ERGODIC DICHOTOMY FOR SUBSPACE FLOWS
IN HIGHER RANK

DONGRYUL M. KIM, HEE OH, AND YAHUI WANG

Abstract. In this paper, we obtain an ergodic dichotomy for directional flows, more generally, subspace flows, for a class of discrete subgroups of a connected semisimple real algebraic group G, called transverse subgroups. The class of transverse subgroups of G includes all discrete subgroups of rank one Lie groups, Anosov subgroups and their relative versions.

Let Γ be a Zariski dense θ-transverse subgroup for a subset θ of simple roots. Let $L_\theta = A_\theta S_\theta$ be the Levi subgroup associated with θ where A_θ is the central maximal real split torus and S_θ is the product of a semisimple subgroup and a compact torus. There is a canonical Γ-invariant subspace Ω_θ of G/S_θ on which Γ acts properly discontinuously. Setting $\Omega_\theta = \Gamma \backslash \Omega_\theta$, we consider the subspace flow given by $A_W = \exp W$ for any linear subspace $W < \mathfrak{a}_\theta$. Our main theorem is a Hopf-Tsuji-Sullivan type dichotomy for the ergodicity of (Ω_θ, A_W, m) with respect to a Bowen-Margulis-Sullivan measure m satisfying a certain hypothesis.

As an application, we obtain the codimension dichotomy for a θ-Anosov subgroup $\Gamma < G$: for any subspace $W < \mathfrak{a}_\theta$ containing a vector u in the interior of the θ-limit cone of Γ, we have $\text{codim} W \leq 2$ if and only if the A_W-action on (Ω_θ, m_u) is ergodic where m_u is the Bowen-Margulis-Sullivan measure associated with u.

Contents

1. Introduction 2
2. Preliminaries 8
3. Continuity of shadows 11
4. Growth indicators and conformal measures on F_θ 15
5. Directional recurrence for transverse subgroups 16
6. Directional conical sets and directional Poincaré series 22
7. Transitivity subgroup and ergodicity of directional flows 32
8. Ergodic dichotomy for subspace flows 39
9. Dichotomy theorems for Anosov subgroups 43
References 46

Oh is partially supported by the NSF grant No. DMS-1900101.
1. Introduction

Let G be a connected semisimple real algebraic group. In this paper, we prove an ergodic dichotomy for directional flows, more generally, for subspace flows, for a class of discrete subgroups, called transverse subgroups.

Fix a Cartan decomposition $G = K A^+ K$ where K is a maximal compact subgroup of G and $A^+ = \exp \mathfrak{a}^+$ is a positive Weyl chamber of a maximal split torus A of G. We denote by $\mu : G \to \mathfrak{a}^+$ the Cartan projection defined by the condition $g \in K \exp \mu(g) K$ for $g \in G$. Let Π be the set of all simple roots for $(\text{Lie } G, \mathfrak{a}^+)$. Fix a non-empty subset $\Theta \subset \Pi$.

Let P_Θ be the standard parabolic subgroup corresponding to Θ and consider the Θ-boundary: $F_\Theta = G/P_\Theta$. Let $i = -\text{Ad}_{w_0} : \Pi \to \Pi$ denote the opposition involution where w_0 is the longest Weyl element. We say that two points $\xi, \eta \in F_\Theta$ are in general position if the pair (ξ, η) belongs to the unique open G-orbit in $F_\Theta \times F_{i(\Theta)}$ under the diagonal action of G.

Let $\Gamma < G$ be a Zariski dense discrete subgroup. Let Λ_Θ denote the Θ-limit set of Γ, which is the unique Γ-minimal subset of F_Θ (Definition 2.4). We say that Γ is Θ-transverse if it satisfies

- $(\Theta$-regularity): $\lim inf_{\gamma \in \Gamma} \alpha(\mu(\gamma)) = \infty$ for all $\alpha \in \Theta$;
- $(\Theta$-antipodal): any distinct $\xi, \eta \in \Lambda_{\Theta, i(\Theta)}$ are in general position.

The class of Θ-transverse subgroups includes all discrete subgroups of rank one Lie groups, Θ-Anosov subgroups and their relative versions. Note also that every subgroup of a Θ-transverse subgroup is again Θ-transverse. The class of transverse subgroups is regarded as a generalization of all rank one discrete subgroups, while the class of Anosov subgroups is regarded as a generalization of rank one convex cocompact subgroups.

In the rest of the introduction, we assume that Γ is a Zariski dense Θ-transverse subgroup of G. The usual homogeneous space $\Gamma \backslash G$ turns out to inadequate in studying dynamical properties associated with Γ unless $\Theta = \Pi$. We introduce an appropriate substitute of $\Gamma \backslash G$ for a general Θ-transverse subgroup. Consider the Langlands decomposition $P_\Theta = A_\Theta S_\Theta N_\Theta$ where A_Θ is the maximal split central torus, S_Θ is an almost direct product of a semisimple algebraic group and a compact central torus and N_Θ is the unipotent radical of P_Θ. The diagonalizable subgroup A_Θ acts on the quotient space G/S_Θ by translations on the right. The left translation action of Γ on G/S_Θ is in general not properly discontinuous (cf. [2], [21]) unless $\Theta = \Pi$ in which case S_Θ is compact. However the action of Γ is properly discontinuous on the following closed A_Θ-invariant subspace ([20 Thm. 9.1]):

$$\tilde{\Omega}_\Theta := \{ [g] \in G/S_\Theta : gP_\Theta \in \Lambda_\Theta, gw_0 P_{i(\Theta)} \in \Lambda_{i(\Theta)} \} \simeq \Lambda_\Theta^{(2)} \times \mathfrak{a}_\Theta$$
where $\Lambda^{(2)}_\theta$ consists of all pairs $(\xi, \eta) \in \Lambda_\theta \times \Lambda_i(\theta)$ in general position and $a_\theta = \log A_\theta$ (see (5.2)). Therefore the quotient space
$$\Omega_\theta := \Gamma \backslash \tilde{\Omega}_\theta$$
is a second countable locally compact Hausdorff space equipped with the right translation action of A_θ which is non-wandering. By a subspace flow on Ω_θ, we mean the action of the subgroup $A_W = \exp W$ for a non-zero linear subspace $W < a_\theta$.

The main goal of this paper is to study the ergodic properties of the subspace flows on Ω_θ with respect to Bowen-Margulis-Sullivan measures. The most essential case turns out to be the action of one-parameter subgroups of A_θ which we call directional flows. We first present the ergodic dichotomy for directional flows.

Directional flows. Fixing a non-zero vector $u \in a_\theta^+$, we are interested in ergodic properties of the action of the one-parameter subgroup $A_u = \{a_t u = \exp tu : t \in \mathbb{R}\}$ on the space Ω_θ. We say that $\xi \in \Lambda_\theta$ is a u-directional conical point if there exists $g \in G$ such that $\xi = gP_\theta$ and $[g]a_{t_i}u \in \Omega_\theta$ belongs to a compact subset for some sequence $t_i \to +\infty$. We denote by Λ^u_θ the set of all u-directional conical points, that is,
$$\Lambda^u_\theta := \{gP_\theta \in \Lambda_\theta : [g] \in \Omega_\theta, \limsup_{t \to +\infty} [g]a_{t}u \neq \emptyset\}.$$See Definition 5.4 and Lemma 5.5 for an equivalent definition of Λ^u_θ given in terms of shadows. It is clear from the definition that Λ^u_θ is an important object in the study of the recurrence of A_u-orbits. Another important player in our ergodic dichotomy is the directional ψ-Poincaré series for a linear form $\psi \in a^*_\theta$. To define them, we set $\mu_\theta := p_\theta \circ \mu$ to be the a_θ-valued Cartan projection where $p_\theta : a \to a_\theta$ is the unique projection, invariant under all Weyl elements fixing a_θ pointwise. The u-directional ψ-Poincaré series is of the form
$$\sum_{\gamma \in \Gamma \backslash \mathbb{R}} e^{-\psi(\mu_\theta(\gamma))}$$
where $\Gamma_{u,R} := \{\gamma \in \Gamma : \|\mu(\gamma) - \mathbb{R}u\| < R\}$ for a Euclidean norm $\| \cdot \|$ on a_θ and $R > 0$. In considering these objects, it is natural to restrict to those linear forms ψ such that $\psi \circ \mu_\theta : \Gamma \to [-\varepsilon, \infty)$ is a proper map for some $\varepsilon > 0$, which we call (Γ, θ)-proper linear forms. A Borel probability measure ν on \mathcal{F}_θ is called a (Γ, ψ)-conformal measure if
$$\frac{d\gamma_{\nu}}{d\nu}(\xi) = e^{\psi(\beta_\xi(\xi, \gamma))}$$
for all $\gamma \in \Gamma$ and $\xi \in \mathcal{F}_\theta$. For a (Γ, θ)-proper $\psi \in a^*_\theta$, a
(\Gamma, \psi)\)-conformal measure can exist only when \(\psi \geq \psi^*_T\) where \(\psi^*_T : a_\theta \to \{-\infty\} \cup [0, \infty)\) is the \(\theta\)-growth indicator of \(\Gamma\) [20, Thm. 7.1].

Here is our main theorem for directional flows, relating the ergodicity of \(A_u\), the divergence of the \(u\)-directional Poincaré series and the size of conformal measures on \(u\)-directional conical sets:

Theorem 1.1 (Ergodic dichotomy for directional flows). Let \(\Gamma\) be a Zariski dense \(\theta\)-transverse subgroup of \(G\). Fix a vector \(u \in a_\theta^+ - \{0\}\) and a \((\Gamma, \theta)\)-proper linear form \(\psi \in a_\theta^0\). Let \((\nu, \nu_1)\) be a pair of \((\Gamma, \psi)\) and \((\Gamma, \psi \circ i)\)-conformal measures on \(\Lambda_\theta\) and \(\Lambda_{i(\theta)}\) respectively, and let \(m = m(\nu, \nu_1)\) denote the associated Bowen-Margulis-Sullivan measure on \(\Omega_\theta\) (see [5,7]).

The following conditions (1)-(4) are equivalent. If \(m\) is \(u\)-balanced\(^1\), then (1)-(6) are all equivalent. Moreover the first cases of (1)-(6) can occur only when \(\psi(u) = \psi^*_T(u) > 0\).

1. \(\nu(\Lambda^u_\theta), \nu_i(\Lambda^{i(u)}_{i(\theta)}) > 0\) (resp. \(\nu(\Lambda^u_\theta) = 0 = \nu_i(\Lambda^{i(u)}_{i(\theta)})\));
2. \(\max(\nu(\Lambda^u_\theta), \nu_i(\Lambda^{i(u)}_{i(\theta)}) = 1\) (resp. \(\nu(\Lambda^u_\theta) = 0 = \nu_i(\Lambda^{i(u)}_{i(\theta)})\));
3. \((\Omega_\theta, A_u, m)\) is conservative (resp. completely dissipative);
4. \((\Omega_\theta, A_u, m)\) is ergodic (resp. non-ergodic);
5. \(\sum_{\gamma \in \Gamma_{u,R}} e^{-\psi(\mu_\theta(\gamma))} \leq \infty\) for some \(R > 0\) (resp. \(\sum_{\gamma \in \Gamma_{u,R}} e^{-\psi(\mu_\theta(\gamma))} < \infty\) for all \(R > 0\));
6. \(\nu(\Lambda^u_\theta) = 1 = \nu_i(\Lambda^{i(u)}_{i(\theta)})\) (resp. \(\nu(\Lambda^u_\theta) = 0 = \nu_i(\Lambda^{i(u)}_{i(\theta)})\)).

Remark 1.2.
1. When \(\theta = \Pi\), or equivalently when \(S_\theta\) is compact, Theorem 1.1 was obtained for a general Zariski dense discrete subgroup \(\Gamma < G\) by Burger-Landesberg-Lee-Oh [7, Thm. 1.4].
2. The \(u\)-balanced condition is required only for the implication (5) \(\Rightarrow\) (6) in the first case, which takes up the most significant portion of our proof.
3. When \(G\) is of rank one, this is the classical Hopf-Tsuji-Sullivan dichotomy (see [33, 15, 34, 30, Thm. 1.7], etc.).

Our proof of Theorem 1.1 is a generalization of the approach of [7] to a general \(\theta\). The main difficulties arise from the non-compactness of \(S_\theta\) which we overcome using special properties of \(\theta\)-transverse subgroups such as regularity, antipodality and the convergence group actions on the limit sets.

