PROPERNESS AND FINITENESS OF TOTALLY GEODESIC
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ABsTRACT. We study totally geodesic submanifolds in the convex core
of geometrically finite rank-one locally symmetric manifolds. Although
the infinite-volume setting can exhibit highly complicated behavior, in-
cluding geodesic planes with fractal closures, we show that a strong
rigidity persists inside the convex core. This rigidity has striking conse-
quences in the infinite volume setting: every maximal totally geodesic
submanifold of dimension at least two contained in the convex core is
properly immersed and has finite volume, and only finitely many such
submanifolds can occur. These results stand in sharp contrast to the
behavior in the finite-volume setting. Moreover, combining this finite-
ness result with the work of Bader-Fisher-Miller-Stover and of Gromov-
Schoen, we deduce that any geometrically finite rank-one manifold with
infinitely many maximal totally geodesic submanifolds of dimension at
least two and of finite volume must be arithmetic.
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The study of totally geodesic submanifolds occupies a central position in
differential geometry, dynamics, and geometric topology. In locally sym-
metric spaces of finite volume, such manifolds arise naturally from algebraic
subgroups and encode deep arithmetic and geometric structure. Their dis-
tribution reflects the intricate interplay between discrete subgroups, rigidity
phenomena, and homogeneous dynamics.
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In the infinite volume setting, however, the picture is considerably more
delicate. Although geometric finiteness provides a natural analogue of finite
volume, many of the structural features familiar from the compact or finite
volume world no longer hold. Even in real hyperbolic 3-manifolds, the qual-
itative behavior of geodesic planes depends sensitively on the geometry of
the ambient space, and examples are known in which certain geodesic planes
have fractal closures.

The main purpose of this paper is to establish that, despite these potential
pathologies, a robust form of rigidity persists for totally geodesic submani-
folds contained in the convex core of a geometrically finite rank-one locally
symmetric manifold. This rigidity has striking implications for the geometry
of infinite volume geometrically finite manifolds, in sharp contrast to what
can occur in the finite volume case.

Let G be a connected simple real algebraic group of rank one, and let
X = X¢ denote its associated Riemannian symmetric space. Concretely, G
is locally isomorphic to one of SO(d, 1), SU(d, 1), Sp(d,1) (d > 2), or F; %°
and X is the real H%, complex Hflc, quaternionic Hﬁiﬂ, or octonionic hyperbolic
space HZ, respectively.

Let I' < G be a non-elementary discrete subgroup, and let M = T'\X
be the associated locally symmetric space. The convex core of M is the
smallest closed convex subset of M whose inclusion into M is a homotopy
equivalence. Equivalently,

core(M) = T'\hull(A)

where A denotes the limit set of I' and hull(A) C X its convex hull (see
Section 4).

Throughout this paper, we assume that
M is geometrically finite,

that is, the unit neighborhood of core(M) has finite volume. Clearly, ev-
ery finite-volume rank-one manifold is geometrically finite, but the class of
geometrically finite manifolds is much broader than that of finite-volume
ones.
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Properness of totally geodesic submanifolds. A totally geodesic sub-
space of X is a connected smooth submanifold Y that contains every com-
plete geodesic in X tangent to Y. A totally geodesic submanifold N of M
is the image of such a Y under the quotient map X — I'\X. Equivalently,
N is the image of the natural immersion

¢ : Stabr(Y)\Y — M

where Stabp(Y) = {y € T : 4Y = Y'}. The dimension of N is defined to
be the dimension of Y, and the volume of N is defined as the volume of the
quotient Stabr(Y)\Y. We say that NV is properly immersed if the immersion
1 is proper; equivalently, if A/ is closed in M, that is, N'= N (Lemma 3.5).

Throughout the paper, a totally geodesic submanifold of M is assumed
to have

dimension at least two

so that we need not repeat this assumption. A totally geodesic submanifold
of dimension one will simply be referred to as a geodesic.

We focus on totally geodesic submanifolds contained in core(M). For in-
stance, any bounded totally geodesic submanifold is automatically contained
in core(M). By a maximal totally geodesic submanifold of core(M), we
mean a totally geodesic submanifold N contained in core(M) with N # M
that is maximal with respect to inclusion: if N is a totally geodesic sub-

manifold satisfying N'C N’ C core(M), then N' = N’.

Theorem 1.1 (Properness). Let M be a geometrically finite manifold of
infinite volume. Then every maximal totally geodesic immersed submanifold
contained in core(M) is properly immersed and has finite volume.

If M has finite volume, then M = core(M), and the geodesic flow is
ergodic with respect to the Liouville measure on the unit tangent bundle.
In this case, almost every totally geodesic submanifold is dense in M, so
Theorem 1.1 fails completely in the finite volume setting.

Theorem 1.1 has several immediate consequences. First, it implies that if
there exists a maximal totally geodesic submanifold N contained in core(M)
with A/ # N, then M must have finite volume. Second, it follows that M
contains a finite volume totally geodesic submanifold if and only if there
exists a totally geodesic submanifold of dimension two contained in core(M).

The minimal codimension of totally geodesic subspaces in X = H% is
equal to dimg(K), which is 1,2, 4, 8 for K = R, C, H, O, respectively.

Corollary 1.2. FEvery totally geodesic submanifold of M = F\H% of codi-
mension dimg (K) contained in core(M) is properly immersed and has finite
volume.

Finiteness of totally geodesic manifolds. We next establish a finiteness
property for totally geodesic submanifolds contained in the convex core.
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Theorem 1.3 (Finiteness I). If M is a geometrically finite manifold of
infinite volume, then there exist only finitely many maximal totally geodesic
submanifolds contained in core(M).

By Theorem 1.1, all of these submanifolds are properly immersed and have
finite volume.

Although there may exist infinitely many maximal properly immersed
totally geodesic submanifolds in M, only finitely many of them have finite
volume:

Theorem 1.4 (Finiteness II). If M is a geometrically finite manifold of
infinite volume, then there exist only finitely many maximal totally geodesic
submanifolds of finite volume.

Theorems 1.3 and 1.4 fail dramatically in the finite volume setting, since
an arithmetic manifold containing one maximal totally geodesic submanifold
of finite volume necessarily contains infinitely many such submanifolds. For
example, the figure-eight knot complement contains infinitely many finite
area immersed totally geodesic surfaces (see [32], [17]).

Remark 1.5. For real hyperbolic 3-manifolds, these theorems were proved
by McMullen-Mohammadi-Oh [20] in the convex cocompact case and by
Benoist-Oh [6] in full generality. In higher dimensions, they were established
in [16] for convex cocompact real hyperbolic d-manifolds whose convex cores
have totally geodesic boundary, for all d > 3.

Arithmeticity from totally geodesic submanifolds. Every quaternionic
or octonionic hyperbolic manifold M = I'\ X of finite volume is arithmetic,
that is, I is an arithmetic lattice of G, by the theorem of Gromov-Schoen [14].
Answering a question of McMullen and Reid, Bader-Fisher-Miller-Stover (|2],
[3]) showed that if a real or complex hyperbolic manifold of finite volume
contains infinitely many maximal totally geodesic submanifolds of finite vol-
ume, then it is arithmetic. See also Margulis-Mohammadi [18| for compact
real hyperbolic 3-manifolds, Baldi-Ullmo [4] for related results in complex
hyperbolic manifolds, and Filip-Fisher-Lowe [13] for analogous results in the
setting of closed real-analytic manifolds of negative sectional curvature.
Combining these results with Theorem 1.4 gives the following:

Theorem 1.6. If a geometrically finite manifold M contains infinitely many*
mazximal totally geodesic submanifolds of finite volume, then M is arithmetic.

Finiteness of totally geodesic boundaries. We denote by J,, X the geo-
metric boundary of X, that is, the set of equivalence classes of geodesic rays,
where two rays are identified if they remain within bounded Hausdorff dis-
tance of each other. For a totally geodesic subspace Y C X of dimension
at least two, we may regard its boundary 0, Y as a subset of J,cX. Let Sx

1Throughout the paper, “infinitely many” means infinitely many pairwise distinct.
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denote the space of all such boundaries 0Y C 05X, equipped with the
Chabauty-Hausdorff topology.

For a totally geodesic submanifold N' = I'\T'Y, we have N/ C core(M)
if and only if 0Y C A where A C 05X is the limit set of I'. Using this
criterion, we deduce the following consequence of Theorems 1.1 and 1.3:

Theorem 1.7. Let I' < G be a geometrically finite, non-lattice subgroup of
G, and A C 0 X be its limit set. Then the collection

{§ €8x : S C A maximal}

consists of finitely many closed I'-orbits in Sx.

