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Zariski-dense non-tempered subgroups
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By Mikołaj Frączyk at Kraków and Hee Oh at New Haven

This article is part of the special bicentennial issue 2026 of Crelle’s journal.

Abstract. We construct the first example of a Zariski-dense, discrete, non-lattice sub-
group �0 of a higher rank simple Lie group G, which is non-tempered in the sense that
the quasi-regular representation L2.�0nG/ is non-tempered. More precisely, let n � 3 and
let � be the fundamental group of a closed hyperbolic n-manifold that contains a properly
embedded totally geodesic hyperplane. We show that there exists a non-empty open subset O

of Hom.�; SO.n; 2// such that, for any � 2 O, the subgroup �.�/ is a Zariski-dense and non-
tempered Anosov subgroup of SO.n; 2/. In addition, the growth indicator of �.�/ is nearly
optimal: it almost realizes the supremum of growth indicators among all non-lattice discrete
subgroups, a bound imposed by property (T) of SO.n; 2/.

1. Introduction

LetG be a connected semisimple real algebraic group. Let � < G be a discrete subgroup
of G. Denote by dx a G-invariant measure on the homogeneous space �nG. Consider the
Hilbert space L2.�nG/ D L2.�nG; dx/. The right translation action of G on �nG induces
a unitary representation of G on L2.�nG/, called the quasi-regular representation.

A unitary representation .�;H / of G is called tempered if it is weakly contained in
the (right) regular representation L2.G/, i.e., any diagonal matrix coefficients of .�;H / can
be approximated by a convex linear combination of diagonal matrix coefficients of L2.G/,
uniformly on compact subsets of G. This notion, due to Harish-Chandra, plays a central role in
harmonic analysis on semisimple groups.

Definition 1.1. We call a discrete subgroup � tempered in G if its quasi-regular repre-
sentation L2.�nG/ is tempered.
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Temperedness of � is equivalent to the statement that all matrix coefficients of L2.�nG/
areL2C"-integrable for any " > 0 (see [10]). IfG has Kazhdan’s property (T), that is, all simple
factors ofG have rank at least 2 or are isogenous to Sp.n; 1/ or F .�20/4 , then a quantitative form
of property (T) implies the existence of p D pG > 0 such that, for any non-lattice discrete
subgroup � < G, all matrix coefficients of L2.�nG/ are Lp-integrable [9, 26, 31].

In rank-one groups, the situation is quite different, for example, any lattice admits a non-
elementary infinite index normal subgroup [11], whereas the Margulis normal subgroup theo-
rem precludes such behavior in higher rank. Moreover, there are also convex cocompact sub-
groups of SO.n; 1/, n � 2, whose critical exponents can be made arbitrarily close to the volume
entropy of the hyperbolic n-space Hn, that is, n � 1 (see [29, Section 6]; such examples cannot
occur in higher rank because of (1.2)). These high-exponent groups furnish Zariski-dense,
non-tempered subgroups by [30, Theorem 1.4] and [8, Theorem 4.2].

For higher rank groups, previously known non-tempered examples were all lattices of
a proper algebraic subgroup ofG (see [7, Example B], [3]). It remained open whether one could
find a Zariski-dense, non-lattice, non-tempered subgroup of a higher rank simple groupG. Our
main result answers this in the affirmative.

Theorem 1.2. For each n � 3, there exists a Zariski-dense, non-lattice, non-tempered
subgroup of SO.n; 2/.

Remark 1.3. For a geometrically finite discrete subgroup � < SO.n; 1/, the hyperbolic
manifold �nHn possesses a square-integrable base eigenfunction of the Laplacian if and only if
� is non-tempered [32,37,38]. By contrast, a recent result of [15] shows that, for any non-lattice
discrete subgroup � of a higher rank simple algebraic group G, the base eigenfunction on the
corresponding locally symmetric manifold is never square-integrable. Hence the appearance of
a non-tempered subgroup in Theorem 1.2 underscores another sharp distinction in the behavior
of infinite-volume locally symmetric manifolds between the higher rank and rank-one cases.

Temperedness of � can be characterized in terms of its growth indicator  � . Fix a Cartan
decomposition G D K exp.aC/K, where K is a maximal compact subgroup and aC is a pos-
itive Weyl chamber of a Cartan subalgebra a. There exists a unique element �.g/ 2 aC for
g 2 G such that g 2 K exp�.g/K, called the Cartan projection of g.

For a discrete subgroup � ofG, denote by L� � aC its limit cone, which is defined as the
asymptotic cone of �.�/. The growth indicator  G;� D  � W aC ! R [ ¹�1º, introduced by
Quint [34], is a higher rank version of the critical exponent. It is�1 outside the limit cone L� .
For each v 2 L� , the value  �.v/ encodes the exponential growth rate of � in the direction v,

(1.1)  �.v/ D kvk � inf
v2C

lim sup
T!1

log #¹
 2 � W �.
/ 2 C ; k�.
/k � T º

T
;

where the infimum is taken over all open cones C � aC containing v. This definition is inde-
pendent of the choice of a norm k � k on a.

Denote by � D �G the half-sum of all positive roots of .LieG; a/ counted with mul-
tiplicity. The linear form 2� 2 a� gives the exponential volume growth rate of G: for any
v 2 aC,

2�.v/ D kvk � inf
v2C

lim sup
T!1

log Vol¹g 2 G W �.g/ 2 C ; k�.
/k � T º

T
;
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where the infimum is taken over all open cones C � aC containing v. We have  � � 2�
on aC for any discrete subgroup � < G and equality holds for lattices � (see [33]). If G has
Kazhdan’s property (T), there exists a constant �G > 0 such that, for any non-lattice discrete
subgroup � of G, we have

(1.2)  � � .2 � �G/� on aC

(see [9, Theorem 4.4], [35, Theorem 5.1], and also [27, Theorem 7.1]).

Definition 1.4. A discrete subgroup � < G has slow growth if  � � � on aC.

The slow growth means, informally, that the number of elements of � in a ball of radiusR
inG is bounded (up to sub-exponential factors) by a constant times the square root of the ball’s
volume as R!1. It turns out that the slow growth property of � determines the tempered-
ness:  � � � on aC if and only if � is tempered. This was shown in [16] for Borel–Anosov
subgroups, and in [28] for general discrete subgroups.

