) = µ(m)−1w(y).

Then

g(σ(y), θ(y)m) = µ(m)−1µ(θ(y)−1)w(σ(y))

= µ(m−1)ei(−t·r(y)+〈v,f(y)〉−b)w(y) = ei(−t·r(y)+〈v,f(y)〉−b)g(y,m).
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Writing w0 := g(y, e), we have that for all n, g(σn(y), θn(y)) lies in the compact set
{eiaw0 : a ∈ R}.

Let y be an element such that the set {(σn(y), θn(y)) : n ∈ N} is dense in Σ+×M
given by Proposition 3.5. It follows that g(Σ+ ×M) ⊂ {eiaw0}. This implies that
µ is 1-dimensional. �

We will use the following simple observation by considering the reversing the
orientation of a closed geodesic in T1(X0):

Lemma 3.8. For any y ∈ Fix(σn), there exists y′ ∈ Fix(σn) such that τn(y) =
τn(y′), fn(y) = −fn(y′) and [θn(y)] = [θn(y′)].

We will repeatedly use the following result of Pollicott [50, Prop. 2]: let ψ = u+
iv ∈ Cβ(Σ+,C) and consider the complex Ruelle operator Lψ given by Lψ(h)(x) =∑
σ(y)=x e

ψ(y)h(y). Suppose that Lu1 = 1.

Lemma 3.9. For 0 ≤ a < 2π, Lψ has an eigenvalue eia+Prσ(u) if and only if there
exists ω ∈ C(Σ+) such that

v − a = ω − ω ◦ σ + L

where L : Σ+ → 2πZ is a lattice function.

Proposition 3.10. Let t 6= 0. If Lδ+it,v,µ has an eigenvalue eia for some (v, µ) ∈
Td×M̂ , thenfor some integer p ∈ Z, µ(m) = eip[m] for all m ∈M and

⋃
n∈Z{tτn(y)−

p[θn(y)] + na : y ∈ Fix(σn)} ⊂ πZ.

Proof. Assume that Lδ+it,v,µ has eigenvalue eia. By Proposition 3.7, µ is 1-dimensional,

i.e. µ(m) = eip[m] for some integer p ∈ Z. Therefore for g ∈ Cβ(Σ+,C),

Lδ+it,v,µ(g)(x) =
∑

σ(y)=x

e−(δ+it)τ(y)+i〈v,f(y)〉+ip[θ(y)]g(y).

By Lemma 3.9, the function

−t · τ(y) + 〈v, f(y)〉+ p[θ(y)]

is cohomologous to a function a + L(y) where L : Σ+ → 2πZ is a lattice function.
It follows that for any y ∈ Fix(σn),

−t · τn(y) + 〈v, fn(y)〉+ p[θn(y)]− na ∈ 2πZ.
Fix y ∈ Fix(σn). By Lemma 3.8, we have y′ ∈ Fix(σn) with fn(y′) = −fn(y),

τn(y) = τn(y′) and [θn(y)] = [θn(y′)]. Hence

−t · τn(y) + 〈v, fn(y)〉+ p[θn(y)]− na ∈ 2πZ
and

−t · τn(y)− 〈v, fn(y)〉+ p[θn(y)]− na ∈ 2πZ.
Adding these two, we get −2tτn(y) + 2p[θn(y)] − 2na ∈ 2πZ. This proves the
claim. �

Theorem 3.11. Let (t, v, µ) ∈ R×Td × M̂ .

(1) If Lδ,v,µ has an eigenvalue eia for µ 6= 1, then a is an irrational multiple
of π. For µ = 1 and v 6= 0, if Lδ,v,µ has an eigenvalue eia with a being a
rational multiple of π, then v = 0 mod πZd and a = π.

(2) If Lδ+it,v,µ has an eigenvalue eia for t 6= 0, then a is an irrational multiple
of π.



LOCAL MIXING ON ABELIAN COVERS 15

In each case, eia is a maximal simple eigenvalue.

Proof. Suppose e2πai is an eigenvalue of Lδ+it,v,µ for some a ∈ R. Since |e2πai| =

1 = ePrσ(−δτ), the eigenvalue is maximal simple by the complex RPF theorem
(see [47, Thm. 4.5]). In order to show (1), first note that µ is one-dimensional;
µ(m) = eip[m] for some integer p ∈ Z. By Lemma 3.9, we have for any y ∈ Fix(σn),

〈v, fn(y)〉+ p[θn(y)]− na ∈ 2πZ.
Using Lemma 3.8, we get

−〈v, fn(y)〉+ p[θn(y)]− na ∈ 2πZ.
By subtracting from one from the other, we get 〈v, fn(y)〉 ⊂ πZ. As ∪n{fn(y) : y ∈
Fix(σn)} generates Zd, it follows that v = 0 mod πZd.

Now suppose p 6= 0. Then

p[θn(y)]− na ∈ πZ.
Since {[θn(y)] : y ∈ Fix(σn)} generates Z(M) by [22, Thm. 1.9], a must be an
irrational multiple of π.

Suppose p = 0 and v 6= 0. Then

na ∈ πZ for all n ∈ N with Fix(σn) 6= ∅.
Since the transition matrix A is aperiodic, {n ∈ N : Fix(σn) 6= ∅} contains all
sufficiently large integers. Therefore a = 0 or π. However a = 0 implies v = 0.
Hence a = π.

In order to show (2), if a were a rational multiple of π and t 6= 0, it follows from
Proposition 3.10 that for some integer p, the union ∪n≥1{tτn(y) − p[θn(y)] : y ∈
Fix(σn)} would be contained in qπZ for some q ∈ Q. If p = 0 or Z(M) = {e}, this
contradicts Lemma 3.6. Otherwise, we get [θn(y)] ∈ pt−1τn(y) + qπZ, and hence
∪n≥1{eτn(y)+i[θn(y)] : y ∈ Fix(σn)} ⊂ R · F for some finite subgroup F of C. This
contradicts [22, Thm. 1.9]. �

The following result from the analytic perturbation theory of bounded linear
operators is an important ingredient in our subsequent analysis.

Theorem 3.12 (Perturbation theorem). [26] Let B(V ) be the Banach algebra of
bounded linear operators on a complex Banach space V . If L0 ∈ B(V ) has a simple
isolated eigenvalue λ0 with a corresponding eigenvector v0, then for any ε > 0, there
exists η > 0 such that if L ∈ B(V ) with ‖L− L0‖ < η then L has a simple isolated
eigenvalue λ(L) and corresponding eigenvector v(L) with λ(L0) = λ0, v(L0) = v0

and such that

(1) L 7→ λ(L), L 7→ v(L) are analytic for ‖L− L0‖ < η;
(2) for ‖L−L0‖ < η, |λ(L)−λ0| < ε and spec(L)−λ(L) ⊂ {z ∈ C : |z−λ0| >

ε}. Moreover if spec(L0) − {λ0} is contained in the interior of a circle C
centered at 0 and η > 0 is sufficiently small, then spec(L) − λ(L) is also
contained in the interior of C.

Finally we are ready to prove:

Theorem 3.13. Let µ ∈ M̂ . Consider the map

(z, w) 7→
∞∑
n=0

Lnz,w,µ = (1− Lz,w,µ)−1.
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(1) Let µ 6= 1. The map z 7→ (1− Lz,w,µ)−1 is holomorphic in a neighborhood
of any (δ + it, v) for t ∈ R and v ∈ Td.

(2) Let µ = 1. The map z 7→ (1−Lz,w)−1 is holomorphic in a neighborhood of
any (δ + it, v) with t 6= 0.

(3) Let µ = 1. There exists a neighborhood O ⊂ R× Rd of (0, 0) such that for
all non-zero (s, w) ∈ O, we can write

(1− Lδ+is,w)−1 =
Ps,w

1− λδ+is,w
+Qs,w

where λδ+is,w is the unique eigenvalue of Lδ+is,w of maximum modulus
obtained by the perturbation theorem 3.12, Ps,w and Qs,w are analytic maps
from O to Hom(Cβ(Σ+,C), Cβ(Σ+,C)).