Subspace flows. We now turn to the ergodic dichotomy for general subspace flows. Let \(W\) be a non-zero linear subspace of \(a_\theta\) and set \(A_W = \{\exp w : w \in W\}\). The \(W\)-conical set of \(\Gamma\) is defined as

\[
A^W_\theta = \{gP_\theta \in F_\theta : [g] \in \Omega_\theta, \limsup [g](A_W \cap A^+) \neq \emptyset\};
\]

\(^1\)The measure space \((X, m)\) with \(\{a_{tu}\}\)-action is called \(u\)-balanced if for any bounded Borel subset \(O_i \subset X\) with \(m(O_i) > 0\) for \(i = 1, 2\), there is \(C > 0\) such that for all \(T > 0\),

\[
\int_0^T m(O_1 \cap O_1 a_{tu}) dt \leq C \int_0^T m(O_2 \cap O_2 a_{tu}) dt.
\]
see Definition \[8.1\] and Lemma \[8.6\] for an equivalent definition of \(\Lambda^W_\theta \) given in terms of shadows. For \(R > 0 \), we set

\[
\Gamma_{W,R} = \{ \gamma \in \Gamma : \| \mu_\theta(\gamma) - W \| < R \}.
\]

Theorem 1.3 (Ergodic dichotomy for subspace flows). Let \(\psi, \nu, \nu_1, m \) be as in Definition \[8.2\]. The following (1)-(4) are equivalent. If \(m \) is \(W \)-balanced as in Definition \[8.3\], then (1)-(6) are all equivalent.

1. \(\max \left(\nu(A^W_\theta), \nu_1(A^{i(W)}_\theta) \right) > 0 \) (resp. \(\nu(A^W_\theta) = 0 = \nu_1(A^{i(W)}_\theta) \));
2. \(\max \left(\nu(A^W_\theta), \nu_1(A^{i(W)}_\theta) \right) = 1 \) (resp. \(\nu(A^W_\theta) = 0 = \nu_1(A^{i(W)}_\theta) \));
3. \((\Omega_\theta, A_W, m) \) is conservative (resp. completely dissipative);
4. \((\Omega_\theta, A_W, m) \) is ergodic (resp. non-ergodic);
5. \(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} = \infty \) for some \(R > 0 \) (resp. \(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} < \infty \) for all \(R > 0 \));
6. \(\nu(A^W_\theta) = 1 = \nu_1(A^{i(W)}_\theta) \) (resp. \(\nu(A^W_\theta) = 0 = \nu_1(A^{i(W)}_\theta) \)).

Remark 1.4. When \(W = a_\theta \), a similar dichotomy was obtained in ([23, 8, 20]). In this case, the \(W \)-balanced condition of \(m \) is not required in our proof; see Remark \[8.9\]. Hence we give a different proof of the ergodicity criterion for the \(A_\theta \)-action [20, Thm. 1.8].

A special feature of a transverse subgroup is that for any \((\Gamma, \theta)\)-proper form \(\psi \), the projection \(\tilde{\Omega}_\theta \to A^1_\theta \times \mathbb{R} \) given by \((\xi, \eta, v) \mapsto (\xi, \eta, \psi(v)) \) induces a \(\psi \)-bundle structure of \(\Omega_\theta \) over the base space \(\Omega_\psi := \Gamma \setminus A^2_\theta \times \mathbb{R} \) with the \(\Gamma \)-action given in \[5\]. In particular, we have

\[\Omega_\theta \simeq \Omega_\psi \times \ker \psi. \]

The vector bundle \(\Omega_\theta \to \Omega_\psi \) plays an important role in our proof of Theorem \[1.3\]. Indeed, the \(\ker \psi \)-bundle \(\Omega_\theta \to \Omega_\psi \) factors through the space \(\Omega_{W^\circ} := \Gamma \setminus A^2_\theta \times a_\theta/W \cap \ker \psi \). Denote by \(m' \) the Radon measure on \(\Omega_{W^\circ} \) so that \(m = m' \otimes \text{Leb}_W \cap \ker \psi \). The \(W \cap \ker \psi \)-bundle \((\Omega_\theta, m) \to (\Omega_{W^\circ}, m') \) enables us to adapt arguments of Pozzetti-Sambarino [26] in obtaining Theorem \[1.3\] from the ergodic dichotomy of the directional flow \(A_u \) on \(\Omega_{W^\circ} \) for any \(u \in W \) such that \(\psi(u) > 0 \).

Remark 1.5. We remark that the Zariski dense hypothesis on \(\Gamma \) is used to ensure the non-arithmeticity of the Jordan projection of \(\Gamma \). Namely, the Zariski density of \(\Gamma \) implies that its Jordan projection \(\lambda(\Gamma) \) generates a dense subgroup in \(a_3 \), and hence the subgroup generated by \(p_\theta(\lambda(\Gamma)) \) is dense in \(a_\theta \). This is a key ingredient in the discussion of transitivity subgroup (Proposition \[7.3\]). Therefore, Theorem \[1.3\] (and hence Theorem \[1.1\]) works for a non-Zariski dense \(\theta \)-transverse subgroup \(\Gamma \) as well, provided that \(p_\theta(\lambda(\Gamma)) \) generates a dense subgroup of \(a_\theta \).
The case of \(\theta \)-Anosov subgroups. A finitely generated subgroup \(\Gamma < G \) is called \(\theta \)-Anosov if there exist constants \(C, C' > 0 \) such that for all \(\alpha \in \theta \) and \(\gamma \in \Gamma \),

\[
\alpha(\mu(\gamma)) \geq C|\gamma| - C'
\]

where \(|\cdot| \) is a word metric with respect to a fixed finite generating set (\[22], \[14], \[17], \[13]\). By the work of Kapovich-Leeb-Porti \[17\], a \(\theta \)-transverse subgroup \(\Gamma < G \) is \(\theta \)-Anosov if \(\Lambda_\theta \) is equal to the \(\theta \)-conical set \(\Lambda_\theta^{\text{con}} \) of \(\Gamma \) (see \(\ref{5.3} \) for definition). If \(\Gamma \) is a \(\theta \)-Anosov subgroup, then for each unit vector \(u \) in the interior of the limit cone \(\mathcal{L}_\theta \), there exists a unique linear form \(\psi_u \in \mathfrak{a}_\theta^* \) tangent to the growth indicator \(\psi_\Gamma^\theta \) at \(u \) and a unique (\(\Gamma, \psi_\theta \))-conformal measure \(\nu_u \) on \(\Lambda_\theta \). Moreover \(u \mapsto \psi_u \) and \(u \mapsto \nu_u \) give bijections among the directions in \(\text{int} \mathcal{L}_\theta \), the space of tangent linear forms to \(\psi_\theta \), and the space of \(\Gamma \)-conformal measures supported on \(\Lambda_\theta \) (\[24], \[32], \[20]\).

Let \(m_u = m(\nu_u, \nu_{(u)}) \) denote the Bowen-Margulis-Sullivan measure on \(\Omega_\theta \) associated with the pair \((\nu_u, \nu_{(u)}) \). We deduce the following codimension dichotomy from Theorem \[1.3\].

Theorem 1.6 (Codimension dichotomy). Let \(\Gamma < G \) be a Zariski dense \(\theta \)-Anosov subgroup. Let \(u \in \text{int} \mathcal{L}_\theta \) and \(W < a_\theta \) be a linear subspace containing \(u \). The following are equivalent:

1. \(\text{codim} W \leq 2 \) (resp. \(\text{codim} W \geq 3 \));
2. \(\nu_u(\Lambda_\theta^W) = 1 \) (resp. \(\nu_u(\Lambda_\theta^W) = 0 \));
3. \((\Omega_\theta, A_W, m_u) \) is ergodic and conservative (resp. non-ergodic and completely dissipative);
4. \(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi_u(\mu(\gamma))} = \infty \) for some \(R > 0 \) (resp. \(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi_u(\mu(\gamma))} < \infty \) for all \(R > 0 \)).

We can view this dichotomy phenomenon depending on \(\text{codim} W \) as consistent with a classical theorem about random walks in \(\mathbb{Z}^d \) (or Brownian motions in \(\mathbb{R}^d \)), which are transient if and only if \(d > 2 \). Since \(\text{codim} W = \# \theta - \dim W \), we have the following corollary:

Corollary 1.7 (\(\theta \)-rank dichotomy). Let \(\Gamma < G \) be a Zariski dense \(\theta \)-Anosov subgroup and let \(u \in \text{int} \mathcal{L}_\theta \). Then \(\# \theta \leq 3 \) if and only if the directional flow \(A_u \) on \((\Omega_\theta, m_u) \) is ergodic.

For a \(\theta \)-Anosov subgroup \(\Gamma \), \(\Omega_{\psi_u} \) is a compact metric space (\[31\] and \[9\] Appendix), and hence \(\Omega_{\omega} \) is a vector bundle over a compact space \(\Omega_{\psi_u} \) with fiber \(\mathbb{R}^{\text{codim} W} \). Moreover, we have the following local mixing result due to Sambarino \[32\] Thm. 2.5.2 (see also \[10\]) that for any \(f_1, f_2 \in C_c(\Omega_{\omega}) \)\(^2\)

\[
\lim_{t \to \infty} t^{\frac{\text{codim} W}{2}} \int_{\Omega_{\omega}} f_1(x)f_2(xa_tu)dm_u'(x) = \kappa_u m_u'(f_1)m_u'(f_2)
\]

\(^2\)The notation \(C_c(X) \) for a topological space \(X \) means the space of all continuous functions on \(X \) with compact supports.
where \(\kappa_u > 0 \) is a constant depending only on \(u \). In particular, \(m'_u \) satisfies the \(u \)-balanced hypothesis. The key part of our proof lies in establishing the inequalities (Propositions 9.3 and 9.6) that for all large enough \(R > 0 \)

\[
\left(\int_0^T t^{-\frac{\text{codim} W}{2}} dt \right)^{1/2} \ll \sum_{\gamma \in \Gamma_{W,R}} e^{-\psi_u(\mu_\theta(\gamma))} \ll \int_0^T t^{-\frac{\text{codim} W}{2}} dt
\]

where \(\delta = \psi_u(u) > 0 \). Therefore, \(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi_u(\mu_\theta(\gamma))} = \infty \) if and only if \(\text{codim} W \leq 2 \).

Remark 1.8.

1. When \(\theta = \Pi \) and \(\dim W = 1 \), Theorem 1.6 and hence Corollary 1.7 were obtained in [7]; in this case, \(\text{codim} W \leq 2 \) translates into \(\text{rank} G \leq 3 \).

2. For a general \(\theta \), when \(\dim W = 1 \) and \(\text{codim} W \neq 2 \), Sambarino proved the equivalence (1)-(3) of Theorem 1.6 using a different approach [32]; for instance, the directional Poincaré series was not discussed in his work. This was extended by Pozzetti-Sambarino [26] for subspace flows, but still under the hypothesis \(\text{codim} W \neq 2 \), using an approach similar to [32]. Thus, Theorem 1.6 settles the open case of \(\text{codim} W = 2 \).

3. We mention that in ([18], [19], [26]), the sizes of directional/subspace conical limit sets were used as a key input in estimating Hausdorff dimensions of certain subsets of the limit sets.

4. Theorem 1.6 and Corollary 1.7 are not true for a general \(\theta \)-transverse subgroup, e.g., there are discrete subgroups in a rank one Lie group which are not of divergence type. Consider a normal subgroup \(\Gamma \) of a non-elementary convex cocompact subgroup \(\Gamma_0 \) of a rank one Lie group \(G \) with \(\Gamma_0/\Gamma \simeq \mathbb{Z}^d \) for \(d \geq 0 \). In this case, by a theorem of Rees [29, Thm. 4.7], \(d \leq 2 \) if and only if \(\Gamma \) is of divergence type, i.e., its Poincaré series diverges at the critical exponent of \(\Gamma \). Using the local mixing result [25, Thm. 4.7] which is of the form as (1.4) with \(t^{\text{codim} W/2} \) replaced by \(t^{d/2} \) and Corollary 6.13, the approach of our paper gives an alternative proof of Rees’ theorem.

5. Corollaries 6.13 and 8.10 reduce the divergence of the \(u \)-directional Poincaré series to the local mixing rate for the \(A_u \)-flow. For example, we expect the local mixing rate of relatively \(\theta \)-Anosov subgroups to be same as that of Anosov subgroups, which would then imply Theorem 1.6 and Corollary 1.7 for those subgroups.

