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S-ARITHMETICITY OF DISCRETE SUBGROUPS CONTAINING
LATTICES IN HOROSPHERICAL SUBGROUPS

HEE OH

0. Introduction. Let Qp be the field ofp-adic numbers, and letQ∞ = R. Let
Gp be a connected semisimpleQp-algebraic group. The unipotent radical of a proper
parabolicQp-subgroup ofGp is called ahorosphericalsubgroup. Two horospherical
subgroups are calledoppositeif they are the unipotent radicals of two opposite para-
bolic subgroups. In [5] and [6], we studied discrete subgroups generated by lattices in
two opposite horospherical subgroups in a simple real algebraic group with real rank
at least 2. This work was inspired by the following conjecture posed by G. Margulis.

Conjecture 0.1. Let G be a connected semisimpleR-algebraic group such that
R-rank (G) ≥ 2, and letU1, U2 be a pair of opposite horosphericalR-subgroups
of G. For eachi = 1,2, let Fi be a lattice inUi (R) such thatH ∩Fi is finite for
any proper normalR-subgroupH of G. If the subgroup generated byF1 andF2 is
discrete, then it is an arithmetic lattice inG(R).

We settled the conjecture in many cases, including the case whenG is an absolutely
simple real split group withG(R) not locally isomorphic to SL3(R) (see [5]).

In this paper, we study a problem analogous to the conjecture in a product of real
andp-adic algebraic groups. The following is a special case of the main theorem,
Theorem 4.3.

Theorem 0.2. LetS be a finite set of valuations ofQ including the archimedean
valuation∞. For eachp ∈ S, let Gp be a connected semisimple algebraicQp-
group without anyQp-anisotropic factors, and letU1p, U2p be a pair of opposite
horospherical subgroups ofGp. SetG=∏p∈S Gp(Qp), U1=∏p∈S U1p(Qp), and
U2=∏p∈S U2p(Qp).

Assume thatG∞ is absolutely simpleR-split with rank at least 2 and that ifG∞(R)
is locally isomorphic toSL3(R), thenU1∞ is not the unipotent radical of a Borel
subgroup ofG∞. LetF1 andF2 be lattices inU1 andU2, respectively. If the subgroup
generated byF1 andF2 is discrete, then it is a nonuniformS-arithmetic lattice inG.

If p is a nonarchimedean valuation ofQ, then no horospherical subgroup of
Gp(Qp) admits a lattice. Moreover, there is no infinite unipotent discrete subgroup
in a p-adic Lie group. Therefore it is necessary to assume in Theorem 0.2 thatS

contains the archimedean valuation∞.
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In the groupG = SLm(R)×SLn(Qp), one can ask if it is possible to generate a
discrete subgroup by taking lattices from two opposite horospherical subgroups ofG.
One interesting aspect of Theorem 0.2 says that, in general, the answer isno.

Corollary 0.3. Keeping the same notation as in Theorem 0.2, setG=∏p∈S Gp.
Suppose that there exist latticesF1 andF2 in U1 andU2, respectively, that generate
a discrete subgroup ofG. Then

(1) G is typewise homogeneous; that is, for eachp ∈ S, there is an isogenyfp :
Gp→G∞; in particular, Gp is absolutely almost simple;

(2) for eachp ∈ S, U1p is isomorphic toU1∞.

In particular, we have the following corollary.

Corollary 0.4. With the same notation as in Corollary 0.3, suppose thatG is not
typewise homogeneous. Then any subgroup generated by lattices in a pair of opposite
horospherical subgroups ofG is not discrete.

Corollary 0.3 follows from Theorem 0.2 simply by the definition of anS-arithmetic
subgroup ofG (see Section 1.6).

Examples. In the following groups there are no discrete subgroups containing
lattices in opposite horospherical subgroups:

(1) G= SLm(R)×SLn(Qp) for anym 6= n such thatm≥ 4 andn≥ 2;
(2) G= SLm(R)×SLn1(Qp)×SLn2(Qp) for anyn1,n2 ≥ 2 andm≥ 4;
(3) G= SO(m,m)R×SLn(Qp) for anyn≥ 2 andm≥ 2.

