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Abstract. We provide the first example of a Zariski dense discrete non-
lattice subgroup Γ0 of a higher rank simple Lie group G, which is non-
tempered in the sense that the associated quasi-regular representation
L2(Γ0\G) is non-tempered.

In fact, let Γ be the fundamental group of a closed hyperbolic n-
manifold with properly embedded totally geodesic hyperplane for n ≥ 3.
We prove that there exists a non-empty open subset O of Hom(Γ, SO(n, 2))
such that for any σ ∈ O, the image σ(Γ) is a Zariski dense and non-
tempered Anosov subgroup of SO(n, 2). Moreover the growth indicator
of σ(Γ) is nearly optimal, that is, it almost realizes the supremum of
growth indicators of all non-lattice discrete subgroups given by prop-
erty (T ) of SO(n, 2).
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1. Introduction

Let G be a connected semisimple real algebraic group. Let Γ < G be a
discrete subgroup of G. Denote by dx a G-invariant measure on the homoge-
neous space Γ\G. Consider the Hilbert space L2(Γ\G) = L2(Γ\G, dx). The
right translation action of G on Γ\G induces a unitary representation of G
on L2(Γ\G), called the quasi-regular representation.

A unitary representation (π,H) of G is called tempered if it is weakly
contained in the regular representation L2(G), i.e., any diagonal matrix co-
efficients of (π,H) can be approximated by a convex linear combination of
diagonal matrix coefficients of L2(G), uniformly on compact subsets of G.
This notion was introduced and studied by Harish-Chandra.
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Definition 1.1. We say that Γ is a tempered subgroup of G if the quasi-
regular representation L2(Γ\G) is tempered.

Tempereness of Γ is equivalent to the condition that all matrix coefficients
of L2(Γ\G) are L2+ε-integrable for any ε > 0 [9]. If G has Kazhdan’s
property (T ), that is, all simple factors of G have rank at least 2 or are
isogeneous to Sp(n, 1) or F (−20)

4 , then it is a consequence of a quantitative
version of property (T ) that there exists p = pG > 0 such that for any non-
lattice discrete subgroup Γ < G, all matrix coefficients of the quasi-regular
representation L2(Γ\G) are Lp-integrable ([8], [28], [22]).

In rank one groups, it is known that any lattice admits a non-elementary
infinite index normal subgroup [10]. There are also convex cocompact sub-
groups of SO(n, 1), n ≥ 2, whose critical exponents are arbitrarily close to
the volume entropy of the hyperbolic n-space Hn, that is, n − 1 [26, Sec.
6]. Such groups are then examples of Zariski dense subgroups that are non-
tempered, by [27, Thm 1.4] and [7, Thm 4.2] respectively. Although there
were known examples of non-tempered discrete subgroups ([6, Example B],
[3]) of higher rank Lie groups, they were all lattices of a proper algebraic
subgroup of G. It remained an open question whether there exists a Zariski
dense non-lattice discrete subgroup of a higher rank simple group G that is
non-tempered. The main goal of this article is to answer this question in the
affirmative:

Theorem 1.2. For any n ≥ 3, there exists a Zariski dense non-lattice dis-
crete subgroup of SO(n, 2) that is non-tempered.

Temperedness of Γ can be determined in terms of the growth indicator
ψΓ. Fix a Cartan decomposition G = K exp(a+)K where K is a maximal
compact subgroup and a+ is a positive Weyl chamber of a Cartan subalgebra
a. For g ∈ G, there exists a unique element µ(g) ∈ a+ such that g ∈
K expµ(g)K, called the Cartan projection of g.

For a discrete subgroup Γ of G, denote by LΓ ⊂ a+ the limit cone of
Γ, which is defined as the asymptotic cone of µ(Γ). The growth indicator
ψΓ : a+ → R ∪ {−∞}, introduced by Quint [29], is a higher rank version of
the critical exponent. It is −∞ outside the limit cone LΓ. For each v ∈ LΓ,
the value ψΓ(v) represents the exponential growth rate of Γ in the direction
v:

(1.1) ψΓ(v) = ∥v∥ · inf
v∈C

lim sup
T→∞

log#{γ ∈ Γ : µ(γ) ∈ C, ∥µ(γ)∥ ≤ T}
T

where the infimum is taken over all open cones C ⊂ a+ containing v. This
definition is independent of the choice of a norm ∥ · ∥ on a.

Denote by ρ = ρG the half sum of all positive roots of (LieG, a) counted
with multiplicity. The linear form 2ρ ∈ a∗ precisely represents the exponen-
tial volume growth rate of G: for any v ∈ a+,

2ρ(v) = ∥v∥ · inf
v∈C

lim sup
T→∞

log Vol{g ∈ G : µ(g) ∈ C, ∥µ(γ)∥ ≤ T}
T
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where the infimum is taken over all open cones C ⊂ a+ containing v. We
have

ψΓ ≤ 2ρ on a+

for any discrete subgroup Γ < G and ψΓ = 2ρ for Γ lattices [30]. If G has
Kazhdan’s property (T ), there exists a constant ηG > 0 such that for any
non-lattice discrete subgroup Γ of G, we have

ψΓ ≤ (2− ηG)ρ on a+

([8, Theorem 4.4], [31, Theorem 5.1], see also [24, Theorem 7.1]).

Definition 1.3. We say that a discrete subgroup Γ < G has the slow growth
if

ψΓ ≤ ρ on a+.

So the slow growth of Γ means that Γ grows at most half as fast as
the volume growth of G. It turns out that the slow growth property of Γ
determines the temperedness:

ψΓ ≤ ρ on a+ if and only if Γ is tempered.

This was shown in [13] for Borel-Anosov subgroups, and in [25] for general
discrete subgroups.

Theorem 1.4, which is a more elaborate version of theorem 1.2, presents the
first example of a Zariski dense discrete subgroup in a higher rank simple Lie
group G without slow growth. Moreover, these examples have nearly optimal
growth. For n ≥ 3, the identity component of the special orthogonal group
SO◦(n, 2) is a simple Lie group of rank two. As discussed in section 4, we
can identify its positive Weyl chamber a+ with

a+ = {v = (v1, v2, 0, · · · , 0,−v2,−v1) ∈ Rn+2 : v1 ≥ v2 ≥ 0}.
The set of simple roots of SO◦(n, 2) is given by α1(v) = v1− v2 and α2(v) =
v2, and ρ is the following:

ρ(v) =
1

2
(nv1 + (n− 2)v2)

for any v = (v1, v2, 0, · · · , 0,−v2,−v1) ∈ a+.