Examples of ergodic actions on \(\Gamma \backslash G/S_\theta \). By the work of Guéritaud-Guichard-Kassel-Wienhard [13], there are examples of Anosov subgroups which act properly discontinuously on \(G/S_\theta \) ([13, Coro. 1.10, Coro. 1.11]), in which case our rank dichotomy theorem can be stated for the one-parameter

The notation \(f(T) \ll g(T) \) means that there is a constant \(c > 0 \) such that \(f(T) \leq cg(T) \) for all \(T > 0 \).
subgroup action on $\Gamma \backslash G/S_\theta$. We discuss one example where $G = \text{SL}_d(\mathbb{R})$. For $2 \leq k \leq d - 2$, let $H_k = \left(\begin{array}{cc} I_k & \cdot \\ \cdot & \text{SL}_{d-k}(\mathbb{R}) \end{array} \right) \simeq \text{SL}_{d-k}(\mathbb{R})$ where I_k denotes the $(k \times k)$-identity matrix. Set $\alpha_i(\text{diag}(v_1, \cdots, v_d)) = v_i - v_{i+1}$ for $1 \leq i \leq d - 1$; so $\Pi = \{ \alpha_i : 1 \leq i \leq d - 1 \}$ is the set of all simple roots for G. We have $S_\theta = H_k$ for $\theta = \{ \alpha_1, \cdots, \alpha_k \}$. Let $\Gamma < G$ be a Π-Anosov subgroup. Then Γ acts properly discontinuously on $\text{SL}_d(\mathbb{R})/\text{SL}_{d-k}(\mathbb{R})$ by [13 Coro. 1.9, Coro. 1.10] and hence Ω_θ is a closed subspace of $\Gamma \backslash \text{SL}_d(\mathbb{R})/\text{SL}_{d-k}(\mathbb{R})$. Therefore any Radon measure on Ω_θ can be considered as a Radon measure on $\Gamma \backslash \text{SL}_d(\mathbb{R})/\text{SL}_{d-k}(\mathbb{R})$. Then Theorem 1.6 implies the following:

Corollary 1.9. Let $\Gamma < \text{SL}_d(\mathbb{R})$ be a Zariski dense Π-Anosov subgroup (e.g., Hitchin subgroups). Let $\theta = \{ \alpha_1, \cdots, \alpha_k \}$ for $k \geq 2$, and $u \in \text{int} L_\theta$. For $k = 2, 3$, the A_u-action on $(\Gamma \backslash \text{SL}_d(\mathbb{R})/\text{SL}_{d-k}(\mathbb{R}), m_u)$ is ergodic. Otherwise, the action is non-ergodic.

We remark that the entire A_g-action on $\Gamma \backslash \text{SL}_d(\mathbb{R})/\text{SL}_{d-k}(\mathbb{R})$ is ergodic for all $k \geq 2$ by [20].

Acknowledgements. We would like to thank Blayac-Canary-Zhu-Zimmer for providing us with the key ingredient of Proposition 7.3.

2. Preliminaries

Throughout the paper, let G be a connected semisimple real algebraic group. In this section, we review some basic facts about the Lie group structure of G, following [20 Sec. 2] which we refer for more details. Let $P < G$ be a minimal parabolic subgroup with a fixed Langlands decomposition $P = MAN$ where A is a maximal real split torus of G, M is the maximal compact subgroup of P commuting with A and N is the unipotent radical of P. Let \mathfrak{g} and \mathfrak{a} respectively denote the Lie algebras of G and A. Fix a positive Weyl chamber $\mathfrak{a}^+ < \mathfrak{a}$ so that $\log N$ consists of positive root subspaces and set $A^+ = \exp \mathfrak{a}^+$. We fix a maximal compact subgroup $K < G$ such that the Cartan decomposition $G = KA^+K$ holds. We denote by

$$
\mu : G \to \mathfrak{a}^+
$$

the Cartan projection defined by the condition $g \in K \exp \mu(g)K$ for $g \in G$. Let $X = G/K$ be the associated Riemannian symmetric space, and set $o = [K] \in X$. Fix a K-invariant norm $\| \cdot \|$ on \mathfrak{g} and a Riemannian metric d on X, induced from the Killing form on \mathfrak{g}. The Weyl group W is given by $N_K(A)/C_K(A)$; the quotient of the normalizer of A in K by the centralizer of A in K. Oftentimes, we will identify W with the chosen set of representatives from $N_K(A)$, and hence treat W as a subset of G.

Lemma 2.1. [3 Lem. 4.6] For any compact subset $Q \subset G$, there exists $C = C(Q) > 0$ such that for all $g \in G$,

$$
\sup_{q_1, q_2 \in Q} \| \mu(q_1 g q_2) - \mu(g) \| \leq C.
$$
Let $\Phi = \Phi(g, a)$ denote the set of all roots, $\Phi^+ \subset \Phi$ the set of all positive roots, and $\Pi \subset \Phi^+$ the set of all simple roots. Fix an element $w_0 \in K$ of order 2 in the normalizer of A representing the longest Weyl element so that $\text{Ad}_{w_0} a^+ = -a^+$. The map

$$i = -\text{Ad}_{w_0} : a \to a$$

is called the opposition involution. It induces an involution $\Phi \to \Phi$ preserving Π, for which we use the same notation i, such that $i(\alpha) = \alpha$ for all $\alpha \in \Phi$. We have $\mu(g^{-1}) = i(\mu(g))$ for all $g \in G$.

Henceforth, we fix a non-empty subset $\theta \subset \Pi$. Let P_θ denote a standard parabolic subgroup of G corresponding to θ; that is, P_θ is generated by MA and all root subgroups U_α, where α ranges over all positive roots which are not \mathbb{Z}-linear combinations of $\Pi - \theta$. Hence $P_\Pi = P$. Let

$$a_\theta = \bigcap_{\alpha \in \Pi - \theta} \ker \alpha, \quad a_\theta^+ = a_\theta \cap a^+, \quad A_\theta = \exp a_\theta, \quad A_\theta^+ = \exp a_\theta^+.$$

Let $p_\theta : a \to a_\theta$ denote the projection invariant under $w \in W$ fixing a_θ pointwise. We also write

$$\mu_\theta := p_\theta \circ \mu : G \to a_\theta^+.$$

Definition 2.2. For a discrete subgroup $\Gamma < G$, its θ-limit cone $L_\theta = L_\theta(\Gamma)$ is defined as the the asymptotic cone of $\mu_\theta(\Gamma)$ in a_θ, that is, $u \in L_\theta$ if and only if $u = \lim t_i \mu_\theta(\gamma_i)$ for some $t_i \to 0$ and $\gamma_i \in \Gamma$. If Γ is Zariski dense, L_θ is a convex cone with non-empty interior by [3]. Setting $L = L_\Pi$, we have $p_\theta(L) = L_\theta$.

We have the Levi-decomposition $P_\theta = L_\theta N_\theta$ where L_θ is the centralizer of A_θ and $N_\theta = R_\theta(P_\theta)$ is the unipotent radical of P_θ. We set $M_\theta = K \cap P_\theta \subset L_\theta$. We may then write $L_\theta = A_\theta S_\theta$ where S_θ is an almost direct product of a connected semisimple real algebraic subgroup and a compact center. Letting $B_\theta = S_\theta \cap A$ and $B_\theta^+ = \{b \in B_\theta : \alpha(\log b) \geq 0 \text{ for all } \alpha \in \Pi - \theta\}$, we have the Cartan decomposition of S_θ:

$$S_\theta = M_\theta B_\theta^+ M_\theta.$$

Note that $A = A_\theta B_\theta$ and $A^+ \subset A_\theta^+ B_\theta^+$. The space $a_\theta^* = \text{Hom}(a_\theta, \mathbb{R})$ can be identified with the subspace of a^* which is p_θ-invariant: $a_\theta^* = \{\psi \in a^* : \psi \circ p_\theta = \psi\}$; so for $\theta_1 \subset \theta_2$, we have $a_{\theta_1}^* \subset a_{\theta_2}^*$.

The θ-boundary F_θ and convergence to F_θ. We set

$$F_\theta = G/P_\theta \quad \text{and} \quad F = G/P.$$

Let

$$\pi_\theta : F \to F_\theta$$

denote the canonical projection map given by $gP \mapsto gP_\theta$, $g \in G$. We set

$$(2.1) \quad \xi_\theta = [P_\theta] \in F_\theta.$$
By the Iwasawa decomposition $G = KP = KAN$, the subgroup K acts transi-
vitely on \mathcal{F}_θ, and hence $\mathcal{F}_\theta \simeq K/M\theta$.

We consider the following notion of convergence of a sequence in G to
an element of \mathcal{F}_θ. For a sequence $g_i \in G$, we say $g_i \to \infty \theta$-regularly if
\[\min_{\alpha \in \theta} \alpha(\mu(g_i)) \to \infty \text{ as } i \to \infty. \]

Definition 2.3. For a sequence $g_i \in G$ and $\xi \in \mathcal{F}_\theta$, we write $\lim_{i \to \infty} g_i = \lim_{i \to \infty} g_{i,o} = \xi$ and say g_i (or $g_{i,o} \in X$) converges to ξ if

- $g_i \to \infty \theta$-regularly; and
- $\lim_{i \to \infty} \kappa_i \xi_\theta = \xi$ in \mathcal{F}_θ for some $\kappa_i \in K$ such that $g_i \in \kappa_i A^+ K$.

Definition 2.4. The θ-limit set of a discrete subgroup Γ can be defined as follows:
\[\Lambda_\theta = \Lambda_\theta(\Gamma) := \{ \lim \gamma_i \in \mathcal{F}_\theta : \gamma_i \in \Gamma \} \]
where $\lim \gamma_i$ is defined as in Definition 2.3. If Γ is Zariski dense, this is the
unique Γ-minimal subset of \mathcal{F}_θ ([3], [28]). If we set $\Lambda = \Lambda_\Pi$, then $\pi_\theta(\Lambda) = \Lambda_\theta$.

Lemma 2.5 ([20], Lem. 2.6-7, see also [24] for $\theta = \Pi$). Let $g_i \in G$ be an
infinite sequence.

1. If g_i converges to $\xi \in \mathcal{F}_\theta$ and $p_i \in X$ is a bounded sequence, then
 \[\lim_{i \to \infty} g_i p_i = \xi. \]
2. If a sequence $a_i \to \infty$ in $A^+ \theta$-regularly, and $g_i \to g \in G$, then for
 any $p \in X$, we have
 \[\lim_{i \to \infty} g_i a_i p = g \xi_\theta. \]

Jordan projections. A loxodromic element $g \in G$ is of the form $g = h a_g m h^{-1}$ for $h \in G$, $a_g \in \text{int } A^+$ and $m \in M$; moreover $a_g \in \text{int } A^+$ is
uniquely determined. We set
\[\lambda(g) := \log a_g \in a^+ \quad \text{and} \quad y_g := h P \in \mathcal{F}, \]
called the Jordan projection and the attracting fixed point of g respectively.

Theorem 2.6. [4] For any Zariski dense subgroup $\Gamma < G$, the subgroup
generated by $\{ \lambda(\gamma) : \gamma \text{ is a loxodromic element of } \Gamma \}$ is dense in a.

Busemann maps. The a-valued Busemann map $\beta : \mathcal{F} \times G \times G \to a$ is
defined as follows: for $\xi \in \mathcal{F}$ and $g, h \in G$,
\[\beta_\xi(g, h) := \sigma(g^{-1}, \xi) - \sigma(h^{-1}, \xi) \]
where $\sigma(g^{-1}, \xi) \in a$ is the unique element such that $g^{-1}k \in K \exp(\sigma(g^{-1}, \xi))N$ for
any $k \in K$ with $\xi = k P$. For $(\xi, g, h) \in \mathcal{F}_\theta \times G \times G$, we define
\[\beta_{\xi}^\theta(g, h) := p_\theta(\beta_{\xi_\theta}(g, h)) \quad \text{for } \xi_\theta \in \pi_\theta^{-1}(\xi); \]
this is well-defined independent of the choice of ξ_θ [28, Lem. 6.1]. For
$p, q \in X$ and $\xi \in \mathcal{F}_\theta$, we set $\beta_{\xi}^\theta(p, q) := \beta_{\xi}^\theta(g, h)$ where $g, h \in G$ satisfies
$go = p$ and $ho = q$. It is easy to check this is well-defined.
Points in general position. Let P_{θ}^+ be the standard parabolic subgroup of G opposite to P_θ such that $P_\theta \cap P_{\theta}^+ = L_\theta$. We have $P_{\theta}^+ = w_0 P_i(\theta) w_0^{-1}$ and hence
\[F_{i(\theta)} = G/P_{\theta}^+. \]

For $g \in G$, we set
\[g^+_{\theta} := g P_{\theta} \quad \text{and} \quad g^-_{\theta} := g w_0 P_i(\theta); \]
as we fix θ in the entire paper, we write $g^\pm = g^+_{\theta}$ for simplicity when there is no room for confusion. Hence for the identity $e \in G$, $(e^+, e^-) = (P_\theta, P_{\theta}^+) = (\xi_\theta, w_0 \xi_i(\theta))$. The G-orbit of (e^+, e^-) is the unique open G-orbit in $G/P_{\theta} \times G/P_{\theta}^+$ under the diagonal G-action. We set
\[(2.4) \quad F_{\theta}^{(2)} = \{(g^+_{\theta}, g^-_{\theta}) : g \in G\}. \]

Two elements $\xi \in F_{\theta}$ and $\eta \in F_{i(\theta)}$ are said to be in general position if \((\xi, \eta) \in F_{\theta}^{(2)}\). Since $P_{\theta}^+ = L_\theta N_{\theta}^+$ where N_{θ}^+ is the unipotent radical of P_{θ}^+, we have
\[(2.5) \quad (g^+_{\theta}, e^-_{\theta}) \in F_{\theta}^{(2)} \quad \text{if and only if} \quad g \in N_{\theta}^+ P_{\theta}. \]

The following lemma will be useful:

Lemma 2.7. [24 Coro. 2.5] If $w \in W$ is such that $mw \in N_{\theta}^+ P_{\theta}$ for some $m \in M_{\theta}$, then $w \in M_{\theta}$. In particular, if $(w \xi_\theta, w_0 \xi_i(\theta)) = (w^+_{\theta}, e^-_{\theta}) \in F_{\theta}^{(2)}$, then $w \in M_{\theta}$.