As a corollary of Theorem 0.2, we obtain that as long as a discrete subgroup of
G intersects a pair of opposite horospherical subgroups as lattices, then it is a lattice
in the ambient groupG as well. This is not always true in rank-1 simple groups, for
instance, in SL2(R) (see the remark after Theorem 0.2 in [5]).

Corollary 0.5. Let S,Gp, p ∈ S, andG be as in Theorem 0.2. Let0 be a
discrete subgroup ofG. Then0 is a nonuniformS-arithmetic lattice inG if and only
if for eachp ∈ S there exists a pairU1p, U2p of opposite horospherical subgroups of
Gp such that0∩Ui is a lattice inUi , whereUi =∏p∈S Uip(Qp) for eachi = 1,2.
In that case,G is typewise homogeneous.

For the proof of Theorem 0.2, denote by0F1,F2 the subgroup generated byF1 and
F2, and denote by0∞F1,F2

the image of the subgroup0F1,F2 ∩ G∞(R) ×∏
p∈S, p 6=∞Gp(Zp) under the natural projectionG → G∞(R). Using the results

from [5], we first obtain aQ-form onG∞ with respect to which the subgroup0∞F1,F2
is an arithmetic lattice inG∞(R). Then applying a special case of Margulis’s super-
rigidity (see Theorem 4.2), we show that thisQ-form of G∞ endows aQ-form on
eachGp, p ∈ S, so that0F1,F2 becomes anS-arithmetic subgroup inG. We also need
some results on the classification of lattices in the product of real andp-adic nilpotent
Lie groups (see Corollary 2.7). In fact our method shows that in Theorem 0.2 we can
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remove the assumption thatG∞ is R-split as long asG∞ is absolutely simple with
real rank at least 2 and Conjecture 0.1 holds forG∞.

In [5], we proved directly that any discrete subgroup ofG∞(R) containing lat-
tices in opposite horospherical subgroups is an arithmetic subgroup, rather than using
Margulis’s arithmeticity theorem or superrigidity theorem. Therefore, the methods
used provide an alternative proof of the arithmeticity theorem in the case of nonuni-
form lattices for the groups considered in [5]. In the present paper, however, we use
a special case of Margulis’s superrigidity theorem in order to extend the arithmetic
structure of0∞F1,F2

, obtained in [5], to anS-arithmetic structure of0F1,F2.
Before we close the introduction, we describe the following open case of Margulis’s

conjecture, which is believed to be a challenging case.

Open problem. Consider the following two subgroups of PSL2(R)×PSL2(R):

U1=
(

1 R2

0 1

)
, U2=

(
1 0
R2 1

)
.

For i = 1,2, choose two linearly independent vectorsui and vi in R2 such that
{nui+mvi | n,m ∈ Z} does not contain any element of the form(x,0) or (0,x) for
any x 6= 0. By the natural isomorphism ofUi with R2, we considerui and vi as
elements ofUi . Then the question dealt with by Conjecture 0.1 can be regarded as
the following discreteness criterion problem:

Which four elementsu1, u2, v1, andv2 generate a discrete subgroup?

From the classification of theQ-forms of PSL2(R)×PSL2(R) (cf. [11]), it is not
hard to see that Conjecture 0.1 implies thatu1, v1, u2, andv2 can generate a discrete
subgroup only in the case when the elementsu1,v1,u2, andv2 are from some Hilbert
modular group of PSL2(R)×PSL2(R). It then follows from the results of [12] that
the discrete subgroup generated by those four elements is in fact a Hilbert modular
group. Here we say that0 is a Hilbert modular group of PSL2(R)×PSL2(R) if there
is a real quadratic extension fieldk of Q such that0 is conjugate to a subgroup of
finite index in {(

g,σg
) | g ∈ PSL2(J )

}
,

whereJ is the ring of integers ofk andσ : k→ k is the nontrivial Galois automor-
phism ofk.

It seems plausible that an analogous conjecture in the setting of Theorem 0.2 holds
under the assumption that theS-rank ofG, that is, the

∑
p∈SQp-rank ofG, is at

least 2 (without any assumption onG∞). The first question in this regard would be
to ask whether the conjecture is true forG= PSL2(R)×PSL2(Qp).