Theorem 1.5, which is a more elaborate version of Theorem 1.2, provides the first Zariski-
dense, non-lattice subgroups of higher rank simple Lie groups that do not have slow growth.
Moreover, these examples have nearly optimal growth. For n � 3, the identity component of
the special orthogonal group SOı.n; 2/ is a simple Lie group of rank two. As discussed in
Section 4, we can identify its positive Weyl chamber aC with

aC D ¹v D .v1; v2; 0; : : : ; 0;�v2;�v1/ 2 RnC2 W v1 � v2 � 0º:

The set of simple roots of SOı.n; 2/ is given by ˛1.v/ D v1 � v2 and ˛2.v/ D v2, and � is the
following:

�.v/ D
1

2

�
nv1 C .n � 2/v2

�
for any v D .v1; v2; 0; : : : ; 0;�v2;�v1/ 2 aC.

Theorem 1.5. Let n � 3 and let � be the fundamental group of a closed hyperbolic
n-manifold with a properly embedded totally geodesic hyperplane. For any " > 0, there exists
a non-empty open subset O D O."/ of Hom.�; SOı.n; 2// such that, for any � 2 O, the fol-
lowing hold:

(1) �.�/ is a Zariski-dense, ¹˛1º-Anosov1), and non-tempered subgroup of SOı.n; 2/ with-
out slow growth;

(2) for all v 2 aC, we have

 �.�/.v/ �
�2.n � 1/

n
C "

�
�.v/I

(3) there exists a unit vector v� 2 aC such that

(1.3)  �.�/.v� / �
�2.n � 1/

n
� "

�
�.v� /:

Moreover, �.�/ has nearly optimal growth in the sense that

(1.4)  �.�/.v� / � sup
ƒ

 ƒ.v� / � ";

where the supremum is taken over all non-lattice discrete subgroups ƒ < SOı.n; 2/.
1) See Definition 6.1 for the notion of an Anosov subgroup.
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We have an upper bound on the growth of arbitrary non-lattice discrete subgroups coming
from the effective property (T) of G (see [31] and Proposition 4.1). Inequalities (1.3) and (1.4)
show that our examples almost saturate this bound. At least inside SO.n; 2/, this means that one
cannot hope to improve existing growth-gap theorems (e.g. [27]) by merely imposing Zariski-
density. It remains an intriguing question whether such an improvement is possible in other
higher rank groups, for example in SLn.R/, n � 3.

Remark 1.6. There are many examples of Zariski-dense discrete subgroups in higher
rank that are tempered, for instance, the image of any Hitchin representation of a surface group
into a real split simple algebraic group of higher rank [12, 16].

Our construction of a non-tempered Zariski-dense subgroup of SO.n; 2/ goes as follows.
We begin with a uniform lattice � in SO.n; 1/ that decomposes as an amalgamated product
of two subgroups over a uniform lattice in SO.n � 1; 1/. For n � 3, any lattice of SO.n; 1/ is
non-tempered, when viewed inside SO.n; 2/ (Corollary 4.6). The inclusion id� W� ,! SO.n; 2/
can be deformed via the bending construction [22, 24], yielding a discrete Zariski-dense sub-
group �1 of SO.n; 2/. The heart of the paper is to show that �1 is non-tempered. We present
two proofs. In the first, we consider the Chabauty topology on the space of closed subgroups
of SO.n; 2/ and show that the property of being non-tempered is open, by studying the con-
vergence of the matrix coefficients of quasi-regular representations2). As a consequence, all
sufficiently small (discrete) deformations of SO.n; 1/ remain non-tempered, so �1 satisfies
Theorem 1.2. For the second proof, we track how the growth indicator of � evolves under the
deformation, using the property that � is an Anosov subgroup. The limit cone of the defor-
mation is known to vary continuously in this setting [24] (see also [13]) and a certain critical
exponent of �1 varies continuously as well [6]. Hence, for small deformations, the growth indi-
cator of �1 can be controlled by the growth indicator of � and hence it is not smaller than the
half-sum of positive roots �, proving Theorem 1.5.

2. Convergence of matrix coefficients and Chabauty topology

Let G be a locally compact second countable group. Let C D CG denote the space of
all closed subgroups of G equipped with the Chabauty topology, that is, a sequence of closed
subgroups Hn converges to H as n!1 if, for any element h 2 H , there exists a sequence
hn 2 Hn with hn ! h and the limit points of any sequence gn 2 Hn belong to H . The space
C is a compact space. When a sequence Hi converges to a closed subgroup H , we say that H
is the Chabauty limit of Hi . Note that the Chabauty limit of a sequence of discrete subgroups
is not necessarily a discrete subgroup.

For a unimodular closed subgroup H of G, denote by �H a Haar measure on H . For
s 2 Cc.G/ and any locally finite measure � on H , we write

�.s/´

Z
H

s.h/ d�.h/:

2) Fell’s continuity of induction theorem [18, Theorem 4.2] yields a more general statement; we keep our
explicit proof because it gives a slightly stronger result for K-finite matrix coefficients for semisimple real Lie
groups.
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Note that, for a non-negative function s 2 Cc.G/ with �H .s/ ¤ 0, the normalized measure
�H .s/

�1�H is independent of the choice of a Haar measure �H . Let M.G/ be the space of all
locally finite Borel measures on G, equipped with the weak-* topology. Throughout the paper,
e denotes the identity element of a relevant group.

Proposition 2.1. Let �n be a sequence of discrete subgroups of G converging to a
closed subgroupH in the Chabauty topology. ThenH is unimodular, and for any non-negative
function s 2 Cc.G/ with s.e/ > 0, we have

(2.1) lim
n!1

��n.s/
�1��n D �H .s/

�1�H in M.G/:

Proof. Consider a non-negative function s 2 Cc.G/ with s.e/ > 0. For simplicity, set
�n D ��n and �0n´ �n.s/

�1�n. Then �0n.s/ D 1.
First we show that the sequence �0n is relatively compact in M.G/. Since s.e/ > 0, it

follows from the continuity of s that there exists a symmetric neighborhood U of e such that
� ´ infg2U 2 s.g/ > 0. Fix any compact subset C of G. Let

mC ´ max¹#F W F � C; g1U \ g2U D ; for all g1 ¤ g2 2 F º:

Note that

mC �
�G.CU /

�G.U /
:

For any n 2 N, choose a maximal subset Fn � �n \ C such that g1U \ g2U D ; for all
g1 ¤ g2 2 Fn. Then �n \ C � FnU 2, so

�n.C / � #Fn � �n.U 2/ �
mC

�

Z
s.g/ d�n.g/:

Therefore, for all n 2 N, we have

�0n.C / �
mC

�
:

Since C is an arbitrary compact subset of G, it follows that the sequence �0n, n 2 N, forms
a relatively compact subset of M.G/.

