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S-ARITHMETICITY OF DISCRETE SUBGROUPS CONTAINING
LATTICES IN HOROSPHERICAL SUBGROUPS

HEE OH

0. Introduction. Let Q, be the field ofp-adic numbers, and leQ,, = R. Let
G, be a connected semisimpl,-algebraic group. The unipotent radical of a proper
parabolicQ ,-subgroup oG, is called ahorosphericalsubgroup. Two horospherical
subgroups are calleabpositeif they are the unipotent radicals of two opposite para-
bolic subgroups. In [5] and [6], we studied discrete subgroups generated by lattices in
two opposite horospherical subgroups in a simple real algebraic group with real rank
at least 2. This work was inspired by the following conjecture posed by G. Margulis.

ConJECTURE 0.1 Let G be a connected semisimpkealgebraic group such that
R-rank (G) > 2, and letU;, U2 be a pair of opposite horospheric®-subgroups
of G. For eachi = 1,2, let F; be a lattice inU; (R) such thatH N F; is finite for
any proper normaR-subgroupH of G. If the subgroup generated b and F» is
discrete, then it is an arithmetic lattice @(R).

We settled the conjecture in many cases, including the case @isean absolutely
simple real split group witls (R) not locally isomorphic to Sg(R) (see [5]).

In this paper, we study a problem analogous to the conjecture in a product of real
and p-adic algebraic groups. The following is a special case of the main theorem,
Theorem 4.3.

THEOREM 0.2 Let S be a finite set of valuations @ including the archimedean
valuation co. For eachp € S, let G, be a connected semisimple algebr&i,-
group without anyQ,-anisotropic factors, and let/1,, Uz, be a pair of opposite
horospherical subgroups @ . SetG =[] ,.sG,(Q)), U1 =[] ,c5U1,(Q,), and
Uz =[1,ecsU2,(Qp).

Assume thaB, is absolutely simpl&-split with rank at least 2 and that &, (R)
is locally isomorphic toSL3(R), thenU14 is not the unipotent radical of a Borel
subgroup of5... Let F1 and F» be lattices inU/; and U, respectively. If the subgroup
generated by and F» is discrete, then it is a nonunifor§rarithmetic lattice inG.

If p is a nonarchimedean valuation €3, then no horospherical subgroup of
G,(Q,) admits a lattice. Moreover, there is no infinite unipotent discrete subgroup
in a p-adic Lie group. Therefore it is necessary to assume in Theorem 0.& that
contains the archimedean valuation
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In the groupG = SL,,(R) x SL,,(Q,), one can ask if it is possible to generate a
discrete subgroup by taking lattices from two opposite horospherical subgroGps of
One interesting aspect of Theorem 0.2 says that, in general, the answer is

CoroLLARY 0.3 Keeping the same notation as in Theorem 0.2Gset[ [, G).
Suppose that there exist lattices and F» in Uy and U,, respectively, that generate
a discrete subgroup afi. Then

(1) G is typewise homogeneous; that is, for eack S, there is an isogeny), :

G, — G, in particular, G, is absolutely almost simple;

(2) for eachp € §, Uy, is isomorphic toJ1 .

In particular, we have the following corollary.

CoroLLARY 0.4 With the same notation as in Corollary 0.3, suppose @Gag not
typewise homogeneous. Then any subgroup generated by lattices in a pair of opposite
horospherical subgroups @ is not discrete.

Corollary 0.3 follows from Theorem 0.2 simply by the definition ofsarithmetic
subgroup ofG (see Section 1.6).

Examples. In the following groups there are no discrete subgroups containing
lattices in opposite horospherical subgroups:

(1) G =SL,(R) xSL,(Q),) for anym # n such thain > 4 andn > 2;

(2) G =SLu(R) xSL,,(Q,) x SL,,(Q),) for anyni,np > 2 andm > 4;

(38) G =SQm,m)r xSL,(Q),) foranyn > 2 andm > 2.