Acknowledgments.Thanks are due to Professor G. Margulis who drew my attention
to Theorem 4.2. This work was done during my visits to the University of Bielefeld
and the University of Chicago. I would like to thank the members of the mathematics
departments at both universities for their hospitality as well as their invitations.
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1. Notation

1.1. For a setS of valuations ofQ, denote bySf the subset ofS consisting of
nonarchimedean valuations (i.e.,Sf = S−{∞}), where∞ denotes the archimedean
valuation ofQ. Denote byQp the field of p-adic numbers with the normalized
absolute value| |p and setQ∞ = R. Denote byZp the ring ofp-adic integers, that
is,Zp = {x ∈Qp | |x|p ≤ 1}. For a valuationp onQ and a connectedQp-algebraic
groupGp, we denote byGp theQp-rational points ofGp and byG+p the subgroup
of Gp generated by all of its unipotent 1-parameter subgroups.

1.2. By LieGp we denote the Lie algebra of the groupGp considered as a Lie
group overQp, which is naturally identified with theQp-points of the Lie algebra
Lie Gp.

1.3. For eachp ∈ S, we denote byprp the natural projection map from
∏
p∈S Gp

to Gp. The notationpr∞ denotes the projection ofG∞×∏p∈Sf G(Zp) toG∞. For
a subgroupH of

∏
p∈S Gp, the notationH∞ denotes the image ofH ∩ (G∞ ×∏

p∈Sf Gp(Zp)) under the projectionpr∞.

1.4. The notationZS denotes the subring ofQ generated byZ and{(1/p) |p∈Sf }.
1.5. For G =∏p∈S Gp, we say thatG has aQ-form if there exist a connected

algebraicQ-group H and aQp-isomorphismφp : H → Gp for eachp ∈ S. A
subgroupM of G is said to be defined overQ if there is aQ-subgroupM ′ of H
such thatM =∏p∈S φp(M ′). For a subringJ of Q and a subgroupM of G defined
overQ, the notationM (J ) denotes the set{∏p∈S φp(x) ∈ G | x ∈ M ′(J )}, where
M =∏p∈S φp(M ′).

1.6. Let Gp be a connected algebraicQp-group for eachp ∈ S. A subgroup0
of G = ∏p∈S Gp(Qp) is called anS-arithmetic (or simply arithmetic ifS = {∞})
subgroup ofG if there exist a connected algebraicQp-groupG′p, aQp-isogenyfp :
Gp→G′p for eachp ∈ S, and aQ-form onG′ =∏p∈S G′p such that(

∏
p∈S fp)(0)

is commensurable toG′(ZS). An epimorphism with finite kernel is called an isogeny.

1.7. A discrete subgroup0 of a locally compact groupG is called a lattice if
G/0 has a finiteG-invariant Borel measure. A lattice0 in G is called uniform if
G/0 is compact, and it is nonuniform otherwise.

2. Discrete unipotent subgroups

2.1. Let S be a finite set of valuations ofQ including∞. For eachp ∈ S, let Gp

be a connected algebraicQp-group. LetG=∏p∈S Gp.

Proposition 2.1. If 0 is a discrete subgroup (resp., lattice) inG, then0∞ is a
discrete subgroup (resp., lattice) inG∞.
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Proof. Since the kernel ofpr∞ is compact, the subgroup0∞ is discrete if0 is.
Let 0 be a lattice inG. SinceG∞×∏p∈Sf Gp(Zp) is an open subgroup ofG, the
intersection0 ∩ (G∞×∏p∈Sf Gp(Zp)) is also a lattice inG∞×∏p∈Sf Gp(Zp).
Hence,0∞ is a lattice inG∞ by the compactness of the kernel ofpr∞.

It also follows from the above proof that if0 is a uniform lattice inG, then0∞ is
a uniform lattice inG∞ as well.

Lemma 2.2. For p ∈ Sf , let Gp be unipotent. IfL is a closed subgroup ofGp
such thatGp/L carries a finiteGp-invariant Borel measure, thenL=Gp.