Theorem 1.4. Let n ≥ 3 and let Γ be the fundamental group of a closed hy-
perbolic n-manifold with properly embedded totally geodesic hyperplane. For
any ε > 0, there exists a non-empty open subset O = O(ε) of Hom(Γ,SO◦(n, 2))
such that for any σ ∈ O, we have the following:

(1) σ(Γ) is a Zariski dense, {α1}-Anosov1, and non-tempered subgroup
of SO◦(n, 2) without slow growth;

(2) for all v ∈ a+, we have

ψσ(Γ)(v) ≤
Å
2(n− 1)

n
+ ε

ã
ρ(v);

1see Def. 6.1 for the definition of Anosov subgroups
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(3) for some unit vector vσ ∈ a+, we have

(1.2) ψσ(Γ)(vσ) ≥
Å
2(n− 1)

n
− ε

ã
ρ(vσ).

Moreover, σ(Γ) has nearly optimal growth in the sense that

(1.3) ψσ(Γ)(vσ) ≥ sup
Λ
ψΛ(vσ)− ε

where Λ ranges over all non-lattice discrete subgroups of SO◦(n, 2).

We have an upper bound on the growth of arbitrary non-lattice discrete
subgroups coming from the effective property (T) of G ([28], see Proposition
4.1). It follows from (1.2) and (1.3) that this bound is nearly realized by
our construction. At least in SO(n, 2), this means that there is no hope of
improving growth gap theorems (e.g. [24]) by additionally assuming Zariski
density. It remains an interesting question whether such an improvement is
possible in other higher rank groups, for example in SLn(R), n ≥ 3.

Remark 1.5. We note that there are many examples of Zariski dense discrete
subgroups in higher rank which are tempered, e.g., the image of any Hitchin
representation of a surface group into a real split simple algebraic group of
higher rank is tempered ([13], [11]).

Our construction of a non-tempered Zariski dense subgroup of SO(n, 2)
goes as follows. We start with a uniform lattice Γ in SO(n, 1) which is an
amalgamated product of two subgroups over a uniform lattice in SO(n−1, 1).
For n ≥ 3, any lattice of the group SO(n, 1) is non-tempered in SO(n, 2)
(Corollary 4.5). The inclusion idΓ : Γ ↪→ SO(n, 2) can be deformed using the
bending construction ([18], [19]), yielding a discrete Zariski dense subgroup
Γ1 of SO(n, 2). The heart of the paper is to show that Γ1 is non-tempered.
We present two proofs. In the first, we consider the Chabauty topology
on the space of closed subgroups of SO(n, 2) and show that the property
of being non-tempered is open, by studying the convergence of the matrix
coefficients of quasi-regular representations2. As a consequence we deduce
that all sufficiently small (discrete) deformations of SO(n, 1) remain non-
tempered, so Γ1 is a non-tempered Zariski dense subgroup, proving Theorem
1.2. For the second proof, we study how the growth indicator of Γ evolves
under the deformation, using the property that Γ is an Anosov subgroup. We
use that the limit cone of the deformation is known to vary continuously in
this setting [19] and that certain critical exponent of Γ1 varies continuously
[5]. This allows us to show that for small deformations, the growth indicator
of Γ1 can be controlled by the growth indicator of Γ and hence it is not
smaller than the half-sum of positive roots ρ, proving Theorem 1.4.

2It was pointed out to us that this part of the argument could be replaced by a general
result of Fell [15, Theorem 4.2] on the continuity of induction. We have decided to keep
our writeup since it is a very explicit construction that gives a slightly stronger statement
on the convergence of K-finite matrix coefficients for semisimple real Lie groups.
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2. Convergence of matrix coefficients and Chabauty topology

Let G be a locally compact second countable group. Let C = CG denote
the space of all closed subgroups of G equipped with the Chabauty topology,
that is, a sequence of closed subgroups Hn converges to H as n → ∞ if for
any element h ∈ H, there exists a sequence hn ∈ Hn with hn → h and the
limit of any convergence sequence hnk

∈ Hnk
belongs to H. The space C is

a compact space. When a sequence Hi converges to a closed subgroup H,
we say that H is the Chabauty limit of Hi. Note that the Chabauty limit of
a sequence of discrete subgroups is not necessarily a discrete subgroup.

For a unimodular closed subgroup H of G, denote by νH a Haar measure
on H. For s ∈ Cc(G) and any locally finite measure ν on H we write

ν(s) :=

∫
s(h)dν(h).

Note that for a non-negative function s ∈ Cc(G) with νH(s) ̸= 0, the normal-
ized measure νH(s)−1νH is independent of the choice of a Haar measure νH .
Let M(G) be the space of all locally finite Borel measures on G, equipped
with the weak∗-topology. Throughout the paper, e denotes the identity ele-
ment of a relevant group.

Proposition 2.1. Let Γn be a sequence of discrete subgroups of G converging
to a closed subgroup H in the Chabauty topology. Then H is unimodular, and
for any non-negative function s ∈ Cc(G) with s(e) > 0, we have

(2.1) lim
n→∞

νΓn(s)
−1νΓn = νH(s)

−1νH in M(G).

Proof. Consider a non-negative function s ∈ Cc(G) with s(e) > 0. For
simplicity, set νn = νΓn and ν ′n := νn(s)

−1νn. Then ν ′n(s) = 1.
First we show that the sequence ν ′n is relatively compact in M(G). Since

s(e) > 0, it follows from the continuity of s that there exists a symmetric
neighborhood U of e such that

κ := inf
g∈U2

s(g) > 0.

Fix any compact subset C of G. Let

mC := max{#F | F ⊂ C, g1U ∩ g2U = ∅ for all g1 ̸= g2 ∈ F}.
Note that

mC ≤ νG(CU)

νG(U)
.
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For any n ∈ N, choose a maximal subset

Fn ⊂ Γn ∩ C

such that g1U ∩ g2U = ∅ for all g1 ̸= g2 ∈ Fn. Then Γn ∩ C ⊂ FnU
2, so

#(Γn ∩ C) ≤ #Fn ·#(Γn ∩ U2) ≤ mC

κ

∫
s(g)dνn(g).

Therefore for all n ∈ N, we have

ν ′n(C) ≤
mC

κ
.

Since C is an arbitrary compact subset of G, it follows that the sequence ν ′n,
n ∈ N, forms a relatively compact subset of M(G).