As a corollary of Theorem 0.2, we obtain that as long as a discrete subgroup of
G intersects a pair of opposite horospherical subgroups as lattices, then it is a lattice
in the ambient grouw as well. This is not always true in rank-1 simple groups, for
instance, in Sk(R) (see the remark after Theorem 0.2 in [5]).

CoroLLARY 0.5 Let S, G,, p € S, and G be as in Theorem 0.2. Ldt be a
discrete subgroup af;. ThenI is a nonuniformS-arithmetic lattice inG if and only
if for eachp € S there exists a paity,,, U, of opposite horospherical subgroups of
G, such thatl’ NU; is a lattice inU;, whereU; = ]'[pes U;»(Q)) for eachi =1, 2.
In that caseG is typewise homogeneous.

For the proof of Theorem 0.2, denote By,  r, the subgroup generated By and
F>, and denote byr‘%j,p2 the image of the subgroug'r r, N Goo(R) x
[1,es. pzoo Gp(Zp) under the natural projectio — Goo(R). Using the results
from [5], we first obtain &Q-form on G, with respect to which the subgrouiy; ,
is an arithmetic lattice i1, (R). Then applying a special case of Margulis’s super-
rigidity (see Theorem 4.2), we show that tifdsform of G, endows aQ-form on
eachG,, p € S, so thall'r, r, becomes ag-arithmetic subgroup id:. We also need
some results on the classification of lattices in the product of reapzandic nilpotent
Lie groups (see Corollary 2.7). In fact our method shows that in Theorem 0.2 we can
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remove the assumption th@t, is R-split as long a$G, is absolutely simple with
real rank at least 2 and Conjecture 0.1 holdsGgs.

In [5], we proved directly that any discrete subgroup@f,(R) containing lat-
tices in opposite horospherical subgroups is an arithmetic subgroup, rather than using
Margulis's arithmeticity theorem or superrigidity theorem. Therefore, the methods
used provide an alternative proof of the arithmeticity theorem in the case of nonuni-
form lattices for the groups considered in [5]. In the present paper, however, we use
a special case of Margulis’s superrigidity theorem in order to extend the arithmetic
structure oﬂ“%O Fyr obtained in [5], to arf-arithmetic structure of g, .

Before we close the introduction, we describe the following open case of Margulis’s
conjecture, which is believed to be a challenging case.

Open problem. Consider the following two subgroups of PER) x PSLy(R):

1 R? 1 0
Ul:(o 1)’ 2:<[R2 1)'

Fori = 1,2, choose two linearly independent vectagsand v; in R?2 such that

{nu; +mv; | n,m € Z} does not contain any element of the fo(m 0) or (0, x) for

any x # 0. By the natural isomorphism df; with R2, we considen; andv; as
elements ofU/;. Then the question dealt with by Conjecture 0.1 can be regarded as
the following discreteness criterion problem:

Which four elements;, u2, v1, andv, generate a discrete subgroup?

From the classification of th&-forms of PSla(R) x PSLy(R) (cf. [11]), it is not
hard to see that Conjecture 0.1 implies thatv1, u2, andv, can generate a discrete
subgroup only in the case when the elementa1, u2, andv, are from some Hilbert
modular group of PSE(R) x PSLy(R). It then follows from the results of [12] that
the discrete subgroup generated by those four elements is in fact a Hilbert modular
group. Here we say that is a Hilbert modular group of PSICR) x PSLy(R) if there
is a real quadratic extension fietdof Q such thatl" is conjugate to a subgroup of
finite index in
{(g.%) | g € PSLa(N)},

whereJ is the ring of integers ot ando : k — k is the nontrivial Galois automor-
phism ofk.

It seems plausible that an analogous conjecture in the setting of Theorem 0.2 holds
under the assumption that tiserank of G, that is, the}_ , ¢ Q,-rank of G, is at
least 2 (without any assumption @hy). The first question in this regard would be
to ask whether the conjecture is true f@r= PSLy(R) x PSLx(Q)).

