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Abstract. Let G = SO(n, 1)◦ for n ≥ 2 and Γ a geometrically
finite Zariski dense subgroup of G which is contained in an arith-
metic subgroup of G. Denoting by Γ(q) the principal congru-
ence subgroup of Γ of level q, and fixing a positive number λ0
strictly smaller than (n − 1)2/4, we show that, as q → ∞ along
primes, the number of Laplacian eigenvalues of the congruence
cover Γ(q)\Hn smaller than λ0 is at most of order [Γ : Γ(q)]c for
some c = c(λ0) > 0.

1. Introduction

Let G denote identity component of the special orthogonal group
SO(n, 1) for n ≥ 2. As well-known, G is the group of orientation
preserving isometries of the real hyperbolic space Hn. Denote by ∆
the negative of the Laplace-Beltrami operator of Hn. On any com-
plete hyperbolic manifold M of dimension n, ∆ acts on the space of
smooth functions on M with compact support and admits a unique ex-
tension to an unbounded self-adjoint positive operator on L2(M). We
denote by σ(M) its spectrum of M . For instance, σ(Hn) is known to

be [ (n−1)2

4
,∞).

There exists a torsion-free discrete subgroup Γ of G such that M =
Γ\Hn. The limit set Λ(Γ) of Γ is the smallest non-empty closed Γ-
invariant subset of the geometric boundary of Hn. The convex core
C(M) of M is the quotient by Γ of the smallest convex subset of Hn

containing all geodesics connecting points in Λ(Γ). We say that M (or
Γ) is geometrically finite if the unit neighborhood of C(M) has finite
volume. Geometrically finite manifolds are natural generalizations of
manifolds with finite volume.

For a geometrically finite hyperbolic manifold M of infinite volume,
Lax and Phillips [12] showed that σ(M) is the disjoint union of the
discrete spectrum consisting of finitely many eigenvalues contained in
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[0, (n−1)2

4
) with finite multiplicities and the essential spectrum which is

a closed sub-interval of [ (n−1)2

4
,∞).

In this note, we are interested in the growth of the number of discrete
eigenvalues of congruence covers of a fixed hyperbolic manifold, which
itself is a covering (with infinite degree) of an arithmetic hyperbolic
manifold of finite volume.

Let G be defined over Q via a Q-embedding G → GLN for some
positive integer N . We set G(Z) = G ∩ GLN(Z). Fixing a subgroup
Γ of G(Z), and a positive integer q, we consider the q-th principal
congruence subgroup Γ(q) of Γ given by

Γ(q) := {γ ∈ Γ : γ ≡ e mod q}.

We denote by δ = δ(Γ) the critical exponent of Γ, i.e., the abscissa
of convergence of the Poincaré series P(t) =

∑
γ∈Γ e

−td(o,γ(o)) for o ∈
Hn. In the rest of the introduction, we assume that Γ is torsion-free,

geometrically finite and Zariski dense in G. For a fixed 0 < λ0 <
(n−1)2

4
,

denote by
N (λ0,Γ(q))

the number of eigenvalues of Γ(q)\Hn contained in the interval [0, λ0],
counted with multiplicities. Here is our main theorem:

Theorem 1.1. There exists η > 0 such that for any 0 < λ0 <
(n−1)2

4
,

N (λ0,Γ(q))� [Γ : Γ(q)]
δ−s0
η for any q prime, (1.2)

where n−1
2
< s0 ≤ n− 1 such that λ0 = s0(n− 1− s0) and the implied

constant depends only on λ0.

In [8], Hamenstädt showed that the number of eigenvalues of Γ\Hn

smaller than λ0 is bounded from above by bVol(C(Γ\Hn)) for some b >
0 depending only on the dimension n. In case when Γ is a lattice,
a stronger upper bound of c · Vol(Γ\Hn) (c independent of Γ) was
previously known by Buser-Colbois-Dodziuk [1].

Since Γ(q) is a normal subgroup of Γ of finite index, the limit set of
Γ(q) is equal to the limit set of Γ, and hence

Vol(C(Γ(q)\Hn))

Vol(C(Γ\Hn))
= [Γ : Γ(q)].

Therefore Theorem 1.1 implies the following much stronger upper bound
for congruence coverings of an arithmetic manifold Γ\Hn of infinite vol-
ume: as q →∞ along primes,

N (λ0,Γ(q))� Vol(C(Γ(q)\Hn))
δ−s0
η . (1.3)
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Remark 1.4. (1) We can relax the restriction on q so that q is
square-free with no divisors from a fixed finite set of primes.
The necessity of avoiding a finite set of primes is basically be-
cause the strong approximation property applied to the lift Γ̃ of
Γ in the Spin cover G̃ says Γ̃(p)\Γ̃ = G̃(Fp) for all but finitely
many primes p.