Proof. If σ0(Lδ+it,v,µ) < 1, then, by the perturbation theorem 3.12, there is a
neighborhood O of (t, v) in R×Rd such that σ0(Lδ+is,w,µ) < 1 for any (s, w) ∈ O.
This implies the desired analytic property. Now suppose σ0(Lδ+it,v,µ) = 1. In
any of the following three case (1) µ 6= 1, (2) µ = 1 and t 6= 0 or (3) µ = 1, t =
0, v ∈ (−π/2, π/2)d − {0}, by Theorem 3.11, Lδ+it,v,µ has a simple eigenvalue eia

of maximum modulus for some irrational multiple a of π. By Theorem 3.12, there
exists a neighborhood O ⊂ R× Rd of (t, v) such that for any (s, w) ∈ O, Lδ+is,w,µ
has a maximal simple eigenvalue λs,w,µ of modulus strictly less than 1 except at
(t, v), and Lδ+is,w,µ can be written as

Lδ+is,w,µ = λδ+is,w,µPs,w,µ +Ns,w,µ

where Ps,w is the eigenprojection to the eigenspace associated to λδ+is,w,µ and
σ0(Ns,w,µ) < 1. Hence for all n ∈ N,

Lnδ+is,w,µ = λnδ+is,w,µPs,w,µ +Nn
s,w,µ

and
∑
nN

n
s,w,µ = (1−Ns,w,µ)−1.

Since
∑
λnδ+is,w,µ = (1− λδ+is,w,µ)−1 is analytic on O, the map

(3.14) (1− Lδ+is,w,µ)−1 =
∑
n

Lnδ+is,w,µ =
Ps,w,µ

1− λδ+is,w,µ
+ (1−Ns,w,µ)−1

is analytic in O.
Suppose (t, v, µ) = (0, 0, 1). Then the map

∑
λnδ+is,w,µ = (1− λδ+is,w,µ)−1 is

analytic on O − {(0, 0)} and hence (3.14) is analytic on O − {(0, 0)}. This finishes
the proof. �

3.3. Asymptotic expansion. For each u ∈ Rd close to 0, there exists a unique

P (u) ∈ R

such that the pressure of the function x 7→ −P (u)τ(x) + 〈u, f(x)〉 on Σ is 0.
Moreover P (0) = δ, ∇P (0) = 0, the map u → P (u) is analytic, and the matrix

∇2P (0) = ( ∂2P
∂ui∂uj

(0))d×d is a positive definite matrix (cf. [52, Lem. 8]).

Set

(3.15) σ = det(∇2P (0))1/d.

Let

C(0) =

∫
Rd
e−

1
2w

t∇2P (0)wdw =

(
2π

σ

)d/2
.
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Remark 3.16. It follows from ([28] and [55]) that, for X0 compact, the distribution
ξ(x:t)√

t
as x ranges over the image of F in T1(X0) converges to the distribution of a

multivariable Gaussian random variable N on Rd with a positive definite covariance
matrix Cov(N) = ∇2P (0).

Definition 3.17. Let L be the family of functions on Σ+ × R which are of the
form Φ⊗ u where Φ ∈ Cβ(Σ+) and u ∈ Cc(R).

In the rest of this subsection, we fix (µ,W ) ∈ M̂ and w ∈W .
For each T > 1 and Φ⊗ u ∈ L, define the W -valued functions

Q
(n)
µ,w,T (Φ⊗ u) and Qµ,w,T (Φ⊗ u)

on Σ+ × Zd ×M as follows: for (x, ξ,m) ∈ Σ+ × Zd ×M ,

Q
(n)
µ,w,T (Φ⊗ u)(x, ξ,m)

=
1

2π

∫
t∈R

e−iT tû(t)

(∫
v∈Td

ei〈v,ξ〉Lnδ−it,v,µ(Φhµ(m)w)(x)dv

)
dt

and

Qµ,w,T (Φ⊗ u)(x, ξ,m)

=
1

2π

∫
t∈R

e−iT tû(t)

∫
v∈Td

ei〈v,ξ〉 ·

∑
n≥0

Lnδ−it,v,µ(Φhµ(m)w)(x)

 dv

 dt.

Here û(t) =
∫
R e
−istu(s)ds. We set QT = Q1,1,T and Q

(n)
T = Q

(n)
1,1,T .

Theorem 3.18. Let Φ⊗ u ∈ L and (x, ξ,m) ∈ Σ+ × Zd ×M .

(1) For each T > 0,∑
n

Q
(n)
µ,w,T (Φ⊗ u)(x, ξ,m) = Qµ,w,T (Φ⊗ u)(x, ξ,m)

where the convergence is uniform on compact subsets.
(2) We have

lim
T→+∞

T d/2QT (Φ⊗ u)(x, ξ,m) =
û(0)C(0)∫

τdν
ρ(Φh)h(x)

where the convergence is uniform on compact subsets.
(3) For any non-trivial (µ,W ) ∈ M̂ and w,w′ ∈W , we have

lim
T→+∞

〈T d/2Qµ,w,T (Φ⊗ u)(x, ξ,m), w′〉 = 0

where the convergence is uniform on compact subsets.

Proof. In proving this theorem, we may assume that the Fourier transform û be-
longs to CNc (R) for some N ≥ d

2 + 2 (see [5, Lemma 2.4]).
For (1), it is sufficient to show that ‖û(t)

∑
n≥N L

n
δ−it,v,µ(Φhµ(m)w)(x)‖ is dom-

inated by a single absolutely integrable function of (t, v).
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We have

‖û(t)
∑
n≥N

Lnδ−it,v,µ(Φhµ(m))(x)‖(3.19)

≤|û(t)| · ‖LNδ−it,v,µ‖ · ‖
∞∑
n=0

Lnδ−it,v,µ(Φhµ(m)w)(x)‖.

When µ is nontrivial, it follows from Theorem 3.13 that
∑∞
n=0 L

n
δ−it,v,µ = (I −

Lδ−it,v,µ)−1. Noting that ‖(I − Lδ−it,v,µ)−1‖ is bounded on compact sets (e.g.

supp(û)× Td), we have

(3.19)� ‖(Φhµ(m)w)x‖ · |û(t)|,

verifying (1) for the case when µ is nontrivial. We refer to Step 7 of [32, Appendix]
for the proof of (1) for µ trivial.

To prove (2), consider the function

F (t, v) = ei〈v,ξ〉
∑
n≥0

Lnδ−it,v(Φh)(x)

so that

QT (Φ⊗ u)(x, ξ,m) =
1

2π

∫
(v,t)∈Td×R

e−iT tû(t)F (t, v)dvdt.

Let O ⊂ R× Rd be a neighborhood of (0, 0) as in Theorem 3.13 (3) and choose
any C∞-function κ(t, v) = κ1(t)κ2(v) supported in O.

Since F (t, v) is analytic outside O and û ∈ CN (R), the following value of the
Fourier transform is at most O(T−N ):

(3.20)

∫
t∈R

e−iT t
(∫

v∈Td
û(t)(1− κ(v, t))F (t, v)dv

)
dt = O(T−N ).

We now need to estimate∫
t∈R

e−iT t
(∫

v∈Td
û(t)κ(v, t)F (t, v)dv

)
dt.

This can be done almost identically to Step 5 in the appendix of [32]; we give a
brief sketch of their arguments here for readers’ convenience. On O, we can write

F (t, v) = ei〈v,ξ〉
Pt,v(Φh)(x)

1− λδ−it,v
+Qt,v(Φh)(x)

where λδ−it,v, Pt,v and Qt,v are as described in Theorem 3.13 (3).
Applying Weierstrass preparation theorem to 1−λδ−it,v, we have that for (t, v) ∈

O,

(3.21) 1− λδ−it,v = A(t, v)(δ − it− P (v)),

where A is non-vanishing and analytic in O, by replacing O by a smaller neighbor-
hood if necessary.

We have P (0) = δ, P (v) = P (0) − 1
2v
t∇2P (0)v + o(‖v‖2) for v small, and

A(0, 0) = −dλ(s,0)
ds |s=δ=

∫
τdν. Set R(v) = δ − P (v).