Gromov products. The map $g \mapsto (g^+, g^-)$ for $g \in G$ induces a homeomorphism $G/L_\theta \simeq F_{\theta}^{(2)}$. For $(\xi, \eta) \in F_{\theta}^{(2)}$, we define the θ-Gromov product as
\[G^\theta(\xi, \eta) = \beta^\theta_\xi(e, g) + i(\beta^i_\eta(e, g)) \]
where $g \in G$ satisfies $(g^+, g^-) = (\xi, \eta)$. This does not depend on the choice of g [24 Lem. 9.11].

Although the Gromov product is defined differently in [9], it is same as ours (see [24 Lem. 3.11, Rmk. 3.13]); hence we have:

Proposition 2.8. [6 Prop. 8.12] There exists $c > 1$ and $c' > 0$ such that for all $g \in G$,
\[c^{-1} \| G^\theta(g^+, g^-) \| \leq d(o, g L_\theta o) \leq c \| G^\theta(g^+, g^-) \| + c'. \]

3. Continuity of shadows

In this section, we recall the definition of θ-shadows and prove certain basic properties. They will be used in later sections but they are of independent interests.

For $p \in X$ and $R > 0$, let $B(p, R)$ denote the metric ball \(\{ x \in X : d(x, p) < R \} \). For $q \in X$, the θ-shadow $O^\theta_R(q, p) \subset F_{\theta}$ of $B(p, R)$ viewed from q is defined as
\[(3.1) \quad O^\theta_R(q, p) = \{ g P_{\theta} \in F_{\theta} : g \in G, \; g o = q, \; g A^+ o \cap B(p, R) \neq \emptyset \} \]
We also define the θ-shadow $O^\theta_R(\eta, p) \subset F_\theta$ viewed from $\eta \in F_{i(\theta)}$ as follows:

$$O^\theta_R(\eta, p) = \{ gP_\theta \in F_\theta : g \in G, \ g\eta P_{i(\theta)} = \eta, \ go \in B(p, R) \}.$$

For any $\tilde{\eta} \in \pi_{i(\theta)}^{-1}(\eta)$, we have

$$O^\theta_R(q, p) = \pi_\theta(O^\Pi_R(q, p)) \text{ and } O^\theta_R(\eta, p) = \pi_\theta(O^\Pi_R(\tilde{\eta}, p)).$$

Note that for all $g \in G$ and $\eta \in X \cup F_{i(\theta)}$,

$$gO^\theta_R(\eta, p) = O^\theta_R(g\eta, gp).$$

We define the a_θ-valued distance $a_\theta : X \times X \to a_\theta$ by

$$a_\theta(q, p) := \mu_\theta(g^{-1}h)$$

where $q = go$ and $p = ho$ for $g, h \in G$. The following was shown for $\theta = \Pi$ in [24, Lem. 5.7] which directly implies the statement for general θ by (3.2).

Lemma 3.1. There exists $\kappa > 0$ such that for any $q, p \in X$ and $R > 0$, we have

$$\sup_{\xi \in O^\theta_R(q, p)} \| \beta^\theta_\xi(q, p) - a_\theta(q, p) \| \leq \kappa R.$$

Lemma 3.2. For any compact subset $Q \subset G$ and $R > 0$, we have that for any $g \in G$ and $h \in Q$,

$$O^\theta_R(ho, go) \subset O^\theta_{R+D_Q}(o, go) \text{ and } O^\theta_R(gho, o) \subset O^\theta_{R+D_Q}(g, o)$$

where $D_Q := \max_{h \in Q} d(ho, o)$.

Proof. Note that $d(ao, pao) \leq d(o, po)$ for all $a \in A^+$ and $p \in P$. Let $h \in Q$ and $\xi \in O^\theta_R(ho, go)$. Then for some $k \in K$ and $a \in A^+$, we have $\xi = hkp_\theta$ and $d(hkao, go) < R$. Write $hk = \ell p \in KP$ for $\ell \in K$ and $p \in P$ by the Iwasawa decomposition $G = KP$. Since $d(\ell ao, \ell pao) \leq D_Q$, we have $d(\ell ao, go) \leq d(\ell ao, \ell pao) + d(hkao, go) < D_Q + R$. Therefore $\xi \in O^\theta_{R+D_Q}(o, go)$, proving the first claim. The second claim follows from the first by (3.3). \qed
Lemma 3.3. Let $p \in X$, $\eta \in F_i(\theta)$ and $r > 0$. If a sequence $\eta_i \in F_i(\theta)$ converges to $\eta \in F_i(\theta)$, then for any $0 < \varepsilon < r$, we have

$$O^\theta_{r-\varepsilon}(\eta_i, p) \subset O^\theta_r(\eta, p) \subset O^\theta_{r+\varepsilon}(\eta_i, p) \quad \text{for all large } i \geq 1.$$

Proof. Note that the first inclusion follows easily from the second inclusion. Let $g \in G$ be such that $g^+ \in O^\theta_r(\eta, p)$, $g^- = \eta$ and $d(g_0, p) < r$. Since $\eta_i \to \eta$, we have $(g^+, \eta_i) \in F^{(2)}_\theta$ for all large $i \geq 1$, and hence $(g^+, \eta_i) = (h_i^+, h_i^-)$ for some $h_i \in G$. In particular, $g = h_iq_in_i$ for $q_in_i \in L_0N_\theta = P_\theta$. By replacing h_i with h_ig_i, we may assume that $g = h_in_i$. Since $h_i^- \to g^-$, we have $n_i^- \to e^-$, and hence $n_i \to e$ as $i \to \infty$. Therefore for all $i \geq 1$ large enough so that $d(n_i, o) \leq \varepsilon$, we have $d(h_i, p) \leq d(h_i, h_in_i) + d(g_0, p) < \varepsilon + r$, and hence $g^+ = h_i^+ \in O^\theta_{r+\varepsilon}(\eta, p)$.

We show that for a fixed $p \in X$ and $\eta \in F_i(\theta)$, shadows $O^\theta_r(\eta, p)$ vary continuously on a small neighborhood of η in $G \cup F_i(\theta)$ (see [24, Lem. 5.6] for $\theta = \Pi)$:

Proposition 3.4 (Continuity of shadows on viewpoints). Let $p \in X$, $\eta \in F_i(\theta)$ and $r > 0$. If a sequence $q_i \in X$ converges to η as $i \to \infty$, then for any $0 < \varepsilon < r$, we have

$$O^\theta_{r-\varepsilon}(q_i, p) \subset O^\theta_r(\eta, p) \subset O^\theta_{r+\varepsilon}(q_i, p) \quad \text{for all large } i \geq 1.$$

Proof. We first prove the second inclusion which requires more delicate arguments. By (3.3) and the fact that K acts transitively on $F_i(\theta)$, we may assume without loss of generality that $\eta = P_i(\theta) = w_0^-$ and $p = o$. Write $q_i = k_i^ia_i^o$ with $k_i^i \in K$ and $a_i^o \in A^+$ using Cartan decomposition. Since $q_i \to w_0^-$, we have $k_i^i \to w_0^-$ and $a_i^o \to \infty i(\theta)$-regularly.

By Lemma 3.3, we may assume $k_i^i = e$ without loss of generality. By (3.2), the claim follows if we replace θ by any subset containing θ. Therefore we may assume without loss of generality that $\alpha(\log a_i)$ is uniformly bounded for all $\alpha \in \Pi - i(\theta)$.

Let $\xi \in O^\theta_r(P_i(\theta), o)$, i.e., $\xi = hP_\theta$ for some $h \in G$ such that $d(ho, o) < r$ and $hw_0P_i(\theta) = P_i(\theta)$. Since $P_i(\theta) = PM_i(\theta)$ and $w_0^{-1}M_i(\theta)w_0 = M_\theta$, we may assume $hw_0 \in P$ by replacing h with hm for some $m \in M_\theta$. We need to show that for some $p_i \in P_\theta$ such that $hp_i = a_i^o$, $d(p_iA^+o, o) < \varepsilon$; this then implies $d(hp_i, A^+o, o) < r + \varepsilon$, and hence $\xi \in O^\theta_{r+\varepsilon}(a_i^o, o)$.

We start by writing

$$a_i^{-1}h = k_i\tilde{a}_i\tilde{n}_i \in KAN, \quad \tilde{a}_i = c_id_i \in A_0B_\theta \quad \text{and} \quad \tilde{n}_i = u_iv_i \in (S_\theta \cap N)N_\theta.$$

As $hw_0 \in P$ and $a_i \in A^+$, the sequence $a_i^{-1}hw_0a_i$ is bounded. Since

$$a_i^{-1}hw_0a_i = (k_iw_0)(w_0^{-1}\tilde{a}_i\tilde{n}_i)w_0a_i \in KAN^+,$$

it follows that both sequences $w_0^{-1}\tilde{a}_i\tilde{n}_i$ and $a_i^{-1}w_0^{-1}\tilde{n}_i\tilde{a}_i$ are bounded.

Since $w_0^{-1}\tilde{n}_i\tilde{a}_i = (w_0^{-1}u_iw_0)(w_0^{-1}v_iw_0) \in S_i(\theta)N_i(\theta)$ and $a_i \in A^+$ with $a_i \to \infty i(\theta)$-regularly, the boundedness of $a_i^{-1}w_0^{-1}\tilde{n}_i\tilde{a}_i$ implies that $v_i \to e$
as \(i \to \infty \) and \(u_i \) is bounded. On the other hand, the boundedness of
\(w_0^{-1}a_iw_oa_i \) implies that \(a_i \in w_0^{-1}w_0^{-1}A_C \) for some \(C > 0 \). As \(a_i \to \infty \) \(i(\theta) \)-regularly, it follows that \(c_i \in A_0^+ \) and \(c_i \to \infty \theta \)-regularly. Moreover, since \(\max_{\alpha \in A_{\Pi - i(\theta)}} \alpha(\log a_i) \) is uniformly bounded, the sequence \(d_i \) is bounded.

As \(d_iu_i \in S_\theta \), we may write its Cartan decomposition \(d_iu_i = m_ib_i m'_i \in M_\theta B_\theta^+ M_\theta \). Since \(c_i \to \infty \) \(\theta \)-regularly and \(d_i u_i \), and hence \(b_i \in B_\theta^+ \), is uniformly bounded, we have \(c_i b_i \in A_0^+ \) for all large \(i \geq 1 \). Set \(p_i = (m_i^{-1} \tilde{a}_i n_i)^{-1} \in P_\theta \). Recalling \(a_i^{-1} h = k_i \tilde{a}_i n_i \), we have \(h_{p_i o} = h_{n_i^{-1}}^{-1} \tilde{a}_i^{-1} o = a_i o \). Moreover, we have

\[
p_i(c_i b_i o) = n_i^{-1} \tilde{a}_i^{-1} m_i c_i b_i m'_i o = n_i^{-1} \tilde{a}_i^{-1} c_i d_i u_i o = v_i^{-1} o
\]

using the commutativity of \(M_\theta \) and \(A_\theta \) as well as the identity \(m_i b_i m'_i = d_i u_i \).

Since \(v_i \to e \), we have \(d(p_i(c_i b_i o), o) \to 0 \). This proves the second inclusion.