(2) As Γ(q) is geometrically finite, the discrete spectrum of Γ(q)\Hn

is non-empty only when δ > n−1
2

, in which case, δ(n− 1− δ) is
the smallest discrete eigenvalue and has multiplicity one [22].

(3) In our proof of Theorem 1.1, η can be taken to be any number
smaller than the uniform spectral gap

lim inf
q:primes

(δ − s1q)

where s1q < δ is such that s1q(n− 1− s1q) is the second small-
est eigenvalue of Γ(q)\Hn. The existence of a positive uniform
spectral gap follows from the works of Bourgain-Gamburd [2]
and of Bourgain-Gamburd-Sarnak [4] for n = 2. Their result
has been generalized by Salehi-Golsefidy-Varju [17] for a gen-
eral connected semisimple algebraic group. These methods do
not provide an explicit estimate on η.

For the following discussion, we find it convenient to put ρ = n−1
2

and to use the parametrization λs = s(n− 1− s) so that

[0, (n−1)2

4
) = {λs : s ∈ (ρ, n− 1]}.

For each s ∈ (ρ, n− 1], we denote by

m(λs,Γ(q))

the multiplicity of λs occurring as a discrete eigenvalue of ∆ in Γ(q)\Hn.
Note that

N (s0(n− 1− s0),Γ(q)) =
∑

s0≤s≤n−1

m(λs,Γ(q)).

Sarnak and Xue formulated a conjecture on the upper bound ofm(λs,Γ(q))
when Γ is an arithmetic group of a connected semisimple algebraic
group G defined over Q [19]. In our setting of G = SO(n, 1)◦, their
conjecture can be stated as follows:

Conjecture 1.5 (Sarnak-Xue). If [G(Z) : Γ] < ∞, then for any fixed
s ∈ (ρ, n− 1], as q →∞,

m(λs,Γ(q))�ε [Γ : Γ(q)]
(n−1)−s

ρ
+ε for any ε > 0.
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Fixing o ∈ Hn and denoting by d the hyperbolic distance in Hn,
consider the ball BT := {g ∈ G : d(g(o), o) ≤ T}; so that

#Γ(q) ∩BT := #{γ ∈ Γ(q) : d(γ(o), o) ≤ T}.

Conjecture 1.6 (Sarnak-Xue). Let [G(Z) : Γ] < ∞. For any T � 1
and q � 1,

#Γ(q) ∩BT �ε
e(n−1+ε)T

[Γ : Γ(q)]
+ eρT for any ε > 0

where ρ = (n− 1)/2 and the implied constant is independent of T and
q.

Sarnak and Xue proved that if Γ is a uniform lattice in G, then
Conjecture 1.6 implies Conjecture 1.5; in fact, their methods prove a
stronger statement that the same upper bound works for N (s(n− 1−
s),Γ(q)) as well. This implication has been extended to all lattices in G
by Huntley and Katznelson [9]. Sarnak and Xue [19] proved Conjecture
1.6 when Γ is a cocompact arithmetic subgroup of SO(n, 1) for n = 2, 3
and hence settled Conjecture 1.5 in this case.

In view of the conjectures (1.5) and (1.6) and the above discussion,
we pose the following two conjectures: let Γ < G(Z) be geometrically
finite and Zariski dense in G with its critical exponent δ > ρ := (n −
1)/2.

Conjecture 1.7. For any s ∈ (ρ, δ], as q →∞,

N (s(n− 1− s),Γ(q))�ε [Γ : Γ(q)]
δ−s
δ−ρ+ε for any ε > 0.

Remark 1.8. It is proved [10] that for any η > 0,

m(λs,Γ(q))� [Γ : Γ(q)]2/n(n−1)−η.

Therefore Conjecture 1.7 implies the following spectral gap:

lim sup
q

s1q ≤ δ − δ − ρ
n(n− 1)

where s1q(n−1−s1q) is the second smallest eigenvalue of Γ(q)\Hn. We
thank Dubi Kelmer for this observation.

Conjecture 1.9. For T � 1, as q →∞,

#Γ(q) ∩BT �ε
e(δ+ε)T

[Γ : Γ(q)]
+ eρT for any ε > 0.

Proposition 1.10. Conjecture 1.9 implies Conjecture 1.7.
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Note that Conjecture 1.7 implies the following limit formula, which
is also suggested by the Plancherel formula of L2(G) given by Harish-
Chandra:

Conjecture 1.11. For any s ∈ (ρ, δ],

lim
q→∞

N (s(n− 1− s),Γ(q))

[Γ : Γ(q)]
= 0.