For (t, v) ∈ O, set

(3.22) a(t, v) :=
−κ1(t)κ2(v)û(t)Pt,v(Φh)(x)

A(t, v)
.
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Suppose for now that a(t, v) is of the form cx(t)b(v). Using 1/z = −
∫∞

0
eT
′zdT ′

for <(z) < 0, we get∫
t∈R

e−iT t
(∫

v∈Td
û(t)κ(t, v)F (t, v)dv

)
dt

=

∫
t∈R

e−iT t
(∫

v∈Td

a(t, v)ei〈ξ,v〉

it−R(v)
dv

)
dt+O(T−N )

=−
∫
t∈R

e−iT t
(∫

v∈Td
a(t, v)ei〈ξ,v〉

∫ ∞
0

e(it−R(v))T ′dT ′dv

)
dt+O(T−N )

=−
∫ ∞

0

∫
t∈R

e−i(T−T
′)t

(∫
v∈Td

a(t, v)ei〈ξ,v〉−R(v)T ′dv

)
dtdT ′ +O(T−N )

=−
∫ ∞
T/2

ĉx(T − T ′)
∫
v∈Td

b(v)ei〈ξ,v〉−R(v)T ′dvdT ′ +O(T−N ) = −
∫ T/2

−∞

ĉx(T ′′)
(T−T ′′)2/d∫

v∈
√
T−T ′′Td

b( v√
T−T ′′ )e

i〈ξ, v√
T−T ′′ 〉−R(

v√
T−T ′′ )(T−T

′′)
dvdT ′′ +O(T−N ).

Using R(v) = 1
2v
t∇2P (0)v+o(‖v‖2), and C(0) =

∫
Rd e

− 1
2v

t∇2P (0)vdv, the above
is asymptotic to∫ T/2

−∞
(T − T ′′)−2/dĉx(T ′′)C(0)b(0)dT ′′ = T−d/2(2πcx(0)C(0)b(0) + o(1)).

By approximating a(t, v) by a sum of functions of the form cx(0)b(v) using Taylor
series expansion, one obtains the following estimation:

(3.23)

lim
T→∞

T d/2
∫
t∈R

e−iT t
(∫

v∈Td
û(t)κ(t, v)F (t, v)dv

)
=

2πû(0)C(0)∫
τdν

ρ(Φh)h(x).

Therefore, putting (3.20) and (3.23) together, we deduce

lim
T→∞

T d/2QT (Φ⊗ u)(x, ξ,m) =
û(0)C(0)∫

τdν
ρ(Φh)h(x),

verifying (2).
For (3), we have

〈Qµ,w,T (x, ξ,m)(Φ⊗ u), w′〉

=
1

2π

∫
t∈R

e−iT tû(t)

∫
v∈Td

ei〈v,ξ〉〈(I − Lδ−it,v,µ)−1(Φhµ(m)w)(x), w′〉dvdt.

Hence by Theorem 3.13, and the assumption that û is of class CN (N ≥ d/2 + 2),
the Fourier transform decays as:

〈Qµ,w,T (x, ξ,m)(Φ⊗ u), w′〉 = O(T−N )

which implies (3). �
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4. Local mixing and matrix coefficients for local functions

We retain the assumptions and notations from section 3. Recall the BMS mea-
sure mBMS on Γ\G, and its support Ω ⊂ Γ\G. In this section, we study the
asymptotic behavior of the correlation functions

〈atψ1, ψ2〉mBMS :=

∫
Ω

ψ1(xat)ψ2(x)dmBMS(x)

and

〈atψ1, ψ2〉 :=

∫
Γ\G

ψ1(xat)ψ2(x)dmHaar(x)

for ψ1, ψ2 ∈ Cc(Γ\G).

4.1. Correlation functions for (Ω, at,m
BMS). We use the suspension flow model

for (Ω, at,m
BMS) which was constructed in Section 2. That is, we identify the right

translation action of at on Ω with the suspension flow on

Σf,θ,τ := Σ× Zd ×M × R/ ∼

where ∼ is given by ζ(x, ξ,m, s) = (σx, , ξ + f(x), θ−1(x)m, s− τ(x)).
We write

Ω̃ := Σ× Zd ×M × R, Ω̃+ := Σ+ × Zd ×M × R

and

Ω+ := Σ+ × Zd ×M × R/ ∼ .

Consider the product measure on Ω̃:

dM̃ :=
1∫
τdν

(dνdξdmds).

Recall that the BMS measure mBMS on Ω corresponds to the measure M on
Σf,θ,τ induced by M̃.

Definition 4.1. Let F0 be the family of functions on Ω̃+ which are of the form

Ψ(x, ξ,m, s) = Φ(x)δξ0(ξ)u(s)〈µ(m)w1, w2〉

where Φ ∈ Cβ(Σ+), u ∈ Cc(R), ξ0 ∈ Zd, (µ,W ) ∈ M̂ and w1, w2 ∈ W are unit
vectors. We will write Ψ = Φ⊗ δξ0 ⊗ u⊗ 〈µ(·)w1, w2〉.

For Ψ1,Ψ2 ∈ Cc(Ω̃+), define

It(Ψ1,Ψ2) :=

∞∑
n=0

∫
Ω̃

Ψ1 ◦ ζn(x, ξ,m, s+ t) ·Ψ2(x, ξ,m, s) dM̃(x, ξ,m, s)

where ζn(x, ξ,m, s) = (σn(x), ξ + fn(x), θ−1
n (x)m, s− τn(x)).

Lemma 4.2. Let Ψ2 = Φ⊗δξ0⊗u⊗〈µ(·)w1, w2〉 ∈ F0. Then for any Ψ1 ∈ Cc(Ω̃+),

It(Ψ1,Ψ2) =

1
(2π)d

∫
τdν

∫
Ψ1(x, ξ0 − ξ,m, s) · 〈Qµ,w1,t−s(Φ⊗ u)(x, ξ,m), w2〉dξdρ(x)dsdm.
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Proof. Since dν(x) = h(x)dρ(x), we have∫
τdν · It(Ψ1,Ψ2) =

∞∑
n=0

∫
Ψ1(σnx, ξ + fn(x), θ−1

n (x)m, s− τn(x)) Ψ2(x, ξ,m, s− t)h(x)dρ(x)dsdmdξ.

Since dρ is an eigenmeasure of Lδ with eigenvalue 1,∫
Σ+

(LnδF )(x)dρ(x) =

∫
Σ+

F (x)dρ(x).

Using this, the above is equal to

∞∑
n=0

∫
Ω̃+

Ψ1(x, ξ,m, s)
∑
σny=x

e−δτn(y)(Φ · h)(y)δξ0(ξ − fn(y))

u(s− t+ τn(y))〈µ(θn(y)m)w1, w2〉dρ(x)dξdsdm.

Using the identity δξ(fn(y)) = 1
(2π)d

∫
Td
ei〈w,ξ−fn(y)〉dw and the Fourier inversion

formula of u: u(t) = 1
2π

∫
R e

istû(s)ds, the above is again equal to

1

(2π)d

∫
Ψ1(x, ξ0 − ξ,m, s) · 〈Qµ,w1,t−s(Φ⊗ u)(x, ξ,m), w2〉dξdρ(x)dsdm.

This proves the claim. �

Proposition 4.3. For Ψ1,Ψ2 ∈ Cc(Ω̃+), we have

(4.4) lim
t→+∞

td/2It(Ψ1,Ψ2) =
1

(2πσ)d/2
M̃(Ψ1)M̃(Ψ2).

Proof. Let Ψ1 ∈ Cc(Ω̃+).
Step 1: Let F be the space of functions which are finite linear combinations of
functions from F0. We first show (4.4) holds for any Ψ2 ∈ F . It suffices to consider
the case where

Ψ2(x, ξ,m, s) = Φ(x)⊗ δξ0(ξ)⊗ u(s) · 〈µ(m)w1, w2〉 ∈ F0.

Let

Ft(x, ξ,m, s) := td/2∫
τdν·(2π)d

Ψ1(x, ξ0 − ξ,m, s)〈Qµ,w1,t−s(Φ⊗ u)(x, ξ,m), w2〉.

Then Lemma 4.2 gives

td/2It(Ψ1,Ψ2) =

∫
Ft(x, ξ, θ, s)dρ(x)dsdξdm.