Counting spheres in the limit set. Specializing to G = SO(d + 1,1)°
(d > 2), we have X = HE! and 9, X = R U {0}

Theorem 1.7 implies that if I' < G is a geometrically finite non-lattice
subgroup, then the collection of all (d — 1)-round spheres contained in the
limit set A forms a locally finite? sphere packing consisting of finitely many
I-orbits. Spheres arising from the totally geodesic boundary components of
core(M) may be regarded as visible spheres, but there may also be invisible
spheres, namely those lying in the limit set but not corresponding to bound-
ary components of core(M). Given this local finiteness, the sphere counting
results of (|26], [24, Theorem 7.5], see also [25]) apply and counts all such
spheres, visible or invisible, contained in the limit set:

Theorem 1.8. Let I' < SO(d+1,1)° be a geometrically finite subgroup with
d > 2. Assume that A C R? and that A contains a (d — 1)-sphere. Then
there exists ¢ > 0, depending only on I', such that, as t — oo, the number
N(A,t) of all (d — 1)-spheres contained in A of Euclidean radius at least 1/t
satisfies

N(A,t) ~ ¢¢dm@)
where dim(A) is the Hausdorff dimension of A.

Remark 1.9. Al Assal and Lowe, building on the works [20] and [6], proved
that a real-hyperbolic geometrically finite 3-manifold of infinite volume can-
not contain infinitely many compact asymptotically geodesic surfaces [1]. In
view of their methods, we expect an analogous statement in general rank
one: any geometrically finite, infinite-volume rank-one manifold cannot con-
tain infinitely many compact asymptotically geodesic maximal submanifolds.

On the proof. We emphasize that as far as we know, there are no direct
geometric or topological arguments that establish the properness and finite-
ness theorems (Theorems 1.1 and 1.3). The key point is that these results
arise as strict consequences of a much stronger rigidity phenomenon: the
only available method for establishing properness and finiteness is to prove
a rigidity-equidistribution theorem for totally geodesic submanifolds inside

2This means that for any € > 0, there are only finitely many spheres in a fixed bounded
region of Euclidean radii larger than € > 0
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the convex core of a geometrically finite manifold (not necessarily of infinite
volume). This stronger statement is the foundation for the entire argument:

Theorem 1.10 (Theorem 7.1, Theorem 7.4). Let M be geometrically finite.

(1) The closure of any totally geodesic submanifold contained in core(M)
is a totally geodesic submanifold of finite volume.

(2) If there exist infinitely many maximal totally geodesic submanifolds
N; contained in core(M), then M has finite volume and the sequence
N; becomes equidistributed in M as i — 00.

Theorem 1.10 is proved using unipotent dynamics on the homogeneous
space I'\G. Fix a one-parameter diagonal subgroup A < G. The rele-
vant subspace of I'\G for studying totally geodesic submanifolds contained
in core(M) is the smallest closed subset containing all bounded A-orbits,
which we denote by RFM. Understanding the closures of totally geodesic
submanifolds in M amounts to describing the orbit closures of xH contained
in RFM for all simple non-compact subgroups H < G; this is given in The-
orem 5.1 where we describe all orbit closures inside RFM for the action
of any connected closed subgroup of G generated by unipotent elements.
By Ratner’s arguments [31], this is reduced to the study of the closure of
xU C RFM for a one-parameter unipotent subgroup U = {us} of H (see
the proof of Theorem 5.1). We use the geometric finiteness hypothesis to-
gether with the non-divergence of unipotent flows in the infinite volume rank
one setting due to Benoist-Oh [6] and Buenger-Zheng [9] to deduce that any
weak-* limit v of the sequence

1 T
vr = T/o Ozu, dS,

is a probability measure on I'\G, where d,,, denotes the Dirac measure at
zus € I'\G. We then apply Ratner’s measure classification theorem [29] and
the avoidance theorem of Dani-Margulis [10] to the ergodic components of
v to show that the closure of zU is a homogeneous space. This constitutes
the main step of the proof of Theorem 1.10(1).

For the proof of Theorem 1.10(2), we first deduce from Theorem 1.10(1)
that any maximal totally geodesic submanifold inside core(M) gives rise
to an H-invariant probability measure in I'\G supported on a closed orbit
xNg(H), where Ng(H) denotes the normalizer of H, and apply the Mozes-
Shah theorem [23] on the limiting behavior of probability measures invariant
under unipotent flows.

The earlier papers [20] and [6] on geometrically finite real hyperbolic 3-
manifolds relied on topological arguments for unipotent dynamics. This
was feasible because, in that specific setting, all totally geodesic subman-
ifolds have codimension one in the ambient manifold, a feature unique to
real hyperbolic 3-manifolds. In more general settings, where totally geo-
desic submanifolds have varying dimensions or maximal geodesic planes have
codimension greater than one, extending topological methods becomes quite



TOTALLY GEODESIC SUBMANIFOLDS 7

complicated. In contrast, our current paper leverages the full power of the
measure rigidity theorems of Ratner ([29], [30], [31]), Dani-Margulis [10],
and Mozes-Shah [23| on unipotent flows, allowing us to obtain, in our view,
rather surprising results in the geometry of geometrically finite manifolds.
Finally, we note that the geometric finiteness assumption on M is es-
sential: if M is a Z-cover of a compact hyperbolic 3-manifold, then M =
core(M), and M contains infinitely many dense geodesic surfaces.

Organization.

e In Section 2, we review the structure of closed subgroups of rank-
one Lie groups and introduce the collections 7 and #* of closed
subgroups of G stabilizing totally geodesic subspaces of X.

e In Section 3, we relate these to immersed totally geodesic submani-
folds of M.

e In Section 4, we characterize those contained in the convex core of
M via the renormalized frame bundle RFM.

e Sections 5-6 develop the orbit closure and equidistribution results for
subgroups generated by unipotent one-parameter subgroups within
RFEM.

e Section 7 applies these results to prove the rigidity, properness and
finiteness theorems announced in the introduction.

Acknowledgements. We would like to thank Subhadip Dey, Curtis Mc-
Mullen and Yair Minsky for helpful comments.

2. CLOSED SUBGROUPS OF RANK ONE LIE GROUPS

Let G be a connected simple real algebraic group of rank one. In this
section, we describe the structure of closed subgroups of G. In particular,
we introduce two natural families of subgroups .7 and * which will play
a central role throughout the paper.

Let g denote the Lie algebra of G. Let 6 be a Cartan involution of g, and
O the corresponding involution of G which induces . Write g as the direct
sum of +1 eigenspaces of 0:

g=tdp (2.1)
where £ = {f(z) = z} and p = {0(x) = —x}. Let K < G be the maximal
compact subgroup with Lie algebra ¢; equivalently, K is the fixed point
subgroup of ©. Let B denote the Killing form on g, and define the inner
product (-,-) on g:

<$,y> = _B(xae(y)>7 T,y €9,
with associated norm ||-||. Let
X :=G/K and o= [K] € X.

Since (-,-) is Ad(K)-invariant, it induces a left G-invariant and right K-
invariant metric on GG, which descends to a Riemannian metric on X, which
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we denote by d. The Riemannian symmetric space (X, d) is isometric to one
of the real, complex, quaternionic, and octonionic hyperbolic spaces.

Let a C p be a Cartan subalgebra, i.e., a maximal abelian subalgebra
of p. Since G has real rank one, a is one-dimensional. Let A = expa
and let M = Cg(A) denote the centralizer of A in K. We parametrize
A ={a; : t € R} so that d(o, a;0) = |t| for all t € R. Define the horospherical
subgroups

N*={geG:aga_y —east— +oo}

and the corresponding minimal parabolic subgroups
P* = MAN*.

For simplicity, we write N = N~ and P = P~.

Denote by 0, X the boundary of X at infinity; the set of equivalence
classes of geodesic rays, where two rays are equivalent if they have finite
Hausdorff distance. Every geodesic ray in X is of the form {gaso : t > 0} for
some g € G. The stabilizer of the equivalence class of {a;0 : t > 0} is equal
to P; hence we may identify

G/P ~ 05X,

where gP corresponds to the boundary point in d., X represented by the ray
{gato : t > 0}.