AcknowledgmentsThanks are due to Professor G. Margulis who drew my attention
to Theorem 4.2. This work was done during my visits to the University of Bielefeld
and the University of Chicago. | would like to thank the members of the mathematics
departments at both universities for their hospitality as well as their invitations.
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1. Notation

1.1. For a setS of valuations ofQ, denote byS; the subset of consisting of
nonarchimedean valuations (i.6; = S — {oo}), whereoco denotes the archimedean
valuation of Q. Denote byQ, the field of p-adic numbers with the normalized
absolute valug |, and setQ,, = R. Denote byZ, the ring of p-adic integers, that
is,Z, ={x € Q, | Ix|, <1}. For a valuatiorp on Q and a connectef ,-algebraic
groupG,, we denote byG, the Q,-rational points oG, and byGl‘j the subgroup
of G, generated by all of its unipotent 1-parameter subgroups.

1.2. By Lie G, we denote the Lie algebra of the groap considered as a Lie
group overQ,, which is naturally identified with th&€),-points of the Lie algebra
Lie G.

1.3. Foreachp € §, we denote byr, the natural projection map frovﬁpes G,
to G,,. The notationpr> denotes the projection @ oo x [ ,c5, G(Z)) t0 G For
a subgroupH of [],.sG)p, the notationHH> denotes the image aff N (G x
[1pes, Gp(Zp)) under the projectiopr.

1.4. The notatiorZ s denotes the subring &) generated by and{(1/p)|pe S¢}.

1.5. ForG =][],.sGp, we say thaG has aQ-form if there exist a connected
algebraicQ-group H and aQ,-isomorphism¢, : H — G, for eachp € S. A
subgroupM of G is said to be defined ove® if there is aQ-subgroupM’ of H
such thaM =[] ,.s¢,(M"). For a subring/ of Q and a subgrouM of G defined
over Q, the notationM (J) denotes the se(ﬂpes¢p(x) € G| x € M'(J)}, where

M = np€S¢P(M /)'

1.6. LetG, be a connected algebrai@,-group for eaclp € S. A subgroupl’
of G =[],csGp(Q),) is called anS-arithmetic (or simply arithmetic if§ = {oc})
subgroup ofG if there exist a connected algebrdig,-groupG’,, aQ ,-isogenyf) :
Gp — G), for eachp € S, and aQ-form onG’ =[] .4 G}, such that[ [ ,cs fp)(T)
is commensurable 16'(Zs). An epimorphism with finite kernel is called an isogeny.

1.7. A discrete subgroup’ of a locally compact groug is called a lattice if
G/T has a finiteG-invariant Borel measure. A latticE in G is called uniform if
G/ T is compact, and it is nonuniform otherwise.

2. Discrete unipotent subgroups

2.1. LetS be afinite set of valuations @ includingoco. For eactp € S, letG,,
be a connected algebrai@,-group. LetG =[], G-

ProrosiTiON 2.1 If T is a discrete subgroup (resp., lattice) @, thenI"™ is a
discrete subgroup (resp., lattice) (.
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Proof. Since the kernel opr*° is compact, the subgroup™ is discrete ifl" is.
Let I' be a lattice inG. SinceGoo X [ [ ,c5, Gp(Z,) is an open subgroup af, the
intersectionl” N (Goo X []es5, Gp(Z,)) is also a lattice iNGoo X [] 5, Gp(Z)).
Hence,I'*® is a lattice inG, by the compactness of the kernel@f>. O

It also follows from the above proof thatlf is a uniform lattice inG, thenT"*° is
a uniform lattice inG, as well.

Lemma 2.2 For p € Sy, let G, be unipotent. IfL is a closed subgroup of),
such thatG, /L carries a finiteG ,-invariant Borel measure, theh = G,.