Let � 2M.G/ be a weak-* limit of the sequence �0n. By construction, � is a locally finite
measure supported on H and �.s/ D 1. It remains to show that � is a Haar measure on H . Let
' 2 Cc.G/ and h 2 H . Let 
n 2 �n be a sequence with limn!1 
n D h. Then, since �0n is
a Haar measure of �n, we getˇ̌̌̌Z

'.g/ � '.hg/ d�.g/

ˇ̌̌̌
�

ˇ̌̌̌Z
'.g/ d�.g/ �

Z
'.g/ d�0n.g/

ˇ̌̌̌
C

ˇ̌̌̌Z
'.
ng/ d�

0
n.g/ �

Z
'.hg/ d�0n.g/

ˇ̌̌̌
C

ˇ̌̌̌Z
'.hg/ d�0n.g/ �

Z
'.hg/ d�.g/

ˇ̌̌̌
:

The first and the third term converge to zero since �0n weakly converges to �. The middle term
goes to zero because '.
n � / converges uniformly to '. � /. Hence, the right-hand side converges
to 0 as n!1, so � is indeed left H -invariant. Similarly, we can show that � is also a right
H -invariant. This proves that H is unimodular. Since �.s/ D 1, we have � D �H .s/�1�H and
thus the desired convergence (2.1) follows from �0n ! �.
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Remark 2.2. The normalization of measures by the integral of s is necessary in the
above proposition. For example, if G D SL2.Fp..t/// and

�n´

²�
1 f .t/

0 1

�
W f .t/ D ant

n
C anC1t

nC1
C � � � C a2nt

2n
2 FpŒt �

³
;

then, as n!1, �n converges to the trivial subgroup ¹eº in the Chabauty topology, but the
sequence ��n of counting measures on �n fails to converge on the account of mass near identity
blowing up to infinity.

On the other hand, we can skip the normalization if the group G has the no-small-
subgroup property. We say that a locally compact group G has no small subgroup if there
exists a neighborhood of e in G which does not contain any non-trivial subgroup of G; this
notion was first introduced in [19]. It is a well-known fact that a real Lie group G has no small
subgroup; this can be easily seen, using the fact that the exponential map is a diffeomorphism
of a neighborhood of 0 in g onto a neighborhood of the e in G.

Proposition 2.3. Suppose that G has the no-small-subgroup property (e.g., a real Lie
group). Let �n be a sequence of discrete subgroups ofG which converges to a discrete subgroup
� in the Chabauty topology. Then, as n!1,

lim
n!1

X

2�n

ı
 D
X

2�

ı
 in M.G/;

where ı
 denotes the Dirac measure at ¹
º.

Proof. Let �n´
P

2�n

ı
 and �´
P

2� ı
 . Let ' 2 Cc.G/. We need to show that

lim
n!1

Z
' d�n D

Z
' d�:

Let " > 0 be arbitrary. Fix a compact subset C � G and ' 2 Cc.G/ supported on C . Enlarging
C if needed, we may assume that � \ 𝜕C D ;. By the hypothesis that G has the no-small-
subgroup property, there is an open neighborhood U � G of the identity e which contains no
non-trivial subgroup ofG. We choose an open symmetric neighborhood U1 � G of e such that

(1) U 21 � U ;

(2) 
U 51 � C for all 
 2 � \ C ;

(3) the collection 
U 51 , 
 2 � \ C , are pairwise disjoint;

(4) for all 
 2 C \ � and u 2 U1,

j'.
/ � '.
u/j �
"

#.� \ C/
:

Consider the following compact subset:

C1´ Cn
[


2�\C


U1:
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Note that � \ C1 D ;. Since the sequence �n converges to � in the Chabauty topol-
ogy, we have �n \ C1 D ; for all n large enough. For each fixed 
 2 � \ C , there exists
n0 D n0.
/ � 1 such that �n \ 
U1 ¤ ; and �n \ C1 D ; for all n � n0. Since � \ C is
finite, we have n0´ max¹n0.
/ W 
 2 � \ C º <1.

On the other hand, we claim that, for any 
 2 C \ � and n � 1, #.�n \ 
U1/ � 1.
Indeed, suppose there exists some element 
n 2 �n \ 
U1. Then


�1n .�n \ 
U1/ D �n \ .

�1
n 
U1/ � �n \ U

2
1 :

By the no-small-subgroup property of G, we have either �n \ U 21 D ¹eº or there is some ele-
ment 
 0n 2 �n \ .U

4
1 nU

2
1 /; otherwise, �n \ U 21 would be a non-trivial subgroup. In the second

case, we would have


n

0
n 2 
n.U

4
1 nU

2
1 / � 
U

5
1 n
U1 � Cn
U1:

Using property (3), we get 
n
 0n 2 C1, contradicting the fact that �n \ C1 D ;. Therefore, we
must have �n \ U 21 D ¹eº. This implies that �n \ 
U1 D ¹
nº, proving the claim.

Therefore, for all 
 2 � \ C and n � n0, we have a unique element 
n 2 �n such that
�n \ 
U1 D ¹
nº, and 
n ! 
 as n!1. SinceZ

' d�n D
X


2�\C

'.
n/ for all n � n0;

we get from (4) that, for all n � n0,ˇ̌̌̌Z
' d� �

Z
' d�n

ˇ̌̌̌
�

X

2�\C

j'.
/ � '.
n/j � ":

This finishes the proof.

LetG be unimodular and dg a Haar measure onG. For a closed unimodular subgroupH
of G, there exists a unique G-invariant measure dHnG on HnG such that, for all  2 Cc.G/,Z

G

 dg D

Z
HnG

Z
H

 .hg/ d�H .h/ dHnG.Hg/:

We then have a unitary representation of G on the Hilbert space

L2.HnG/ D

²
f WHnG ! R W

Z
HnG

jf j2dHnG <1

³
by right translations: g:f .Hg0/´ f .Hg0g/ for g; g0 2 G and f 2 L2.HnG/.