Families 7* and 7. A totally geodesic subspace Y is a connected smooth
submanifold of X which contains all complete geodesics in X tangent to Y.
For such Y C X, we define its stabilizer

Gy ={geG:9Y =Y} (2.2)

We introduce two families of subgroups of G that contain representatives
corresponding to conjugacy classes of Gy. For a subgroup H < G, denote
by H° its identity component, and by Cqg(H) and Ng(H) the centralizer
and normalizer of H in G, respectively.

We define
. . a connected simple O-invariant
H = {H <G non-compact closed subgroup of G' containing A }
and
H ={Ng(H)°: H € 57}. (2.3)

For a reductive subgroup L < G, let L™ denote the maximal connected
normal semisimple subgroup of L with no compact factors. Since G has rank
one, L"° is either trivial or a simple non-compact algebraic subgroup of rank
one. We have that L = L™ Cp (L") with Cr (L") compact.

The following lemma implies that the maps

Hw— H"™ and Hw— Ng(H)°

define a bijection J# — J* and its inverse, respectively.
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Lemma 2.4. Let L < G be a connected reductive ©-invariant subgroup
containing A. Suppose that L™ # {e}, and let H := Ng(L"°)°. Then we
have

Hes, H* =L", and H.o = L.o.
In particular, for any H € 5, we have

H =Ng(H"™)° and H.o= H".0.

Proof. Since L D A and L"° is normal in L, it follows that L" O A.
Since L is O-invariant, so is L™, and hence L*¢ € s5¢*. Therefore H :=
Ng(L")° € 4. On the other hand, the normalizer of a reductive subgroup
R < G is commensurable with R Cg(R). Hence H is commensurable with
L* Cg(L"). Since Cg (L") is compact, we have H" = L"°. Since L and
H are ©-invariant, the compact subgroup Cg (L") is also O-invariant. This
implies that C (L") < K; otherwise, Lie(Cg(L")) Np is non-zero and this
is a contradiction since the image of any non-zero subspace of p is unbounded
under the exponential map. It follows that H.o = L"¢.0 = L.o O

Lemma 2.5. Let H < G be a O-invariant closed subgroup such that Ng(H)N
expp C H. If gHg™! is ©-invariant for some g € G, then there exists h € H
such that
k:=gh'eK and gHg '=kHkK '
Proof. Let b be the Lie algebra of H. Since H is O-invariant, we have
H = (KNH)exp(pnh).

Since ©(g)HO(g)™! = gHg™!, we have n, := ¢7'O(g9) € Ng(H). Since
O(ng) = n, !, we have n, € expp. By the hypothesis Ng(H) Nexpp C H,

g )
we have n, € H. Writing g = kexp(y/2) for k € K and y € p, we have

ng = exp(—y) € H. It follows that y € b, and hence h := exp(y/2) € H.
Since k = gh™', this proves the claim. O

Lemma 2.6. For any H € 7 U, we have Ng(H) Nexpp C H.

Proof. Let H € #* U #. Set H := Ng(H) and §' = Lie(H’). Since H
is O©-invariant, so is H'. Hence H' admits the Cartan decomposition H' =
(KN H")exp(pNb'), and by the uniqueness of the Cartan decomposition,
H' Nexp(p) = exp(pNh’).
Now for H € s*U %, Cq(H) is a subgroup of K and hence its Lie algebra
is contained in £. Therefore
pNb =pn(hoLie(Ce(H)) =pNh.
Thus
H'Nnexp(p) =exp(pnh) C H.
O

Lemma 2.7. Let L be a connected reductive subgroup of G containing some
H e 5¢*. Then L is ©-invariant.
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Proof. By [22], there exists ¢ € G such that both gHg™! and gLg™' are
O-invariant. By applying Lemmas 2.5 and 2.6 to H and gHg™!, we obtain
h € H such that k := gh™' € K and gHg™' = kHk™!. Since g = kh € kL,
we have gLg~! = kLk™!. Hence kLk™! is ©-invariant. This implies that L
is ©-invariant. O

Unimodular connected subgroups of G. A closed subgroup of G is uni-
modular if its left and right Haar measures coincide. A closed subgroup
admitting a lattice is a unimodular subgroup [28]. We will describe all uni-
modular closed subgroups of GG using the following lemma.

Lemma 2.8. Let V < N be a non-trivial subgroup.
(1) If g € G satisfies gV g~ NV # {e}, then g € P.
(2) The normalizer of V in G is contained in P.

Proof. By the Bruhat decomposition in rank one, we have G = P U PwP
were w is a Weyl element such that wPw™' = PT. Suppose that for some
g = pywps € PwP, the intersection ¢V¢g~!' NV is non-trivial. Since p € P
and V < P, this implies that wPw™! N P contains a nontrivial unipotent
element. This is a contradiction, since wPw ™! NP is equal to the centralizer
of A and has no unipotent element in the rank one setting. This proves (1).
(2) follows from (1). O

Lemma 2.9. Any connected closed unimodular subgroup L of G is either
reductive or of the form L = QV where V is the unipotent radical of L and
Q is a compact subgroup.

Proof. Suppose L is not reductive, i.e., its unipotent radical V is not trivial.
We have a Levi decomposition L = QV where @ is a reductive subgroup.
Since @ normalizes V', it is contained in a parabolic subgroup by Lemma
2.8. This implies @™ should be trivial, since a parabolic subgroup in rank
one cannot contain a noncompact simple Lie subgroup. Hence @) is an al-
most direct product of a torus and compact simple Lie group. Since L is
unimodular, () cannot have an R-split torus, as its conjugation action on
V would yield a non-trivial modular character of L. Therefore () must be
compact. O

3. TOTALLY GEODESIC SUBMANIFOLDS

In this section, we characterize the totally geodesic subspaces of the sym-
metric space X = G/K and describe their stabilizers in G. These subspaces
correspond precisely to the orbits of subgroups belonging to the families 7
and 7 introduced in Section 2. We also explain how they descend to im-
mersed totally geodesic submanifolds in the quotient manifold M = T'\ X.
Recall the basepoint 0 = [K] € X.

A totally geodesic subspace of X of dimension one is a complete geodesic,
and it is of the form gA.o for some g € G. Those of dimension at least two
can be characterized as follows:
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Lemma 3.1. For a connected smooth submanifold Y of X of dimension at
least two, the following are equivalent to each other:

(1) Y is totally geodesic;
(2) Y =gH.o for some g € G and H € 7
(3) Y =gH.o for some g € G and H € 5€*.

Proof. That a subspace Y as in (2) and (3) is totally geodesic follows from
[15] (see also [11, 2.6]). Now suppose that Y is a totally geodesic subspace
of X of dimension at least two. By translating by an element of GG, we may
assume that Y passes through o € X. Then there exists a subspace p* of
p such that Y = expp*.o and [[p*,p*],p*] C p* by [11, Proposition 2.6.1].
Moreover, £ := [p*, p*] is a subalgebra of ¢ and

is a f-invariant reductive subalgebra of g. Let L denote the connected re-
ductive subgroup of G with Lie algebra g*. Then L is ©-invariant and
Y =Lo~L/LNK. Since G has rank one and L = Cr(L)[L, L], we must
have L™ # {e}; otherwise [L,L] C K and hence Y = Cr(L).0 would be
at most one-dimensional, contradicting the hypothesis on Y. Moreover, be-
cause L is O-invariant, there exists k € K such that @ := k~!Lk contains
A. Then

Y =kQ.0 and H :=Ng(Q")° € 2.
By Lemma 2.4, we have Q.0 = H.o = H"¢.0. This completes the proof. [

Lemma 3.2. (1) If Y = gH.o for some H € s U {A}, then G5, =
gNg(H)°g~ L. In particular, if H € S, then G5 = gHg™ L.
(2) If Gy, = GY, for totally geodesic subspaces Y1,Y2 of X, then Y1 = Ya.

Proof. Without loss of generality, we may assume g = e. Since H is ©-
invariant, we have the decomposition h = €* @ p* where £ = h N ¢ and
p* = hNp. Suppose ¢'Y =Y for some ¢’ € G. Then ¢g'o € H.o and hence
g = hk for some h € H and k € K. So ¢ Hg'™' = h(kHE ')h~!. Since
kH.o = h™'¢H.o = H.o, we have kHk '.0 = H.o. Since k.o = o, this
implies Ad(k)p* = p*. Since £ = [p*,p*], it follows that Ad(k)h = b, and
hence k € Nig(H). Thus
Gy = HNg(H).