We consider two cases. First suppose µ = 1. Then Theorem 3.18(2) implies that
Ft(x, ξ,m, s) is dominated by a constant multiple of Ψ1 and converges pointwise to

an L1-integrable function on Ω̃:

1
(
∫
τdv)2(2π)d

C(0)û(0)ρ(Φh)h(x)Ψ1(x, ξ0 − ξ,m, s).
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Hence by the dominated convergence theorem,

lim
t→∞

td/2It(Ψ1,Ψ2)

=
1

(2π)d(
∫
τdv)2

C(0)û(0)ρ(Φh)

∫
Ψ1(x, ξ0 − ξ,m, s)h(x)dρ(x)dsdξdm

=
C(0)

(2π)d

∫
Ψ1dM̃ ·

∫
Ψ2dM̃.

Plugging C(0) = (2π/σ)d/2 in the above, we get

td/2It(Ψ1,Ψ2) ∼ 1

(2πσ)d/2

∫
Ψ1dM̃ ·

∫
Ψ2dM̃.

Now suppose µ is non-trivial. Then dM̃(Ψ2) = 0. On the other hand, Theo-
rem 3.18(3) implies that FT converges to 0 pointwise, and is dominated by Ψ1.
Therefore, by the dominated convergence theorem, we get

lim
T→∞

td/2It(Ψ1,Ψ2) = 0

proving the claim.
As a consequence, we have

(4.5) lim sup
t

td/2|It(Ψ1,Ψ2)| <∞

for any Ψ1 ∈ Cc(Ω̃) and Ψ2 ∈ F .

Step 2: Let Ψ2 ∈ Cc(Ω̃
+) be a general function. For any ε > 0, there exist

F2, ω2 ∈ F such that for any (x, ξ,m, s) ∈ Ω̃+,

(4.6) |Ψ2(x, ξ,m, s)− F2(x, ξ,m, s)| ≤ ε · ω2(x, ξ,m, s).

First to find F2, the Peter-Weyl theorem implies that Ψ2(x, ξ,m, s) can be approx-
imated by a linear combination of functions of form

κ(x, ξ, s)〈µ(m)w1, w2〉

for κ ∈ Cc(Σ
+ × Zd × R) and (µ,W ) ∈ M̂ and w1, w2 ∈ W unit vectors. As

Zd is discrete, κ can be approximated by linear combinations of functions of form
c(x, s)δξ0 with c(x, s) ∈ Cc(Σ+ × R). Now c(x, s) can be approximated by linear
combinations of functions of form Φ(x)u(s) with Φ ∈ Cβ(Σ+) and u ∈ C∞c (R) by
the Stone-Weierstrauss theorem. This gives that for any ε > 0, we can find F2 ∈ F
such that

sup |Ψ2(x, ξ,m, s)− F2(x, ξ,m, s)| ≤ ε.
Now let O be the union of the supports of F2 and Ψ2, O′ be the 1-neighborhood

of O, and let κ := ‖F2‖∞+ ‖Ψ2‖∞+ 1. We can then find ω2 ∈ F such that ω2 = κ

on Ω and ω2 = 0 outside Ω′. Then for any (x, ξ,m, s) ∈ Ω̃+,

|Ψ2(x, ξ,m, s)− F2(x, ξ,m, s)| ≤ εω2(x, ξ,m, s)

as required in (4.6).
Step 3: By Step (1) and (2), we have

lim sup |td/2It(Ψ1,Ψ2)− td/2It(Ψ1, F2)| ≤ ε lim sup td/2|It(Ψ1, ω2)| ≤ εc0,

where c0 := lim supt t
d/2|It(Ψ1, ω2)| <∞.
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Hence

lim
t
td/2It(Ψ1,Ψ2)

= lim
t
td/2It(Ψ1, F2) +O(ε)

=
1

(2πσ)d/2
M̃(Ψ1)M̃(F2) +O(ε)

=
1

(2πσ)d/2
M̃(Ψ1)M̃(Ψ2) +O(ε),

since M̃(F2) = M̃(Ψ2) +O(ε).

As ε > 0 is arbitrary, this proves the claim for any Ψ2 ∈ Cc(Ω̃+). �

Theorem 4.7. Let ψ1, ψ2 ∈ Cc(Ω). Then

lim
t→∞

td/2
∫
ψ1(gat)ψ2(g)dmBMS(g) =

1

(2πσ)d/2
·mBMS(ψ1)mBMS(ψ2).

Proof. For each i = 1, 2, let Ψi ∈ Cc(Ω̃) be the lift of ψi to Ω̃ so that

ψi[(x, ξ,m, s)] =
∑
n∈Z

Ψi ◦ ζn(x, ξ,m, s).

We assume that the support of ψ2 (and hence of Ψ2) is small enough so that
Ψ2(ζn(x, ξ,m, s)) = 0 for all n 6= 0 if (x, ξ,m, s) ∈ supp(Ψ2).

We first claim that for all large t� 1,

(4.8)

∫
Ω

ψ1(gat)ψ2(g)dmBMS(g) = It(Ψ1,Ψ2).

Using the unfolding,∫
Ω

ψ1(gat)ψ2(g)dmBMS(g)

=

∞∑
n=−∞

∫
supp(Ψ2)

Ψ1 ◦ ζn(x, ξ,m, s+ t) ·Ψ2(x, ξ,m, s) dM̃

=

∞∑
n=0

∫
Ω̃

Ψ1 ◦ ζn(x, ξ,m, s+ t) ·Ψ2(x, ξ,m, s) dM̃

+

∞∑
n=1

∫
Ω̃

Ψ1 ◦ ζ−n(x, ξ,m, s+ t) ·Ψ2(x, ξ,m, s) dM̃.

The first term of the last equation is It(Ψ1,Ψ2). For the second term, note that for
any (x, ξ,m, s) ∈ supp(Ψ2),

Ψ1 ◦ ζ−n(x, ξ,m, s+ t) = Ψ1(σ−n(x), ξ − fn(x), θ−1
n (x)m, s+ t+ τn(x))

which is 0 if t is large enough, as τn(x) > 0.
Therefore the second term is 0 for t large enough, proving the claim (4.8). There-

fore if Ψ1,Ψ2 ∈ Cc(Ω̃+), Theorem 4.7 follows from Proposition 4.3.

Let Ψ1,Ψ2 ∈ Cc(Ω̃). Then for any ε > 0, we can find a sufficiently large k ≥ 1,

F1, F2, ω1, and ω2 in Cc(Ω̃
+) such that for all (x, ξ,m, s) ∈ Ω̃,

|Ψi ◦ ζk(x, ξ,m, s)− Fi(x, ξ + fk(x), θ−1
k (x)m, s− τk(x))|

<ε · ωi(x, ξ − fk(x), θ−1
k (x)m, s− τk(x)).
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We then deduce by applying the previous case to Fi and ωi that

lim td/2
∫
ψ1(gat)ψ2(g)dmBMS(g)

= lim td/2It(Ψ1,Ψ2)

= lim td/2It(Ψ1 ◦ ζk,Ψ2 ◦ ζk)

= lim
(
td/2It(F1, F2) +O(ε · td/2(It(F1, ω2) + It(F2, ω1) + It(ω1, ω2)))

)
= 1

(2πσ)d/2 M̃(Ψ1)M̃(Ψ2) +O(ε).

As M̃(Ψi) = mBMS(ψi) and ε > 0 is arbitrary, this finishes the proof. �

Remark 4.9. We remark that the methods of our proof of Theorem 4.7 can be
extended to other Gibbs measures on Γ\G.

4.2. Correlation functions for (Γ\G, at,mHaar). We can deduce the asymptotic
of the correlation functions for the Haar measure Theorem 1.6 from that for the
BMS measure Theorem 4.7 via the following theorem:

Theorem 4.10. Suppose that there exists a function J : (0,∞)→ (0,∞) such that
for any ψ1, ψ2 ∈ Cc(Γ\G),

(4.11) lim
t→+∞

J(t)

∫
ψ1(gat)ψ2(g)dmBMS(g) = mBMS(ψ1)mBMS(ψ2).

Then for any ψ1, ψ2 ∈ Cc(Γ\G),

(4.12) lim
t→+∞

J(t)e(D−δ)t
∫
ψ1(gat)ψ2(g)dmHaar(g) = mBR+(ψ1)mBR−(ψ2).