We now prove the first inclusion. Similarly, as in the previous case, we may assume that \(q_i = a_i o \) for \(a_i \in A_\theta^+ \) and \(\eta = P_{i(\theta)} \). Let \(\eta_i \in O_{\theta - \varepsilon}(a_i o, o) \), i.e., \(\eta_i = a_i k_i P_\theta \) and \(d(a_i k_i b_i o, o) < r - \varepsilon \) for some \(k_i \in K \) and \(b_i \in A_\theta^+ \). Set \(g_i = a_i k_i b_i \), which is a bounded sequence. We will find \(n_i \in N_\theta \) such that \((g_i n_i)^{-1} = P_{i(\theta)} \) and \(d(g_i n_i o, o) < r \) from which \(\eta_i \in O_{\theta}(\eta, o) \) follows.

We may assume that \(g_i \) converges to some \(g \in G \). Since \(a_i \to \infty i(\theta) \)-regularly, the boundedness of \(g_i = a_i k_i b_i \) together with Lemma 2.1 implies that \(b_i \to \infty \theta \)-regularly. Since \(a_i k_i \to P_{i(\theta)} \) and \(a_i k_i = g_i w_0(w_0^{-1} b_i^{-1} w_0) w_0^{-1} \to g w_0 P_{i(\theta)} \) as \(i \to \infty \) by Lemma 2.5, we have

\[
g w_0 P_{i(\theta)} = P_{i(\theta)}.
\]

On the other hand, as \(i \to \infty \), we have

\[
g_i(P_{\theta}, w_0 P_{i(\theta)}) \to g(P_{\theta}, w_0 P_{i(\theta)}) = (g P_{\theta}, P_{i(\theta)}).
\]

Hence for all large \(i \geq 1 \), \(g_i P_{\theta} \) is in general position with \(P_{i(\theta)} \) and thus we have a sequence \(h_i \in G \) such that

\[
(g_i P_{\theta}, P_{i(\theta)}) = h_i(P_{\theta}, w_0 P_{i(\theta)}).
\]

As \(g_i P_{\theta} = h_i P_{\theta} \), we write \(h_i = g_i n_i \ell_i \) for some \(n_i \in N_\theta \) and \(\ell_i \in L_\theta \). Note that \((g_i n_i o, o) \leq d(g_i n_i o, g_i o) + d(g_i o, o) < r \) follows for all large \(i \).

Since \(h_i(P_{\theta}, w_0 P_{i(\theta)}) = (g_i P_{\theta}, P_{i(\theta)}) \to (g P_{\theta}, P_{i(\theta)}) = g(P_{\theta}, w_0 P_{i(\theta)}) \), we have \(h_i L_\theta = g_i n_i L_\theta \to g L_\theta \). Since \(g_i \to g \) and \(n_i \in N_\theta \), we have \(n_i \to e \) as \(i \to \infty \). This finishes the proof.

\[\textbf{Lemma 3.5.}\] Let \(S > 0 \). For any sequence \(g_i \to \infty \) in \(G \) \(\theta \)-regularly, the product \(O_{\theta}^S(o, g_i o) \times O_{\theta}^S(i(\theta), g_i o, o) \) is relatively compact in \(F_{\theta}^{(2)} \) for all sufficiently large \(i \geq 1 \).

\[\textbf{Proof.}\] Consider an infinite sequence \((\xi_i, \eta_i) \in O_{\theta}^S(o, g_i o) \times O_{\theta}^S(i(\theta), g_i o, o) \). By the \(\theta \)-regularity of \(g_i \to \infty \), we have \(g_i o \to \xi \) as \(i \to \infty \) for some \(\xi \in F_{\theta} \), after passing to a subsequence. For each \(i \), we write \(\xi_i = k_i P_{\theta} \) for \(k_i \in K \)
such that \(d(k_i a_i o, g_i o) < S\) for some \(a_i \in A^+\). In particular, \(a_i \to \infty\) \(\theta\)-regularly. After passing to a subsequence, we may assume that \(k_i \to k \in K\) so that \(k_i a_i o \to k P_\theta\) as \(i \to \infty\). On the other hand, the boundedness of \(d(k_i a_i o, g_i o) < S\) implies that \(k_i a_i o \to \xi\) by Lemma 2.5. Therefore, \(\xi = k P_\theta = \lim i \xi_i\). By passing to a subsequence, we may assume that \(\eta_i \to \eta\) for some \(\eta \in F_{i(\theta)}\). Since \(g_i o \to \xi\), and \(\eta_i \in O_{i(\theta)}(g_i o, o)\), it follows from Proposition 3.4 that \(\eta \in O_{2S}(\xi, o)\). In particular, \((\xi, \eta) \in F_{\theta}^{(2)}\).

\[
4. \text{ Growth indicators and conformal measures on } F_{\theta}
\]

Let \(\Gamma < G\) be a Zariski dense discrete subgroup. We say that \(\theta\) is \(\theta\)-discrete if the restriction \(\mu_\theta|_\Gamma : \Gamma \to a_\theta^+\) is a proper map. Observe that \(\Gamma\) is \(\theta\)-discrete if and only if the counting measure on \(\mu_\theta(\Gamma)\) weighted with multiplicity is locally finite i.e., finite on compact subsets. Following Quint’s notion of growth indicators \([27]\), we have introduced the following in \([20]\):

Definition 4.1 \((\theta\)-growth indicator\). For a \(\theta\)-discrete subgroup \(\Gamma < G\), we define the \(\theta\)-growth indicator \(\psi^\theta_\Gamma : a_\theta \to [-\infty, \infty]\) as follows: if \(u \in a_\theta\) is non-zero,

\[
\psi^\theta_\Gamma(u) = \|u\| \inf_{u \in \mathcal{C}} \tau^\theta_u
\]

where \(\mathcal{C} \subset a_\theta\) ranges over all open cones containing \(u\), and \(\psi^\theta_\Gamma(0) = 0\). Here \(-\infty \leq \tau^\theta_u \leq \infty\) is the abscissa of convergence of \(s \mapsto \sum_{\gamma \in \Gamma, \mu_\theta(\gamma) \in \mathcal{C}} e^{-s\|\mu_\theta(\gamma)\|}\).

We showed (\([20]\) Thm. 3.3.1):

- \(\psi^\theta_\Gamma < \infty\);
- \(\psi^\theta_\Gamma\) is upper semi-continuous and concave,
- \(\mathcal{L}_\theta = \{\psi^\theta_\Gamma \geq 0\} = \{\psi^\theta_\Gamma > -\infty\}\), and \(\psi^\theta_\Gamma > 0\) on \(\text{int} \mathcal{L}_\theta\).

Let \(\psi \in a_\theta^+\). Recall that a \((\Gamma, \psi)\)-conformal measure \(\nu\) is a Borel probability measure on \(F_{\theta}\) such that

\[
\frac{d\gamma_{\psi, \nu}}{d\nu}(\xi) = e^{\psi(\xi^\theta_\Gamma(\epsilon, \gamma))}
\]

for all \(\gamma \in \Gamma\) and \(\xi \in F_{\theta}\).

A linear form \(\psi \in a_\theta^+\) is said to be tangent to \(\psi^\theta_\Gamma\) at \(v \in a_\theta - \{0\}\) if \(\psi \geq \psi^\theta_\Gamma\) and \(\psi(v) = \psi^\theta_\Gamma(v)\).

Proposition 4.2 (\([28]\) Thm. 8.4, \([20]\) Prop. 5.8). For any \(\psi \in a_\theta^+\) which is tangent to \(\psi^\theta_\Gamma\) at an interior direction of \(a_\theta^+\), there exists a \((\Gamma, \psi)\)-conformal measure supported on \(\Lambda_\theta\).

Recall that \(\Gamma\) is called \(\theta\)-transverse, if

- \(\Gamma\) is \(\theta\)-regular, i.e., \(\lim \inf_{\gamma \in \Gamma} \alpha(\mu(\gamma)) = \infty\) for all \(\alpha \in \theta\); and
- \(\Gamma\) is \(\theta\)-antipodal, i.e., any distinct \(\xi, \eta \in \Lambda_{\theta, \omega}(\theta)\) are in general position.

Recall also that \(\psi \in a_\theta^+\) is \((\Gamma, \theta)\)-proper if \(\psi \circ \mu_\theta|_\Gamma\) is a proper map into \([-\epsilon, \infty)\) for some \(\epsilon > 0\).
Theorem 4.3 ([28] Thm. 8.1) for \(\theta = \Pi \), [20] Thm. 7.1 in general). Let \(\Gamma \) be a Zariski dense \(\theta \)-transverse subgroup of \(G \). If there exists a \((\Gamma, \psi)\)-conformal measure \(\nu \) on \(\mathcal{F}_\theta \) for a \((\Gamma, \theta)\)-proper \(\psi \in a_\theta^\ast \), then

\[
\psi \geq \psi_{\Gamma}^0.
\]

Moreover, if \(\sum_{\gamma \in \Gamma} e^{-\psi(\mu_\theta(\gamma))} = \infty \) in addition, then the abscissa of convergence of \(s \mapsto \sum_{\gamma \in \Gamma} e^{-s\psi(\mu_\theta(\gamma))} \) is equal to one.

Shadow lemma. The following is an analog of Sullivan’s shadow lemma for \(\Gamma \)-conformal measures on \(\mathcal{F}_\theta \) which was proved in [20] Lem. 7.2.

Lemma 4.4 (Shadow lemma). Let \(\nu \) be a \((\Gamma, \psi)\)-conformal measure on \(\mathcal{F}_\theta \). We have the following:

1. For some \(R = R(\nu) > 0 \), we have \(c := \inf_{\gamma \in \Gamma} \nu(O^\theta_R(\gamma)) > 0 \); and
2. For all \(r \geq R \) and for all \(\gamma \in \Gamma \),

\[
ce^{-\kappa r} e^{-\psi(\mu_\theta(\gamma))} \leq \nu(O^\theta_r(\gamma)) \leq e^{\kappa r} e^{-\psi(\mu_\theta(\gamma))}
\]

where \(\kappa > 0 \) is a constant given in Lemma 3.1.

If \(\Gamma \) is a \(\theta \)-transverse subgroup with \(\# \Lambda_\theta \geq 3 \) (which is not necessarily Zariski dense), then (4.2) holds for any \((\Gamma, \psi)\)-conformal measure supported on \(\Lambda_\theta \).

5. **Directional recurrence for transverse subgroups**

In this section, we suppose that \(\Gamma \) is a Zariski dense \(\theta \)-transverse subgroup unless mentioned otherwise. The \(\Gamma \)-action on \(G/S_\theta \) by left translations is not properly discontinuous in general, but there is a closed subspace \(\tilde{\Omega}_\theta \subset G/S_\theta \) on which \(\Gamma \) acts properly discontinuously.

We first describe a parametrization of \(G/S_\theta \) as \(\mathcal{F}_{\theta}^{(2)} \times a_\theta \), which can be thought as a generalized Hopf-parametrization. For \(g \in G \), let

\[
[g] := (g^+, g^-, \beta_{g^+}^\theta(e, g)) \in \mathcal{F}_{\theta}^{(2)} \times a_\theta.
\]

Consider the action of \(G \) on the space \(\mathcal{F}_{\theta}^{(2)} \times a_\theta \) by

\[
g.(\xi, \eta, b) = (g\xi, g\eta, b + \beta_{g}^\theta(g^{-1}, e))
\]

where \(g \in G \) and \((\xi, \eta, b) \in \mathcal{F}_{\theta}^{(2)} \times a_\theta \). Then the map \(G \to \mathcal{F}_{\theta}^{(2)} \times a_\theta \) given by \(g \mapsto [g] \) factors through \(G/S_\theta \) and defines a \(G \)-equivariant homeomorphism

\[
G/S_\theta \simeq \mathcal{F}_{\theta}^{(2)} \times a_\theta.
\]

The subgroup \(A_\theta \) acts on \(G/S_\theta \) on the right by \([g]a := [ga]\) for \(g \in G \) and \(a \in A_\theta \); this is well-defined as \(A_\theta \) commutes with \(S_\theta \). The corresponding \(A_\theta \)-action on \(\mathcal{F}_{\theta}^{(2)} \times a_\theta \) is given by

\[
(\xi, \eta, b).a = (\xi, \eta, b + \log a)
\]

for \(a \in A_\theta \) and \((\xi, \eta, b) \in \mathcal{F}_{\theta}^{(2)} \times a_\theta \). For \(\theta = \Pi \), this homeomorphism is called the Hopf parametrization of \(G/M \).
Set $\Lambda_\theta^{(2)} := (\Lambda_\theta \times \Lambda_{i(\theta)}) \cap F_\theta^{(2)}$, and define
\begin{equation}
\tilde{\Omega}_\theta = \Lambda_\theta^{(2)} \times a_\theta
\end{equation}
which is a closed left Γ-invariant and right A_θ-invariant subspace of $F_\theta^{(2)} \times a_\theta$.