Proof. Suppose this is not so. The general case is easily reduced to the case

when G, is abelian. Then there is a 1-parameter unipotent subgtoup Q,x

of G, that is not contained ir.. If {p™"x | n > no}N L = @ for some positive
integerno, then it contradicts the assumption tiggs/ L carries a finiteG ,-invariant

Borel measure (sinc®,/p~"°Z, is an infinite countable set). Hence there exists a
sequence; € LNU for all i > 1 such thaty; — oo asi — oo. Sincel is closed
andZ(x;) C L, we haveZ,(x;) C L for all i > 1. Note thatU = U;>1Z,(x;) since

x; — oo asi — oo. ThereforeU C L, contradicting the assumption. O

Lemma 2.3 For eachp € S, let G, be unipotent. I is a lattice inG, then
(1) prp(I') is dense inG,, for eachp € Sy;
(2) pree(I') is Zariski-dense i .

Proof. Let p € Sy. Denote byL the closure ofpr,(I") in G,. SinceG/T" has a
finite G-invariant measure, then so do@g/L (see, e.g., [4, Chap. Il, Lemma 6.1]).
Therefore by Lemma 2.2, = G,. This implies (1).

For (2), the subgroupr>°(T") is a lattice inG, by Proposition 2.1. Note that
G is a connected and simply connected nilpotent Lie group as is any real unipotent
algebraic group. Itis well known that any lattice in a connected and simply connected
nilpotent Lie group is Zariski-dense (cf. [8]). This completes the proof. O

2.2. LetV be a connected unipotent algebréegroup,V, =V(Q,) andV =
]’[pes V,. For a subring/ of Q, we identify V (J) with its image under the diagonal
embedding oV (Q) into V. It is well known thatV (Zy) is a uniform lattice inv (cf.
[7, Thm. 5.7]).

LeEmmA 2.4 Let F be a discrete subgroup df. Then the restrictiorpro|r IS
injective.

Proof. Without loss of generality, we may assume thatZ GLy. Suppose that
there is a nontrivial element € F such thatpro(x) = e. Sincex is unipotent,
(x —e)" =0 for somen € N. Then, by the binomial formula, we have that for each
pESy, prp(xsm) tends toe asm — oo, wheres = ]_[pesfp. Hencex*" — ¢ as
m — oo. This contradicts the assumption thats discrete and thus proves our claim.
O
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LemmA 2.5 For any nonzero integers andd, there exists a nonzero integer
such thatV (kZg) Cc mV (dZs), wheremV (Zg) = {x™ | x € V(Zs)}.

Proof. SinceV is unipotent, there exists an integesuch that(x —¢)" = e for
anyx € V. Without loss of generality, we may assume that GLy and

V(dZs) ={x € V| (x —e) is a matrix whose entries are iZs}.

For anyx = e+u € V, we have log/" = (1/m)(Z'};i((—l)”l/j)uj). Therefore
we can findk such that ifv € V (kZs), then loge¥/™ e logV (dZs). HenceV (kZg) C
mV (dZs). O

2.3. It is well known that any lattice in a real algebraic unipotent group is an
arithmetic subgroup (cf. [3]). Analogously, we now prove that any lattic& ia-
[1,cs Vp is anS-arithmetic subgroup.

We denote byl the product[],.sLieV,. There exists an integer such that
for any subgrougd/ in V, b{logU) C logU, where(logU) denotes the subring of
¥ generated by lof (cf. [3, Lemma 5.2]). For a discrete subgroépin V, we
setAp = b{logF). It is then clear thatAr is a discrete subgroup iif such that
blogF C Ar ClogF.

ProrosITION 2.6. Let F be a discrete subgroup &f such thatpr°°(F) is Zariski-
dense inV and pr,(F) is dense inV,, for eachp € Sy. ThenF is an S-arithmetic
subgroup ofV.