The main idea of this theorem appeared first in Roblin’s thesis [57] and was
further developed and used in ([44], [40], [45]). The key ingredients of the arguments
are the product structures of the measures mBMS and mHaar and the study of the
transversal intersections for the translates of horospherical pieces by the flow at.
The verbatim repetition of the proof of [45, Theorem 5.8] while replacing H by
N−AM proves Theorem 4.10.

Using theorem 4.10, we deduce the following from Theorem 4.7:

Theorem 4.13. Let ψ1, ψ2 ∈ Cc(Γ\G). Then

lim
t→+∞

td/2e(D−δ)t
∫

Γ\G
ψ1(gat)ψ2(g) dmHaar(g) =

mBR+(ψ1)mBR−(ψ2)

(2πσ)d/2mBMS(Γ0\G)
.

Theorems 1.5 and 1.7 are consequences of this theorem: if µ ∈ Pacc(Γ\G), then
dµ = ψ2 dm

Haar for some ψ2 ∈ Cc(Γ\G) with
∫
ψ2 dm

Haar = 1. Hence∫
ψ1dµt =

∫
ψ1(gat)ψ2(g) dmHaar(g).

Hence Theorem 1.5 follows if we put α(t) = td/2e(D−δ)t and cµ := mBR− (ψ2)
(2πσ)d/2mBMS(Γ0\G)

.

For Theorem 1.7, note that when Γ0 < G is cocompact, all the measures mBR+ ,
mBR− and mBMS coincide with mHaar. Hence cµ = 1

(2πσ)d/2mHaar(Γ0\G)
depends only

on Γ.
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5. The A-ergodicity of generalized BMS measures

In this section, let Γ be a non-elementary discrete subgroup of G = Isom+(X̃),
and Ω ⊂ Γ\G/M denote the non-wandering set of the geodesic flow {at}.

5.1. Generalized BMS-measures. Let F̃ be a Γ-invariant Hölder continuous
function on T1(X̃). Let χ : Γ→ R be an additive character of Γ.

For all x 6= y ∈ X̃, we define∫ y

x

F̃ :=

∫ d(x,y)

0

F̃ (vat)dt

where v is the unique unit tangent vector based at x such that vat is a vector based
at y. The Gibbs cocycle for the potential F̃ is a map CF̃ : ∂∞X̃ × X̃ × X̃ → R
defined by

(ξ, x, y) 7→ CF̃ ,ξ(x, y) = lim
t→+∞

∫ ξt

y

F̃ −
∫ ξt

x

F̃

where t 7→ ξt is any geodesic ray toward the point ξ.

Definition 5.1. For σ ∈ R, a twisted conformal density of dimension σ for (Γ, F̃ , χ)

is a family of finite measures {νx : x ∈ X̃} on ∂(X̃) such that for any γ ∈ Γ, x, y ∈ X̃
and ξ ∈ ∂(X̃),

γ∗µx = e−χ(γ)µγx and
dµx
dµy

(ξ) = e−CF̃−σ,ξ(x,y).

The twisted critical exponent δΓ,F̃ ,χ of (Γ, F̃ , χ) is given by

lim sup
n→+∞

1

n
log

∑
γ∈Γ,n−1<d(o,γ(o))≤n

exp

(
χ(γ) +

∫ γ(o)

o

F̃

)
.

When χ is trivial, we simply write it as δΓ,F̃ . It can be seen that δΓ,F̃ ≤ δΓ,F̃ ,χ for
any character χ of Γ.

Suppose that
δΓ,F̃ ,χ <∞.

Then there exists a twisted conformal density of dimension δΓ,F̃ ,χ for (Γ, F̃ , χ)
whose support is precisely the limit set of Γ; we call it a twisted Patterson-Sullivan
density, or a twisted PS density for brevity.

Denote ι : T1(X̃) → T1(X̃) to be the flip map, v 7→ −v. It is shown in [48,
Proposition 11.8] that δΓ,F̃ ,χ = δΓ,F̃◦ι,−χ. We define the following generalized BMS
measure:

Definition 5.2 (Generalized BMS measures). Let {µx : x ∈ X̃} and {µιx : x ∈ X̃}
be twisted PS densities for (Γ, F̃ , χ) and (Γ, F̃ ◦ ι,−χ) respectively. Set δ0 = δΓ,F̃ ,χ.

A generalized BMS measure m̃ = m̃Γ on T1(X̃) = G/M associated to the pair

{µx : x ∈ X̃} and {µιx : x ∈ X̃} is defined by

(5.3) dm̃(u) = eCF̃−δ0,u+ (o,u)+CF̃◦ι−δ0,u−
(o,u)dµo(u

+)dµιo(u
−)ds

using the Hopf parametrization of T1(X̃).

By abuse of notation, we use the notation m̃ for the M -lift of m̃ to G.
As χ and −χ cancels with each other, we can check that the measure m̃Γ is

Γ-invariant. It induces
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• an A-invariant measure m†Γ on Γ\G/M supported on Ω and
• an AM -invariant measure mΓ on Γ\G.

When there is no ambiguity about Γ, we will drop the subscript Γ for simplicity.
When F̃ = 0 and χ is the trivial character, m is precisely equal to the BMS measure
mBMS on Γ\G defined in section 2.

5.2. The A-ergodicity of generalized BMS measures. The generalized Sulli-
van’s dichotomy says that the dynamical system (Γ\G/M,A,m†) is either conser-
vative and ergodic, or completely dissipative and non-ergodic [48].

We will extend this dichotomy for the A-action on (Γ\G,m) using the density of
the transitivity group shown by Winter.

Definition 5.4 (Transitivity group). Fix g ∈ Ω. We define the transitivity sub-
group HΓ(g) < AM as follows: ma ∈ HΓ(g) if and only if there is a sequence
hi ∈ N− ∪N+, i = 1, . . . , k and γ ∈ Γ such that

γgh1h2 . . . hr ∈ Ω for all 0 ≤ r ≤ k, and

γgh1h2 . . . hk = gam.

Lemma 5.5. [65, Theorem 3.14] Let Γ be Zariski dense. The transitivity group
HΓ(g) is dense in AM for any g ∈ Ω.

Theorem 5.6. Suppose that Γ is Zariski dense. Let m be a generalized BMS-
measure on Γ\G associated to (Γ, F̃ , χ). If (Γ\G/M,A,m†) is conservative, then
(Γ\G,A,m) is conservative and ergodic.

In particular, if Γ is of divergence type, then (Γ\G,A,mBMS) is conservative and
ergodic.

Proof. Since the A-action on (Γ\G/M,m†) is conservative and Γ\G is a principal
M -bundle over Γ\G/M , it follows that the A-action on (Γ\G,m) is conservative as
well: we can decompose Γ\G as ΩC ∪ ΩD where ΩC and ΩD are respectively the
conservative and the dissipative parts of the A-action, that is, x ∈ ΩC iff xati comes
back to a compact subset for some ti → ∞. Note that ΩCM is the conservative
part for the geodesic flow, and must have the full mBMS-measure by the assumption.
Since at and M commutes, ΩC = ΩCM , hence the claim follows.

We will now prove the A-ergodicity using the conservativity of the A-action,
following Sullivan’s argument which is based on Hopf’s ratio ergodic theorem (see
also [57], [12]).

Fix a positive Lipschitz map ρ : Γ\G → R with
∫
ρdm = 1; fix o ∈ Ω and

fix a positive continuous non-increasing function r on R>0 which is affine on each
[n, n+ 1] and r(n) = 1/(2nm(B(o, n+ 1))). Then g 7→ r(d(o, g(o))) is Lipschitz and
belongs to L1(m); so by normalizing it, we get a function ρ with desired properties
(see [48, Ch 5] for more details).

By the conservativity, ∫ ±∞
0

ρ(xat)dt = ±∞

for m-almost all x ∈ Γ\G.
Now by the conservativity of the A-action, we can apply the Hopf ratio theorem

which says for any ψ ∈ Cc(Γ\G),

lim
T→±∞

∫ T
0
ψ(xat)dt∫ T

0
ρ(xat)dt
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converges almost everywhere to an L1-function ψ̃±, and ψ̃+ = ψ̃− almost every-
where. Moreover the A-action is ergodic if and only if ψ̃± is constant almost
everywhere.