Theorem 5.1. [20] Thm. 9.1] If Γ is θ-transverse, then Γ acts properly discontinuously on $\tilde{\Omega}_\theta$ and hence
\[\Omega_\theta := \Gamma \setminus \tilde{\Omega}_\theta \]
is a second countable locally compact Hausdorff space.

By [3], the set $\{(y_\gamma, y_{\gamma - 1}) \in \Lambda^{(2)} : \gamma \in \Gamma \text{ loxodromic}\}$ is dense in $\Lambda^{(2)}$ (see [2.2] for the notation y_γ). Hence the projection $\{(\pi_\theta(y_\gamma), \pi_{i(\theta)}(y_{\gamma - 1})) \in \Lambda_\theta^{(2)} : \gamma \in \Gamma \text{ loxodromic}\}$ is dense in $\Lambda_\theta^{(2)}$. This implies that Ω_θ is a non-wandering set for A_θ, that is, for any open subset $O \subset \tilde{\Omega}_\theta$, the intersection $O \cap Oa_i$ is non-empty for some sequence $a_i \in A_\theta$ going to ∞.

Fix $u \in a_\theta^- \setminus \{0\}$ and set
\[a_{tu} = \exp tu \quad \text{for } t \in \mathbb{R}. \]

We describe the recurrent dynamics of a one-parameter subgroup $A_\theta = \{a_{tu} : t \in \mathbb{R}\}$ on $\tilde{\Omega}_\theta$. That is, we describe for a given compact subset $Q_0 \subset \tilde{\Omega}_\theta$, when Q_0a_{tu} comes back to Q_0 and what the intersection $Q_0a_{tu} \cap Q_0$ looks like for t large enough. This is equivalent to studying $Qa_{tu} \cap \Gamma Q$ for a compact subset $Q \subset \tilde{\Omega}_\theta \subset G/S_\theta$. Difficulties arise because S_θ is not compact, and the θ-transverse hypothesis on Γ is crucial in the following discussions.

We will need the following lemma more than once: note that the product $A_\theta^+ B_\theta^+$ is generally not contained in A^+.

Lemma 5.2. Suppose that $d_i \in A_\theta^+ B_\theta^+$ and $\gamma_i \in \Gamma$ are infinite sequences such that $\gamma_i h_i m_i d_i$ is bounded for some bounded sequences $h_i \in G$ with $h_i P \in \Lambda$ and $m_i \in M_\theta$. Then after passing to a subsequence, for all $i \geq 1$,
\[d_i \in wA^+ w^{-1} \quad \text{for some } w \in \mathcal{W} \cap M_\theta. \]

Proof. By passing to a subsequence, there exists $w \in \mathcal{W}$ such that $d_i = wc_i w^{-1}$ for some $c_i \in A^+$. We will show that $w \in M_\theta$. We may also assume that as $i \to \infty$, $h_i \to h \in G$ and $m_i \to m \in M_\theta$. The θ-regularity of Γ implies that $\gamma_i^{-1} \to \infty \theta \cup i(\theta)$-regularly. Since $h_i' := \gamma_i h_i m_i w c_i w^{-1}$ is bounded, it follows that $c_i \to \infty$ in $A^+ \theta \cup i(\theta)$-regularly as well by Lemma 2.1.

By Lemma 2.5(1)-(2), we have that $\gamma_i^{-1} h_i'$ converges to a point in $\Lambda_{\theta, i(\theta)}$ and $h_i m_i w c_i w^{-1} \to h m w P_{\theta, i(\theta)}$ as $i \to \infty$. Therefore, we have $h m w P_{\theta, i(\theta)} \in \Lambda_{\theta, i(\theta)}$. Since $h P_{\theta, i(\theta)} \in \Lambda_{\theta, i(\theta)}$ by the hypothesis, it follows from the $\theta \cup i(\theta)$-antipodality of Γ that either $w P_{\theta, i(\theta)} = m^{-1} P_{\theta, i(\theta)}$ or $w P_{\theta, i(\theta)}$ is in general position with $m^{-1} P_{\theta, i(\theta)}$. In the former case, by considering the projection to F_θ, we get $w P_{\theta} = m^{-1} P_{\theta}$ and hence $w \in M_\theta$ as
desired. It remains to show that the latter case does not happen. The latter case would mean that $wP_{i(\theta)}$ is in general position with $m^{-1}P_{\theta} = P_{\theta}$.

By Lemma 2.7, this implies $w \in w_0M_{i(\theta)} = M_0w_0$. Writing $d_i = a_ib_i \in A_0^+B_0^+$ and $w = m_0w_0$ with $m_0 \in M_0 \cap N_K(A)$, we get $c_i = w^{-1}d_iw = w_0^{-1}a_iw_0(w_0^{-1}m_0^{-1}b_im_0w_0) \in A_{i(\theta)}(S_{i(\theta)} \cap A) = A_{i(\theta)}B_{i(\theta)}$. As $c_i \in A^+ \subset A_{i(\theta)}^+B_{i(\theta)}^+$, we must have $w_0^{-1}a_iw_0 \in A_{i(\theta)}^+$, which is a contradiction since $a_i \in A_{i(\theta)}^+$. This finishes the proof.

Proposition 5.3. Let $Q \subset \tilde{\Omega}_\theta$ be a compact subset and $u \in a_{\theta}^+ - \{0\}$. There are positive constants $C_1 = C(1), C_2 = C(2)$ and $R = R(Q)$ such that if $[h] \in Q \cap Q_{a_{-u}}$ for some $h \in G, \gamma \in \Gamma$ and $t > 0$, then the following hold:

1. \[\|\mu_{\theta}(\gamma) - tu\| < C_1; \]
2. \[(h^+, h^-) \in O_{R_{\theta}(\gamma, \gamma_0)}(\gamma_0, o); \]
3. \[\|Q^\theta(h^+, h^-)\| < C_2. \]

Proof. Let $Q' \subset G$ be a compact subset such that $Q'M_\theta = Q'$ and $Q \subset Q'S_{\theta}/S_{\theta}$.

To prove (1), suppose not. Then there exist sequences $\gamma_i \in \Gamma, h_i \in G$ and a sequence $t_i \to +\infty$ such that $\|\mu_{\theta}(\gamma_i) - t_iu\| \geq i$ and $[h_i] \in Q \cap Q_{a_{-t_iu}}$ for all $i \geq 1$. By replacing h_i by an element in h_iS_{θ}, we may assume that $h_i \in Q'$ and there exist $h_i' \in Q'$ and $s_i \in S_{\theta}$ such that $h_is_ia_{t_iu} = \gamma_ih_i'$. Since $Q \subset \tilde{\Omega}_\theta$, we have $h_iP_{\theta} = \Lambda_{\theta}$. By replacing h_i with an element of h_iM_θ, we may assume that $h_iP \in \Lambda$ as well. Since $t_i \to +\infty$, $\gamma_i \to \infty$ in Γ. Writing $s_i = m_i = m_i' \in M_\theta = M_\theta$ in the Cartan decomposition of S_{θ}, we have $h_im_ia_{t_iu}b_im_i' = \gamma_ih_i'$. By Lemma 5.2, there exists $w \in W \cap M_\theta$ such that $a_{t_iu}b_i = wc_iw^{-1}$ for some $c_i \in A^+$. Since $c_i = a_{t_iu}(w^{-1}b_iw) \in A^+ \cap A_0B_0$, it follows that

\[\mu_{\theta}(c_i) = p_{\theta}(\log c_i) = t_iu. \]

Since $h_im_iwc_iw^{-1}m_i' = \gamma_ih_i'$, we get that the sequence $\|\mu_{\theta}(\gamma_i) - \mu_{\theta}(c_i)\|$ is uniformly bounded by Lemma 2.1. Hence $\|\mu_{\theta}(\gamma_i) - t_iu\|$ is uniformly bounded, yielding a contradiction.

To prove (2), suppose not. Then there exist sequences $\gamma_i \in \Gamma$, $h_i \in G$ and $t_i > 0$ such that $[h_i] \in Q \cap Q_{a_{-t_iu}}$ and $h_i^+ \notin O_{R_{\theta}}(\gamma_i, \gamma_0)$ or $h_i^- \notin O_{R_{\theta}}(\gamma_0, o)$ for all $i \geq 1$. As before, we may assume $h_i \in Q'$, $h_iP \in \Lambda_{\theta}$ and for some $h_i' \in Q'$ and $s_i \in S_{\theta}$, we have $h_is_ia_{t_iu} = \gamma_ih_i'$. If γ_i were a bounded sequence, $O_{R_{\theta}}(\gamma_i, \gamma_0) \to F_{\theta}$ and $O_{R_{\theta}}(\gamma_i, \gamma_0) \to F_{i(\theta)}$ as $i \to \infty$, which cannot be the case by the hypothesis on h_i^\pm. Hence $\gamma_i \to \infty$ in Γ. In the proof of Item (1), there exist $w \in W \cap M_\theta, b_i \in B_0^+, m_i, m_i' \in M_\theta$ and $c_i \in A^+$ such that

\[h_im_iwc_iw^{-1}m_i' = \gamma_ih_i' \]

and $a_{t_iu}b_i = wc_iw^{-1}$. Then we have $h_im_iwP_{\theta} = h_iP_{\theta}$ and $h_im_iwc_i = \gamma_ih_i'm_i'^{-1}w$. Since $h_i'm_i'^{-1}w \in Q'$, it follows that

\[h_i^+ \in O_{R_0}(h_iw, \gamma_0) \quad \text{for all } i \geq 1 \]
where $R_0 = 1 + \max_{q \in Q' \cup Q' \cup \emptyset} d(qo, o) > 0$. On the other hand, we have
\[h_m w w_0^{-1} = \gamma_i h_i M_i^{-1} w w_0^{-1} (w_0 c_i^{-1} w_0^{-1}), \]
which is a bounded sequence. Since $\gamma_i h_i M_i^{-1} w w_0^{-1} P_i(o) = h_i w P_i(o)$, we have
\[h_i^{-1} \in O_{R_0}(\gamma_i h_i o, o) \quad \text{for all } i \geq 1. \]
Therefore, by Lemma 3.2, we have
\[(h_i^+, h_i^-) \in O_{R_0}^0(o, \gamma_i o) \times O_{R_0}^{i(\theta)}(\gamma_i o, o) \quad \text{for all } i \geq 1, \]
yielding a contradiction.

To prove (3), as before, we may assume $h \in Q'$ and $h = \gamma h_1 a_{-tu}s$ for some $h_1 \in Q'$ and $s \in S_\theta$. Then we have
\[\beta^0_{h^+}(e, h) = \beta^0_{h_1}(e, \gamma) + \beta^0_{e^+}(h_1^{-1}, e) + \beta^0_{e^+}(e, a_{-tu}s) \]
\[\beta^0_{h^-}(e, h) = \beta^0_{h_1}(e, \gamma) + \beta^0_{e^-}(h_1^{-1}, e) + \beta^0_{e^-}(e, a_{-tu}s). \]
Since $\beta^0_{e^+}(e, a_{-tu}s) + i(\beta^0_{e^-}(e, a_{-tu}s)) = G^0(e^+, e^-) = 0$, we deduce that
\[G^0(h^+, h^-) = \beta^0_{h^+}(e, \gamma) + i(\beta^0_{e^-}(h_1^{-1}, e)) + \beta^0_{e^+}(h_1^{-1}, e) + i(\beta^0_{e^-}(h_1^{-1}, e)). \]
Observe that $\|\beta^0_{e^+}(h_1^{-1}, e) + i(\beta^0_{e^-}(h_1^{-1}, e))\| \leq 2 \max_{q \in Q'} d(qo, o)$. Since $(h^+, h^-) \in O_{R_0}^0(o, \gamma o) \times O_{R_0}^{i(\theta)}(\gamma o, o)$ by Item (2), it follows from Lemma 3.1 that
\[\|\beta^0_{h^+}(e, \gamma) - \mu^0(\gamma)\| \leq \kappa R \quad \text{and} \quad \|i(\beta^0_{h^-}(\gamma, e)) - i(\mu^0(\gamma)(\gamma^{-1}))\| < \kappa R. \]
Since $\mu^0(\gamma) = i(\mu^0(\gamma)(\gamma^{-1}))$, we get $\|\beta^0_{h^+}(e, \gamma) + i(\beta^0_{h^-}(\gamma, e))\| \leq 2\kappa R$, and hence
\[\|G^0(h^+, h^-)\| \leq 2\kappa R + 2 \max_{q \in Q'} d(qo, o). \]
This finishes the proof.