Hence G§, C Ng(H)°. Since Ng(H) is commensurable with H Cg(H) and
Cq(H) = Cx(H) by the O-invariance of H (see the proof of Lemma 2.4),
we have GY, D Ng(H)®, proving (1).

To prove (2), suppose that Gy, = GY,. Write Y; = g;H;.o for some
H; € #U{A} and g; € G. By (1), we have g1 Hyg;* = goHagy ' If Hy = A,
then Hy = A, and gglgl € Ng(A) = ANk (A). Hence g1A.o = goA.o. Now
suppose Hy, Hy € 7. By Lemmas 2.5 and 2.6, we have g1 = gokh for some
k € K and h € Hy, implying kH k™' = Hy. Hence Y7 = gokH 1k t0o =
goHs.0 =Y5. O
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A totally geodesic subspace Y C X of dimension at least two equipped
with the metric induced from (X, d), is itself a rank-one symmetric space of
non-compact type. Moreover, its boundary at infinity 0, Y can be naturally
identified with a subset of 05, X. Indeed, if Y = gH.o for H € 7, then,

since A C H, we have
OxY = gHP/P C 05,X = G/P.
Lemma 3.3. We have hull(0Y) =Y.

Proof. We use the fact that between any two distinct points of 05, X, there is
a unique geodesic with those endpoints. Let £ C X be a geodesic with both
end points in 0 Y. Since Y itself is a rank-one symmetric space, inside Y,
there exists a unique geodesic £y with the same points. By the uniqueness,
¢ =ty C Y, proving the inclusion hull(0,Y) C Y. Conversely, for any
y € Y, there exists a complete geodesic through y with end points in 0, Y.
Hence Y C hull(0Y), and the equality follows. O

Properly immersed totally geodesic submanifolds. Let I' < G be
a discrete subgroup. Throughout the paper, we assume that all discrete
subgroups are torsion-free. Consider the associated locally symmetric space

M =T\X.

Let p: X — I'\XX denote the quotient map. For a totally geodesic subspace
Y of X, the restriction ply : ¥ — I'\X factors through the covering map
Y — (Gy NT)\Y, and hence induces an immersion

t:(Gy NnT\Y — M.

Its image N =T\I'Y is a totally geodesic (immersed) submanifold of M. If
the map ¢ is proper, then N is a properly immersed totally geodesic subman-
ifold of M.

We will need the following general result?.

Lemma 3.4. Let G be a locally compact, second countable topological group
and H < G a closed subgroup. Let I' < G a closed subgroup. Then the
canonical projection (HNT)\H — I'\G is proper if and only if T'H is closed
in G.

Proof. Suppose that I'H is closed in G. Let g = [¢] € I'\G and Z = z¢H.
Then Z is closed in I'\G; in particular, Z is locally compact and second
countable and H acts transitively on Z. We first claim, by Baire’s category
theorem, that the map h — xzoh from H to Z is open. Indeed, let ) be a
neighborhood of e in H and fix h € H. We wish to show that zgh{2 contains
a neighborhood of zh. Choose an open neighborhood € of e with compact
closure and the closure of Qlﬁfl is contained in €. There exists a sequence
{g;} C H such that H = hU (U2,€)g;. Hence Z = U, 20h ;. By Baire’s

3The proof of the lemma appears in the arXiv version of [27], but was omitted from
the published version; we reproduce it here for the reader’s convenience.
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category theorem, one of the sets a:ohgl g; has nonempty interior, say around
rohwg; for some w € Q1. Thus xohﬂlgi(gflw_l) contains a neighborhood
of zgh, proving that the map h — xgh is open. Therefore the map

(HNT)\H — Z, (HNT)h— xoh

is continuous, open, and one to one, hence a homeomorphism.

Now let C C I'\G be compact. Then its inverse image in (H NT")\H
coincides with the inverse image of CNZ in (HNI')\ H, which is compact by
the above homeomorphism. This proves that the projection map is proper.
The converse is straightforward. O

Lemma 3.5. Let I’ < G be a discrete subgroup and let N = xH.o be a totally
geodesic submanifold for some x € T'\G and H € . Then the following
are equivalent:

(1) N is properly immersed in M;
(2) N s closed in M;
(3) xH 1is closed in T\G.

Proof. We may assume without loss of generality that 2 = [e], so that N =
MI'Y where Y = H.o. We first show that (3) = (1). By hypothesis, the
image of (I' N H)\H — T'\G is closed. Hence by Lemma 3.4, the inclusion
map j : (N H)\H — I'\G is proper. Since p : I'\G — M = I'\G.o,
x +— x.0 is a proper map, the composition poj: (I'NH)\H — M is proper.
Since p o j factors through the map j' : (' N H)\Y — M induced by the
inclusion Y C X, j' is a proper map. Since j' factors through the map
t: (T'NGy)\Y — M, this implies that ¢ is proper; A is properly immersed,
as desired. The implication (1) = (2) is immediate.

We now show (2) = (3). Since [Gy : H] < co by Lemma 3.2, it suffices to
show that I'Gy is closed in G. Consider the subspace S = {gY : g € G} =
GY with the topology given by the identification S ~ G /Gy . Suppose that
N is closed in M, that is, 'Y is closed in X. This implies I'Y is closed in S;
if ;Y — gY, then, since I'Y is closed in X, we have gY C I'Y = U erY
as a subset of X. This implies that gY = ~Y for some v € I'; otherwise,
gY N~Y is a nowhere dense subset of gY for all v € I', contradicting the
Baire Category theorem.

Now to show that I'Gy is closed in G, suppose that ~;h; converges to
g € G for some sequences v; € I' and h; € Gy. This implies that vY
converges to gY in S. By the closedness of I'Y in S, we then have gY = 7Y
for some v € I'. Therefore g = yh for some h € Gy. This implies that I'Gy
is closed in GG, completing the proof. O

In Lemma 3.5, it is important that H is chosen from the collection .57 so
that H is equal to the connected component of its normalizer, since x H"¢
may not be closed even if tH"¢.0 = zH.o.
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4. TOTALLY GEODESIC SUBMANIFOLDS CONTAINED IN THE CONVEX CORE

Let I' < G be a torsion-free discrete subgroup, and consider the associated
locally symmetric space M = T'\X. In this section, we focus on totally
geodesic submanifolds contained in the convex core of M.

We begin by recalling several basic definitions. The limit set of I', denoted
by A = A(T"), is the set of accumulation points of I'(0) in JxX within the
compactification X U 0, X. We assume that I' is non-elementary, that is,
#A > 3. Then A is the unique I'-minimal subset of 0., X. The conver hull
of A, denoted by hull(A), is the smallest convex subset of X containing all
geodesics? in X with endpoints in A. The convez core of M is defined as
the quotient manifold

core(M) = I'"\hull(A).

For p € M, the injectivity radius of p is the supremum of r > 0 such that
the ball B(p, ) injects into M, where p € X satisfies p = I'\I'p. We denote
it by inj(p). For € > 0, define the e-thin and e-thick parts of M by

M. ={peM:inj(p) <e} and Ms>. =M — M..

Horospheres and horoballs. If £ = gP € 0, X for g € G, then a horo-
sphere of X based at £ is of the form gaN.o for some a € A. Similarly, a
horoball of X based at £ is of the form gAp ) N.0 where Ajp ) = {a; : t >
T}. A horosphere (resp. horoball) in M is then the image of a horosphere
(resp. horoball) in X under the quotient map X — I'\ X.

Geometrically finite manifolds. We now recall the notion of geometri-
cally finite manifolds.

Definition 4.1. We say that M, or equivalently T, is geometrically finite,
if the unit neighborhood of core(M) has finite volume.

Theorem 4.2. [8] The manifold M is geometrically finite if and only if
M. N core(M) is compact for all sufficiently small € > 0.

A limit point € € A is parabolic if its stabilizer

Ie:i={gel:g6=¢}
contains a parabolic element. We denote by A, = A,(I") the set of all
parabolic limit points of T
For geometrically finite M, there exists a finite set of I'-representatives
& € Ap (1 <4 <) such that

A, =T&U---UTE,. (4.3)

Fix g; € G so that & = ¢;P € A,. For T' > 0, define the horoball based at &;
of depth T by

ﬁfi,T = giNA[T,oo)-O Cc X and thTi = F\Fﬂ§i7Ti Cc M. (4.4)

4by geodesics, we mean complete geodesics
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For all sufficiently small € > 0, there exist T1,---,7; > 0 such that for each
1 <4 < ¢, the collection {yH¢, 1 : v € I'} consists of disjoint horoballs, and
the following disjoint decomposition holds:

M=M>.U Heor U~ UHe, 1, (4.5)
We record a simple observation for later use.