Using the uniform continuity of ψ and ρ, we can first show that the limit functions
ψ̃± coincide a.e. with an N+ and N− invariant measurable function ψ̃. Denote by
ψ∗ the lift to ψ̃ to G.

Consider the Borel sigma algebra B(G) on G, and define subalgebras Σ± :=

{B ∈ B(G) : B = ΓBN±} and Σ̃ := Σ− ∧ Σ+. That is, B ∈ Σ̃ if and only if
there exist B± ∈ Σ± such that m̃(B∆B±) = 0. It is shown in [65, Thm.4.3] that
the density of the transitivity group and the ergodicity of AM -action on (Γ\G, m̃)

implies that Σ̃ is trivial (we note that the proof of [65, Thm.4.3] does not require
the finiteness of m̃). Both conditions are satisfied under our hypothesis by Lemma
5.5 and the ergodicity of the system (Γ\G/M,A,m†) as remarked before. It now
follows that ψ∗ coincides with a constant function almost everywhere. This proves
the A-ergodicity on (Γ\G,m).

The last part follows since (Γ\G/M,A,mBMS) is conservative and ergodic when
Γ is of divergence type [64]. �

Corollary 5.7. Let Γ0 be a Zariski dense convex cocompact subgroup of G. Let F̃
be a Γ0-invariant Hölder continuous function on X̃ and χ : Γ0 → R be a character.
Suppose δΓ0,F̃ ,χ

<∞.

(1) If mΓ0
is a generalized BMS-measure on Γ0\G associated to (Γ0, F̃ , χ), then

(Γ0\G,A,mΓ0) is ergodic and conservative.
(2) Let Γ < Γ0 be a normal subgroup with Γ\Γ0 = Zd, and χ = 0 be the trivial

character. Let mΓ be the measure on Γ\G induced by the generalized BMS-

measure m̃Γ0
on G associated to (Γ0, F̃ , 0). Then (Γ\G,A,mΓ) is ergodic

and conservative if and only if d ≤ 2.

Proof. Since Γ0 is convex cocompact, m†Γ0
on Γ0\G/M is compactly supported and

hence conservative. Therefore Theorem 5.6 shows the claim (1).

For (2), denote by m†Γ the measure on Γ\G/M induced by m̃Γ0
. The A-action on

(Γ\G/M,m†Γ) is ergodic and conservative if and only if d = 1, 2 ([56],[66]). Hence
(2) again follows from Theorem 5.6. �

Theorem 1.10 is a special case of Corolloary 5.7(2).

6. Babillot-Ledrappier measures and measure classification

Let G be a connected simple linear Lie group of rank one. Let Γ0 be a discrete
subgroup of G. For a subset S of G and ε > 0, let Sε denote the intersection of S
and the ε-ball of e in G. We also use the notation SO(ε) to denote the set SCε for
some constant C > 0 depending only on G and Γ0.

6.1. Closing lemma. Let

B(ε) := (N+
ε N

− ∩N−ε N+AM)MεAε.

Lemma 6.1 (Closing lemma). [38, Lemma 3.1] There exist T0 > 1, and ε0 > 0
depending only on G for which the following holds: if

g0B(ε)aTm ∩ γg0B(ε) 6= ∅
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for some T > T0, 0 < ε < ε0, m ∈ M , g0 ∈ G and γ ∈ G, then there exists
g ∈ g0B(2ε) such that

γ = ga0m0g
−1

where a0 ∈ A and m0 ∈M satisfy a0 ∈ aTAO(ε) and m0 ∈ mMO(ε).

6.2. Generalized length spectrum. In the rest of this section, let Γ be a normal
subgroup of a Zariski dense convex cocompact subgroup Γ0 of G. For γ ∈ Γ0, we
have γ = gamg−1 for some g ∈ G, am ∈ AM . The element g is determined in G/M ,
and m is determined only up to conjugation in M . Fix a section L = N+AN− for
G/M . Let

Γ?0 = {γ ∈ Γ0 : γ = gamg−1 for some g ∈ L}.

For γ ∈ Γ?0, there are unique g ∈ L, l(γ) ∈ R>0 and mγ ∈M such that

γ = gal(γ)mγg
−1.

For γ ∈ Γ0, we write f(γ) ∈ Γ\Γ0 for its image under the projection map
Γ0 → Γ\Γ0. Hence we can write

Γf(γ)g = Γgal(γ)mγ .

Definition 6.2. The generalized length spectrum GL(Γ0,Γ) of Γ0 relative to Γ is
defined as

GL(Γ0,Γ) := {(f(γ), al(γ),mγ) ∈ Γ\Γ0 ×A×M : γ ∈ Γ?0}.

Proposition 6.3. Suppose that Γ is a normal subgroup of Γ0 and that (Γ\G, at)
satisfies the topological mixing property: for any two open subsets U, V ⊂ Γ\G,

Uat ∩ V 6= ∅

for all sufficiently large t > 1. Then the subgroup generated by GL(Γ0,Γ) is dense
in Γ\Γ0 ×A×M .

Proof. Consider (ξ, aT ,m) ∈ Γ\Γ0 × A ×M . The assumption on the topological
mixing property implies that for any small ε > 0, there is Tε > 0 such that

ΓB(ε)maT ∩ ΓξB(ε) 6= ∅

for all T > Tε. That is, for all T > Tε, there exist g1, g2 ∈ B(ε) such that g1maT =
ξγg2 for some γ ∈ Γ. Set γ0 := ξγ ∈ Γ0; so f(γ0) = ξ. The closing lemma 6.1
implies that there exists g ∈ B(2ε) such that γ0 = gaT0

mγ0
g−1 with aT0−T ∈ AO(ε)

and mγ0
= mMO(ε).

Hence for any ε > 0 and for any (ξ, aT ,m) ∈ Γ\Γ0 × A ×M for T sufficiently
large, we can find γ ∈ Γ?0 such that (f(γ), al(γ),mγ) is within an O(ε)-neighborhood
of (ξ, aT ,m). This proves the claim. �

We deduce the following from Proposition 6.3 and Theorem 1.6:

Corollary 6.4. Suppose that Γ is a co-abelian subgroup of Γ0. Then the group
generated by GL(Γ0,Γ) is dense in Γ\Γ0 ×A×M .



LOCAL MIXING ON ABELIAN COVERS 29

6.3. The N−-ergodicity of generalized BMS measures. Let F̃ be a Γ0-invariant
Hölder continuous function on T1(X̃) and χ : Γ0 → R be a character. Suppose

δΓ0,F̃ ,χ
<∞. Let m̃Γ0 be a generalized BMS-measure on G associated to (Γ, F̃ , χ).

By Corollary 5.7, the induced measure mΓ0
on Γ0\G is A-ergodic. We denote by

m = mΓ

the AM -invariant measure on Γ\G induced by m̃Γ0
.

Note that any essentially N−-invariant measurable function ψ in (Γ\G,m) is
almost everywhere equal to a measurable N−-invariant function [67].

Define H = H(m) to be the set of (ξ, a,m) ∈ Γ\Γ0 × A ×M such that for all
N−-invariant measurable function ψ in L∞(Γ\G,m),

ψ(x) = ψ(ξ−1xam)

for m-almost all x ∈ Γ\G.
It is easy to check that H is a closed subgroup.

Proposition 6.5. If Γ < Γ0 is co-abelian, then

H(m) = Γ\Γ0 ×A×M.

Proof. By Corollary 6.4, it suffices to show that

GL(Γ0,Γ) ⊂ H.

Fix (f(γ), al(γ),mγ) ∈ GL(Γ0,Γ), that is, for some unique g ∈ L,

f(γ)Γg = Γgal(γ)mγ .

Let π : Γ\G→ Γ0\G be the canonical projection. Let [g] = Γg and let B(π[g], ε)
denote the ε-ball around π[g]. Let p > 0 be such that for any x ∈ B(π[g], ε/p) and
any 0 ≤ t < 2`(γ), we have

d(xat, π[g]at) < ε/2.

Fix ε > 0, and set Sk = Sk(ε) ⊂ Γ\G be the set of x’s such that π(x)at ∈
B(π[g], ε/p) for some t ∈ [k`(γ), (k + 1)`(γ)).