Let ν ∈ M(G) be a weak-* limit of the sequence ν ′n. By construction, ν
is a locally finite measure supported on H and ν(s) = 1. It remains to show
that ν is a Haar measure on H. Let φ ∈ Cc(G) and h ∈ H. Let γn ∈ Γn be
a sequence with limn→∞ γn = h. Then, since ν ′n is a Haar measure of Γn, we
get∣∣∣∣∫ φ(g)− φ(hg)dν(g)

∣∣∣∣ ≤ ∣∣∣∣∫ φ(g)dν(g)−
∫
φ(g)dν ′n(g)

∣∣∣∣
+

∣∣∣∣∫ φ(γng)dν
′
n(g)−

∫
φ(hg)dν ′n(g)

∣∣∣∣ .
The right hand side converges to 0 as n→ ∞, so ν is indeed left H-invariant.
Similarly, we can show that ν is also a right H-invariant. This proves that H
is unimodular. Since ν(s) = 1, we have ν = νH(s)

−1νH and thus the desired
convergence (2.1) follows from ν ′n → ν. □

Remark 2.2. The normalization of measures by the integral of s is necessary
in the above proposition. For example, if G = SL2(Fp((t))) and

Γn :=

ßÅ
1 f(t)
0 1

ã
| f(t) = ant

n + an+1t
n+1 + · · ·+ a2nt

2n ∈ Fp[t]
™
,

then, as n → ∞, Γn converges to the trivial subgroup {e} in the Chabauty
topology, but the sequence νΓn of counting measures on Γn fails to converge
on the account of mass near identity blowing up to infinity.

On the other hand, we can skip the normalization if the group G has no
small subgroup property. We say that a locally compact groupG has no small
subgroup if there exists a neighborhood of e in G which does not contain
any non-trivial subgroup of G; this notion was first introduced in [23]. It is
a well-known fact that a real Lie group G has no small subgroup; this can
be easily seen, using the fact that the exponential map is a diffeomorphism
of a neighborhood of 0 in g onto a neighborhood of the e in G.
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Proposition 2.3. Suppose that G has no small subgroup property (e.g., real
Lie group). Let Γn be a sequence of discrete subgroups of G which converges
to a discrete subgroup Γ in the Chabauty topology. Then as n→ ∞

lim
n→∞

∑
γ∈Γn

δγ =
∑
γ∈Γ

δγ in M(G)

where δγ denotes the Dirac measure at {γ}.
Proof. Let νn :=

∑
γ∈Γn

δγ and ν :=
∑

γ∈Γ δγ . Let φ ∈ Cc(G). We need to
show that

lim
n→∞

∫
φdνn =

∫
φdν.

Let ε > 0 be arbitrary. Fix a compact subset C ⊂ G and φ ∈ Cc(G)
supported on C. Enlarging C if needed, we may assume that Γ ∩ ∂C = ∅.
By the hypothesis that G has no small subgroup property, there is an open
neighborhood U ⊂ G of the identity e which contains no non-trivial subgroup
of G. We choose an open symmetric neighborhood U1 ⊂ G of e such that

(1) U2
1 ⊂ U ;

(2) γU5
1 ⊂ C for all γ ∈ Γ ∩ C;

(3) the collection γU5
1 , γ ∈ Γ ∩ C, are pairwise disjoint;

(4) for all γ ∈ C ∩ Γ and u ∈ U1,

|φ(γ)− φ(γu)| ≤ ε

#(Γ ∩ C)
.

Consider the following compact subset

C1 := C \
⋃

γ∈Γ∩C
γU1.

Note that Γ ∩ C1 = ∅. Since the sequence Γn converges to Γ in the
Chabauty topology, we have Γn ∩C1 = ∅ and for each fixed γ ∈ Γ∩C, there
exists n0 = n0(γ) ≥ 1 such that

Γn ∩ γU1 ̸= ∅ for all n ≥ n0.

Since Γ ∩ C is finite, we have n0 := max{n0(γ) : γ ∈ Γ ∩ C} <∞.
On the other hand, we claim that for any γ ∈ C ∩ Γ and n ≥ 1,

#(Γn ∩ γU1) ≤ 1.

Indeed, suppose there exists some element γn ∈ Γn ∩ γU1. Then

γ−1
n (Γn ∩ γU1) = Γn ∩ (γ−1

n γU1) ⊂ Γn ∩ U2
1 .

By the no-small-subgroups property of G, we have either Γn ∩ U2
1 = {e} or

there is some element γ′n ∈ Γn ∩ (U4
1 \ U2

1 ); otherwise Γn ∩ U2
1 would be a

non-trivial subgroup. In the second case, we would have

γnγ
′
n ∈ γn(U

4
1 \ U2

1 ) ⊂ γU5
1 \ γU1 ⊂ C \ γU1.

Using property (3), we get γnγ′n ∈ C1, contradicting the fact that Γn∩C1 = ∅.
Therefore we must have Γn ∩U2

1 = {e}. This implies that Γn ∩ γU1 = {γn},
proving the claim.
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Therefore for all γ ∈ Γ∩C and n ≥ n0, we have a unique element γn ∈ Γn
such that Γn ∩ γU1 = {γn}, and γn → γ as n→ ∞. Since∫

φdνn =
∑

γ∈Γ∩C
φ(γn) for all n ≥ n0,

we get from (4) that for all n ≥ n0,∣∣∣∣∫ φdν −
∫
φdνn

∣∣∣∣ ≤ ∑
γ∈Γ∩C

|φ(γ)− φ(γn)| ≤ ε.

This finishes the proof. □

Let G be unimodular and dg a Haar measure on G. For a closed unimod-
ular subgroup H of G, there exists a unique G-invariant measure dH\G on
H\G such that for all ψ ∈ Cc(G),∫

G
ψdg =

∫
H\G

∫
H
ψ(hg)dνH(h)dH\G(Hg).

We then have a unitary representation of G on the Hilbert space

L2(H\G) = {f : H\G→ R :

∫
H\G

|f |2dH\G <∞}

by right translations: g 7→ g.f for g ∈ G and f ∈ L2(H\G).

Proposition 2.4. Let Γn be a sequence of discrete subgroups of G which
converges to a closed unimodular subgroup H in the Chabauty topology. Let
K < G be a compact subgroup of G.

For any vectors v, w ∈ L2(H\G), there exist sequences vn, wn ∈ L2(Γn\G),
n ∈ N such that

(1) for all g ∈ G,

lim
n→∞

⟨vn, g.wn⟩L2(Γn\G) = ⟨v, g.w⟩L2(H\G),

and the convergence is uniform on compact subsets of G;
(2) we have

lim
n→∞

∥vn∥L2(Γn\G) = ∥v∥L2(H\G) & lim
n→∞

∥wn∥L2(Γn\G) = ∥w∥L2(H\G);

(3) we have that for all n ∈ N,

dim⟨K.vn⟩ ≤ dim⟨K.v⟩ & dim⟨K.wn⟩ ≤ dim⟨K.w⟩.