Lemma 4.6. For each 1 < i < {, the horoball He, 1, contains no complete
geodesic.

Proof. Suppose that H¢, 7, contains a complete geodesic. By the disjointness
property of the horoballs {77:[51.,73. : v € '} some translate 'y?:[&.,Ti would then
contain a complete geodesic of X. However, every complete geodesic in X
connects two distinct points of 0, X, a contradiction. O

Totally geodesic submanifolds contained in the convex core. For
each closed subgroup H of G with Lie algebra b, the restriction (-,-)|y de-
fines an inner product on h. Left translation within H produces a left-
invariant sub-Riemannian metric on H, which in turn determines a unique
left-invariant volume form volg, or equivalently a left-invariant Haar mea-
sure ppr, on H. If H is unimodular, py is also right H-invariant.

For an orbit *tH C I'\G with H € %, the measure py induces a unique
right H-invariant measure on Stabg(z)\ H, which we again denote by pug by
abuse of notation. We write

vol(xH) = pp(Staby (x)\H)

and set
vol(zH)

vollztH.0) = ———m———.
( ) pank(H N K)

We define the set®
RFM = {[g] e T\G : gP",gP~ € A}. (4.7)

For g € G, the points gPT and gP~ are precisely the two endpoints of the
geodesic gA.o. Note that if one of the end points of gA.o lies outside the
limit set, gA.o is unbounded. Therefore, any bounded A-orbit is contained
in RFM;

Note that RFM is right-invariant under the subgroup Pt NP~ = Cg(A)
and the centralizer Cg(A) is equal to ACg(A). It was shown in [19] that
the periodic A Cg (A) orbits are equidistributed in RFM with respect to the
Bowen-Margulis-Sullivan measure; in particular, they are dense in RFM.
Since such periodic orbits are bounded, their closure is contained in the
smallest closed subset of I'\G containing all bounded A-orbits, while the

5The notation RFEM was introduced in [20] for the case G = SO(3,1)°, where it denotes
the renormalized frame bundle. When G = SO(n, 1)°, the quotient I'\G can be identified
with the frame bundle of M = I'\X. This identification does not extend to general rank-
one spaces, so the term "frame bundle" is slightly abusive. Nevertheless, we retain the
notation for consistency.
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previous paragraph shows that any bounded A-orbit lies in RFEM. Therefore
we obtain:

Proposition 4.8. For geometrically finite M, the set RFM coincides with
the smallest closed subset of T\G containing all bounded A-orbits in T\G.

The image of RFM under the basepoint projection I'\G — M is contained
in core(M), though the two sets need not coincide in general.

The next lemma characterizes when a totally geodesic submanifold of M
lies in the convex core in terms of its associated H-orbit in RFM.

Lemma 4.9. Let N be a totally geodesic submanifold of M of dimension at
least two. Let N = xH.o for some H € 5. Then

(1)=(2)=3)=“)
where

(1) pp(zH) < oo, equivalently, vol(N) < oco.
(2) N C core(M).
(3) xH C RFM.
(4) xH™ C RFM.
Proof. Let g € G represent x = T'g and let 7 : T'\G — I'\X denote
the natural projection z +— z.0. The implication (3) = (2) holds since
m(RFM) C core(M). To prove (2) = (3), suppose zH.o C core(M). Then
gH.o C hull(A).

For h € H, consider

(gh)* == ghP* € 0, X.

The points (gh)T are represented by the geodesic rays {ghas.o : t > 0} and
{gha.o : t < 0} respectively. Recall the fact that hull(A) N 05X coincides
with A, where hull(A) denotes the closure in the compactification X U0 X.
Since ghA.o C hull(A), it follows that (gh)* € A, that is, gh € RFM,
proving (2) < (3). Since xH".0o = N, this also implies that (2) < (4).

We now prove (1) = (3). Suppose that the orbit xH is not contained in
RFM. By replacing « by xh for some h € H, we may assume that one of
gP™ or gP~ does not belong to the limit set. Suppose £ = gP~ ¢ A. Since I'
acts properly discontinuously on 0, X — A, there exists a neighborhood O of
¢ in the compactification X U0 X such that yYONO = () for all v € T'—{e}.
Consider the geodesic ray t — gag.o, t > 0. For all sufficiently large ¢, we
have gai.o € O, and the injectivity radius ry := injp\g(za:) tends to oo as
t — co. Since A C H and the ball Bff = {h € H : d(e,h) < r¢} injects to
Staby (x)\H, we have

pr(xH) > limsup pp (Bf]) = p(H) = oo.
t—o00

Hence pup(xH) = oo. The case £ = gPt & A can be proved similarly by
sending t — —oo0. O
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We also observe:

Lemma 4.10. Let N be as in Lemma 4.9. If N is bounded, then N C
core(M).

Proof. Suppose that N’ = xH.o is bounded, or equivalently, zH is bounded.
For any h € H, since thA C xH is bounded, we have xth € RFM. Hence
xH C RFM, which implies that A" C core(M). O

Remark 4.11. We remark that an analogue of Lemma 4.9 does not hold for
horospheres. There are maximal horospheres x/N.o contained in the convex
core of M but Nk does not need to be contained in RFM for any k € K.
For example, consider a Kleinian group I' < PSLy(C) such that oo, the fixed
point of N, is a rank two parabolic limit point of I' and A # C. Then
le]JatNk C T\G is not contained in RFM for any diagonal a; € A and
k € K. But for all sufficiently large ¢, [e]a;N.o is contained in the convex
core of T'\H?.

5. ORBIT CLOSURE CLASSIFICATION INSIDE RFM

In this section, we classify the closures of orbits of connected closed sub-
groups generated by unipotent elements contained in the renormalized frame
bundle REM. This orbit-closure theorem forms the dynamical backbone of
the rigidity and finiteness results proved later. Its proof relies on Ratner’s
measure classification theorem and the avoidance theorem of Dani-Margulis,
adapted to the geometrically finite, possibly infinite-volume, setting.

Theorem 5.1. Let I' < G be geometrically finite and W < G a connected
closed subgroup generated by one-parameter unipotent subgroups. Suppose
that xW C RFM for x € T\G. Then there exists a connected Lie subgroup
L containing W such that

W = zL
and Staby,(x) is a lattice in L. Moreover, L is either reductive or a compact
extension of a connected unipotent subgroup (as given by Lemma 2.9).

Three theorems for general I' and G. The rest of the section is devoted
to proving Theorem 5.1. We begin by recalling several foundational results
on unipotent dynamics:

Theorem 5.2 (Ratner [29]). Let G be a connected linear Lie group and T' <
G be a discrete subgroup. Let U be a one-parameter unipotent subgroup of
G. Any U-invariant, ergodic probability measure v on T\G is an L-invariant
measure supported on a closed orbit L C T'\G for some x € T\G and some
connected closed subgroup L < G containing U.

This fundamental result describes all ergodic invariant probability mea-
sures for one-parameter unipotent flows. The next theorem, due to Ratner as
well, asserts that for a fixed base point, only countably many homogeneous
subspaces can arise as supports of such invariant measures.
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Theorem 5.3 (Ratner [31, Theorem 5|). Let G be a connected linear Lie
group and T' < G be a discrete subgroup. Let x € T\G. Let A, denote the set
of all closed connected subgroups L < G such that xL is closed and has an
L-invariant probability measure py, and there is a one-parameter unipotent
subgroup U < L acting ergodically on (xL,pur). Then A, is countable.

To formulate the avoidance theorem of Dani—-Margulis, we introduce the
notion of the singular set associated to a subgroup.

Definition 5.4. For a connected closed subgroup W < G, define the singular
set with respect to W :

‘ CG st
(W) = {x eT\G there exists a closed connected subgroup L C G s.t } ‘

W < L and xL admits a finite L-invariant measure

When an orbit xL C T'\G admits a finite L-invariant measure, xL is
automatically a closed subset of I'\G |28, Theorem 1.13|.

The avoidance theorem of Dani-Margulis asserts that the orbit of a generic
point under a one-parameter unipotent subgroup spends a uniformly small
proportion of time near the singular set. This quantitative form of avoidance
will later ensure that the measures obtained from orbit averages do not
concentrate on lower-dimensional homogeneous subsets.