Proof. Since log: V, — 7', is both a rational map and a homeomorphism for
eachp € S, we have thapr®(Ar) is Zariski-dense it¥V'o, andpr,(Ar) is dense in
¥, for eachp € Sy.

We first show that there exist€@-form on® such thatA p C ¥'(Q). SinceA g is
a Zariski-dense discrete subgroupiin,, which is a connected and simply connected
nilpotent Lie group, the r is a lattice il o, (see, e.g., [8]). Therefore there exists
a Q-form on¥' o, such thatA peo = V'« (Z). (Note that thisQ-form on*/», does not
necessarily coincide with tH@-form on/ o, given by the originalQ-form onV with
which we started.) We denote B%..(Q,) the completion of/’'(Q) with respect to
the p-adic norm. Note thai\ r~ is a basis of the vector spate.(Q,) overQ,,.
Therefore, in order to define @ ,-linear mapg,, : V'« (Q,) — V), it is enough to
define it ONA poo.

For eachx € A, there exists an element € Ar such thatpro(yx) = x. By
Lemma 2.4, such an element is unique. We sep, (x) = pr,(yx). We show that
the mapg,, is aQ,-isomorphism. Since diffi,(Q,) = dim¥,, it suffices to show
that ¢, is onto. To show this, it is again enough to show tpat(Ar) C Imé¢,,
since pr,(Ar) is dense inV, by assumption. Fox = logy € Ar, there is an
n € N such thatpr. (y*") € F wheres = [Tpes, p- Thenproo(s™x) € Ape, and
hencepr,(x) = ¢, (s ™" proo(s"x)). Thereforepr,,(Ap) C Im ¢, proving thaip,, is
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an isomorphism ovef), for eachp € Sy. Set¢., to be the identity map o¥ .
Hence,(V, (¢p, p € S)) provides aQ-form on such thatA  C ¥'(Q). Using the
exponential map, we obtain@-form onV such thatF c V(Q).

We now show that Ay z,) C Ar for some nonzero integét It is easy to see that
Avmz) C Ay s NAF for some nonzero integer.

Now let B be a basis ofAy,,7) overZ. To show thatA  contains theZ s-module
generated byB, it is enough to show that for any € B, we havep™x € A for
alln > 1 and for allp € Sy, since theZ-span of{p™ | p € Sy, n > 1} is equal
to Zs. For p € Sy, since pr,(Af) is dense inl’,, there exists:; € N, going to
infinity asi — oo, such thapp™ix € Ap. Letn > 1, and take any integersuch that
n; > n. Sincep" = p"i~"p~" and p~"x € A, we havep™x € Ap. Therefore
Ar contains theZ g-module generated by (,,z, as well as byB.

SinceV (mZ) has finite index inV(Z), we can find a nonzero integersuch that
kAy @y C Ayonzy. FOr anyx e Ay zy), there exists: such thats”x € Ay z) for
s =[1pes, p» and hencés"x € Ay uz). Thereforekx € Ar sinceAr contains the
Zs-module generated by (,,7). This proves that Ay z,) C Af.

SincekblogV (Zs) C kAvyzs), Ar C logF, we havekbV(Zs) C F. By Lem-
ma 2.5, there exists a nonzero integeisuch thatV(jZs) c kbV(Zs). There-
fore V(jZs) c F and F is commensurable witlv (Zs). This shows thatr is an
S-arithmetic subgroup o¥'. O

2.4. By Lemma 2.3 and the remark in Section 2.2 that &rgrithmetic sub-
group of V is a uniform lattice inV, we obtain the following two corollaries of
Proposition 2.6.

CoROLLARY 2.7. Any lattice inV is an S-arithmetic subgroup o¥’.

CoroLLARY 2.8 Let F be a discrete subgroup df. Then the following are
equivalent:

(1) Fis alattice inV;

(2) pre°(F) is Zariski-dense iV, and pr,(F) is dense inv, for eachp € Sy;

(3) V/F is compact.