Proposition 2.4. Let �n be a sequence of discrete subgroups of G which converges to
a closed unimodular subgroupH in the Chabauty topology. LetK < G be a compact subgroup
of G. For any vectors v;w 2 L2.HnG/, there exist sequences vn; wn 2 L2.�nnG/, n 2 N,
such that

(1) for all g 2 G,
lim
n!1

hvn; g:wniL2.�nnG/ D hv; g:wiL2.HnG/;

and the convergence is uniform on compact subsets of G;
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(2) we have

lim
n!1

kvnkL2.�nnG/ D kvkL2.HnG/ & lim
n!1

kwnkL2.�nnG/ D kwkL2.HnG/I

(3) we have that, for all n 2 N,

dimhK:vni � dimhK:vi and dimhK:wni � dimhK:wi:

Proof. Since Cc.HnG/ is dense in L2.HnG/, the matrix coefficient

g 7! hv; g:wiL2.HnG/

can be approximated by the matrix coefficients for continuous compactly supported func-
tions, uniformly on compact subsets of G. This approximation can be done without increas-
ing the dimensions of the spaces spanned by the K-orbits of v and w. In fact, let um be
a sequence of compactly supported right K-invariant functions on HnG converging to the
constant function 1 uniformly on compact subsets of HnG. Since the multiplication by um
is K-equivariant, we have dimhK:.umv/i � dimhK:vi, similarly for w. The matrix coeffi-
cients g 7! humv; g:umwiL2.HnG/ converge to g 7! hv; g:wiL2.HnG/ uniformly on G. Thus
we have shown that v;w can be replaced by compactly supported functions, spanning K-
invariant subspaces of equal or smaller dimension. We need one more step to replace them by
continuous functions.

Let z�m 2 Cc.G/ be a sequence of non-negative continuous functions withZ
z�m.g/ dg D 1

and support contained in some neighborhood zUm of e such that zUm ! ¹eº as m!1. Define
�m 2 Cc.G/ by

�m.g/ D

Z
K

z�m.k
�1gk/ dk for g 2 G;

where dk is the probability Haar measure on K. Clearly, �m is non-negative, continuous andR
�m.g/ dg D 1. The support of �m is contained in Um´ ¹k zUmk�1 W k 2 Kº. Note that

Um ! ¹eº as m!1; otherwise, we have, by passing to a subsequence, kmgmk�1m ! g for
some km 2 K converging to k0 2 K, gm 2 zUm and g ¤ e. Since gm ! e as m!1, this is
a contradiction.

Consider the convolution v � �m,

v � �m.Hg/ D

Z
G

v.Hgx/�m.x
�1/ dx for Hg 2 HnG;

and similarly for w � �m. The functions v � �m and w � �m are continuous compactly sup-
ported functions on HnG.

Since the sequence �m is an approximate identity, the matrix coefficient

g 7! hv � �m; g:w � �miL2.HnG/

converges to g 7! hv; g:wiL2.HnG/, uniformly on compact sets. Furthermore, because �m is
K-conjugation invariant, the map v 7! v � �m commutes with the action of K, i.e.,

k:.v � �m/ D .k:v/ � �m for all k 2 K:

It follows that dimhK:.v � �m/i � dimhK:vi, and similarly for w. Therefore, we may assume
without loss of generality that v;w 2 Cc.HnG/.
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First, let zv0 2 C.G/ be the lift of v to G, i.e., for all g 2 G, zv0.g/´ v.Hg/. We note
that dimhK:vi D dimhK:zv0i.

Now, we choose a right K-invariant non-negative function ' 2 Cc.G/ such thatZ
H

'.hg/ d�H .h/ D 1 for every g 2 H supp v [H suppw:

Define zv 2 Cc.G/ by zv.g/´ '.g/zv0.g/ for all g 2 G. Then, for each g 2 G, we haveZ
H

zv.hg/ d�H .h/ D v.g/:

Moreover, dimhK:zvi � dimhK:zv0i D dimhK:vi.
Choose a non-negative function s 2 Cc.G/ such that s.e/ > 0 andZ

H

s.h/ d�H .h/ D 1:

Set ˛n´
P

2�n

s.
/, and define vn 2 C1c .�nnG/ as follows: for all g 2 G,

vn.g/´ ˛�1=2n

X

2�n

zv.
g/:

Then dimhK:vni � dimhK:zvi � dimhK:vi.
Let zw 2 Cc.G/ and wn 2 C1c .�nnG/ be functions constructed in the same way for the

vector w. We claim that, for all g 2 G,

hvn; g:wniL2.�nnG/ ! hv; g:wiL2.HnG/;

uniformly on compact subsets of G. Indeed,

hvn; g:wniL2.�nnG/ D ˛
�1
n

Z
�nnG

�X

2�n

zv.
x/
X

 02�n

zw.
 0xg/
�
dx

D

Z
G

zv.x/
�
˛�1n

X

 02�n

zw.
 0xg/
�
dx:

Proposition 2.1 yields the weak-* convergence of measures

˛�1n

X

 02�n

ı
 0 ! d�H :

It follows that
lim
n!1

˛�1n

X

 02�n

zw.
 0xg/ D

Z
H

zw.hxg/ d�H .h/

and the convergence is uniform for all g and x in a given compact subset of G. Indeed, for
x; g 2 C , C compact, the family of functions zw. � xg/ is equicontinuous and supported in a
single compact set, so the integrals converge uniformly for any weak-* convergent sequence of
measures. Since zv is compactly supported, we get

lim
n!1

hvn; g:wniL2.�nnG/ D

Z
G

zv.x/

Z
�

zw.hxg/ d�H .h/ dx;
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and the convergence is uniform for all g in a given compact subset of G. SinceZ
G

zv.x/

Z
�

zw.hxg/ d�H .h/ dg D

Z
G

zv.x/w.Hxg/ dx

D

Z
HnG

v.Hx/w.Hxg/ dHnG.Hx/ D hv; g:wiL2.HnG/;

this finishes the proof of (1) and (3). Claim (2) follows since the above argument applies when
v D w and g D e and hence gives hvn; vniL2.�nnG/ ! hv; viL2.HnG/ and similarly for wn
and w.