Theorem 5.5 (Dani-Margulis [10, Theorem 1|). Let G be a connected linear
Lie group and I' < G be a discrete subgroup. Let W be a connected closed
subgroup of G which is generated by unipotent elements in it. Let K C T\G
be a compact subset disjoint from #(W). For any € > 0, there exists a
neighborhood Q of .7 (W) such that for any one-parameter unipotent subgroup
U={us:s€R} of G, any x € K, and any T > 0,

Leb{s € [0,T] : zus € Q}) < T.
where Leb denotes the Lebesgue measure of R.

Orbit closures inside RFM for geometrically finite M. We now return
to the setting of a geometrically finite manifold M = I"'\X. Denote by

7:T\G - M

the projection x +— x.0. To apply the general results recalled above, we need
a quantitative non-divergence estimate for unipotent flows: unipotent orbits
spend most of its time in the thick part of M.

Theorem 5.6. (|6, Corollary 5.5], [9, Theorem 1.1]) Let I' < G be a discrete
subgroup. For any e > 0 and a compact set K C I'\G, there exists a constant
n > 0 depending on IC such that for any one-parameter unipotent subgroup
U={us:seR}, anyx € K and any T > 0,

Leb{s € [0,T] : m(zus) € My} <eT

where M, denotes the n-thin part of M =T'\X as in Section 4.
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The following proposition is the key step where the geometric finiteness
assumption plays a decisive role. It guarantees that, within the renormal-
ized frame bundle RFM, any limiting measure arising from time-averages of
unipotent orbits remains supported inside RFM.

Denote by P(I'\G U {oo}) the space of probability measures on the one-
point compactification of I'\G, equipped with the weak-* topology. This is
a compact metrizable space.

Proposition 5.7 (Non-divergence within RFM). Let I' < G be a geometri-
cally finite subgroup and M =T\X. Let K C T'\G be a compact subset, and
let Uy = {uis : s € R} be a sequence of one-parameter unipotent subgroups
of G. Let x; € K be a sequence such that x;U; C REM for each i > 1. Then
for any sequence T; — oo, any weak-* limit of the sequence

I
vp = — Op.ny: . AS
T; E/O TiUi,s

in P(I'\G U {o0}), as i — oo, is a probability measure supported on REM.

Proof. Fix e > 0 and a compact subset L C I'\G. Let n > 0 be as in Theorem
5.6. Then for any z; € K such that z;U; C RFM, we have n(z;U;) C
core(M). Hence Theorem 5.6 implies that for all ¢ > 1 and T" > 0,

Leb{s € [0,T] : n(z;u;s) € core(M) — M} > (1 —¢)T. (5.8)
Since M is geometrically finite, the set core(M) — M,, is compact. Hence
C:={zeI'\G : 7n(z) € core(M) — M,} is a compact subset of I'\G. By
(5.8),
vy, (C) > (1 —¢) for all i.
Therefore, for any weak-* limit v of the sequence vr,, we have v(C) > 1 —e.

As e > 0 is arbitrary, it follows that v(I'\G) = 1. Since supp(v7;) C REM,
we conclude that v is supported on RFM. O

The next proposition is a key application of the avoidance and measure-
classification theorems. It shows that, apart from points in the singular set,
a unipotent orbit contained in RFM is already dense in I'\G which in turn
forces I' to be a lattice.

Proposition 5.9. Let I' < G be a geometrically finite subgroup. Let U be a
one-parameter unipotent subgroup of G. Suppose xU C REM for x € T'\G.
Then

either x € S (U) or 22U =T\G.

In the second case, I is a lattice in G.

Proof. Suppose that x ¢ .7 (U). Let U = {us : s € R} and assume zU C

REM. For T > 0, let
1 T
v = T/O (Szus ds
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be the probability measure on I'\G. Let v be a weak-* limit of a sequence
v; = v, for some T; — oo in the one-point compactification of I'\G. Since
U C RFM, Proposition 5.7 implies that

v(\G) = 1.
On the other hand, since x ¢ . (U), Theorem 5.5 implies that for any £ > 0,
there exists a neighborhood 2 of .’(U) such that for all 1,
vi(Q) <e.
As e > 0 is arbitrary, it follows that
v(L(U)) =0. (5.10)

Since v is a U-invariant probability measure on I'\G, it admits a U-ergodic

decomposition
v= / Vo dv(a)
ael'\G

where v, is a U-invariant ergodic probability measure (cf. [12]). By Ratner’s
Theorem 5.2, for v-a.e. a, the measure v, is an L,-invariant probability
measure supported on a closed orbit 4L, for some z, € I'\G and some
connected closed subgroup L, < G containing U.

Let E be the set of all a such that L, # G. Then for all o € E, we have

xoLlo C L (U).
Since

v(E) = / va(E) dv(a) < A (U)),
ael\G

it follows from (5.10) that v(E) = 0. Therefore
L, =G for v-a.e. a.

Hence v is the G-invariant measure. Since the support of v is contained in
zU, it follows that 2U = I'\G. As v(I'\G) = 1, this forces I" to be a lattice
in G. U

To complete the argument, we recall the following version of Ratner’s
orbit-closure theorem for finite-volume homogeneous spaces, which will be
used to analyze the structure of orbit closures arising in the previous propo-
sition.

Theorem 5.11 (Ratner [31, Theorem 4]|). Let L be a connected linear Lie
group and A < L be a lattice. For any connected closed subgroup W < L
generated by one-parameter unipotent subgroups in it and x € A\L, there
exists a connected closed subgroup Ly containing W such that tW = xLg and
Stabr,(z) is a lattice in Ly. Moreover there is a one-parameter unipotent
subgroup V. < W which acts ergodically on (xLg, jir,) where pur, is the Lo-
invariant probability measure on xLyg.
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With all the necessary dynamical ingredients in place—namely, the avoid-
ance theorem, the non-divergence result within RFM and Ratner’s orbit-
closure theorem—we can now prove Theorem 5.1.

Proof of Theorem 5.1. Suppose that xW C RFM. First, consider the case
when W is a one-parameter unipotent subgroup. By Proposition 5.9, ei-
ther zW = T'\G and Vol(I'\G) < oo, or z € #(W). Assume now that
x € ./ (W). Then there exists a minimal connected closed subgroup L < G
containing W such that xL is closed and carries an L-invariant probabil-
ity measure. We claim that zW = xL. Let ¢ € G with x = I'q. Then
Staby(r) = LN g 'Tg is a lattice in L. The map xf + [e]¢ defines an L-
equivariant homeomorphism zL ~ (LNg~'T'g)\L for [e] denotes the identity
coset in LN g~ 'T'g\L. By Theorem 5.11,

W = [e]LO

for some connected closed subgroup L containing W and W acts ergodically
on ([e]Lo, pir,). By the minimality of L, it follows that L = Ly, proving that
W = zL.

The general case can be deduced from this following Ratner [31]. For the
reader’s convenience, we recall Ratner’s argument, which is slightly simpler
in the present rank-one setting. Suppose that W is a connected unipotent
subgroup. Let U denote the set of all one-parameter subgroups of W. By
the previous case, for each V € U, there exists a closed connected subgroup
L(V) < G such that V C L(V) and 2V = zL(V) and V acts ergodically on
(xL(V), prvy). We then have

W= J{WnLv):veu}

which is a countable union by Theorem 5.3. By the Baire category theorem,
it follows that W C L(V) for some V € U. Hence zW = zL(V), proving
the claim for unipotent W. Now consider a general case. Since G has
rank one, W is either unipotent or a simple non-compact closed subgroup.
As the former case has already been treated, we may assume that W is a
connected simple non-compact subgroup. Then W is generated by a pair of
opposite maximal unipotent subgroups in it, say, V™ and V~. By applying
the previous case to zwV w™" € RFM for each w € V~, and using the
countability result (Theorem 5.3), we obtain a closed connected subgroup
L < G and a subset S C V™ of positive Haar measure such that, for all
we S, wVtw ! c L and

zwV+tw 1l =zL

and Stab, L is a lattice in L. The set of elements w € V'~ for which the
closed group generated by V1 and wVTw™! is a proper algebraic subgroup
of W is contained in a countable union of proper algebraic subsets of V.
Since S has positive Haar measure in V' 7, it follows that W C L, and hence
W = xL. Since L admits a lattice, it is unimodular. Hence the “moreover”
part follows from Lemma 2.9. This completes the proof. (|
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Remark 5.12. In the proof of Theorem 5.1, the geometric finiteness as-
sumption and the rank one setting were needed only to guarantee that the
measures vy in the proof of Proposition 5.9 admit weak-* limits that are
probability measures in I'\G. Since Theorems 5.2, 5.5, and 5.11 remain
valid for any connected Lie group G, the same argument applies verbatim
and yields:

Theorem 5.13. Let G be a connected linear Lie group and I' < G a discrete
subgroup. Let W < G be a connected closed subgroup generated by one-
parameter unipotent subgroups. If W is bounded for x € T'\G, then there
exists a connected Lie subgroup L containing W such that

W =zL
and Stabp(z) is a lattice in L.