Proof. Suppose this is not so. The general case is easily reduced to the case
whenGp is abelian. Then there is a 1-parameter unipotent subgroupU = Qpx

of Gp that is not contained inL. If {p−nx | n > n0} ∩L = ∅ for some positive
integern0, then it contradicts the assumption thatGp/L carries a finiteGp-invariant
Borel measure (sinceQp/p

−n0Zp is an infinite countable set). Hence there exists a
sequencexi ∈ L∩U for all i ≥ 1 such thatxi →∞ as i →∞. SinceL is closed
andZ(xi) ⊂ L, we haveZp(xi) ⊂ L for all i ≥ 1. Note thatU = ∪i≥1Zp(xi) since
xi→∞ asi→∞. ThereforeU ⊂ L, contradicting the assumption.

Lemma 2.3. For eachp ∈ S, letGp be unipotent. If0 is a lattice inG, then
(1) prp(0) is dense inGp for eachp ∈ Sf ;
(2) pr∞(0) is Zariski-dense inG∞.

Proof. Let p ∈ Sf . Denote byL the closure ofprp(0) in Gp. SinceG/0 has a
finiteG-invariant measure, then so doesGp/L (see, e.g., [4, Chap. II, Lemma 6.1]).
Therefore by Lemma 2.2,L=Gp. This implies (1).

For (2), the subgrouppr∞(0) is a lattice inG∞ by Proposition 2.1. Note that
G∞ is a connected and simply connected nilpotent Lie group as is any real unipotent
algebraic group. It is well known that any lattice in a connected and simply connected
nilpotent Lie group is Zariski-dense (cf. [8]). This completes the proof.

2.2. Let V be a connected unipotent algebraicQ-group,Vp = V(Qp) andV =∏
p∈S Vp. For a subringJ of Q, we identifyV (J ) with its image under the diagonal

embedding ofV(Q) into V . It is well known thatV (ZS) is a uniform lattice inV (cf.
[7, Thm. 5.7]).

Lemma 2.4. Let F be a discrete subgroup ofV . Then the restrictionpr∞|F is
injective.

Proof. Without loss of generality, we may assume thatV ⊂ GLN . Suppose that
there is a nontrivial elementx ∈ F such thatpr∞(x) = e. Sincex is unipotent,
(x−e)n = 0 for somen ∈N. Then, by the binomial formula, we have that for each
p ∈ Sf , prp(xs

m
) tends toe asm→∞, wheres = ∏p∈Sf p. Hence,xs

m → e as
m→∞. This contradicts the assumption thatF is discrete and thus proves our claim.
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Lemma 2.5. For any nonzero integersm and d, there exists a nonzero integerk
such thatV (kZS)⊂mV (dZS), wheremV (ZS)= {xm | x ∈ V (ZS)}.

Proof. SinceV is unipotent, there exists an integern such that(x− e)n = e for
anyx ∈ V . Without loss of generality, we may assume thatV ⊂GLN and

V (dZS)=
{
x ∈ V | (x−e) is a matrix whose entries are indZS

}
.

For anyx = e+u ∈ V , we have logx1/m = (1/m)(∑n−1
j=1((−1)j+1/j)uj ). Therefore

we can findk such that ifx ∈ V (kZS), then logx1/m ∈ logV (dZS). HenceV (kZS)⊂
mV (dZS).

2.3. It is well known that any lattice in a real algebraic unipotent group is an
arithmetic subgroup (cf. [3]). Analogously, we now prove that any lattice inV =∏
p∈S Vp is anS-arithmetic subgroup.
We denote byV the product

∏
p∈S LieVp. There exists an integerb such that

for any subgroupU in V , b〈logU〉 ⊂ logU , where〈logU〉 denotes the subring of
V generated by logU (cf. [3, Lemma 5.2]). For a discrete subgroupF in V , we
set1F = b〈logF 〉. It is then clear that1F is a discrete subgroup inV such that
b logF ⊂1F ⊂ logF .

Proposition 2.6. LetF be a discrete subgroup ofV such thatpr∞(F ) is Zariski-
dense inV∞ andprp(F ) is dense inVp for eachp ∈ Sf . ThenF is anS-arithmetic
subgroup ofV .

Proof. Since log: Vp → Vp is both a rational map and a homeomorphism for
eachp ∈ S, we have thatpr∞(1F ) is Zariski-dense inV∞ andprp(1F ) is dense in
Vp for eachp ∈ Sf .