Remark 2.5. This proposition implies that if �n converges toH in the Chabauty topol-
ogy, then L2.HnG/ is weakly contained in

L1
nDn0

L2.�nnG/ for all n0 � 1.3)

3. Temperedness is a closed condition in Hom.�; G/

Let G be a connected semisimple real algebraic group. Let P be a minimal parabolic
subgroup of G with a fixed Langlands decomposition P DMAN , where A is a maximal real
split torus of G, M is the maximal compact subgroup of P , which commutes with A, and N
is the unipotent radical of P . We denote by g and a the Lie algebras of G and A respectively.
We fix a positive Weyl chamber aC � a so that LieN consists of positive root subspaces. Let
†C D †C.g; a/ denote the set of all positive roots for .g; aC/. For each ˛ 2 †C, let m.˛/ be
its multiplicity. We also write … � †C for the set of all simple roots. We denote by

(3.1) � D
1

2

X
˛2†C

m.˛/˛

the half-sum of the positive roots for .g; aC/, counted with multiplicity.
We fix a maximal compact subgroup K of G so that the Cartan decomposition

G D K.exp aC/K

holds, that is, for any g 2 G, there exists a unique element �.g/ 2 aC such that

g 2 K exp�.g/K:

Let dg be a Haar measure on G. The right translation action of G on itself induces the
regular representation L2.G/ D L2.G; dg/.

Following Harish-Chandra, we call a unitary representation .�;H / of G tempered if �
is weakly contained in the regular representation L2.G/.

For any p > 0, a unitary representation .�;H / of G is said to be almost Lp-integrable
if all of its matrix coefficients are LpC"-integrable for any " > 0.

Denote by „ D „G the Harish-Chandra function of G. It is a bi-K-invariant function
satisfying that, for any " > 0, there exist c; c" > 0 such that

ce��.v/ � „.exp v/ � c"e�.1�"/�.v/ for all v 2 aC:

We will use the following characterization of a tempered representation ofG given by Cowling,
Haggerup and Howe.

3) Since submitting this paper, we have learned that this conclusion already follows from [18, Theorem 4.2].
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Theorem 3.1 ([10]). For a unitary representation .�;H / ofG, the following are equiv-
alent:

(1) � is tempered;

(2) � is almost L2-integrable;

(3) for any K-finite unit vectors v1; v2 2 H and any g 2 G,

jh�.g/v1; v2ij �
�
dimh�.K/v1i � dimh�.K/v2i

�1=2
„G.g/:

Definition 3.2. We say that a unimodular subgroup H is a tempered subgroup of G (or
G-tempered) if the quasi-regular representation L2.HnG/ is a tempered representation of G.

Lemma 3.3 ([3, Proposition 3.1]). Let H be a unimodular closed subgroup of G. If H
is G-tempered, then any unimodular closed subgroup H 0 < H is also G-tempered.

We show that temperedness is a closed condition both for the Chabauty topology and the
algebraic topology (Theorems 3.4 and 3.7).

Theorem 3.4. The Chabauty limit of a sequence of tempered discrete subgroups of G
is unimodular and tempered.

Proof. Suppose that �n is a sequence of tempered discrete subgroups converging to
a closed subgroup H in the Chabauty topology. We have that H is unimodular by Propo-
sition 2.1. We claim that L2.HnG/ is tempered. Suppose not. By Theorem 3.1, there exist
K-finite unit vectors v;w 2 L2.HnG/ and g 2 G such that

jhv; g:wiL2.HnG/j > „.g/ dimhK:vi1=2 dimhK:wi1=2:

By Proposition 2.4, there exist vectors vn; wn 2 L2.�nnG/ such that

kvnk ! kvk; kwnk ! kwk as n!1;

dimhK:vni � dimhK:vi; dimhK:wni � dimhK:wi;

hv; g:wiL2.HnG/ D lim
n!1

hvn; g:wniL2.�nnG/:

We can normalize vn; wn to be unit vectors without affecting the above properties. We deduce
that, for all n large enough,

jhvn; g:wniL2.�nnG/j > „.g/ dimhK:vni1=2 dimhK:wni1=2:

This is a contradiction since L2.�nnG/ is tempered.
Alternatively, one can use [18, Theorem 4.2], which shows that L2.HnG/ is weakly

contained in the direct sum
L1
nD1L

2.�nnG/. If �n were all tempered, we would deduce that
L2.HnG/ is weakly contained in

L1
nD1L

2.G/, hence in L2.G/, which then implies that H
is tempered.

Definition 3.5. We say that a sequence of discrete subgroups �i of G converges to a
discrete subgroup � algebraically if there exists a sequence of isomorphisms �i W� ! �i such
that, for all 
 2 � , �i .
/ converges to 
 as i !1. In other words, �i converges to the natural



12 Frączyk and Oh, Non-tempered subgroups

inclusion id� in Hom.�;G/, where the space Hom.�;G/ is endowed with the topology of
pointwise convergence. In this case, � is called the algebraic limit of �i

Remark 3.6. We refer the readers to [4] for a comparison of algebraic and Chabauty
convergence; in particular, each notion fails to imply the other in general.

Theorem 3.7. The algebraic limit of a sequence of tempered discrete subgroups of G is
tempered.

Proof. Let �i be a sequence of tempered discrete subgroups of G which converges to
a discrete subgroup � algebraically. By passing to a subsequence if necessary, we may assume
that �i converges to a closed subgroup H in the Chabauty topology. Since � is the algebraic
limit of �i , we have � < H .

By Theorem 3.4,H is unimodular and tempered. Since any closed unimodular subgroup
of a tempered subgroup is tempered by Lemma 3.3, � is tempered as desired.

The following is an equivalent formulation of Theorem 3.7.

Theorem 3.8. If a discrete subgroup � is a non-tempered subgroup ofG, there exists an
open neighborhood O of id� in Hom.�;G/ such that, for any � 2 O, �.�/ is non-tempered.