Proof. Since Cc(H\G) is dense in L2(H\G), the matrix coefficient g 7→
⟨v, g.w⟩L2(H\G) can be approximated by the matrix coefficients for contin-
uous compactly supported functions, uniformly on compact subsets of G.
This approximation can be done without increasing the dimensions of the
spaces spanned by the K-orbits of v and w. In fact, let um be a sequence
of compactly supported right K-invariant functions on H\G converging to
the constant function 1 uniformly on compact subsets of H\G. Since the
multiplication by um is K-equivariant, we have dim⟨K.(umv)⟩ ≤ dim⟨K.v⟩,
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similarly for w. The matrix coefficients g 7→ ⟨umv, g.umw⟩L2(H\G) converge
to g 7→ ⟨v, g.w⟩L2(H\G) uniformly on compact sets. Thus we have shown
that v, w can be replaced by compactly supported functions, spanning K-
invariant subspaces of equal or smaller dimension. We need one more step
to replace them by continuous functions.

Let ϕ̃m ∈ Cc(G) be a sequence of non-negative continuous functions with∫
ϕ̃m(g)dg = 1 and support contained in some neighborhood Ũm of e such

that Ũm → {e} as m→ ∞. Define ϕm ∈ Cc(G) by

ϕm(g) =

∫
K
ϕ̃m(k

−1gk)dk for g ∈ G,

where dk is the probability Haar measure on K. Clearly, ϕm is non-negative,
continuous and

∫
ϕm(g)dg = 1. The support of ϕm is contained in Um :=

{kŨmk−1 : k ∈ K}. Note that Um → {e} as m → ∞; otherwise, we have,
by passing to a subsequence, kmgmk−1

m → g for some km ∈ K converging
to k0 ∈ K, gm ∈ Ũm and g ̸= e. Since gm → e as m → ∞, this is a
contradiction.

Consider the convolution v ∗ ϕm:

v ∗ ϕm(Hg) =
∫
G
v(Hgx)ϕm(x

−1)dx for Hg ∈ H\G

and similarly for w ∗ ϕm. The functions v ∗ ϕm and w ∗ ϕm are continuous
compactly supported functions on H\G.

Since the sequence ϕm is an approximate identity, the matrix coefficient
g 7→ ⟨v ∗ ϕm, g.w ∗ ϕm⟩L2(H\G) converges to g 7→ ⟨v, g.w⟩L2(H\G), uniformly
on compact sets. Furthermore, because ϕm is K-conjugation invariant, the
map v 7→ v ∗ϕm commutes with the action of K: k.(v ∗ϕm) = (k.v) ∗ϕm for
all k ∈ K. It follows that

dim⟨K.(v ∗ ϕm)⟩ ≤ dim⟨K.v⟩,

and similarly for w. Therefore, we may assume without loss of generality
that v, w ∈ Cc(H\G).

First, let ṽ0 ∈ C(G) be the lift of v to G, i.e., for all g ∈ G, ṽ0(g) := v(Hg).
We note that

dim⟨K.v⟩ = dim⟨K.ṽ0⟩

Now, we choose a right K-invariant non-negative function φ ∈ Cc(G) such
that

∫
H φ(hg)dνH(h) = 1 for every g ∈ H supp v ∪H suppw.

Define ṽ ∈ Cc(G) by ṽ(g) := φ(g)ṽ0(g) for all g ∈ G. Then for each g ∈ G,
we have ∫

H
ṽ(hg)dνH(h) = v(g).

Moreover
dim⟨K.ṽ⟩ ≤ dim⟨K.ṽ0⟩ = dim⟨K.v⟩.



10 MIKOŁAJ FRĄCZYK AND HEE OH

Choose a non-negative function s ∈ Cc(G) such that s(e) > 0 and∫
H
s(h)dνH(h) = 1.

Set αn :=
∑

γ∈Γn
s(γ), and define vn ∈ C∞

c (Γn\G) as follows: for all g ∈ G,

vn(g) := α−1/2
n

∑
γ∈Γn

ṽ(γg).

Then
dim⟨K.vn⟩ ≤ dim⟨K.ṽ⟩ ≤ dim⟨K.v⟩.

Let w̃ ∈ Cc(G) and wn ∈ C∞
c (Γn\G) be functions constructed in the same

way for the vector w.
We claim that for all g ∈ G,

⟨vn, g.wn⟩L2(Γn\G) → ⟨v, g.w⟩L2(H\G),

uniformly on compact subsets of G. Indeed,

⟨vn, g.wn⟩L2(Γn\G) =α
−1
n

∫
Γn\G

Ñ∑
γ∈Γn

ṽ(γx)
∑
γ′∈Γn

w̃(γ′xg)

é
dx(2.2)

=

∫
G
ṽ(x)

Ñ
α−1
n

∑
γ′∈Γn

w̃(γ′xg)

é
dx.

Proposition 2.1 yields the weak-* convergence of measures

α−1
n

∑
γ′∈Γn

δγ′ → dνH .

It follows that

lim
n→∞

α−1
n

∑
γ′∈Γn

w̃(γ′xg) =

∫
H
w̃(hxg)dνH(h)

and the convergence is uniform for all g and x in a given compact subset of
G. Since ṽ is compactly supported, we get

lim
n→∞

⟨vn, g.wn⟩L2(Γn\G) =

∫
G
ṽ(x)

∫
Γ
w̃(hxg)dνH(h)dx,

and the convergence is uniform for all g in a given compact subset of G.
Since ∫

G
ṽ(x)

∫
Γ
w̃(hxg)dνH(h)dg =

∫
G
ṽ(x)w(Hxg)dx

=

∫
H\G

v(Hx)w(Hxg)dH\G(Hx) = ⟨v, g.w⟩L2(H\G),

this finishes the proof of (1) and (3). The claim (2) follows since the above
argument applies when v = w and g = e and hence gives ⟨vn, vn⟩L2(Γn\G) →
⟨v, v⟩L2(H\G) and similarly for wn and w. □
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Remark 2.5. This proposition implies that if Γn converges to H in the
Chabauty topology, then L2(H\G) is weakly contained in

⊕∞
n=n0

L2(Γn\G)
for all n0 ≥ 1.3

3. Temperedness is a closed condition in Hom(Γ, G)

Let G be a connected semisimple real algebraic group. Let P be a minimal
parabolic subgroup of G with a fixed Langlands decomposition P = MAN
where A is a maximal real split torus of G, M is the maximal compact
subgroup of P , which commutes with A, and N is the unipotent radical of
P . We denote by g and a the Lie algebras of G and A respectively. We
fix a positive Weyl chamber a+ ⊂ a so that logN consists of positive root
subspaces. Let Σ+ = Σ+(g, a) denote the set of all positive roots for (g, a+).
For each α ∈ Σ+, let m(α) be its multiplicity. We also write Π ⊂ Σ+ for the
set of all simple roots. We denote by

(3.1) ρ =
1

2

∑
α∈Σ+

m(α)α

the half sum of the positive roots for (g, a+), counted with multiplicity.
We fix a maximal compact subgroup K of G so that the Cartan decompo-

sition G = K(exp a+)K holds, that is, for any g ∈ G, there exists a unique
element µ(g) ∈ a+ such that g ∈ K expµ(g)K.

