Stony Brook Colloquium

Hee Oh
(Yale)

April 2021

Unipotent flows on hyperboliz manifolds à la Ratner

Hee Oh
 Yale University

* Lines on the torus

Any line is either closed or dense in π^{2}

Any maximal plane is either closed or dense in π^{n}

$$
\mathbb{R}^{n} \rightarrow \mathbb{\pi}^{n}
$$

The closure of a line is a k-torus in π^{n} for some $1 \leqslant k \leqslant n$

Generalizations of these phenomena to hyperbolic manifolds of finite / infinite volume.

1. Hedlund's thm (1936)

$$
\mathbb{H}^{2}=\{(x, y) \mid \quad y>0\} \quad a \mathbb{H}^{2}=\mathbb{R} \cup\{00\}=S^{1}
$$

geodesics

$$
d s=\frac{d \mathrm{dac}}{y}
$$

horocycles
$I \operatorname{som}^{+}\left(H^{2}\right)=P S L_{2} \mathbb{R}$
Any complete hyp. surface $=\mathbb{H}^{2}$,
(closed)

$$
\Gamma<P S L_{2} \mathbb{R} \underbrace{\wedge_{\text {subgp }}}_{C_{0}-p t}
$$

Hedlund (1936) S : closed hyp. Surface Any horocycle is dense in S

Rok Not true for geodesics

$$
T^{\prime}\left(H^{2}\right)=P S L_{2} \mathbb{R} \quad T^{\prime}(S)=\frac{P S L_{2} \mathbb{R}}{\Gamma}
$$

$$
u=\left\{\left.u_{t}=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}
$$

horocacles \leftarrow U-orbits

Hedlund's thm

$$
\forall x \in \Gamma \Gamma L_{\Gamma} \stackrel{P S L_{2} \mathbb{R}}{\Gamma}
$$

2. Veech's thm (1975)

$$
\mathbb{H}^{n}=\left\{\left(x_{1}, \ldots x_{n 1}, y\right) \mid y>0\right\}, d s=\frac{d_{E n c}}{y}
$$

$$
\mathbb{R}^{n-1} \Gamma_{V \infty}=S^{n-1}
$$

geodestc
maximal k-planes horospheres

$$
\text { Isom }{ }^{+}\left(\mathbb{H}^{n}\right)=S 0^{\circ}(n, 1)
$$

Complete hyp. n-mflds $=\Gamma^{\| H^{n}}$ (closed)

$$
\Gamma<\operatorname{Soj}^{\circ}(n, 1)
$$

(cocpt) discrete subgp

Veech (1975) M: closed hyp n-mfld Any max. horosphere is dense in M

$$
F\left(\mathbb{H}^{n}\right)=\operatorname{sog}_{0}^{0}(n, 1) \quad F(M)=\Gamma^{s^{0^{\circ}(n, 1)}}
$$

π

$$
U=\left\{\left(\begin{array}{ccc}
1 & x_{1}, \cdots, x_{n-1} & -\frac{1}{2} \sum x_{i}^{2} \\
0 & I_{1-} & -x_{1} \\
\vdots & I_{n-1} & \vdots \\
0 & & -x_{n-1} \\
0 & 0 & \cdots
\end{array}\right)\right\} \cong \mathbb{R}^{n-1}
$$

max. horospheres $\leftarrow U$-orbits

$$
\forall x \in \Gamma^{S 0^{\circ}(n, 1)}, \overline{x U}=\Gamma^{S 0^{\circ}(n, 1)}
$$

 horocycles

What are the closures of horocycles in $\mathbb{N}^{\left(H^{n}\right.}$?
3. Ratner's thm (1991)
G : conn semi-simple linear Lie gp (e.g $S L_{n} \mathbb{R}, S_{\left.0^{\circ}(n, 1), \cdots\right)}$
$\Gamma<G \quad$ lattice (= discrete subgp lattice $=$ of finite collol)
(e.g $\operatorname{Sin}_{n} Z<S_{n} \mathbb{R}$)
$\Gamma^{G} \mathrm{~F}:$ conn subgp gen by unipotent elements

Thm (Ratner) conj. by Raghunathan

$$
\forall x \in, \bar{\Gamma}, \quad \overline{x H}=x L
$$

where $H<L_{\uparrow}<G$ conn. closed subgp

Special case
Any $S O^{\circ}(2,1)$-orbit in $S L_{3} \mathbb{Z} L^{\mathbb{Z}} \mathbb{R}$ is closed or dense.
\Rightarrow Oppenheim Conjecture (1929) proved by Margulis (1987)

Q: irrational indef. quad form in $n \geqslant 3$ variables.