We first show that there exists aQ-form onV such that1F ⊂ V(Q). Since1F∞ is
a Zariski-dense discrete subgroup inV∞, which is a connected and simply connected
nilpotent Lie group, then1F∞ is a lattice inV∞ (see, e.g., [8]). Therefore there exists
aQ-form onV∞ such that1F∞ = V∞(Z). (Note that thisQ-form onV∞ does not
necessarily coincide with theQ-form onV∞ given by the originalQ-form onV with
which we started.) We denote byV∞(Qp) the completion ofV(Q) with respect to
thep-adic norm. Note that1F∞ is a basis of the vector spaceV∞(Qp) overQp.
Therefore, in order to define aQp-linear mapφp : V∞(Qp)→ Vp, it is enough to
define it on1F∞ .

For eachx ∈ 1F∞ , there exists an elementyx ∈ 1F such thatpr∞(yx) = x. By
Lemma 2.4, such an elementyx is unique. We setφp(x) = prp(yx). We show that
the mapφp is aQp-isomorphism. Since dimV∞(Qp)= dimVp, it suffices to show
that φp is onto. To show this, it is again enough to show thatprp(1F ) ⊂ Imφp,
sinceprp(1F ) is dense inVp by assumption. Forx = logy ∈ 1F , there is an
n ∈ N such thatpr∞(ys

n
) ∈ F∞ wheres =∏p∈Sf p. Thenpr∞(snx) ∈ 1F∞ , and

henceprp(x)= φp(s−npr∞(snx)). Thereforeprp(1F )⊂ Im φp, proving thatφp is
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an isomorphism overQp for eachp ∈ Sf . Setφ∞ to be the identity map ofV∞.
Hence,(V∞, (φp,p ∈ S)) provides aQ-form onV such that1F ⊂ V(Q). Using the
exponential map, we obtain aQ-form onV such thatF ⊂ V (Q).

We now show thatk1V (ZS) ⊂1F for some nonzero integerk. It is easy to see that
1V(mZ) ⊂1V(ZS)∩1F for some nonzero integerm.

Now letB be a basis of1V(mZ) overZ. To show that1F contains theZS-module
generated byB, it is enough to show that for anyx ∈ B, we havep−nx ∈ 1F for
all n ≥ 1 and for allp ∈ Sf , since theZ-span of{p−n | p ∈ Sf , n ≥ 1} is equal
to ZS . For p ∈ Sf , sinceprp(1F ) is dense inVp, there existsni ∈ N, going to
infinity asi→∞, such thatp−ni x ∈1F . Let n≥ 1, and take any integeri such that
ni ≥ n. Sincepn = pni−np−ni andp−ni x ∈ 1F , we havep−nx ∈ 1F . Therefore
1F contains theZS-module generated by1V(mZ) as well as byB.

SinceV (mZ) has finite index inV (Z), we can find a nonzero integerk such that
k1V (Z) ⊂ 1V(mZ). For anyx ∈ 1V(ZS), there existsn such thatsnx ∈ 1V(Z) for
s =∏p∈Sf p, and henceksnx ∈1V(mZ). Thereforekx ∈1F since1F contains the
ZS-module generated by1V(mZ). This proves thatk1V (ZS) ⊂1F .

Sincekb logV (ZS) ⊂ k1V (ZS), 1F ⊂ logF , we havekbV (ZS) ⊂ F . By Lem-
ma 2.5, there exists a nonzero integerj such thatV (jZS) ⊂ kbV (ZS). There-
fore V (jZS) ⊂ F andF is commensurable withV (ZS). This shows thatF is an
S-arithmetic subgroup ofV .

2.4. By Lemma 2.3 and the remark in Section 2.2 that anyS-arithmetic sub-
group ofV is a uniform lattice inV , we obtain the following two corollaries of
Proposition 2.6.

Corollary 2.7. Any lattice inV is anS-arithmetic subgroup ofV .

Corollary 2.8. Let F be a discrete subgroup ofV . Then the following are
equivalent:

(1) F is a lattice inV ;
(2) pr∞(F ) is Zariski-dense inV∞ andprp(F ) is dense inVp for eachp ∈ Sf ;
(3) V/F is compact.