Let dg be a Haar measure on G. The right translation action of G on
itself induces the regular representation L2(G) = L2(G, dg):

g.f(x) = f(xg) for all x, g ∈ G and f ∈ L2(G).

Following Harish-Chandra, we call a unitary representation (π,H) of G
tempered if π is weakly contained in the regular representation L2(G). For
v, w ∈ H, the function g 7→ ⟨g.v, w⟩ is called the matrix coefficient of π with
respect to v, w. For any p > 0, a unitary representation (π,H) of G is said
to be almost Lp-integrable if all of its matrix coefficients are Lp+ε-integrable
for any ε > 0.

Denote by Ξ = ΞG the Harish-Chandra function of G. It is a bi-K-
invariant function satisfying that for any ε > 0, there exist c, cε > 0 such
that

ce−ρ(v) ≤ Ξ(exp v) ≤ cεe
−(1−ε)ρ(v) for all v ∈ a+.

We will use the following characterization of a tempered representation of G
given by Cowling, Haggerup and Howe:

Theorem 3.1. [9] For a unitary representation (π,H) of G, the following
are equivalent:

(1) π is tempered;
(2) π is almost L2-integrable;

3Since submitting this paper, we have learned that this conclusion already follows from
[15, Theorem 4.2].
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(3) for any K-finite unit vectors v1, v2 ∈ H and any g ∈ G,

|⟨π(g)v1, v2⟩| ≤ (dim⟨π(K)v1⟩ · dim⟨π(K)v2⟩)1/2 ΞG(g).

Definition 3.2. We say that a unimodular subgroup H is a tempered sub-
group of G (or G-tempered) if the quasi-regular representation L2(H\G) is
a tempered representation of G.

Lemma 3.3. [3, Lem 3.2] Let H be a unimodular closed subgroup of G.
If H is G-tempered, then any unimodular closed subgroup H ′ < H is also
G-tempered.

We show that temperedness is a closed condition both for the Chabauty
topology and the algebraic topology (Theorems 3.4 and 3.6).

Theorem 3.4. The Chabauty limit of a sequence of tempered discrete sub-
groups of G is unimodular and tempered.

Proof. Suppose that Γn is a sequence of tempered discrete subgroups con-
verging to a closed subgroup H in the Chabauty topology. We have H
unimodular by Proposition 2.1. We claim that L2(H\G) is tempered. Sup-
pose not. By Theorem 3.1, there exist K-finite unit vectors v, w ∈ L2(H\G)
and g ∈ G such that

(3.2) ⟨v, g.w⟩L2(H\G) > Ξ(g) dim⟨K.v⟩1/2 dim⟨K.w⟩1/2.

By Proposition 2.4, there exist vn, wn ∈ L2(Γn\G) such that ∥vn∥ → ∥v∥, ∥wn∥ →
∥w∥ as n → ∞, dim⟨K.vn⟩ ≤ dim⟨K.v⟩, dim⟨K.wn⟩ ≤ dim⟨K.w⟩, and
⟨v, g.w⟩L2(H\G) = limn→∞⟨vn, g.wn⟩L2(Γn\G). We deduce that for all n large
enough,

⟨vn, g.wn⟩L2(Γn\G) > Ξ(g) dim⟨K.vn⟩1/2 dim⟨K.wn⟩1/2.

This is a contradiction since L2(Γn\G) is tempered.
Alternatively, one can use [15, Theorem 4.2] that L2(H\G) is weakly

contained in the direct sum
⊕∞

n=1 L
2(Γn\G). If Γn were all tempered, we

would deduce that L2(H\G) is weakly contained in
⊕∞

n=1 L
2(G), hence in

L2(G), which then implies that H is tempered. □

Definition 3.5. We say that a sequence of discrete subgroups Γi of G con-
verges to a discrete subgroup Γ algebraically if there exists a sequence of
isomorphisms

χi : Γ → Γi

such that for all γ ∈ Γ, χi(γ) converges to γ as i → ∞. In other words, χi
converges to the natural inclusion idΓ in Hom(Γ, G). In this case, Γ is called
the algebraic limit of Γi

Theorem 3.6. The algebraic limit of a sequence of tempered discrete sub-
groups of G is tempered.
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Proof. Let Γi be a sequence of tempered discrete subgroups of G which
converges to a discrete subgroup Γ algebraically. By passing to a subsequence
if necessary, we may assume that Γi converges to a closed subgroup H in the
Chabauty topology. Since Γ is the algebraic limit of Γi, we have

Γ < H.

By Theorem 3.4, H is unimodular and tempered. Since any closed uni-
modular subgroup of a tempered subgroup is tempered by Lemma 3.3, Γ is
tempered as desired. □

The following is an equivalent formulation of Theorem 3.6:

Theorem 3.7. If a discrete subgroup Γ is a non-tempered subgroup of G,
there exists an open neighborhood O of idΓ in Hom(Γ, G) such that for any
σ ∈ O, σ(Γ) is non-tempered.

4. Growth indicator of a lattice of SO(n, 1) as a subgroup of
SO(n, 2)

Let G = SO◦(n, 2) for n ≥ 2. Consider the quadratic form

Q(x1, · · · , xn+2) = x1xn+2 + x2xn+1 +
n∑
i=3

x2i .

We realize G as the identity component of the following special orthogonal
group

SO(Q) = {g ∈ SLn+2(R) : Q(gX) = Q(X) for all X ∈ Rn+2}.

Consider the diagonal subgroup

A = {diag(et1 , et2 , 1 · · · , 1, e−t2 , e−t1) : t1, t2 ∈ R},

which is a maximal real split torus of G. We denote by g the Lie algebra of
G and set

a = {v = diag(v1, v2, 0, · · · , 0,−v2,−v1) : v1, v2 ∈ R} = logA.