ProposITION 2.9, LetF be a lattice inV. If F C V(Q), thenF is commensurable
with V(Zy).

Proof. By Proposition 2.6, there is &-form onV with respect to which¥ is
an S-arithmetic subgroup. Sinc€ c V(Q), this Q-form must coincide with the
original Q-form of V. ThereforeF is commensurable with’ (Z). 0

3. Discrete subgroups in semisimple groups

3.1. Throughout this section, letbe a finite set of valuations @ including cc.
Foreaclp € S, letG, be a connected adjoint semisimfilg,-algebraic group without
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any Q,-anisotropic factors, and ld#;,, Uz, be a pair of opposite horospherical
subgroups 06G,,. SetUy =[] ,cgU1,, U2 =[] ,c5U2p, Ur = [],e5U1,(Qp), and
Us = ]’[pes U2, (Q),). For latticesF; and F> in Uy and Uy, respectively, we denote
by I'r,, r, the subgroup generated 5y and F>.

Lemma 3.1 (1) The subgroupdJs,(Q,) and U2,(Q,) generate the subgroup
G, (see [2)).

(2) Any subgroup of5, normalized byG; is either trivial or containsH;r for
some nontrivial normal simpl€ ,-subgroupH,, of G, (see [10]).

If G, is Q,-simple, it is well known [10] that any subgroup 6f, normalized by
G; is either central (and hence trivial in our case siGegs adjoint) or contains};.
It is not difficult to see that this implies (2) of the above lemma, since a connected
adjoint semisimpleQ ,-algebraic group is a direct product of adjoift,-simple
groups.

LemMA 3.2 Let F1 and F> be lattices inU; and Uz, respectively. Then for each
p €Sy, prp(Tr R, is dense inG.

Proof. By Lemma 2.3, the closure qir,(F;) containsU;,(Q,). Therefore the
closure ofpr,(I'r,, r,) contains the subgroup generateduy, (Q,) andU2,(Q,),
which isG,f by Lemma 3.1. O

ProrosiTiON 3.3 If T is a discrete subgroup @ containingF1 and F», then the
restriction proo|r Of preo IS injective.

Proof. We show that the subgrodfy = {y € T' | proo(y) = e} is trivial. Without
loss of generality, we may assume thaf C Gs, = [] s, Gp. Note thatlo is
normalized byprs, (I') as well as byl". We claim thatl"g is normalized byG}r =
Hpesf Gl‘f. For eachg ¢ G+f, there is a sequendg; | i = 1,2,...}in prs;(I')
converging tog asi — oo, sinceprs, (I') is dense irGj{f by Lemma 3.2. Note that
gl-xgl-_l € I'p for anyx € T'p and anyi > 1. ButT'g is discrete, and in particular, it
is closed. Thereforgxg=! e I'p, proving thatl'g is normalized byGy. Let p €
Sr. Sincepr,(I'o) is normalized byG; and pr,(I'g) is countable, it follows from
Lemma 3.1 thatpr,(I'o) is trivial. Thereforel'g is trivial, yielding that preo|r is
injective. O

THEOREM 3.4 (See [1] and [4, Chap. I, Thm. 3.2.4] et G be a connected semi-
simple Q-algebraic group, and leG = [],.3G(Q)). Then theS-arithmetic sub-
groupG(Zg) is a lattice inG.

3.2. Let G be a connected)-simple algebraic group witl)-rank at least 1,
S-rank at least 2§-rank ofG = } ¢ Q-rank ofG), andU;, U a pair of opposite
horosphericalQ-subgroups ofs. It was proved by Raghunathan [9] f@)-rank at
least 2 and by Venkataramana [12] f@-rank 1 that for any ideal of Zg, the



S-ARITHMETICITY OF SOME DISCRETE SUBGROUPS 217

subgroup generated s (A) andU2(A) is of finite index inG(A). It is not hard to
see that the following theorem is a consequence of the above result.