Proposition 2.9. LetF be a lattice inV . If F ⊂ V (Q), thenF is commensurable
with V (ZS).

Proof. By Proposition 2.6, there is aQ-form on V with respect to whichF is
an S-arithmetic subgroup. SinceF ⊂ V (Q), this Q-form must coincide with the
originalQ-form of V. ThereforeF is commensurable withV (ZS).

3. Discrete subgroups in semisimple groups

3.1. Throughout this section, letS be a finite set of valuations ofQ including∞.
For eachp ∈ S, letGp be a connected adjoint semisimpleQp-algebraic group without
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anyQp-anisotropic factors, and letU1p, U2p be a pair of opposite horospherical
subgroups ofGp. SetU1 =∏p∈S U1p, U2 =∏p∈S U2p, U1 =∏p∈S U1p(Qp), and
U2 =∏p∈S U2p(Qp). For latticesF1 andF2 in U1 andU2, respectively, we denote
by 0F1,F2 the subgroup generated byF1 andF2.

Lemma 3.1. (1) The subgroupsU1p(Qp) and U2p(Qp) generate the subgroup
G+p (see [2]).

(2) Any subgroup ofGp normalized byG+p is either trivial or containsH+p for
some nontrivial normal simpleQp-subgroupHp ofGp (see [10]).

If Gp isQp-simple, it is well known [10] that any subgroup ofGp normalized by
G+p is either central (and hence trivial in our case sinceGp is adjoint) or containsG+p .
It is not difficult to see that this implies (2) of the above lemma, since a connected
adjoint semisimpleQp-algebraic group is a direct product of adjointQp-simple
groups.

Lemma 3.2. Let F1 andF2 be lattices inU1 andU2, respectively. Then for each
p ∈ Sf , prp(0F1,F2) is dense inG+p .

Proof. By Lemma 2.3, the closure ofprp(Fi) containsUip(Qp). Therefore the
closure ofprp(0F1,F2) contains the subgroup generated byU1p(Qp) andU2p(Qp),
which isG+p by Lemma 3.1.

Proposition 3.3. If 0 is a discrete subgroup ofG containingF1 andF2, then the
restrictionpr∞|0 of pr∞ is injective.

Proof. We show that the subgroup00= {γ ∈ 0 | pr∞(γ )= e} is trivial. Without
loss of generality, we may assume that00 ⊂ GSf =

∏
p∈Sf Gp. Note that00 is

normalized byprSf (0) as well as by0. We claim that00 is normalized byG+Sf =∏
p∈Sf G

+
p . For eachg ∈ G+Sf , there is a sequence{gi | i = 1,2, . . . } in prSf (0)

converging tog asi→∞, sinceprSf (0) is dense inG+Sf by Lemma 3.2. Note that
gixg

−1
i ∈ 00 for any x ∈ 00 and anyi ≥ 1. But00 is discrete, and in particular, it

is closed. Thereforegxg−1 ∈ 00, proving that00 is normalized byG+Sf . Let p ∈
Sf . Sinceprp(00) is normalized byG+p andprp(00) is countable, it follows from
Lemma 3.1 thatprp(00) is trivial. Therefore00 is trivial, yielding thatpr∞|0 is
injective.

Theorem 3.4 (See [1] and [4, Chap. I, Thm. 3.2.4]). Let G be a connected semi-
simpleQ-algebraic group, and letG = ∏p∈S G(Qp). Then theS-arithmetic sub-
groupG(ZS) is a lattice inG.

3.2. Let G be a connectedQ-simple algebraic group withQ-rank at least 1,
S-rank at least 2 (S-rank ofG=∑p∈S Qp-rank ofG), andU1, U2 a pair of opposite
horosphericalQ-subgroups ofG. It was proved by Raghunathan [9] forQ-rank at
least 2 and by Venkataramana [12] forQ-rank 1 that for any idealA of ZS , the
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subgroup generated byU1(A) andU2(A) is of finite index inG(A). It is not hard to
see that the following theorem is a consequence of the above result.