Since m0 is A-ergodic,

m(Γ\G− ∪kSk) = 0.

Let x ∈ Sk. By replacing g by gat for some 0 ≤ t < `(γ), we have

d(xak`(γ), ξ[g]) ≤ ε/2 and d(xak`(γ)+`(γ), ξ[g]a`(γ)) ≤ ε/2.

Since ξ[g]a`(γ) = f(γ)ξ[g]m−1
γ and the metric d is right M -invariant and left

G-invariant,

d(xak`(γ)+`(γ), ξ[g]a`(γ)) = d(f(γ)−1xak`(γ)+`(γ)mγ , ξ[g]).

Hence

d(f(γ)−1xa(k+1)`(γ)mγ , xak`(γ)) ≤ ε.
Since the product map N−×A×M×N+ → G is a diffeomorphism onto an open

neighborhood of e in G, there exist an element n−amn+ ∈ N−O(ε)AO(ε)MO(ε)N
+
O(ε)

such that

xak`(γ) = xf(γ)−1a(k+1)`(γ)mγn
−amn+.

Set

x∗ := x(a(k+1)`(γ)mγ)n−(a(k+1)`(γ)mγ)−1 ∈ xN−
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and
Tk(x) := f(γ)−1x∗a`(γ)mγam.

Note
x = Tk(x)ak`(γ)n

+a−1
k`(γ) ∈ Tk(x)N+

O(e−kε)
.

Now suppose that (f(γ), aγ ,mγ) /∈ H, that is, there exists an N−-invariant
measurable function ψ ∈ L∞(m), a compact set W with m(W ) > 0, and ε0 > 0
such that ψ(xh) = ψ(x) for all x ∈W and h ∈ N− and

ψ(x) > ψ(f(γ)−1xaγmγ) + ε0

for all x ∈W . Since x∗ ∈ xN−, we have for all x ∈W ,

ψ(x) > ψ(f(γ)−1x∗aγmγ) + ε0.

If we consider a sequence of non-negative continuous functions ηδ with integral one
and which is supported in (AM)δ, then as δ → 0, the convolution ψ ∗ ηδ converges
to ψ almost everywhere. By replacing ψ with ψ ∗ ηδ for small δ, we may assume
that ψ is continuous for the AM -action. Moreover, using Luzin’s theorem, we may
assume that ψ is uniformly continuous on W by replacing W by a smaller subset
if necessary.

Since
Tk(x) = f(γ)−1x∗a`(γ)mγam→ x

as k → ∞ and am ∈ (AM)O(ε). we will get a contradiction if we can find x ∈ W
with Tk(x) ∈W for an arbitrarily large k.

Hence it remains to prove the following claim:

(1) limkm({x ∈W ∩Sk : Tk(x) /∈W}) = 0;
(2) lim supkm(W ∩Sk) > 0.

Note that Tk maps x to f(γ)−1xa(k+1)`(γ)mγa−k`(γ)am. Since m isAM -invariant,

Γ\Γ0-invariant, and n− ∈ Gε, there exists κ = κ(ε) > 1 such that m(T−1
k (Q)) ≤

κm(Q) for any Borel set Q ⊂ Γ\G and any k ≥ 1
Since for x ∈ Sk, d(x, Tk(x))→ 0, we have

m({x ∈W ∩Sk : Tk(x) /∈W}) ≤ m(T−1
k (WGη −W )) ≤ κ ·m(WGη −W )

for small small η > 0 which goes to 0 as k →∞.
Now as W is a compact subset, we have m(WGη −W )→ 0 as η → 0, and hence

the first claim follows.
For the second claim, suppose the claim fails. Note that for any t > 0, there

exists k ∈ N such that π−1(B(π[g], ε))a−t ⊂ Sk. Hence we have

lim sup
t

m(W ∩ π−1(B(π[g], ε)a−t) = 0.

This would mean that

lim sup
s

1

s

∫ s

0

∫
W

1B(π[g],ε)(π(x)at)dmdt = 0.

However, by the Fubini theorem, the Birkhoff ergodic theorem (as m0 is A-ergodic)
and the Lebesgue dominated covergence theorem, we deduce

1

s

∫ s

0

∫
W

1B(π[g],ε)(π(x)at)dmdt =

∫
W

1

s

∫ s

0

1B(π[g],ε)(π(x)at)dtdm

→m0(B(π[g], ε))m(W ).

Therefore this proves the claim. �
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Theorem 6.6. If Γ\Γ0 is abelian, then the N−-action on (Γ\G,m) is ergodic, i.e.
any N−-invariant measurable function on (Γ\G,m) is a constant.

Proof. Since H = H(m) = Γ\Γ0 × A ×M by Proposition 6.5, any N−-invariant

measurable function ψ on (Γ\G,m) gives rise an AMN−-invariant function ψ̃ on
(Γ0\G,mΓ0).

Since mΓ0
is A-ergodic, ψ̃ is constant mΓ0

almost everywhere. It follows that ψ
is constant m-almost everywhere. Therefore the claim is proved. �

6.4. Babillot-Ledrappier measures. Since Γ0 is convex cocompact, we have

δΓ0,χ <∞
for any character χ of Γ0 (see [48, Proof of Prop. 11.8]).

Suppose that Γ is co-abelian in Γ0, and consider the space (Γ\Γ0)∗ of characters
of Γ0 which vanish on Γ. Fix a character χ ∈ (Γ\Γ0)∗. There exists a unique

twisted PS density {µχ,x : x ∈ X̃} for (Γ0, 0, χ) supported on Λ(Γ0) [48, Corollary
11.13].

Definition 6.7. Define the following measure on T1(X̃) using the Hopf parametriza-
tion:

dm̃χ(u) = eδΓ0,χβu+ (o,u)+Dβu− (o,u)dµχ,o(u
+)dmo(u

−)ds,

where dmo is the Lebesgue density on ∂(X̃).

One can check that the measure m̃χ satisfies the following properties:

(1) identifying T1(X̃) with G/M , m̃χ is N−-invariant (i.e., Lebesgue measures
on each N− leaf) and quasi A-invariant;

(2) as χ vanishes on Γ, m̃χ is Γ-invariant;

(3) for any γ ∈ (Γ\Γ0)∗, γ∗m̃χ = e−χ(γ)m̃χ.

Denote by mχ the MN−-invariant measure on Γ\G induced by m̃χ; we call it a
Babillot-Ledrappier measure. When χ = 0 is the trivial character, m0 coincides
with the Burger-Roblin mesure mBR− up to a constant multiple.

Consider the generalized BMS measure mΓ0
on Γ\G associated to the pair {µχ,x}

and {µ−χ,x}. Then mΓ0
and mχ have the same transverse measure

eδΓ0,χβu+ (o,u)dµχ,o(u
+)dsdm.

Hence the N−-ergodicity of mχ is equivalent to the N−-ergodicity of mΓ.
Using Theorem 6.6, we obtain:

Theorem 6.8. For each χ ∈ (Γ\Γ0)∗, the measure mχ is N−-ergodic.

Moreover when Γ0 is cocompact, Sarig [59] and Ledrappier [33, Corollary 1.4]
showed that any N−M invariant ergodic measure on Γ\G is one of mχ’s, by showing
that such a measure should be A-quasi-invariant and then using the classification
of Babillot on N−M -invariant and A-quasi-invariant measures [4].

Theorem 6.9. Suppose that Γ0 < G is cocompact and that Γ < Γ0 is co-abelian.
Then any N−-invariant ergodic measure is proportional to mχ for some χ ∈ (Γ\Γ0)∗.

Proof. If ν is an ergodic N−-invariant measure on Γ\G, then the average ν♣ :=∫
M
m∗νdm is an ergodic N−M invariant measure, and hence is proportional to mχ

for some χ ∈ (Γ\Γ0)∗ by the afore-mentioned results ([59], [33]). As mχ is N−-
ergodic by Theorem 6.8, it follows that for almost all m ∈M , m∗ν is proportional
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to mχ. Pick one such m ∈ M . Since mχ is M -invariant, we have ν is proportional
to (m−1)∗mχ = mχ. �

7. Applications to counting and equidistribution problems

As before, let Γ be a normal subgroup of a Zariski dense convex cocompact
subgroup Γ0 of G with Γ\Γ0 ' Zd for some d ≥ 0. We describe counting and
equidistribution results for Γ orbits which can be deduced from Theorems 4.7 and
4.13. The deduction process is well-understood (see [44], [40], and [38]).