For simplicity, we write v = (v1, v2, 0, · · · , 0,−v2,−v1) for an element of a.
Choose a positive Weyl chamber

(4.1) a+ = {v = (v1, v2, 0, · · · , 0,−v2,−v1) : v1 ≥ v2 ≥ 0}.

Since G is invariant under the Cartan involution g 7→ g−T ,

K = {g ∈ G : ggT = e} = G ∩ SO(n+ 2)

is a maximal compact subgroup of G and we have the Cartan decomposition
G = K(exp a+)K. We denote by µ : G→ a+ the Cartan projection of G.

We then have two simple (restricted) roots α1 and α2 for (g, a) given by

α1(v) = v1 − v2 and α2(v) = v2 for all v ∈ a.
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By explicit computation of g, we can see that the set of all positive roots
of g is given by

Σ+(g, a) = {α1, α2, α1 + α2, α1 + 2α2}.

The sum of root subspaces is given by

{à0 x Y1 z 0
0 0 Y2 0 −z

−Y t
1 −Y t

2

0 −x
0 0

í
: x, z ∈ R, Y1, Y2 ∈ Rn−2

}
.

where the subspaces corresponding to x ∈ R, Y1 ∈ Rn−2, Y2 ∈ Rn−2, and
z ∈ R are root subspaces for α1, α1 + α2, α2 and α1 + 2α2 respectively.
Hence the multiplicities are given by

m(α1) = m(α1 + 2α2) = 1

and
m(α1 + α2) = m(α2) = n− 2.

Since (α1 + α2)(v) = v1 and (α1 + 2α2)(v) = v1 + v2, the half sum of all
positive roots counted with multiplicity is

(4.2) ρ(v) =
∑
α∈Σ+

m(α)α(v) =
1

2
(nv1 + (n− 2)v2) for v ∈ a+.

Bound on growth indicator for general non-lattice subgroups. Re-
call the definition of the growth indicator of a discrete subgroup of G from
(1.1). For any discrete subgroup Γ of G, the growth indicator ψΓ is concave
and upper-semicontinuous. Since dim a+ = 2, it follows that ψΓ is continuous
on the limit cone LΓ.

The quantitative Kazhdan’s property (T ) of the group G obtained in [28]
yields the following explicit upper bound:

Proposition 4.1. For any non-lattice discrete subgroup Γ of G, we have

ψΓ(v) ≤ (n− 1)v1 + (n− 2)v2 for all v ∈ a+.

Proof. By [24, Theorem 7.1], we have

ψΓ(v) ≤ (2ρ−Θ)(v) for all v ∈ a+

where Θ is the half sum of all roots in a maximal strongly orthogonal system
of Σ+(g, a). Since {α1, α1 + 2α2} is a maximal strongly orthogonal system,
we have

Θ(v) = v1 for all v ∈ a+.

Therefore
(2ρ−Θ)(v) = (n− 1)v1 + (n− 2)v2,

proving the claim. □



NON-TEMPERED SUBGROUPS 15

Growth indicator for discrete subgroups of G that are lattices of
H. Let H = SO◦(n, 1). The restriction of the quadratic form Q to the
hyperplane V := {x1 = xn+2} yields a quadratic form Q0 = Q|V in (n+ 1)
variables. We identify

H = SO◦(n, 1) = {g ∈ G : g(V ) = V } = SO◦(Q0).

SinceH is invariant under the Cartan involution g 7→ g−T , the intersection
K ∩H is a maximal compact subgroup of H. Denoting by h the Lie algebra
of H, we have

h ∩ a = {diag(0, v2, 0, · · · , 0,−v2, 0) : v2 ∈ R}.

Note that the Cartan projection µ(H) is equal to a+ ∩ kerα2:

µ(H) = {v = (v1, 0, · · · , 0,−v1) : v1 ≥ 0}.

To see that, apply the Weyl element switching the first two rows (and
hence the last two rows) to h∩a, resulting in {(v2, 0, . . . , 0,−v2) : v2 ∈ R} =
kerα2.

Proposition 4.2. Let Γ < G be a discrete subgroup such that Γ is a lattice
of H. Then

(4.3) ψΓ(v) =

®
(n− 1)v1 for v = (v1, 0, · · · , 0− v1), v1 ≥ 0

−∞ for v /∈ µ(H)

In other words,

(4.4) ψΓ ≤ 2(n− 1)

n
ρ on a+.

with the equality on µ(H).

Proof. Since Γ is a lattice of H, the limit cone of Γ satisfies

LΓ = µ(H) = a+ ∩ kerα2.

Hence for v /∈ µ(H), ψΓ(v) = −∞. Let ∥ · ∥ denote the norm on a in-
duced from the Riemannian metric on G/K. Since H/H ∩ K ⊂ G/K is
an isometric embedding, we have that for all h ∈ H, ∥µ(h)∥ is equal to the
Riemannian distance dH/H∩K(ho, o) in H/(H ∩K). Since ψΓ is independent
of the choice of a norm, we may assume that for all h ∈ H, ∥µ(h)∥ is equal
to the hyperbolic distance dHn(ho, o) by identifying H/(H∩K) ≃ Hn, which
is equivalent to ∥(v1, 0, · · · , 0,−v1)∥ = v1. Since Γ < H is a lattice, we have

#{γ ∈ Γ : dHn(γo, o) < T} ∼ Ce(n−1)T as T → ∞

(cf. [12], [14]). Hence for v = (v1, 0, · · · , 0,−v1) with v1 ≥ 0,

ψΓ(v) = ∥v∥ lim sup
T→∞

log#{γ ∈ Γ : ∥µ(γ)∥ ≤ T}
T

= (n− 1)v1.

Since ρ(v1, 0, · · · , 0,−v1) = n
2 v1 by (6.4), the claim follows. □
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Remark 4.3. Note that the upper bound (4.4) already follows from Proposi-
tion 4.1. The above proposition shows that that upper bound is optimal for
the case at hand.

We recall the following criterion on the temperedness of L2(Γ\G).

Theorem 4.4. ([13], [25, Theorem 5.1]) For any discrete subgroup Γ of a
connected semisimple real algebraic group G, we have

ψΓ ≤ ρ if and only if Γ is a tempered subgroup of G.

Moreover, if ψΓ ≤ (1 + η)ρ, then L2(Γ\G) is almost Lp for p ≤ 2
1−η .