Theorem 3.5. LetF1 andF2 be lattices inU1 andU2 commensurable toU1(ZS)
andU2(ZS), respectively. If the subgroup0F1,F2 is discrete, then it is commensurable
with theS-arithmetic subgroupG(ZS).

4. Main theorem

4.1. As before, letS be a finite set of valuations ofQ including∞, and for
eachp ∈ S, let Gp be a connected semisimpleQp-algebraic group without anyQp-
anisotropic factors and letU1p, U2p be a pair of opposite horospherical subgroups
of Gp. We setG = ∏p∈S Gp, G = ∏p∈S Gp, U1 = ∏p∈S U1p, U2 = ∏p∈S U2p,
U1=∏p∈S U1p(Qp), andU2=∏p∈S U2p(Qp).

Theorem 4.1 (See [5] and [6]). Let S = {∞} and letG be an absolutely simple
real algebraic group withR-rank at least2. Denote byZ(Ui ) the center ofUi for
eachi = 1,2. Let the pair(G,U1) be as follows:

(1) for commutativeU1, assume thatG 6= E2
6;

(2) for HeisenbergU1, assume thatG 6= A2
2,B

2
n,D

2
n;

(3) for U1 such thatZ(U1) is not the root group of a highest real root, assume
that G0 6= E2

6, whereG0 is the algebraic subgroup generated byZ(U1) and
Z(U2);

(4) for U1 such thatZ(U1) is the root group of a highest real root, assume that
[U1,U1] 6= Z(U1) and G′0 6= E2

6, whereG′0 is the algebraic subgroup gen-
erated byZ(U′1) andZ(U′2) and whereU′i is the centralizer of the subgroup
{g ∈ Ui | gug−1u−1 ∈ Z(Ui ) for all u ∈ Ui} in Ui .

For any latticesF1 andF2 in U1 andU2, respectively, the subgroup0F1,F2 is discrete
if and only if there exists aQ-form onG such that0F1,F2 is a subgroup of finite index
in G(Z) and hence a nonuniform arithmetic lattice inG=G(R).

Remark. As for the hypothesis on the pair(G,U1), if G is split overR andG
is not locally isomorphic to SL3(R), thenU1 can be any horospherical subgroup. If
G is locally isomorphic to SL3(R) (i.e., is of typeA2

2), then the above hypothesis
excludes only the case whenU1 is Heisenberg. IfR-rank (G) ≥ 3, thenU1 can be
any commutative or Heisenberg horospherical subgroup.

4.2. The following is a special case of Margulis’s superrigidity theorem (see [4,
Chap. VIII, Thm. 3.6]).

Theorem 4.2. Let G be a connected almostQ-simple algebraic group without
anyR-anisotropic factors. Assume thatR-rank G ≥ 2 and that0 ⊂ G(Q) is an
arithmetic subgroup ofG. Letl be any field of char0, H a connected adjoint semisim-
ple l-group, andj : 0→ H(l) a homomorphism with the image being Zariski-dense
in H.
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Then there exists a rationall-epimorphismφ : G→ H such thatφ(x) = j (x) for
all x ∈ 0.

4.3. We now prove the main theorem of this paper. The notation continues from
Section 4.1.

Theorem 4.3. Let Gp be a connected semisimple adjointQp-algebraic group
without anyQp-anisotropic factors for eachp ∈ S. LetF1 andF2 be lattices inU1

andU2, respectively, such that0F1,F2 is discrete. Assume that(G∞,U1∞) satisfies
the conditions in Theorem 4.1. Then there exists aQ-form on G (in the sense of
Section 1.5) such that0F1,F2 is a subgroup of finite index in theS-arithmetic subgroup
G(ZS). Hence0F1,F2 is a nonuniformS-arithmetic lattice inG.

Proof. Since0∞F1,F2
is a discrete subgroup ofG∞ (by Proposition 2.1) containing

the latticesF∞1 andF∞2 in U1∞(R) andU2∞(R), respectively, Theorem 4.1 implies
that there exists aQ-form on G∞ such that0∞F1,F2

is a subgroup of finite index in
G∞(Z). By Proposition 3.3, the mappr∞|0F1,F2

is injective. Therefore we can define

a mapjp : 0∞F1,F2
→Gp as follows: Forx ∈ 0∞F1,F2

, setjp(x) = prp ◦ (pr∞)−1(x).
It is clear from the definition of0∞F1,F2

thatjp(0∞F1,F2
)⊂Gp(Zp).