Conjecture 1.11 is known to be true if Γ is a co-compact lattice
by DeGeorge and Wallach [5] or if Γ = SL2(Z) by Sarnak [18]. It does
not seem to be known for a general (arithmetic) lattice, although Savin
proved it for those s whose corresponding eigenfunctions are cusp-forms
[20]. We also refer to [6] where an analogous problem was answered
positively for Γ = SLn(Z).

The proof of Conjecture 1.5 by Sarnak-Xue [19] for co-compact arith-
metic lattices of SO(2, 1) and SO(3, 1) uses number theoretic arguments
which give a very sharp uniform upper bound (Conjecture 1.6) for the
number of lattice points Γ(q) in a ball, using explicit realizations of
arithmetic groups as units of certain division algebras over number
fields. The presence of ρ in the denominator of the exponent in Con-
jecture 1.5 (Theorem for the cases in discussion) is due to the sharpness
of this counting technique.

This approach won’t be possible for general Zariski dense subgroups,
as such an explicit arithmetic realization is not available for this rather
wild class of groups (which makes one wonder that Conjecture 1.9 is
perhaps too bold).

Instead, we use a recent work of Mohammadi and the author [15]
where uniform counting results for orbits of Γ(q)’s were obtained with
an error term.

Another important ingredient is the so-called Collar Lemma on uni-
form estimates on the size of eigenfunctions away from flares and cusps
of Γ(q)\Hn; this was first obtained by Gamburd in [7] for SO(2, 1) and
generalized by Magee [13] for all SO(n, 1).

Acknowlegement I would like to thank Min Lee for several helpful
discussions.

2

In the rest of this paper, let Γ be geometrically finite and Zariski
dense, with critical exponent δ > (n − 1)/2. We continue notations
from the introduction.
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2.1. Lattice point counts. We identify Hn = G/K for K = SO(n)
and denote by o ∈ Hn whose stabilizer is K. As before, set BT := {g ∈
G : d(g(o), o) ≤ T}.

We first recall the following lattice point counting theorem in [15]:

Theorem 2.1. There exists η > 0 such that for any prime q,

#Γ(q) ∩BT = c · eδT

[Γ : Γ(q)]
+O(e(δ−η)T ) for all T � 1

where both c > 0 and the implied constant are independent of q.

We remark that the above type of lattice point counting theorem
is stated in [15] under a uniform spectral gap hypothesis. However
since BT is a bi-K-invariant subset, one needs only a uniform spherical
spectral gap, as defined in [15], in proving Theorem 2.1. We recall that
a uniform spherical spectral gap means a uniform lower bound for the
differences for the smallest two eigenvalues for the Laplace operator
in L2(Γ(q)\Hn). And the uniform spherical spectral gap property for
L2(Γ(q)\Hn) for q primes (or for q square-free with no divisors from
a fixed finite set of primes) follows from [17] by the transfer principle
from combinatorial spectral gap to an archimedean gap ([4], also see
[11]).

2.2. Fix a Haar measure dg on G. This induces an invariant measure
on Γ(q)\G for which we use the same notation dg by abuse of nota-
tion. The right translation action of G on L2(Γ(q)\G, dg) preserves the
measure dg, and hence yields a unitary representation of G. Let C de-
note the Casimir operator of G. The action of C on K-invariant smooth
functions on G is given by −∆. For each s ∈ (ρ, δ], we denote by πs the
spherical complementary series representation of G on which C acts by
the scalar −λs. Then the multiplicity m(λs,Γ(q)) is equal to the mul-
tiplicity of πs occurring as a sub-representation of L2(Γ(q)\G). This
follows from the well-known correspondence between positive definite
spherical functions of G and the spherical unitary dual of G.

Define the bi-K-invariant function of G:

ψs(g) := 〈πs(g)vs, vs〉

where vs is the unique K-fixed unit vector in πs, up to a scalar. Then
ψs(g) is a positive function such that for all g ∈ G,

ψs(g) � e(s−2ρ)d(o,g(o)) (2.2)

where the implied constants are independent of g ∈ G (cf. [15]).
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2.3. Proof of Theorem 1.1. We need to show that there exists η > 0
such that for any ρ < s0 ≤ n− 1, we have, as q →∞ along primes,∑

s∈[s0,n−1]

m(λs,Γ(q))� [Γ : Γ(q)]
δ−s0
η ,

where the implied constant is independent of q.
We follow a general strategy of [19] (also see [7]).
Consider the following bi-K-invariant functions of G:

fo(g) := χBT (g)ψs0(g) and

Fo(g) := fo ∗ f̌o(g) =

∫
h∈G

fo(gh
−1)f̌o(h)dh

where χBT is the characteristic function of BT and f̌o(g) := fo(g−1).
By [19], we have

Fo(g)�

{
e2(s0−ρ)T e−ρd(g(o),o) if d(o, g(o)) ≤ 2T

0 if d(o, g(o)) > 2T .
(2.3)

The spherical transform f̂ of a bi-K-invariant function f is given by

f̂(λs) =

∫
G

f(g)ψs(g)dg.