4. Growth indicator of a lattice of SO.n; 1/ as a subgroup of SO.n; 2/

Let G D SOı.n; 2/ for n � 2. Consider the quadratic form

Q.x1; : : : ; xnC2/ D x1xnC2 C x2xnC1 C

nX
iD3

x2i :

We realize G as the identity component of the following special orthogonal group:

SO.Q/ D ¹g 2 SLnC2.R/ W Q.gX/ D Q.X/ for all X 2 RnC2º:

Consider the diagonal subgroup

A D ¹diag.et1 ; et2 ; 1; : : : ; 1; e�t2 ; e�t1/ W t1; t2 2 Rº;

which is a maximal real split torus of G. We denote by g the Lie algebra of G and set

a D ¹v D diag.v1; v2; 0; : : : ; 0;�v2;�v1/ W v1; v2 2 Rº D logA:

For simplicity, we write v D .v1; v2; 0; : : : ; 0;�v2;�v1/ for an element of a. Choose a positive
Weyl chamber

aC D ¹v D .v1; v2; 0; : : : ; 0;�v2;�v1/ W v1 � v2 � 0º:

Since G is invariant under the Cartan involution g 7! g�T ,

K D ¹g 2 G W ggT D eº D G \ SO.nC 2/
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is a maximal compact subgroup ofG and we have the Cartan decompositionGDK.expaC/K.
We denote by �WG ! aC the Cartan projection of G.

We then have two simple (restricted) roots ˛1 and ˛2 for .g; a/ given by

˛1.v/ D v1 � v2 and ˛2.v/ D v2 for all v 2 a:

By explicit computation of g, we can see that the set of all positive roots of g is given by

†C.g; a/ D ¹˛1; ˛2; ˛1 C ˛2; ˛1 C 2˛2º:

The direct sum of root subspaces is given by8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0BBBBBB@
0 x Y1 z 0

0 0 Y2 0 �z

�Y t1 �Y t2

0 �x

0 0

1CCCCCCA W x; z 2 R; Y1; Y2 2 Rn�2

9>>>>>>=>>>>>>;
;

where the subspaces corresponding to x 2 R, Y1 2 Rn�2, Y2 2 Rn�2, and z 2 R are root
subspaces for ˛1, ˛1 C ˛2, ˛2, and ˛1 C 2˛2 respectively. Hence the multiplicities are given
by

m.˛1/ D m.˛1 C 2˛2/ D 1;

m.˛1 C ˛2/ D m.˛2/ D n � 2:

Since .˛1 C ˛2/.v/ D v1 and .˛1 C 2˛2/.v/ D v1 C v2, the half-sum of all positive roots
counted with multiplicity is

�.v/ D
X
˛2†C

m.˛/˛.v/ D
1

2

�
nv1 C .n � 2/v2

�
for v 2 aC:

Bound on growth indicator for general non-lattice subgroups. Recall the definition
of the growth indicator of a discrete subgroup of G from (1.1). For any discrete subgroup �
of G, the growth indicator  � is concave and upper-semicontinuous [33, I.1 Théorème]. Since
dim aC D 2, it follows that  � is continuous on the limit cone L� .

The quantitative Kazhdan’s property (T) of the group G obtained in [31] yields the
following explicit upper bound.

Proposition 4.1. For any non-lattice discrete subgroup � of G, we have

 �.v/ � .n � 1/v1 C .n � 2/v2 for all v 2 aC:

Proof. By [27, Theorem 7.1], we have

 �.v/ � .2� �‚/.v/ for all v 2 aC;

where ‚ is the half-sum of all roots in a maximal strongly orthogonal system of †C.g; a/.
Since ¹˛1; ˛1 C 2˛2º is a maximal strongly orthogonal system, we have ‚.v/ D v1 for all
v 2 aC. Therefore,

.2� �‚/.v/ D .n � 1/v1 C .n � 2/v2;

proving the claim.
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Growth indicator for discrete subgroups of G that are lattices of H . Let

H D SOı.n; 1/:

The restriction of the quadratic formQ to the hyperplane V ´ ¹x1 D xnC2º yields a quadratic
form Q0 D QjV in .nC 1/ variables. We identify

H D SOı.n; 1/ D ¹g 2 G W g.V / D V º D SOı.Q0/:

Since H is invariant under the Cartan involution g 7! g�T , the intersection K \H is
a maximal compact subgroup of H . Denoting by h the Lie algebra of H , we have

h \ a D ¹diag.0; v2; 0; : : : ; 0;�v2; 0/ W v2 2 Rº:

Note that the Cartan projection �.H/ is equal to aC \ ker˛2, i.e.,

�.H/ D ¹v D .v1; 0; : : : ; 0;�v1/ W v1 � 0º:

To see that, apply the Weyl element switching the first two rows (and hence the last two
rows) to h \ a, resulting in ¹.v2; 0; : : : ; 0;�v2/ W v2 2 Rº D ker˛2.

Proposition 4.2. Let � < G be a discrete subgroup such that � is a lattice of H . Then

 �.v/ D

´
.n � 1/v1 for v D .v1; 0; : : : ; 0;�v1/; v1 � 0;

�1 for v … �.H/:

In other words,

(4.1)  � �
2.n � 1/

n
� on aC

with the equality on �.H/.

Proof. Since � is a lattice of H , the limit cone of � satisfies

L� D �.H/ D aC \ ker˛2:

Hence, for v …�.H/, �.v/D�1. Let k � k denote the norm on a induced from the Riemann-
ian metric onG=K. SinceH=.H \K/ � G=K is an isometric embedding, we have that, for all
h 2 H , k�.h/k is equal to the Riemannian distance dH=.H\K/.ho; o/ in H=.H \K/. Since
 � is independent of the choice of a norm, we may assume that, for all h 2 H , k�.h/k is equal
to the hyperbolic distance dHn.ho; o/ by identifying H=.H \K/ ' Hn, which is equivalent
to k.v1; 0; : : : ; 0;�v1/k D jv1j. Since � < H is a lattice, we have

#¹
 2 � W dHn.
o; o/ < T º � Ce.n�1/T as T !1

(cf. [14, 17]). Hence, for v D .v1; 0; : : : ; 0;�v1/ with v1 � 0,

 �.v/ D kvk lim sup
T!1

log #¹
 2 � W k�.
/k � T º
T

D .n � 1/v1:

Since �.v1; 0; : : : ; 0;�v1/ D n
2
v1 by (3.1), the claim follows.

Remark 4.3. Note that the upper bound (4.1) already follows from Proposition 4.1 once
we know that L� � a˛1 . The above proposition shows that this upper bound is optimal for the
case at hand.
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Remark 4.4. We remark that Proposition 4.2 holds in a more general setting: let G be
a connected semisimple real algebraic subgroup with Cartan decomposition G D KACK and
H < G a connected reductive real algebraic subgroup such that

H D .K \H/.AC \H/.K \H/:

Let � be a lattice ofH . Then �.v/ D 2�H .v/ if v 2 log.H \ AC/ and�1 otherwise, where
2�H is the sum of all positive roots of .Lie.H/; log.H \ AC//.