We claim thatjp(0∞F1,F2
) is Zariski-dense inGp. Since the subgroup generated by

U1p andU2p is Zariski-dense inGp, it suffices to show that the subgroupjp(F∞i ) is
Zariski-dense inUip for eachi = 1,2. It is clear forp = ∞ sincej∞(F∞i ) = F∞i
is a lattice inUi∞(R). For p ∈ Sf , note thatjp(F∞i ) = prp(Fi)∩Uip(Zp). Since
prp(Fi) is dense inUip by Lemma 2.3 and sinceUip(Zp) is open inUip, jp(F∞i )
is dense inUip(Zp). Therefore the Zariski closure ofjp(F∞i ) containsUip(Zp) and
henceUip, since it is well known thatUip(Zp) is Zariski-dense inUip.

By Theorem 4.2, for eachp ∈ S, there exists aQp-epimorphismφp : G∞ → Gp

such thatφp(x) = jp(x) for all x ∈ 0∞F1,F2
. SinceG∞ is absolutely simple in our

case and hence has no nontrivial normal subgroup,φp is in fact an isomorphism.
Therefore(G∞, (φp,p ∈ S)) endows aQ-form onG with respect to whichU1 and
U2 are defined overQ.

SinceFi ⊂ Ui (Q), Fi is commensurable withUi (ZS) by Proposition 2.9. Since
0F1,F2 is discrete, it follows from Theorem 3.5 that the subgroup0F1,F2 is com-
mensurable with theS-arithmetic subgroupG(ZS). Since eachGp is adjoint, we
can assume thatGp ⊂ SLN by considering the adjoint representation ofGp. More-
over we may assumeG(Q) ⊂ {∏p∈S g | g ∈ SLN(Q)} = SLN(Q) by consider-
ing the isomorphismsφp. Since0F1,F2 is an S-arithmetic subgroup contained in
G(Q), there exists aZS-moduleL in QN of rank N that is invariant by0F1,F2

(cf. [7, Prop. 4.2]); hence0F1,F2 ⊂ GL = {g ∈ G(Q) | g(L) ⊂ L}. Now, by ap-
plying the automorphism of SLN(C) that changes the standard basis to a basis
of L, we may assumeG(ZS)=GL so that0F1,F2 ⊂G(ZS).

By Theorem 3.4,0F1,F2 is a lattice inG. Since the lattice0∞F1,F2
in G∞ contains a

nontrivial unipotent element,0∞F1,F2
is a nonuniform lattice by Godement’s criterion
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(cf. [8]). Therefore, by the remark following Proposition 2.1, the lattice0F1,F2 is
nonuniform.

Proof of Theorem 0.2.The hypothesis on(G∞,U1∞) in Theorem 4.2 is satisfied
for the groups considered in Theorem 0.2 by the remark following Theorem 4.1. To
go from an adjoint group to its finite covers, we now give a standard argument. For
eachp ∈ S, there exists a connected semisimple adjointQp-groupG′p and aQp-
isogenyfp : Gp→ G′p (cf. [4, Chap. I, Prop. 1.4.11]). Setf =∏p∈S fp, the direct
product of thefp ’s. SetF ′i = f (Fi) for eachi = 1,2, and let0′F1,F2

be the subgroup
generated byF ′1 andF ′2. Since the kernel off is finite, it follows thatF ′i is a lattice in
f (Ui) and0′F1,F2

is discrete since0′F1,F2
⊂ f (0F1,F2). Hence by Theorem 4.3, there

exists aQ-form onG′ =∏p∈S G′p such that0′F1,F2
is a subgroup of finite index in

G′(ZS). Sincef (0F1,F2) is a discrete subgroup containing theS-arithmetic subgroup
0′F1,F2

, the subgroupf (0F1,F2) is commensurable withG′(ZS). Hence0F1,F2 is an
S-arithmetic subgroup ofG by the definition in Section 1.6. Hence Theorem 0.2 is
proved.
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