$$
\Rightarrow \quad 0 \in \overline{Q\left(\mathbb{Z}^{n}-\{0\}\right)}
$$

Special case

$$
\begin{aligned}
& M=\Gamma \mid H^{n} \text { hyp fld with } \operatorname{vol}(M)<\infty \\
& \text { - } \overline{\text { horocycle }}=\text { properly immersed } \\
& \text { subutld }
\end{aligned}
$$

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
1 & x_{1} & -x_{n-1} \\
0 & \frac{1}{2} x x_{1}^{2} \\
\vdots & I_{n-1} & -x_{1} \\
0 & x_{1} & 0 \\
0 & & -x_{11}
\end{array}\right)
\end{aligned}
$$

- $\overline{\text { geod. plane }}=$ properly immersed submfld

geod k-plane \leftarrow orbits of

$$
\begin{aligned}
& S 0^{\circ}(k, 1) \\
& \text { in } S 0^{\circ}(n, 1)
\end{aligned}
$$

For $n=3$, any geod plane is closed or dense
 dense

For $n \geqslant 4$, there may be intermediate cases.
4. Does Ratnet's the still hold in ∞ - vol $_{0}$ setting?

No
for certain hyp 3 -mflds

$$
\approx \sum x \mathbb{R}
$$

some geod planes have wild closures

$$
(\text { McMullen-Mohammadi }-0 .)
$$

Yes
for convex copt hyp molds with Euchsian ends
$\Pi<S O^{\circ}(n, 1)=G \quad$ Zariski dense

$$
M=\nabla^{\mid H^{n}}
$$

Def The limit set Λ

$$
\mathbb{R}^{-1} v_{d \alpha y}=S^{n-1}
$$

- Core $M=\Gamma^{\text {hull }(\Lambda)}$

Smallest
convex submfld homotopic

$$
\text { to } M
$$

$$
M=\frac{d t^{n}}{}
$$

Assume M is convex compact

$$
\text { (}=\text { Core } M \text { is compact) }
$$

Def M has Fuchsian ends if ∂ Core $M=$ totally geodesic gedelesic

$$
\begin{gathered}
\mathbb{S}^{n-1}-\Lambda \\
=
\end{gathered}
$$

For $n=2$,
simple closed geod

For $n \geqslant 3$

Thm M: convex cocpt hyp $n \geqslant 3$-mfld Fuchsian ends
are properly inmersed sub-mflds.

$$
\left(\begin{array}{ll}
n=3 & \text { McMullen-Mohammadi-0. } \\
n \geq 4 & \text { Lee- } 0 .
\end{array}\right)
$$

Orbits of circles

$$
S^{n-1}-\Lambda=\bigcup B_{i} \quad \bar{B}_{i} \cap \bar{B}_{j}=\phi
$$

round balls

$$
n=3
$$

$n=4$

$$
\begin{gathered}
\overline{\Gamma\left(C_{0}\right)} \\
\left\{\begin{array}{l}
\prime \prime \\
C \subset \Gamma S_{0} \\
C \cap \lambda \neq \phi
\end{array}\right.
\end{gathered}
$$

where S_{0} : k-sphere $\Gamma\left(S_{0}\right)$ closed
$n \geqslant 3$
huge def. space of
hyp 3 -mflds
with
$\left.\begin{array}{l}\text { c'bly } \\ \text { many } \\ \text { closed } \\ \text { hyp } n \rightarrow m \text { fld }\end{array} \begin{array}{l}\text { hyp } n \text { molds } \\ \text { with } \\ \text { Fuchsian ends }\end{array}\right\}$
quasi - Fuchsian ends

No local $n \geqslant 4$ deformations.

Thu (McMullen-Mohammadi-0.)
M: convex coupt hyp 3-mfld with quasi - Fuchsian ends
$M^{*}=$ interior of Core M
geod.plane $\cap M^{*}$ is closed or dense in M^{*}

Rok Cannot Replace M^{*} by M (ex. by Bhang)

Est difficulty in carrying out unit. dynamics in inf-volume

$$
u=\left\{u_{t} \mid t \in \mathbb{R}\right\}
$$ setting

$\Gamma^{G} \mathrm{CPH}$
Any U-orbit remains in a cit set

$$
\operatorname{vol}\left(T^{G}\right)<\infty
$$

Any U-orbit spends 99% time in a cpl subset

$$
\operatorname{Vol}\left(C_{f}^{G}\right)=\infty
$$

Almost all U-orbit spends 0% time in a cAt subset.

If M has Fuchsian ends, $\exists \mathrm{cpt}$ subset $\Omega \subset \frac{G}{\Gamma}$ s.t

$$
\left\{t \in \mathbb{R} \mid \times u_{t} \in \Omega\right\}
$$

~ thick Cantor set.
Moreover

$$
\left\{t \in \mathbb{R} \mid x u_{t} \in \Omega-\underset{\text { singular set" }}{-} \mathbf{\text { "nd of }}\right\}
$$

~ thick Cantor set

Thank you!