7.1. Equidistribution of translates. Let H be an expanding horospherical sub-
group or a symmetric subgroup of G. Recall the definition the PS measure on
gH/(H ∩M) ⊂ G/M = T1(X̃):

dµ̃PS
gH(gh) = eδβ(gh)+dνo((gh)+).

We denote by µ̃gH the H ∩M invariant lift to the orbit gH.

Theorem 7.1. Let H be the expanding horospherical subgroup or a symmetric
subgroup of G, and let x = Γg ∈ Γ\G. Let U ⊂ H be a small open subset such that
u 7→ xu is injective on U . Suppose that µ̃PS

H (∂(gU)) = 0. Then we have

lim
t→∞

td/2
∫
U

ψ(Γguat)dµ̃
PS
H (gu) =

µ̃PS
H (gU)

(2πσ)d/2
mBMS(ψ)

and

lim
t→∞

td/2e(D−δ)t
∫
U

ψ(xuat)du =
µ̃PS
H (gU)

(2πσ)d/2
mBR+(ψ).

The assumption on H being either symmetric or horospherical ensures the wave
front property of [19] which can be used to establish, as t→∞,

(7.2)

∫
U

ψ(Γguat)dµ̃
PS
H (gu) ≈ 〈atψ, ρU,ε〉mBMS and

∫
U

ψ(xuat)du ≈ 〈atψ, ρU,ε〉

where ρU,ε ∈ Cc(Γ\G) is an ε-approximation of U , and ≈ means that the ratio of
the two terms is of size 1 +O(ε). Therefore the estimates on the matrix coefficients
in Theorems 4.7 and 1.6 can be used to establish Theorem 7.1. We refer to [44,
Sec. 3] and [40] for more details.

Suppose that Γ0\Γ0H is closed. This implies that Γ\ΓH is closed too. Then
µ̃PS
H induces locally finite Borel measures µPS

Γ0,H
and µPS

Γ,H on Γ0\Γ0H and Γ\ΓH
respectively.

As Γ0 is convex cocompact, µPS
Γ0,H

is compactly supported [44, Theorem 6.3]. If

H ∩ Γ < H ∩ Γ0 is of finite index, the measure µPS
Γ,H is also compactly supported.

In this case, by applying Theorem 7.1 to the support of µPS
Γ,H , we get the following:

Theorem 7.3. Suppose that Γ0\Γ0H is closed and that [H ∩ Γ0 : H ∩ Γ] < ∞.
Then

(7.4) lim
t→∞

td/2e(D−δ)t
∫
H

ψ([e]hat)dh =
|µPS

Γ,H |
(2πσ)d/2

mBR+(ψ).

In the case whenH = K and Γ0 is torsion free, we haveK∩Γ = K∩Γ0 = {e}, and
Theorem 7.3 provides the equidistribution of Riemannian spheres St with respect
to (Γ\G,mBR+) as t→∞.
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7.2. Distribution of a discrete Γ-orbit on H\G. Let H be either a symmetric
subgroup, a horospherical subgroup or the trivial subgroup of G. Consider the
homogeneous space H\G and suppose [e]Γ0 is discrete in H\G. Recall that vo ∈
T1(X̃) is a vector whose stabilizer is M .

Definition 7.5. (1) Define a Borel measure M =MΓ,G on G as follows: for
ψ ∈ Cc(G),

M(ψ) :=
1

(2πσ)d/2

∫
k1atk2∈KA+K

ψ(k1atk2)eδttd/2dνo(k1v
+
o )dtdνo(k

−1
2 v−o ).

(2) For H symmetric or horospherical, we have either G = HA+K or G =
HA+K ∪ HA−K. Define a Borel measure M = MΓ,H\G on H\G as

follows: if G = HA+K and ψ ∈ Cc(H\G),

M(ψ) :=
|µPS

Γ,H |
(2πσ)d/2

∫
atk∈A+K

eδt · td/2ψ([e]atk)dtdνo(k
−1v−o ).

If G = HA+K ∪HA−K and ψ ∈ Cc(H\G),

M(ψ) :=
∑ |µPS

Γ,H,±|
(2πσ)d/2

∫
a±tk∈A±K

eδt · td/2ψ([e]atk)dtdνo(k
−1v∓o ).

For a compact subset B ⊂ H\G, define B+
ε = BUε and B−ε = ∩u∈UεBu if

H 6= {e}. For H = {e}, set B+
ε = UεBUε and B−ε = ∩u1,u2∈Uεu1Bu2.

Definition 7.6. Let BT be a family of compact subsets in H\G. We say BT is
well-rounded with respect to M =MΓ,H\G if

(1) M(BT )→∞ as T →∞;

(2) lim supε→0 lim supT→0

M(B+
T,ε−B

−
T,ε)

M(BT ) = 0.

The following theorem can be proved using the equidistribution theorem 7.3 for
H symmetric or horospherical, and Theorem 1.6 for H trivial (see [42, Sec. 6]).

Theorem 7.7. Suppose that [e]Γ0 is discrete and that [H ∩ Γ0 : H ∩ Γ] < ∞. If
{BT } is a sequence of compact subsets in H\G which are well-rounded with respect
to MΓ,H\G, then as T →∞,

#[e]Γ ∩BT ∼MΓ,H\G(BT ).

This was shown in [44] and [40] for d = 0.

7.3. Distribution of circles. We also state the following result on the asymptotic
distribution of a Γ-orbit of a circle whose proof can be obtained in the same way
as in [43] using Theorem 1.6 (see also [30], [34], [46]).

Theorem 7.8. Let G = PSL2(C). Let C0 be a circle in the complex plane C such
that P := Γ0(C0) is discrete in the space of circles in C. Suppose that StabΓ(C0) =
StabΓ0

(C0). There exists c > 0 such that for any compact subset E ⊂ C whose
boundary is rectifiable, we have

#{C ∈ P : C ∩ E 6= ∅, curv(C) ≤ T} ∼ c T δ

(log T )d/2
Hδ(E)

where Hδ is the δ-dimensional Hausdorff measure of the limit set of Γ (with respect
to the Euclidean metric).
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7.4. Joint equidistribution of closed geodesics and holonomies. Recall X =
Γ\X̃. A primitive closed geodesic C in T1(X) is a compact set of the form

Γ\ΓgAM/M = Γ\ΓgA(vo)

for some g ∈ G. The length of a closed geodesic C = Γ\ΓgAM/M is given as the
co-volume of AM ∩ g−1Γg in AM .

For each closed geodesic C = Γ\ΓgAM/M , we write `(C) for the length of C,
and denote by hC the unique M -conjugacy class associated to the holonomy class
of C: Γgma`(C) = ΓgmhC . We also write LC for the length measure on C

Let Mc denote the space of conjugacy classes of M . For T > 0, define

GΓ(T ) := {C : C is a closed geodesic in T1(X), `(C) ≤ T}.
For each T > 0, we define the measure µT on the product space (Γ\G/M)×Mc:

for ψ ∈ C(Γ\G/M) and any class function ξ ∈ C(M),

µT (ψ ⊗ ξ) =
∑

C∈GΓ(T )

LC(ψ)ξ(hC).

We also define a measure ηT by

ηT (ψ ⊗ ξ) =
∑

C∈GΓ(T )

DC(ψ)ξ(hC),

where DC(ψ) = `(C)−1LC(ψ).

Given Theorem 1.6, the following can be deduced in the same way as the proof
of Theorem 5.1 in [38].

Theorem 7.9. For any bounded ψ ∈ C(Γ\G/M) and a class function ξ ∈ C(M),
we have, as T →∞,

µT (ψ ⊗ ξ) ∼ eδT

(2πσ)2/dδT d/2
·mBMS(ψ) ·

∫
M

ξdm

and

ηT (ψ ⊗ ξ) ∼ eδT

(2πσ)2/dδT d/2+1
·mBMS(ψ) ·

∫
M

ξdm.

Theorem 1.12 is an easy consequence of this.
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