Directional conical sets. A point $\xi \in F_\theta$ is called a θ-conical point of Γ if and only if there exist $R > 0$ and a sequence $\gamma_i \to \infty$ in Γ such that $\xi \in O_R(\gamma_i o, o)$, that is, $\xi = k_i P_\theta$ for some $k_i \in K$ such that $d(k_i A^+ o, \gamma_i o) < R$, for all $i \geq 1$. Using the identification $F_\theta = K/M_\theta$, the θ-conical set of Γ is equal to
\[\Lambda^\theta_{\text{con}} = \{ k M_\theta \in F_\theta : k \in K \text{ and } \limsup \Gamma k M_\theta A^+ \neq \emptyset \}. \]

For $r > 0$, we set
\[\Gamma_{u, r} := \{ \gamma \in \Gamma : \|\mu^0(\gamma) - Ru\| < r \}. \]

Definition 5.4 (Directional conical sets). For $u \in a^0_\theta - \{0\}$, we say $\xi \in F_\theta$ is a u-directional conical point of Γ if there exist $R, r > 0$ and a sequence $\gamma_i \to \infty$ in $\Gamma_{u, r}$ such that for all $i \geq 1$,
\[\xi \in O_R^0(o, \gamma_i o), \]
that is, $\xi = k_i P_\theta$ for some $k_i \in K$ such that $d(k_i A^+ o, \gamma_i o) < R$. In other words, the u-directional conical set is given by

$$\Lambda^u_\theta = \{ k M_\theta \in F_\theta : k \in K \text{ and } \limsup_{u \to r} k M_\theta A^+ / k M_\theta A^+ \neq \emptyset \text{ for some } r > 0 \}.$$

We note that $\Gamma^{-1} = \{ \gamma \in \Gamma : \|\mu_i(\theta)(\gamma) - R i(u)\| < r \}$.

Clearly, $\Lambda^u_\theta \subset \Lambda^\cong_\theta$ for all $u \in a^+_\theta - \{0\}$ and $\Lambda^u_\theta = \emptyset$ if $u \notin L_\theta$. These notions of conical and directional conical sets can be defined for any discrete subgroup. On the other hand, for θ-transverse subgroups, these notions can also be defined in terms of recurrence of A_θ and A_u-actions on Ω_θ respectively: we emphasize that for a sequence $g_i \in G$, the sequence $[g_i] \in \Omega_\theta$ is relatively compact if and only if there exists $s_i \in S_\theta$ (which is not necessarily bounded) such that the sequence $g_i s_i$ is bounded in G.

Lemma 5.5 (Conical points and recurrence). Let Γ be θ-transverse. Then

1. $\xi \in \Lambda^\cong_\theta$ if and only if $\xi = g P_\theta$ for some $g \in G$ such that $[g] \in \tilde{\Omega}_\theta$ and $\gamma_i [g] a_i$ is relatively compact in $\tilde{\Omega}_\theta$ for infinite sequences $\gamma_i \in \Gamma$ and $a_i \in A^+_\theta$.
2. $\xi \in \Lambda^u_\theta$ if and only if $\xi = g P_\theta$ for some $g \in G$ such that $[g] \in \tilde{\Omega}_\theta$ and $\gamma_i [g] a_i$ is relatively compact in $\tilde{\Omega}_\theta$ for infinite sequences $\gamma_i \in \Gamma$ and $t_i > 0$.

Proof. Item (1): Let $\xi \in \Lambda^\cong_\theta$, so there exist $k \in K$, $\gamma_i \in \Gamma$, $m_i \in M_\theta$ and $c_i \in A^+$ so that $\xi = k P_\theta$ and $\gamma_i k m_i c_i$ is a bounded sequence in G. By the θ-regularity of Γ, we have $\Lambda^\cong_\theta \subset \Lambda_\theta$ [20, Prop. 5.6(1)], and hence $k^+ = k P_\theta \in \Lambda_\theta$. Since $\Lambda_{i(\theta)}$ is Zariski dense and $kn \theta w_0 P_{i(\theta)}$ is a Zariski open subset of $F_{i(\theta)}$, we have $(kn)^- \in \Lambda_{i(\theta)}$ for some $n \in N_\theta$. Since $(kn)^+ = k^+ = \xi$, we have $[kn] \in \tilde{\Omega}_\theta$. Note that $\gamma_i k m_i c_i = (\gamma_i k m_i c_i)(c_i^{-1} n_i c_i)$ where $n_i := m_i^{-1} n_i \in N_\theta$ is a bounded sequence. Since $c_i \in A^+$, the sequence $c_i^{-1} n_i c_i$ is bounded as well and hence $\gamma_i k m_i c_i$ is bounded. Write $c_i = b_o a_i \in B^+_\theta A^+_{\theta} \subset B^+_\theta A^+_{\theta} G$; so the sequence $\gamma_i (k n m_i b_o a_i)$ is contained in some compact subset of G and $m_i b_i \in S_\theta$. Since the map $g \mapsto [g] \in \tilde{\Omega}_\theta$ is continuous, and hence the image of a compact subset is compact, the sequence $\gamma_i [k n m_i a_i] = [\gamma_i k n m_i b_o a_i]$ is relatively compact in $\tilde{\Omega}_\theta$, as desired.

Conversely, suppose that $\xi = g P_\theta$ for some $g \in G$ such that $[g] \in \tilde{\Omega}_\theta$ and $\gamma_i [g] a_i$ is relatively compact for infinite sequences $\gamma_i \in \Gamma$ and $a_i \in A^+_\theta$. We can replace g with an element in $g M_\theta$ so that $g P \in \Lambda$. Since the sequence $\gamma_i [g] a_i = [\gamma_i g a_i]$ is relatively compact, there exists a bounded sequence $h_i \in G$ such that for all $i \geq 1$, $[h_i] = \gamma_i [g] a_i \in \tilde{\Omega}_\theta$, that is, $g a_i s_i = \gamma_i^{-1} h_i$ for some $s_i \in S_\theta$. Writing the Cartan decomposition $s_i = m_i b_i m_i' \in M_\theta B^+_\theta M_\theta$, we have $g m_i a_i b_i m_i' = \gamma_i^{-1} h_i$. Since the sequence $\gamma_i g m_i a_i b_i \in h_i m_i^{-1}$ is bounded, it follows from Lemma 5.2 that $a_i b_i = w c_i w^{-1}$ for some $w \in W \cap M_\theta$ and $c_i \in A^+$, after passing to a subsequence. Hence we have $g m_i w c_i = \gamma_i^{-1} h_i m_i^{-1} w$, which implies that $\xi = g P_\theta \in O^\theta_R (g o \gamma_i^{-1} o)$ for all i where...
$R = 1 + \max_i d(h_i o, o)$. By Lemma 3.2 we have $\xi \in O^\theta_{R+d(g_0 o)}(o, \gamma_i^{-1} o)$ for all $i \geq 1$, completing the proof.

Item (2): Let $\xi \in \Lambda_{\theta\bar{g}}$. Then $\xi = kP_\theta$ for some $k \in K$ and $\gamma_i k n m_i a_i$ is a bounded sequence in G for some infinite sequences $\gamma_i \in \Gamma_{u_r}$, $m_i \in M_\theta$ and $a_i \in A^+$. Since $\xi = kP_\theta \in \Lambda_{\theta \bar{g}}$ and $\Lambda_{\theta \bar{g}} \subset \Lambda^\text{con}_{\theta} \subset \Lambda_\theta$ by the θ-regularity of Γ [20] Prop. 5.6(1)], we have $k^+ \in \Lambda_\theta$. As in the proof of Item (1) above, there exists $n \in N_\theta$ so that $(kn)^- \in \Lambda_{i(\theta)}$ and $\gamma_i k n m_i a_i$ is bounded. In particular, $[kn] \in \Omega_\vartheta$.

Since $\gamma_i k n m_i a_i$ is a bounded sequence in G and $\gamma_i^{-1} \in \Gamma_{u_r}$, we have $a_i = a_{t_i} b_i$ for some $t_i > 0$ and a bounded sequence $b_i \in A$ by Lemma 2.1. Hence the sequence $\gamma_i k n m_i a_{t_i} b_i$ is bounded as well. Therefore, $\gamma_i [kn] a_{t_i} b_i = [\gamma_i k n m_i a_{t_i} b_i]$ is relatively compact in Ω_ϑ. Since $(kn)^+ = k^+ = \xi$, this shows the only if direction in (2).

To show the converse implication, suppose that the sequence $\gamma_i [g] a_{t_i} b_i$ is contained in some compact subset Q of Ω_ϑ which we also assume contains $[g]$. Since $[g] \in Q \cap \gamma_i^{-1} Q a_{t_i} b_i$, it follows from Proposition 5.3 that $\gamma_i^{-1} \in \Gamma_{u_r}$ and $g^+ = g P_\theta \in O^\theta_{R}(o, \gamma_i^{-1} o)$ for all $i \geq 1$ where $C_1 = C_1(Q)$ and $R = R(Q)$ are given in Proposition 5.3. Therefore, $g^+ \in \Lambda^\theta_{\bar{g}}$.

Theorem 5.6. Let $\Gamma < G$ be a Zariski dense discrete subgroup. Let $u \in a^+_\theta - \{0\}$ and $\psi \in a^*_\theta$ be (Γ, θ)-proper. Suppose that $\sum_{\gamma \in \Gamma_{u_r}} e^{-\psi(\mu_\theta(\gamma))} < \infty$ for all $r > 0$. For any Γ, ψ-conformal measure ν on F_θ, we have

$$\nu(\Lambda^\theta_{\bar{g}}) = 0.$$

Proof. For each $r > 0$, we set $\Lambda_{\theta, r}^u = \limsup_{\gamma \in \Gamma_{u_r}} O^\theta_{R}(o, \gamma o)$. In other words, $\xi \in \Lambda_{\theta, r}^u$ if and only if there exists a sequence $\gamma_i \to \infty$ in Γ_{u_r} such that $\xi \in O^\theta_{R}(o, \gamma_i o)$ for all $i \geq 1$. Then $\Lambda_{\theta, r}^u = \bigcup_{t > 0} \Lambda_{\theta, r}^u$. Let ν be a Γ, ψ-conformal measure on F_θ. Since

$$\Lambda_{\theta, r}^u \subset \bigcup_{\gamma \in \Gamma_{u_r}, ||\mu_\theta(\gamma)|| > t} O^\theta_{R}(o, \gamma o) \quad \text{for all } t > 0,$$

it follows from Lemma 4.4 that

$$\nu(\Lambda_{\theta, r}^u) \leq \sum_{\gamma \in \Gamma_{u_r}, ||\mu_\theta(\gamma)|| > t} e^{-\psi(\mu_\theta(\gamma))} \quad \text{for all } t > 0.$$

Since $\sum_{\gamma \in \Gamma_{u_r}} e^{-\psi(\mu_\theta(\gamma))} < \infty$, taking $t \to \infty$ in (5.5) implies $\nu(\Lambda_{\theta, r}^u) = 0$. Therefore, $\nu(\Lambda_{\theta, r}^u) = \limsup_{r \to \infty} \nu(\Lambda_{\theta, r}^u) = 0$.

Bowen-Margulis-Sullivan measures on Ω_θ. We may identify a^*_θ with $\{\psi \in a^* : \psi \circ p_\theta = \psi\}$. Hence for $\psi \in a^*_\theta$, we have $\psi \circ i \in a^*_\theta$. For a pair of a Γ, ψ-conformal measure ν on Λ_θ and a $\Gamma, \psi \circ i$-conformal measure ν_i on $\Lambda_{i(\theta)}$, we define a Radon measure $d\tilde{\nu}_{\nu, \nu_i}$ on $\Lambda^{(2)}_\theta \times a_\theta$ as follows:

$$d\tilde{\nu}_{\nu, \nu_i}(\xi, \eta, b) = e^{\psi(\theta^a(\xi, \eta))} d\nu(\xi) d\nu_i(\eta) db$$
where db is the Lebesgue measure on a_θ. It is easy to check that $\tilde m_{\nu,\nu_i}$ is left Γ-invariant, and hence induces a A_θ-invariant Radon measure on Ω_θ which we denote by

$$m_{\nu,\nu_i}.$$ We call it the Bowen-Margulis-Sullivan measure associated with the pair (ν, ν_i).

Bowen-Margulis-Sullivan measures on Ω_ψ. Let $\psi \in a_\theta^*$ be a (Γ, θ)-proper form. We remark that this implies that $\psi \geq 0$ on L_θ and $\psi > 0$ on int L_θ [20 Lem. 4.3]. Consider the Γ-action on $\tilde \Omega_\psi := \Lambda^{(2)}_\theta \times \mathbb{R}$ given by

$$\gamma.(\xi, \eta, s) = (\gamma \xi, \gamma \eta, s + \psi(\beta^{\theta}_\xi(\gamma^{-1}, e)))$$

for $\gamma \in \Gamma$ and $(\xi, \eta, s) \in \Lambda^{(2)}_\theta \times \mathbb{R}$.