THeOREM 3.5. Let F; and F» be lattices inU/; and U, commensurable to/1(Zs)
andUz(Zs), respectively. If the subgroupr,  r, is discrete, then itis commensurable
with the S-arithmetic subgroups (Zs).

4. Main theorem

4.1. As before, letS be a finite set of valuations d® including oo, and for
eachp € S, letG,, be a connected semisimplg,-algebraic group without anf2 ,-
anisotropic factors and lef;,, Uz, be a pair of opposite horospherical subgroups
of G,. We setG = ]_[pest, G = ]_[pesG,,, U = l_[pES Uy, Uz = Hpes Uz,,
Ur=[],esU1,(Qp), andUz = [ ,c s U2,(Qp).

THEOREM 4.1 (See [5] and [6]) Let S = {co} and letG be an absolutely simple
real algebraic group withR-rank at least2. Denote byZ(U;) the center olU; for
eachi = 1, 2. Let the pair(G, U1) be as follows:

(1) for commutativdJ;, assume tha® # Eé;

(2) for HeisenbergJ;, assume thaG # A3, B2, D?;

(3) for Uz such thatZ(U1) is not the root group of a highest real root, assume
that Gg # E2, whereGy is the algebraic subgroup generated ByU;) and
Z(U2);

(4) for Up such thatZ(U1) is the root group of a highest real root, assume that
[U1,U1] # Z(U1) and Gj # E%, whereGy is the algebraic subgroup gen-
erated byZ(U}) and Z(U}) and whereU’ is the centralizer of the subgroup
{(geVU;|gug™tu=te z;) forall u e U;} in U;.

For any latticesF; and F» in Uy andU», respectively, the subgrodpy, r, is discrete
if and only if there exists &-form onG such thaflr, r, is a subgroup of finite index
in G(Z) and hence a nonuniform arithmetic lattice th= G(R).

Remark. As for the hypothesis on the paiG, U;), if G is split overR and G
is not locally isomorphic to S§(R), thenU; can be any horospherical subgroup. If
G is locally isomorphic to Sk(R) (i.e., is of typeA%), then the above hypothesis
excludes only the case wheh is Heisenberg. IR-rank (G) > 3, thenU; can be
any commutative or Heisenberg horospherical subgroup.

4.2. The following is a special case of Margulis’s superrigidity theorem (see [4,
Chap. VIII, Thm. 3.6]).

THEOREM 4.2 Let G be a connected almo€®-simple algebraic group without
any R-anisotropic factors. Assume th&-rank G > 2 and thatI" ¢ G(Q) is an
arithmetic subgroup of;. Let/ be any field of cha®, H a connected adjoint semisim-
ple l-group, andj : I' — H(l) a homomorphism with the image being Zariski-dense
inH.
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Then there exists a ration&éepimorphismyp : G — H such thatp (x) = j(x) for
all x eT.

4.3. We now prove the main theorem of this paper. The notation continues from
Section 4.1.

THeoreM 4.3 Let G, be a connected semisimple adjoi@t,-algebraic group
without anyQ ,-anisotropic factors for eaclp € S. Let F; and F> be lattices inU;
and Uy, respectively, such thdtg, r, is discrete. Assume th&6.,, U1.,) satisfies
the conditions in Theorem 4.1. Then there exist®-dorm on G (in the sense of
Section 1.5) such th@itr, r, is a subgroup of finite index in thearithmetic subgroup
G(Zs). Hencerl ', , is a nonuniformS-arithmetic lattice inG.

Proof. Sincel'y . is a discrete subgroup @« (by Proposition 2.1) containing
the latticesF° and F5° in U1 (R) andUz, (R), respectively, Theorem 4.1 implies
that there exists &-form on G such thatl'z; 5 is a subgroup of finite index in
Goo(Z). By Proposition 3.3, the mapre|ry, 1, is injective. Therefore we can define
amapj, :I'y) o, > G, as follows: Forx € '} ., setj,(x) = pryo(proo)~1(x).