6. EQUIDISTRIBUTION IN RFM

In this section, we establish an equidistribution theorem for a sequence
maximal H;-orbits, with H; € JZ, contained in the renormalized frame bun-
dle RFM. Combined with the orbit-closure classification from Section 5,
this result provides the key dynamical ingredient in the proof of the finite-
ness theorem (Theorem 1.3) in Section 7.

We will use the following equidistribution theorem of Mozes-Shah:

Theorem 6.1 (Mozes-Shah |23, Theorem 1.1]). Let G be a connected Lie
group and I' < G be a discrete subgroup. Let U; be a sequence of one-
parameter unipotent subgroups of G. Assume that there exists an infinite
sequence of U;-invariant ergodic probability measures v; on T'\G converging
to a probability measure v on T'\G as i — oo in the weak-* topology. Let
x € suppv. Then the following holds:
(1) suppv = 2L where L ={g € G : v.g = v}5;
(2) Let g, — e be a sequence in G as i — oo such that for all i € N,
zg, € suppy; and {zg,U;} is uniformly distributed’ with respect to
v;. Then there exists ig > 1 such that

suppv; C (suppv).g; for all i > ij.

(3) v is invariant and ergodic for the action of the subgroup generated by
{9Uig;™" +i > o}

The Mozes—Shah theorem provides the fundamental tool for analyzing
weak—" limits of invariant probability measures arising from unipotent orbits.
To apply it effectively to our setting, we first record a structural lemma
describing the closure of an H™%-orbit inside a closed H-orbit.

6u.9(E) = v(Eg) for a Borel subset E C I'\G
"We say that zU is uniformly distributed with respect to v if the sequence of measures
% fOT Ozu,ds converges to v as T — oo
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Lemma 6.2. Let I’ < G be a discrete subgroup. Suppose that xH is closed for
some x € T\G and H € 5. Then there exists a connected closed subgroup
F < G such that H™ < F < H and

cH™ = g F.

Proof. Choose g € G so that = [g]. By replacing I by gI'g~!, we may

assume that g = e. Note that H = Ng(H")° is an almost direct product
H".Cg(H"™)°. Let S := H" x Cq(H")° be the corresponding direct prod-
uct. The multiplication map j : S — H is surjective with finite kernel. Let
71 and 7o denote the projections from S to H™® and Cq(H"™)°, respectively.
Set Tg := j~1(I'N H) < S. A direct computation shows that

To(e,e)(H™ x {e}) = H" x ma(Ty). (6.3)

Define F' := j(H"* xm3(I'g)). Then clearly H™ C FF C H. Let ¢ : TyNS\S —
I'\G be the map induced by s + j(s) for s € S. This map is clearly injective.
Since [e]H is closed, it follows from Lemma 3.5 that ¢ is proper. Hence its
image of the closed set [e|](H™ x ma(T'0)) is closed in I'\G. This implies that

[e] Hn¢ = [e] F', completing the proof. O

We are now ready to combine the preceding results with the Mozes—Shah
theorem to obtain the desired equidistribution statement:

Theorem 6.4. Let I' < G be a geometrically finite subgroup. If there exists
infinitely many mazximal x;H; C RFM with z; € T\G and H; € J, then
I' is a lattice. Moreover, x;H}* = x;F; where H} < F; < H; and the
F-invariant probability measure jup, converges to the G-invariant probability
measure on I'\G as i — 0o.

Proof. Since H}'° is generated by unipotent one-parameter subgroups, The-
orem 5.1 implies that z; H?® = x;F; where H! < F; and Stabp (x;) is a
lattice in F;. Since F; D H[, it cannot be a compact extension of a con-
nected unipotent subgroup. Therefore, by Lemma 2.9, F; is reductive. By
Lemma 2.7, F; is O-invariant, and hence F** € J#*. Since x;F; C RFM,
Lemma 4.9 implies that ; Ng(F°) C REM and Ng(F)°) € 7. By maxi-
mality, we must have Ng(F*°) = H;, and therefore

F;, < H;.

Let p; = pr,, and let
Ui:{ui,S:SER}<Hi

be a one-parameter unipotent subgroup. By [23, Proposition 2.1|, the sub-
group H'® acts ergodically on xF; with respect to ;. Since H* is simple
in our setting, any unipotent subgroup of H® acts ergodically on (zFj, ;)
by the Mautner phenomenon. Hence U; acts ergodically on (z; F;, ;).

We claim that any weak-* limit p of the sequence p; on the one-point
compactification of I'\G is supported on I'\G. Without loss of generality,
assume that p; — p as i — oo.
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Since p; is Us-ergodic, the Birkhoff ergodic theorem yields a p;-conull set
E; C z;F; such that for all y; € E; and for all ¢ € C.(I'\G),

T
lim 1/ P(yiui,s) ds = / p() dpi(x).
T—oo T 0 NG
Choose 1 > 0 so that (4.5) holds. By Lemma 4.6, x;F;.o intersects M,
non-trivially for each ¢ > 1. Since Ej; is conull in z;F; and x;F;.o N M>, C
core(M) N M, is compact, we may, after replacing x; if necessary, assume
that x; € E; is contained in some fixed compact subset K C I'\G.

Observe that p is the weak-* limit of pur, := % fOT Ozu; ,ds for some se-
quence T; — oo. Hence by Proposition 5.7, we obtain that
p(REM) = 1.

Since p is a probability measure on I'\G, we can apply Theorem 6.1 to
the sequence p; — p. Thus

supp p = zL

for some = € suppp and L = {g € G : ug = u}. Let g; € G be such that
x; = I'g;, and let pg € G be such that x = I'pg. Since x € supp u, there exist
v; € I' and u; € U; such that

¢i *="igiwi — po as i — 0.

Set g := py'q;; then g/ — e as i — oo. Since z;U; = xg/U; is uniformly
distributed with respect to u;, Theorem 6.1(2) implies that for all sufficiently
large 1,

supp u; C xLg; C REM. (6.5)
In particular,

Tq;F; = Tg;F; C TpoLg; = TpoLp; ' gi,
and hence
TgiFyq; ' C TpoLpy .
Therefore for all large i, we have
qiFiq; " C poLpy -

We claim that L is reductive. Since xL supports a finite L-invariant
measure, L is unimodular. Moreover, L contains a conjugate of F; and
hence cannot be a compact extension of a unipotent subgroup. By Lemma
2.9, L is reductive. Set

Li = q; 'poLl°py g
Since L; contains F;, Lemma 2.7 implies that L; is ©-invariant. Hence [¢;]L;.0
is a totally geodesic submanifold. Since [g;]L;.0 has finite volume, Lemma
4.9 gives
[gi] Li.o C core(M).
Since z; F;.0 = [gi] F;.0 C [gi]Li.o, by the maximality of z; F;.o implies that

either L; =G or [¢]F;.0= [g]L;.o.
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We claim that L; = G for all sufficiently large i. Suppose not. Then, for
infinitely many 4, F; C L; C H;, and hence

¢H g ' C polpy' € qiHiq;

Since H; = N(H})°, it follows that all subgroups ¢;H;q; s and hence all
vig9iH;g; 17; L are equal to one another.

On the other hand, for all i # j, we have z;H;.0 # x;H;.0 and thus
vgiH;.0 # gjHj.o for all v € I'. By Lemma 3.2,

v9ilig; 'y # gjHjg; "
This contradiction shows that L; = G for all sufficiently large ¢. In particular,

this implies that L = G. Hence I'\G is a lattice and p is the G-invariant
probability measure on I'\G. This completes the proof. ([

7. RIGIDITY OF TOTALLY GEODESIC SUBMANIFOLDS IN THE CONVEX
CORE

In this section, we deduce the rigidity, properness, and finiteness results
for totally geodesic submanifolds contained in the convex core of M from
the dynamical statements proved in Sections 5 and 6.