We recall the following criterion on the temperedness of L2.�nG/.

Theorem 4.5 ([16], [28, Theorem 5.1]). For any discrete subgroup � of a connected
semisimple real algebraic group G, we have  � � � if and only if � is a tempered subgroup
of G. Moreover, if  � � .1C �/�, then L2.�nG/ is almost Lp for p � 2

1��
.

That L2.�nG/ is almost Lp means that every matrix coefficient of the quasi-regular rep-
resentation L2.�nG/ is LpC"-integrable for any " > 0. By Theorem 3.1, a discrete subgroup
� is G-tempered if and only if L2.�nG/ is almost L2.

Since  � D
2.n�1/
n

� on �.H/ by Proposition 4.2, we obtain the following examples of
non-tempered subgroups of G.

Corollary 4.6. Let � be a lattice of H D SOı.n; 1/, considered as a subgroup of
G D SOı.n;2/. Then � isG-tempered if and only if nD 2. Moreover, for each n� 2,L2.�nG/
is almost Ln.

5. Deformations and non-tempered Zariski-dense examples

Let G D SOı.n; 2/ and H D SOı.n; 1/ D IsomC.Hn/. Let � be a torsion-free uniform
lattice ofH such thatM D �nHn is a closed hyperbolic n-manifold with a properly embedded
totally geodesic hyperplane S .

Remark 5.1. For any n � 2, such a � exists, for instance, consider a quadratic form

Q0.x1; : : : ; xnC1/ D

nX
iD1

x2i �
p
dx2nC1

for a square-free integer d . Let � < SO.Q0/ \ SLnC1.Z
p
d/ be a torsion-free subgroup of

finite index. Then � is a uniform lattice of SO.Q0/ (see [5]). Considering SLn as a subgroup
of SLnC1 embedded as the lower diagonal block subgroup, the intersection � D � \ SLn is
a uniform lattice of SO.Q0/ \ SLn ' SO.n � 1; 1/. Now M D �nHn is a closed hyperbolic
n-manifold with a properly embedded geodesic hyperplane S D �nHn�1.

We may assume that � \ SO.n � 1; 1/ D � is a uniform lattice of SO.n � 1; 1/ by
replacing � by a conjugate if necessary.

We briefly recall the bending construction of Johnson–Millson [22]. Their bending was
constructed with the ambient group SLnC2.R/. We use a modification by Kassel [24, Section 6]
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where the bending was done inside G D SOı.n; 2/. There exists a one-parameter subgroup
at 2 G which centralizes SO.n � 1; 1/. If S is separating, i.e., M � S is the disjoint union
of two connected components M1 and M2, then � D �1 �� �2. Consider the homomorphism
�t W� ! G given by

�t .
/ D

´

 for 
 2 �1;

at
a�t for 
 2 �2:

Since at commutes with �, �t is well-defined. If S does not separate M , then � is an HNN
extension of �, and we have a homomorphism �t defined similarly (cf. [24, Section 6.3]).

The following Zariski-density and discreteness results were obtained in [24] and [20]
respectively.

Proposition 5.2. For all sufficiently small t ¤ 0, �t .�/ is discrete and Zariski-dense in
G D SOı.n; 2/.

We now give a proof of Theorem 1.2.

Theorem 5.3. Let n � 3. For all sufficiently small t ¤ 0, the subgroup �t .�/ is a non-
tempered, Zariski-dense and discrete subgroup of G D SOı.n; 2/.

Proof. The subgroup � is a non-tempered subgroup of G for n � 3 by Corollary 4.6.
Hence the claim follows from Theorem 3.8 and Proposition 5.2.

6. Anosov representations and non-temperedness

In this section, we prove a stronger result than Theorem 1.2 using the theory of Anosov
representations. We keep the notation forG D SOı.n; 2/,H D SOı.n; 1/, a, ˛1, ˛2, etc. from
Section 4. Let � be a torsion-free uniform lattice ofH such that the closed hyperbolic manifold
�nHn has a properly embedded totally geodesic hyperplane as in Section 5.

Definition 6.1. For a non-empty subset � � … D ¹˛1; ˛2º, a finitely generated sub-
group �0 of G is called � -Anosov if there exists C > 0 such that, for all 
 2 �0 and ˛ 2 � , we
have ˛.�.
// � C�1j
 j � C , where j
 j denotes the word length of 
 with respect to a fixed
finite generating subset of �0. A …-Anosov subgroup is called Borel–Anosov.

Lemma 6.2. The subgroup � is an ¹˛1º-Anosov subgroup of G.

Proof. Note that ˇ1´ �˛1 restricted to h \ a is a simple root of .h; h \ a/ with
respect to the choice of a positive Weyl chamber

.h \ a/C D ¹v D .0; v2; 0; : : : ; 0;�v2; 0/ W v2 � 0º:

Since � is a uniform lattice of H , it is in particular a convex cocompact subgroup of H , and
hence a ¹ˇ1º-Anosov subgroup ofH (see [21]). Therefore, there exists C � 1 such that, for all

 2 � , ˇ1.�H .
// � C�1j
 j � C , where �H denotes the Cartan projection map of H . Since
ˇ1 ı �H D ˛1 ı �jH , it follows that ˛1.�.
// � C�1j
 j � C for all 
 2 � . This proves the
claim.
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Theorem 6.3. Let n � 3, and G D SOı.n; 2/. There exists a non-empty open subset O

of Hom.�;G/ such that, for any � 2 O, we have

(1) � is injective and discrete;

(2) �.�/ is a Zariski-dense ¹˛1º-Anosov subgroup of G;

(3) �.�/ is not G-tempered.

By [1, Proposition 8.2], the set of Zariski-dense representations of � forms an open subset
of Hom.�;G/, which we know is non-empty by Proposition 5.2. Moreover, all Anosov repre-
sentations are discrete with finite kernel and the set of all ¹˛1º-Anosov representations forms
an open subset in Hom.�;G/ by [21, 23]. Since � is assumed to be torsion-free, Theorem 6.3
follows from Theorem 3.8 and non-temperedness of � .

In the rest of this section, we will give a different proof of Theorem 6.3 (3) using the
continuity of limit cones under a small deformation of � and the Anosov property of � .