It is clear from the definition oF;’,‘;’FZ thatjp(l“,o;;Fz) C Gy(Z)p).

We claim thatj, (', ) is Zariski-dense it ,. Since the subgroup generated by
Ui, andUy, is Zariski-dense irG , it suffices to show that the subgroyp(F;>°) is
Zariski-dense irlJ;;, for eachi = 1,2. It is clear forp = oo since joo (F°) = F™®
is a lattice inU; ,(R). For p € S¢, note thatj,(F>) = pr,(F;)NU;,(Z,). Since
prp(F;) is dense inU;, by Lemma 2.3 and sincg;,(Z,) is open inU;,, j,(F)
is dense ifJ;,(Z,). Therefore the Zariski closure gf,(F>) containsU;,(Z,) and
hencel; ,, since it is well known that;,(Z,,) is Zariski-dense itJ; ,.

By Theorem 4.2, for eacp € S, there exists & ,-epimorphismp,, : Goc — G,
such thatg, (x) = j,(x) for all x € F%i,Fz' SinceG is absolutely simple in our
case and hence has no nontrivial normal subgrguypis in fact an isomorphism.
Therefore(Guo, (¢, p € S)) endows aQ-form on G with respect to whiclJ; and
U, are defined ovef).

Since F; c U;(Q), F; is commensurable with); (Zs) by Proposition 2.9. Since
I'r.F, is discrete, it follows from Theorem 3.5 that the subgrdug r, is com-
mensurable with the§-arithmetic subgroufs(Zs). Since eachG,, is adjoint, we
can assume that, C SLy by considering the adjoint representation®jf. More-
over we may assum&(Q) c {Hpesg | g € SLy(Q)} = SLy(Q) by consider-
ing the isomorphisms,. Sincel'r, r, is an S-arithmetic subgroup contained in
G(Q), there exists &g-module L in QV of rank N that is invariant byl F,. F,
(cf. [7, Prop. 4.2]); hencé&'r, r, C G = {g € G(Q) | g(L) C L}. Now, by ap-
plying the automorphism of Si(C) that changes the standard basis to a basis
of L, we may assumé(Zs) = G~ so thatlr, p, C G(Zs).

By Theorem 3.4T'f, r, is a lattice inG. Since the Iatticer‘;olf2 in G4, contains a
nontrivial unipotent element; ;. is a nonuniform lattice by Godement's criterion
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(cf. [8]). Therefore, by the remark following Proposition 2.1, the lattitg f, is
nonuniform. O

Proof of Theorem 0.2.The hypothesis 00G ~, U1) in Theorem 4.2 is satisfied
for the groups considered in Theorem 0.2 by the remark following Theorem 4.1. To
go from an adjoint group to its finite covers, we now give a standard argument. For
eachp € §, there exists a connected semisimple adjé-groupG), and aQ,,-
isogenyf, : G, — G;, (cf. [4, Chap. I, Prop. 1.4.11]). Set = ]_[pes fp, the direct
product of thef,,’s. SetF; = f(F;) for eachi = 1,2, and Ie'rI"Fl’F2 be the subgroup
generated by’; andF;. Since the kernel of is finite, it follows thatF; is a lattice in
fUy) andl“ﬁ,l’F2 is discrete sinceF;,l’F2 C f(T'r.F,). Hence by Theorem 4.3, there
exists aQ-form onG’ =[] ,.¢ G/, such thatl";, . is a subgroup of finite index in
G'(Zs). Sincef (I'r,, F,) is a discrete subgroup containing th@rithmetic subgroup

F}LFZ, the subgroupf (T'r,, ,) is commensurable wits'(Zs). Hencel'r, f, is an

S-arithmetic subgroup of; by the definition in Section 1.6. Hence Theorem 0.2 is

proved. O
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