Rigidity. We begin with the topological rigidity of totally geodesic sub-
manifolds:

Theorem 7.1. Let M be geometrically finite. If N is a totally geodesic
immersed submanifold of dimension at least two contained in core(M), then
the closure of N is a totally geodesic, properly immersed submanifold of finite
volume.

Proof. Let N be a totally geodesic immersed submanifold of dimension at
least two. By Lemma 3.1,

N =zH.o forsome H € 7" and z € I'\G.

Suppose that A C core(M). By Lemma 4.9, tH C RFM. By the definition
of 7%, we have H = H"° and hence H is generated by one-parameter unipo-
tent subgroups. Therefore, by Theorem 5.1, xH = xL for some connected
closed subgroup L containing H such that Stabp(z) is a lattice in L. By
Lemma 2.7, L is ©-invariant and hence L"¢ € 7*. Consequently,

xzL.o=xL".0

is a properly immersed totally geodesic submanifold. Since xH = 2L, we
conclude that N = xL.o, and that xL.o has finite volume. [l

We remark that this type of rigidity fails for a general totally geodesic sub-
manifold not contained in the core; see [20] for an example of quasifuchsian
manifolds which contain geodesic planes whose closures are not submanifolds.
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Properness. When the ambient manifold M has infinite volume, Theo-
rem 7.1 immediately yields the following consequence for maximal totally
geodesic submanifolds contained in the convex core.

Corollary 7.2. Let M be geometrically finite and Vol(M) = oco. FEuvery
maximal totally geodesic immersed submanifold N of dimension at least two
contained in core(M) is necessarily properly immersed, and has finite vol-
ume.

Proof. By Theorem 7.1, N is  a totally geodesic properly immersed subman-
ifold of finite volume. Since A is contained in core(M), the maximality of
N implies N' = N, completing the proof. O

For geometrically finite real hyperbolic manifolds, any properly immersed
totally geodesic submanifold of M is itself geometrically finite [27]. In par-
ticular, any properly immersed N contained in core(M) must have finite
volume. A direct consequence of Theorem 7.1 shows that this phenomenon
extends to all geometrically finite rank-one manifolds:

Corollary 7.3. Let M be geometrically finite. Then any properly immersed
totally geodesic submanifold contained in core(M) has finite volume.

Equidistribution. Building on the rigidity results above, we now examine
whether infinitely many maximal totally geodesic submanifolds can exist
inside the convex core. The following theorem shows that this phenomenon
occurs only in the finite-volume case.

For a finite-volume geodesic submanifold N' = zH.o for H € 7, the
normalized volume measure pps is the probability measure supported on
N C M, defined as the push-forward 7, (ug) of the H-invariant probability
measure py under the projection 7 : (I'N H)\H — M = I'\G.o. Similarly,
when M has finite volume, we denote by pa the probability measure on M
which is the push-forward of the G-invariant probability measure of I'\G.

Theorem 7.4. Let M be a geometrically finite manifold. If there exist infin-
itely many mazimal totally geodesic submanifolds N contained in core(M)
of dimension at least two, then

Vol(M) < oo

and the normalized volume measures iy, become equidistributed in M as
i — oco: for any f € Ce(M),

i [ f@)duni(o) = [ f@)dnuo)
1—00 M M

Proof. By Lemma 3.1, we have N; = z;H;.o for some H; € 2 and z; € T'\G.

By Lemma 3.5, each z; H; is closed. Since N is a maximal totally geodesic

submanifold contained in core(M), the orbit x; H; is maximal among those

contained in RFM. By Theorem 6.4, I' is a lattice and pp, converges to

the G-invariant probability measure on I'\G, where pp, is the Fj-invariant
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probability measure supported on x; HP® = x;F;. Since m,(u;) = me(pn,),
it follows that ppa;, = m.(pi) converges to puag = m«(p). This completes the
proof. O

Finiteness. Combining Theorem 7.1 and Theorem 7.4, we obtain the fol-
lowing finiteness result for infinite-volume manifolds.

Corollary 7.5. Let M be geometrically finite with Vol(M) = oo. Then there
exist only finitely many maximal totally geodesic submanifolds in core(M)
of dimension at least two.

Having established the finiteness of totally geodesic submanifolds in the
convex core, we now prove Theorem 1.7, which reformulates this statement
on the level of their ideal boundaries.

Proof of Theorem 1.7. Let S = 0,Y € Sx be a maximal element con-
tained in A. Since Y = hull(0xY) by Lemma 3.3, the subspace Y is a max-
imal totally geodesic subspace inside hull(A). We claim that I'S is closed in
Sx with respect to the Chabauty-Hausdorff topology. To see this, suppose
that ;S = v;0,Y converges to 5" = 05Y’ € Sx. We claim that as i — oo,

7Y = hull(y;9) — Y’ = hull(S").

To verify this, let z; € ;Y converge to some x € X, and let ¢; be a geodesic
passing through z;. Since x; — z and hence all ¢; pass through a fixed
compact subset of X, and hence, after passing to a subsequence, £; converges
to some geodesic £ in X. Since z € ¢ and the endpoints of £ lie in S’, we
have x € hull(S") = Y’. Therefore any Hausdorff limit of ;Y is contained
in Y/, Conversely, let z € Y. Then z lies on a geodesic ¢ with endpoints
€,¢ in S, Since ;S — S, we can choose sequences & # & in ;S with
& — Eand  — & Let ¢; denote the geodesic connecting & and &/. Then
l; converges to £, and we may choose a sequence x; € ¢; converging to x.
Hence v;Y — Y in the Chabauty-Hausdorff topology.

Since I'\I'Y" is closed in M, it follows that hull(S’) C TY, and hence
S" € TO0xY. This proves that I'S is closed in Sxy. The finiteness then
follows from Corollary 7.5. O

Rigidity of bounded geodesic planes. In the proof of Corollary 7.5, the
geometric finiteness was used only in Proposition 5.7 to ensure that weak-
* limits of the measures u; were probability measures in I'\G. When the
corresponding totally geodesic submanifolds are contained in a fixed com-
pact subset of I'\G, the same reasoning applies without assuming geometric
finiteness:

Theorem 7.6. Let M = T'\ X be a rank-one locally symmetric space which is
non-compact. Then the closure of any bounded totally geodesic submanifold
of dimension at least two is a totally geodesic submanifold. Moreover, any
compact subset of M contains only finitely many maximal totally geodesic
submanifolds of dimension at least two.
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We record the following characterization of I', up to finite index, in terms
of totally geodesic subspaces contained in hull(A).

Theorem 7.7. Let ' < G be a geometrically finite Zariski dense non-lattice
subgroup. Let T be any non-empty I'-invariant collection of maximal totally
geodesic subspaces of dimension at least two contained in hull(A). Then

T has finite index in the subgroup {g € G : g(T) = T}.

Proof. We may assume without loss of generality that Y = H.o € T for some
H € . Let T’ denote the subcollection of T consisting of all subspaces of
the form gH.o for g € G. If g(T) = T, then g(T’) = T’. Hence we may
assume T = T’ without loss of generality.

Let

A={geG:g(T)=T}

By hypothesis, I' is Zariski dense and not a lattice, so A # 0, X and hence
A # (. Since A contains the Zariski dense subgroup I, it follows that A is
a discrete subgroup of G. Indeed, if L denotes the identity component of the
closure of A, then L is normalized by I', and hence by G. Since G is simple,
this forces L = {e}, proving that A is discrete.

Set

A*:={geG:9gAH = AH}.
Clearly, A < A*. Hence it suffices to show that
[A*: T] < o0. (7.8)

By the same argument as above, A* is discrete. By Corollary 7.2 and
Lemma 4.9, the orbit I'\I'H is closed and Vol(I'\I'H) < oco. Hence the
intersection I' N H is a lattice in H. Since ' " H < A* N H, it follows that
A* N H is also a lattice in H. Therefore

[A*"NH:TNH]<oo. (7.9)

To prove (7.8), suppose on the contrary that there exists a sequence §, €
A* tending to infinity mod I'. Since §, € A*, by definition of A*, there exist
6; € T such that &/H = &;H, and hence §; !¢/ € H. Since T\T'H is closed,
Lemma 3.5 implies that the projection map

(HNT)\H — I\G

is proper. It follows that the sequence 9, 15; tends to infinity modulo H N T,
contradicting (7.9). This proves (7.8). O
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