For any discrete subgroup �0 of G and any linear form  2 a� such that  > 0 on
L�0 � ¹0º, denote by ı ;�0 the abscissa of convergence of the series s 7!

P

2�0

e�s .�.
//.
This is well-defined and 0 � ı ;�0 <1. Since � > 0 on aC � ¹0º, ı�;�0 is well-defined for
any discrete subgroup �0 < G. Theorem 4.5 can be reformulated as follows.

Proposition 6.4. For any discrete subgroup �0 of a connected semisimple real alge-
braic group G0, we have ı�;�0 � 1 if and only if �0 is G0-tempered.

Proof. By [25, Theorem 2.5], we have  �0 � ı�;�0 � � and  �0.v/ D ı�;�0 � �.v/ for
some non-zero v 2 aC. Therefore, the claim follows from Theorem 4.5.

Set a˛1 D ker˛2 and aC˛1 D aC \ ker˛2. Let p˛1 W a! a˛1 denote the unique projec-
tion invariant under the Weyl element fixing a˛1 pointwise, which is simply the reflection
about a˛1 . The space of linear forms a�˛1 can be identified with the set of all linear forms in a�

which are invariant under p˛1 . The following follows by combining [6, Proposition 8.1] and
[36, Corollary 5.5.3], both of whose proofs are based on thermodynamic formalism.

Theorem 6.5. For any  2 a�˛1 which is positive on aC˛1 � ¹0º, the critical exponent
ı ;�.�/ varies analytically on any sufficiently small analytic neighborhood of an ¹˛1º-Anosov
representation of Hom.�;G/.

Since � is a convex cocompact subgroup ofH , the following is a special case of Kassel’s
theorem [24, Proposition 5.1] (see also [13, Theorem 1.1] for a recent generalization).

Proposition 6.6. For any � > 0, we have an open neighborhood O of id� in Hom.�;G/
such that, for any � 2 O, the limit cone of �.�/ is contained in

C� ´ ¹v 2 aC W kv � a˛1k < �kvkº:

Remark 6.7. For the bending deformations �t discussed in Section 5, we always have
a non-trivial element of 
 (of infinite order) such that �t .
/ D 
 , and hence

�.�t .
// 2 �.H/ � ¹0º:
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Therefore, we have the following property: for all sufficiently small t ¤ 0, the limit cone of
�t .�/ contains the ray �.H/. Since �t .�/ is Zariski-dense, its limit cone is convex and has
non-empty interior [2]. Therefore, Proposition 6.6 implies that the limit cone of �t .�/ is the
convex cone given by

L�t .�/ D ¹v D .v1; v2; 0; : : : ;�v2;�v1/ 2 aC W 0 � v2 � c�tv1º;

where c�t > 0 tends to 0 as t ! 0.

Recall from Proposition 4.2. that

ı�;� D
2.n � 1/

n
:

The following proposition gives an alternative proof of Theorem 6.3 (3).

Proposition 6.8. For any sufficiently small " > 0, there exists an open neighborhood
O D O."/ of id� in Hom.�;G/ such that, for any � 2 O,ˇ̌̌

ı�;�.�/ �
2.n � 1/

n

ˇ̌̌
< ":

In particular, for n � 3, we have  � 6� �, and hence �.�/ is non-tempered in G for all
� 2 O.n�2

n
/

Proof. Let �0 be the restriction of � to a˛1 . We may consider �0 as a linear form on a by
precomposing with p˛1 . Note that �0 is non-negative on aC˛1 .

Let " > 0. We can find � > 0 so that, for any v 2 C� D ¹v 2 aC W kv � a˛1k < �kvkº,

�"�.v/ � .� � �0/.v/ � "�.v/:

We can take a small neighborhood O of id� so that, for any � 2 O, the limit cone of
�.�/ is contained in the cone C� by Proposition 6.6. In particular, �.�.
// 2 C� for all 
 2 �
except for some finite subset F� . Then, for any � 2 O, we have that, for all s > 0,X


2��F�

e�.1�"/s�.�.�.
/// �
X


2��F�

e�s�
0.�.�.
///:

It follows that

ı.1�"/�;�.�/ � ı�0;�.�/ and hence ı�;�.�/ � .1 � "/ı�0;�.�/:

Similarly, we have X

2��F�

e�.1C"/s�.�.�.
/// �
X


2��F�

e�s�
0.�.�.
///;

ı.1C"/�;�.�/ � ı�0;�.�/ and hence ı�;�.�/ � .1C "/ı�0;�.�/:

Therefore,

(6.1) .1 � "/ı�0;�.�/ � ı�;�.�/ � .1C "/ı�0;�.�/:
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By replacing O by a smaller neighborhood of id� if necessary, we may assume that

(6.2) jı�0;�.�/ � ı�0;� j � " for all � 2 O

by Theorem 6.5. Hence, using that 1 � ı�;� D 2.n � 1/=n � 2, we deduce from (6.1) and
(6.2) that

jı�;�.�/ � ı�;� j < 5" for all � 2 O:

Since ı�;� D 2.n � 1/=n, the claim follows.

We can also obtain the following estimates for the growth indicator  �.�/.

Corollary 6.9. For any sufficiently small " > 0, there exists an open neighborhood
O D O."/ of id� in Hom.�;G/ such that, for any � 2 O,

 �.�/.v/ �
�2.n � 1/

n
C "

�
�.v/ for all v 2 aC;

 �.�/.v� / �
�2.n � 1/

n
� "

�
�.v� / for some unit vector v� 2 aC:(6.3)

Moreover, v� converges to a unit vector in a˛1 as � ! id� .

Proof. Recall that  �.�/ � ı�;�.�/� and  �.�/.v� / D ı�;�.�/�.v� / for some non-zero
vector v� on the limit cone L�.�/ (see [25, Theorem 2.5]). Hence the inequalities follow from
Proposition 6.8. The last claim follows from Proposition 6.6.

Finally, since v� is of the form .v�;1; c�v�;1; 0; : : : ;�c�v�;1;�v�;1/ for some v�;1 > 0
with c� ! 0, inequality (6.3) and Proposition 4.1 imply inequality (1.4) in Theorem 1.5.
Hence, together with Theorem 6.3, Proposition 6.8, and Corollary 6.9, this completes the proof
of Theorem 1.5.
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