Hence

f̂o(λs) =

∫
G

χBT (g)ψs0(g)ψs(g)dg

and the associated spherical transform F̂o(λs) is given by |f̂o(λs)|2.
By (2.2), it follows that for all s ≥ s0,

F̂o(λs)� e(2s0+2s−4ρ)T ≥ e(4s0−4ρ)T (2.4)

where the implied constant depends only on s0.
Define the automorphic kernel Kq on Γ(q)\G× Γ(q)\G as follows:

Kq(g1, g2) :=
∑
γ∈Γ(q)

Fo(g
−1
1 γg2).

Note Kq(g1k1, g2k2) = Kq(g1, g2) for any k1, k2 ∈ K.
Let {λj,q} be the multi-set of discrete eigenvalues of Γ(q)\Hn which

is finite by Lax-Phillips and let {φj,q} be corresponding real-valued
eigenfunctions with L2-norm one in L2(Γ(q)\Hn). We may understand
φj,q as a function on Γ(q)\G which is right K-invariant. Let sj,q ∈ (ρ, δ]
be such that λj,q = sj,q(n− 1− sj,q).

A key technical ingredient we need is the following result of Gamburd
for n = 2 [7] and of Magee for n general [13]:
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Theorem 2.5. Fix a closed interval I ⊂ (ρ, δ]. There exists a compact
subset Ω ⊂ Γ\G and C > 0 such that for any integer q ≥ 1 and any
sj,q ∈ I, ∫

Ωq

|φj,q(g)|2dg ≥ C

where Ωq := π−1
q (Ω) for the canonical projection πq : Γ(q)\G→ Γ\G.

By applying the pretrace formula to Kq, we deduce

Kq(g, g) =
∑
λj,q

F̂o(λj,q)|φj,q(g)|2 + E

where the term E is the contribution from the continuous spectrum.
The positivity of F̂o yields that E ≥ 0, and hence

Kq(g, g) ≥
∑
λj,q

F̂o(λj,q)|φj,q(g)|2.

By integrating Kq(g, g) over the compact subset Ωq of Theorem 2.5, we
obtain ∫

Ωq

Kq(g, g)dg ≥ C ·
∑
sj,q∈I

F̂o(λj,q).

Therefore setting I := [s0, δ], we deduce from (2.4) the following:

∫
Ωq

Kq(g, g)dg � e4(s0−ρ)T

(∑
s∈I

m(λs,Γ(q))

)
.

On the other hand, using (2.3),∫
Ωq

Kq(g, g)dg =
∑
γ∈Γ(q)

∫
Ωq

Fo(g
−1γg)dg

=
∑
γ∈Γ(q)

∑
γ0∈Γ(q)\Γ

∫
Ω

Fo(g
−1γ−1

0 γγ0g)dg

= [Γ : Γ(q)] ·
∑
γ∈Γ(q)

∫
Ω

Fo(g
−1γg)dg
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Using the compactness of Ω, and Theorem 2.1, there exists R > 1
such that∑

γ∈Γ(q)

∫
Ω

Fo(g
−1γg)dg � e2(s0−ρ)T

∑
γ∈Γ(q),d(o,γo)<2T+R

e−ρd(o,γo)

� e2(s0−ρ)T

∫ 2T+R

0

e−ρt(#Γ(q) ∩Bt)dt

� e2(s0−ρ)T
(

1
[Γ:Γ(q)]

e(2δ−2ρ)T + e(2δ−2ρ−2η)T
)
.

Putting these together, we have(∑
s≥s0

m(λs,Γ(q))

)
� e(−2s0+2δ)T + [Γ : Γ(q)] · e(−2s0+2δ−2η)T .

Hence by setting T so that e2T = [Γ : Γ(q)]1/η, we deduce(∑
s≥s0

m(λs,Γ(q))

)
� [Γ : Γ(q)]

δ−s0
η ,

as desired, proving Theorem 1.1.
Note that replacing the use of Theorem 2.1 by Conjecture 1.9 for an

upper bound of #Γ(q) ∩BT yields

N (s0(n− 1− s0),Γ(q))�ε [Γ : Γ(q)]
δ−s0
δ−ρ +ε,

which is Conjecture 1.7. This verifies Proposition 1.10.
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