That L2(Γ\G) is almost Lp means that every matrix coefficient of the
quasi-regular representation L2(Γ\G) is Lp+ε-integrable for any ε > 0. By
Theorem 3.1, a discrete subgroup Γ is G-tempered if and only if L2(Γ\G) is
almost L2.

Since ψΓ = 2(n−1)
n ρ on µ(H) by Proposition 4.2, we obtain the following

examples of non-tempered subgroups of G:

Corollary 4.5. Let Γ be a lattice of H = SO◦(n, 1), considered as a subgroup
of G = SO◦(n, 2). Then

Γ is G-tempered if and only if n = 2.

Moreover, for each n ≥ 2,

L2(Γ\G) is almost Ln.

5. Deformations and non-tempered Zariski dense examples

Let G = SO◦(n, 2) and H = SO◦(n, 1) = Isom+(Hn). Let Γ be a torsion-
free uniform lattice of H such that M = Γ\Hn is a closed hyperbolic n-
manifold with properly embedded totally geodesic hyperplane S.

Remark 5.1. For any n ≥ 2, such Γ exists, for instance, consider a quadratic
form Q0(x1, · · · , xn+1) =

∑n
i=1 x

2
i −

√
dx2n+1 for a square-free integer d. Let

Γ < SO(Q0)∩SLn+1(Z
√
d) be a torsion -free subgroup of finite index. Then

Γ is a uniform lattice of SO(Q0) [4]. Considering SLn as a subgroup of SLn+1

embedded as the lower diagonal block subgroup, the intersection ∆ = Γ∩SLn
is a uniform lattice of SO(Q0) ∩ SLn ≃ SO(n − 1, 1). Now M = Γ\Hn is a
closed hyperbolic n-manifold with a properly embedded geodesic hyperplane
S = ∆\Hn−1.

We may assume that Γ∩SO(n−1, 1) = ∆ is a uniform lattice of SO(n−1, 1)
by replacing Γ by a conjugate if necessary.

We briefly recall the bending construction of Johnson-Millson [18]. Their
bending was constructed with the ambient group SLn+2(R). We use a
modification by Kassel [19, Sec. 6] where the bending was done inside
G = SO◦(n, 2). There exists a one-parameter subgroup at ∈ G which cen-
tralizes SO(n − 1, 1). If S is separating, i.e., M − S is the disjoint union of
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two connected components M1 and M2, then Γ = Γ1 ∗∆ Γ2. Consider the
homomorphism σt : Γ → G given by

σt(γ) =

®
γ for γ ∈ Γ1

atγa−t for γ ∈ Γ2.

Since at commutes with ∆, σt is well-defined. If S does not separate M ,
then Γ is an HNN extension of ∆, and we have a homomorphism σt defined
similarly (cf. [19, Sec 6.3]).

The following Zariski density and discreteness results were obtained in [19]
and [17] respectively:

Proposition 5.2. For all sufficiently small t ̸= 0, σt(Γ) is discrete and
Zariski dense in G = SO◦(n, 2).

We now give a proof of Theorem 1.2:

Theorem 5.3. Let n ≥ 3. For all sufficiently small t ̸= 0, the subgroup σt(Γ)
is a non-tempered, Zariski dense and discrete subgroup of G = SO◦(n, 2).

Proof. The subgroup Γ is a non-tempered subgroup of G for n ≥ 3 by Corol-
lary 4.5. Hence the claim follows from Theorem 3.7 and Proposition 5.2. □

6. Anosov representations and non-temperedness

In this section, we prove a stronger result than Theorem 1.2 using the
theory of Anosov representations. We keep the notations for G = SO◦(n, 2),
H = SO◦(n, 1), a, α1, α2 etc from Section 4. Let Γ be a torsion-free uniform
lattice of H such that the closed hyperbolic manifold Γ\Hn has a properly
embedded totally geodesic hyperplane as in Section 5.

Definition 6.1. For a non-empty subset θ ⊂ Π = {α1, α2}, a finitely gen-
erated subgroup Γ0 of G is called θ-Anosov if there exists C > 0 such that
for all γ ∈ Γ0 and α ∈ θ, we have

α(µ(γ)) ≥ C−1|γ| − C

where |γ| denotes the word length of γ with respect to a fixed finite generating
subset of Γ0. A Π-Anosov subgroup is called Borel-Anosov.

Lemma 6.2. The subgroup Γ is an {α1}-Anosov subgroup of G.

Proof. Note that β1 := −α1 restricted to h ∩ a is a simple root of (h, h ∩ a)
with respect to the choice of a positive Weyl chamber (h ∩ a)+ = {v =
(0, v2, 0, · · · , 0,−v2, 0) : v2 ≥ 0}. Since Γ is a uniform lattice of H, it is
in particular a convex cocompact subgroup of H, and hence a {β1}-Anosov
subgroup of H [16]. Therefore there exists C ≥ 1 such that for all γ ∈ Γ,

β1(µH(γ)) ≥ C−1|γ| − C

where µH denotes the Cartan projection map of H. Since

β1 ◦ µH = α1 ◦ µ|H ,
it follows that α1(µ(γ)) ≥ C−1|γ|−C for all γ ∈ Γ. This proves the claim. □
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Theorem 6.3. Let n ≥ 3, and G = SO◦(n, 2). There exists a non-empty
open subset O of Hom(Γ, G) such that for any σ ∈ O, we have

(1) σ is injective and discrete;
(2) σ(Γ) is a Zariski dense {α1}-Anosov subgroup of G;
(3) σ(Γ) is not G-tempered.

By [1, Proposition 8.2], the set of Zariski dense representations of Γ forms
an open subset of Hom(Γ, G), which we know is non-empty by Proposition
5.2. Moreover, all Anosov representations are discrete with finite kernel and
the set of all {α1}-Anosov representations forms an open subset in Hom(Γ, G)
by ([16], [20]). Since Γ is assumed to be torsion-free, Theorem 6.3 follows
from Theorem 3.7 and non-temperedness of Γ.

In the rest of this section, we will give a different proof of Theorem 6.3(3)
using the continuity of limit cones under a small deformation of Γ and the
Anosov property of Γ.

For any discrete subgroup Γ0 of G and any linear form ψ ∈ a∗ such that
ψ > 0 on LΓ0 − {0}, denote by

δψ,Γ0

the abscissa of convergence of the series s 7→
∑

γ∈Γ0
e−sψ(µ(γ)). This is well-

defined and 0 ≤ δψ,Γ0 <∞. Since ρ > 0 on a+−{0}, δρ,Γ0 is well-defined for
any discrete subgroup Γ0 < G. Theorem 4.4 can be reformulated as follows:

Proposition 6.4. For any discrete subgroup Γ0 of a connected semisimple
real algebraic group G0, we have

δρ,Γ0 ≤ 1 if and only if Γ0 is G0-tempered.

Proof. By [21, Theorem 2.5], we have

ψΓ0 ≤ δρ,Γ0 · ρ

and ψΓ0(v) = δρ,Γ0 · ρ(v) for some non-zero v ∈ a+. Therefore the claim
follows from Theorem 4.4. □

Set
aα1 = kerα2 and a+α1

= a+ ∩ kerα2.

Let pα1 : a → aα1 denote the unique projection invariant under the Weyl
element fixing aα1 pointwise, which is simply the reflection about aα1 . The
space of linear forms a∗α1

can be identified with the set of all linear forms in
a∗ which are invariant under pα1 .

The following was obtained by Bridgeman, Canary, Labourie and Sam-
barino using thermodynamic formalism:

Theorem 6.5. [5] For any ψ ∈ a∗α1
which is positive on a+α1

− {0}, the
critical exponent δψ,σ(Γ) varies analytically on any sufficiently small analytic
neighborhood of an {α1}-Anosov representation of Hom(Γ, G).
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Since Γ is a convex cocompact subgroup of H, the following is a special
case of Kassel’s theorem [19, Proposition 5.1]:

Proposition 6.6. For any η > 0, we have an open neighborhood O of idΓ
in Hom(Γ, G) such that for any σ ∈ O, the limit cone of σ(Γ) is contained
in Cη := {v ∈ a+ : ∥v − aα1∥ < η∥v∥}.

Remark 6.7. For the bending deformations σt discussed in section 5, we
always have a non-trivial element of γ (of infinite order) such that σt(γ) = γ,
and hence µ(σt(γ)) ∈ µ(H)−{0}. Therefore we have the following property:
for all sufficiently small t ̸= 0, the limit cone of σt(Γ) contains the ray µ(H).
Since σt(Γ) is Zariski dense, its limit cone is convex and has non-empty
interior [2]. Therefore Proposition 6.6 implies that that the limit cone of
σt(Γ) is the convex cone given

(6.1) Lσt(Γ) = {v = (v1, v2, 0, · · · ,−v2,−v1) ∈ a+ : 0 ≤ v2 ≤ cσtv1}

where cσt > 0 tends to 0 as t→ 0.

Recall from Proposition 4.2. that

δρ,Γ =
2(n− 1)

n
.

The following proposition gives an alternative proof of Theorem 6.3(3):

Proposition 6.8. For any sufficiently small ε > 0, there exists an open
neighborhood O = O(ε) of idΓ in Hom(Γ, G) such that for any σ ∈ O,∣∣∣∣δρ,σ(Γ) − 2(n− 1)

n

∣∣∣∣ < ε.

In particular, for n ≥ 3, we have ψΓ ̸≤ ρ; and hence σ(Γ) is non-tempered
in G for all σ ∈ O(n−2

n )

Proof. Let ρ′ be the restriction of ρ to aα1 . We may consider ρ′ as a linear
form on a invariant under pα1 . Note that ρ′ is non-negative on a+α1

.
Let ε > 0. We can find η > 0 so that for any v ∈ Cη = {v ∈ a+ :

∥v − aα1∥ < η∥v∥},

−ερ(v) ≤ (ρ− ρ′)(v) ≤ ερ(v).

We can take a small neighborhood O of idΓ so that for any σ ∈ O, the limit
cone of σ(Γ) is contained in the cone Cη by Proposition 6.6. In particular,
µ(σ(γ)) ∈ Cη for all γ ∈ Γ except for some finite subset Fσ. Then for any
σ ∈ O, we have that for all s > 0,∑

γ∈Γ−Fσ

e−(1−ε)sρ(µ(σ(γ))) ≥
∑

γ∈Γ−Fσ

e−sρ
′(µ(σ(γ))).

It follows that

δ(1−ε)ρ,σ(Γ) ≥ δρ′,σ(Γ) and hence δρ,σ(Γ) ≥ (1− ε)δρ′,σ(Γ).
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Similarly, we have∑
γ∈Γ−Fσ

e−(1+ε)sρ(µ(σ(γ))) ≤
∑

γ∈Γ−Fσ

e−sρ
′(µ(σ(γ))),

δ(1+ε)ρ,σ(Γ) ≤ δρ′,σ(Γ) and hence δρ,σ(Γ) ≤ (1 + ε)δρ′,σ(Γ).

Therefore

(6.2) (1− ε)δρ′,σ(Γ) ≤ δρ,σ(Γ) ≤ (1 + ε)δρ′,σ(Γ).

By replacing O by a smaller neighborhood of idΓ if necessary, we may
assume that

(6.3) |δρ′,σ(Γ) − δρ′,Γ| ≤ ε for all σ ∈ O

by Theorem 6.5.
Hence using that 1 ≤ δρ,Γ = 2(n − 1)/n ≤ 2, we deduce from (6.2) and

(6.3) that

|δρ,σ(Γ) − δρ,Γ| < 5ε for all σ ∈ O .

Since δρ,Γ = 2(n− 1)/n, the claim follows. □

We can also obtain the following estimates for the growth indicator ψσ(Γ):

Corollary 6.9. For any sufficiently small ε > 0, there exists an open neigh-
borhood O = O(ε) of idΓ in Hom(Γ, G) such that for any σ ∈ O,

ψσ(Γ)(v) ≤
Å
2(n− 1)

n
+ ε

ã
ρ(v) for all v ∈ a+

and

(6.4) ψσ(Γ)(vσ) ≥
Å
2(n− 1)

n
− ε

ã
ρ(vσ) for some unit vector vσ ∈ a+.

Moreover, vσ converges to a unit vector in aα1 as σ → idΓ.

Proof. Recall that ψσ(Γ) ≤ δρ,σ(Γ)ρ and ψσ(Γ)(vσ) = δρ,σ(Γ)ρ(vσ) for some
non-zero vector vσ on the limit cone Lσ(Γ) [21, Theorem 2.5]. Hence the
inequalities follow from Proposition 6.8. The last claim follows from Propo-
sition 6.6. □

Finally, since vσ is of the form (vσ,1, cσvσ,1, 0, · · · ,−cσvσ,1,−vσ,1) for some
vσ,1 > 0 with cσ → 0, the inequality (6.4) and Proposition 4.1 imply the
inequality (1.3) in Theorem 1.4. Hence, together with Theorem 6.3, Propo-
sition 6.8 and Corollary 6.9, this completes the proof of Theorem 1.4.
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