Theorem 5.7. [20 Thm. 9.2] If Γ is Zariski dense θ-transverse and $\psi \in a_\theta^*$ is (Γ, θ)-proper, then Γ acts properly discontinuously on $\tilde \Omega_\psi$ and hence

$$\Omega_\psi := \Gamma \backslash \tilde \Omega_\psi$$

is a second countable locally compact Hausdorff space.

The map $\Lambda^{(2)}_\theta \times a_\theta \to \Lambda^{(2)}_\theta \times \mathbb{R}$ given by $(\xi, \eta, v) \mapsto (\xi, \eta, \psi(v))$ is a principal ker ψ-bundle which is trivial since ker ψ is a vector space. Therefore it induces a ker ψ-equivariant homeomorphism between

$$\Omega_\theta \simeq \Omega_\psi \times \ker \psi.$$

Let

$$m^\psi_{\nu,\nu_i}$$

be the Radon measure on Ω_ψ induced from the Γ-invariant measure on $\tilde \Omega_\psi$:

$$dm^\psi_{\nu,\nu_i}(\xi, \eta, s) := e^{\psi(G^{\theta}(\xi, \eta))} d\nu(\xi) d\nu(\eta) ds.$$ We then have

$$m_{\nu,\nu_i} = m^\psi_{\nu,\nu_i} \otimes \text{Leb}_{\ker \psi}.$$

6. **Directional conical sets and directional Poincaré series**

Let $\Gamma \leq G$ be a Zariski dense θ-transverse subgroup. We fix

$$u \in a_\theta^+ \setminus \{0\}$$

and a (Γ, θ)-proper $\psi \in a_\theta^*$. We also fix a pair ν, ν_i of (Γ, ψ) and $(\Gamma, \psi \circ i)$-conformal measures on Λ_θ and $\Lambda_{i(\theta)}$ respectively. Denote by $m = m_{\nu,\nu_i}$ and m_{ν,ν_i} the associated Bowen-Margulis-Sullivan measures on $\tilde \Omega_\theta$ and Ω_θ respectively. The goal of this section is to prove the following theorem whose main part is the implication $(1) \Rightarrow (2)$ in the first case.

Theorem 6.1. Suppose that m is u-balanced. The following are equivalent:

(1) $\sum_{\gamma \in \Gamma \times_d} e^{-\psi(\mu_\nu(\gamma))} = \infty$ for some $r > 0$;
(2) \(\nu(A^u_\theta) = 1 = \nu_i(A^u_{i(\theta)}) \).

Similarly, the following are also equivalent:

(1) \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} < \infty \) for all \(r > 0 \);

(2) \(\nu(A^u_\theta) = 0 = \nu_i(A^u_{i(\theta)}) \).

Remark 6.2. When \(\sum_{\gamma \in \Gamma} e^{-\psi(\mu_\theta(\gamma))} = \infty \), there exists at most one \((\Gamma, \psi)\)-conformal measure on \(\mathcal{F}_\theta \) \([20\text{ Thm. 1.5}] \). Furthermore, the existence of a \((\Gamma, \psi)\)-conformal measure on \(\Lambda_\theta \) implies the existence of \((\Gamma, \psi \circ i)\)-conformal measure on \(\Lambda_{i(\theta)} \) as well. Indeed, it follows from \([20\text{ Thm. 7.1}] \) that \(\delta_\psi = 1 \) where \(\delta_\psi \) is the abscissa of the convergence of the Poincaré series \(s \mapsto \sum_{\gamma \in \Gamma} e^{-s\psi(\mu_\theta(\gamma))} \). In particular, \(\delta_{\psi \circ i} = \delta_\psi = 1 \). By \([8\text{ and } 20\text{ Lem. 9.5}] \), there exists a \((\Gamma, \psi \circ i)\)-conformal measure \(\nu \) on \(\Lambda_{i(\theta)} \) which is the unique \((\Gamma, \psi \circ i)\)-conformal measure on \(\mathcal{F}_{i(\theta)} \), since \(\sum_{\gamma \in \Gamma} e^{-(\psi \circ i)(\mu_\theta(\gamma))} = \infty \) as well.

For simplicity, we set for all \(t \in \mathbb{R} \)

\[a_t = a_{tu} = \exp tu. \]

The following proposition is the key ingredient of the proof of Theorem 6.1:

Proposition 6.3. Suppose that \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty \) for some \(r > 0 \). Set \(\delta = \psi(u) > 0 \).

(1) For any compact subset \(Q \subset \tilde{\Omega}_\theta \), there exists \(r = r(Q) > 0 \) such that for any \(T > 1 \), we have

\[
\int_0^T \int_0^T \sum_{\gamma, \gamma' \in \Gamma} \tilde{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s}) dt ds \ll \left(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \right)^2.
\]

(2) For any \(r > 0 \), there exists a compact subset \(Q' = Q'(r) \subset \tilde{\Omega}_\theta \) such that for any \(T > 1 \),

\[
\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}(Q' \cap \gamma Q'a_{-t}) dt \gg \sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))}.
\]

To prove this proposition, we relate the integrals on the left hand sides to shadows and apply the shadow lemma. Together with results obtained in section 5, the following proposition on the multiplicity bound on shadows for transverse subgroups is crucial.

Proposition 6.4. \([20\text{ Prop. 6.2}] \) For any \(R, D > 0 \), there exists \(q = q(\psi, R, D) > 0 \) such that for any \(T > 0 \), the collection of shadows

\[
\{ O_R^\theta(\alpha, \gamma) \subset \mathcal{F}_\theta : T \leq \psi(\mu_\theta(\gamma)) \leq T + D \}
\]

has multiplicity at most \(q \).

\(^4\) The positivity of \(\delta \) is because \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty \) and \(\psi \) is \((\Gamma, \theta)\)-proper.
Lemma 6.5. Let $Q \subset \tilde{\Omega}_a$ be a compact subset. For any $t > 1$, we have
\[
\tilde{m}(Q \cap \gamma Qa_{-t}) \ll e^{-\psi(\mu_{\gamma}(\gamma))}
\]
where the implied constant is independent of t.

Proof. There exists $c_0 = c_0(Q) > 0$ such that if $Q \cap Qa \neq \emptyset$ for some $a \in A_a$, then $\| \log a \| < c_0$. By Proposition 5.3(2)-(3) and Lemma 4.4, we have for large enough $R > 0$ that
\[
\tilde{m}(Q \cap \gamma Qa_{-t})
\begin{align*}
&\leq \int_{O_R^0(\alpha,\gamma)} \int_{O_R^0(\gamma,a)} 1_{Q \cap \gamma Qa_{-t}}(\xi, \eta, b) e^{\psi(G_{b}(\xi, \eta))} d\nu(\xi) d\eta(db) \\
&\leq \int_{O_R^0(\alpha,\gamma)} \int_{O_R^0(\gamma,a)} 1_{Q \cap \gamma Qa_{-t}}(\xi, \eta) e^{\psi(G_{b}(\xi, \eta))} d\nu(\xi) d\eta \\
&\leq \nu(O_R^0(o, \gamma) \nu(O_R^0(\gamma, o))).
\end{align*}
\]
By Lemma 4.4 we have
\[
\tilde{m}(Q \cap \gamma Qa_{-t}) \ll \nu(O_R^0(o, \gamma)) \ll e^{-\psi(\mu_{\gamma}(\gamma))}.
\]

\[\square\]

The following is immediate from Proposition 5.3(1).

Lemma 6.6. Let $Q \subset \tilde{\Omega}_a$ be a compact subset. If $Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s} \neq \emptyset$ for some $\gamma, \gamma' \in \Gamma$ and $t, s > 0$, then we have
\begin{enumerate}
\item $\| \mu_{\theta}(\gamma) - tu \|, \| \mu_{\theta}(\gamma^{-1} \gamma') - su \|, \| \mu_{\theta}(\gamma') - (t + s)u \| < C_1$;
\item $\psi(\mu_{\theta}(\gamma)) + \psi(\mu_{\theta}(\gamma^{-1} \gamma')) < \psi(\mu_{\theta}(\gamma')) + 3C_1 ||\psi||$
\end{enumerate}
where $C_1 = C_1(Q)$ is given by Proposition 5.3(1).

Proof of Proposition 6.3(1). Let $Q \subset \tilde{\Omega}_a$ be a compact subset. Fix $s, t > 0$. For $\gamma, \gamma' \in \Gamma$ such that $Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s} \neq \emptyset$, it follows from Lemma 6.5 that
\[
\tilde{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s}) \ll e^{-\psi(\mu_{\theta}(\gamma'))}.
\]
By Lemma 6.6(2), we have $\psi(\mu_{\theta}(\gamma)) + \psi(\mu_{\theta}(\gamma^{-1} \gamma')) < \psi(\mu_{\theta}(\gamma')) + 3C_1 ||\psi||$ and hence
\[
\tilde{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s}) \ll e^{-\psi(\mu_{\theta}(\gamma))} e^{-\psi(\mu_{\theta}(\gamma^{-1} \gamma'))}.
\]
Since we also have $\| \mu_{\theta}(\gamma) - tu \|, \| \mu_{\theta}(\gamma^{-1} \gamma') - su \| < C_1$ by Lemma 6.6 where C_1 is given in Proposition 5.3(1), we deduce by replacing $\gamma^{-1} \gamma'$ with γ that
\[
\sum_{\gamma, \gamma' \in \Gamma} \tilde{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s})
\begin{align*}
&\ll \left(\sum_{\gamma' \in \Gamma, c_1} e^{-\psi(\mu_{\theta}(\gamma))} \right) \left(\sum_{\gamma' \in \Gamma, c_1} e^{-\psi(\mu_{\theta}(\gamma))} \right)
\end{align*}
\]
where \(c := C_1\|\psi\| \).

We observe that if \(\psi(\mu_\theta(\gamma)) \in (\delta t - c, \delta t + c) \) for some \(t \in [0, T] \), then \(\psi(\mu_\theta(\gamma)) \leq \delta T + c \). Hence we have

\[
\int_0^T \left(\sum_{\gamma \in \Gamma_{u, C_1} \atop \psi(\mu_\theta(\gamma)) \in (\delta t - c, \delta t + c)} e^{-\psi(\mu_\theta(\gamma))} \right) dt \ll \sum_{\gamma \in \Gamma_{u, C_1} \atop \psi(\mu_\theta(\gamma)) \leq \delta T + c} e^{-\psi(\mu_\theta(\gamma))}.
\]

Similarly we also have

\[
\int_0^T \left(\sum_{\gamma \in \Gamma_{u, C_1} \atop \psi(\mu_\theta(\gamma)) \in (\delta s - c, \delta s + c)} e^{-\psi(\mu_\theta(\gamma))} \right) ds \ll \sum_{\gamma \in \Gamma_{u, C_1} \atop \psi(\mu_\theta(\gamma)) \leq \delta T + c} e^{-\psi(\mu_\theta(\gamma))}.
\]

Therefore, we have

\[
\int_0^T \int_0^T \sum_{\gamma, \gamma' \in \Gamma} \tilde{m}(Q \cap \gamma Q a_{t-1} \cap \gamma' Q a_{t-s}) dt ds \ll \left(\sum_{\gamma \in \Gamma_{u, C_1} \atop \psi(\mu_\theta(\gamma)) \leq \delta T + c} e^{-\psi(\mu_\theta(\gamma))} \right)^2.
\]

Since

\[
\sum_{\gamma \in \Gamma_{u, C_1} \atop \delta T < \psi(\mu_\theta(\gamma)) \leq \delta T + c} e^{-\psi(\mu_\theta(\gamma))} \ll \sum_{\gamma \in \Gamma_{u, C_1} \atop \delta T < \psi(\mu_\theta(\gamma)) \leq \delta T + c} \nu(O^\theta_R(o, \gamma o)) \ll 1
\]

for large \(R = R(\nu) \) by Lemma 4.4 and Proposition 6.4, setting \(r(Q) = C_1(Q) \) completes the proof. \(\square \)

Lemma 6.7. For any \(R > 0 \), there exists \(0 < \ell_R < \infty \) such that any \((\xi, \eta) \in \bigcup_{\gamma \in \Gamma} \|\mu_\theta(\gamma)\| > \ell_R \) \(O^\theta_R(o, \gamma o) \times O^i(\theta) \gamma o, o \) satisfies \(\|G^\theta(\xi, \eta)\| < \ell_R \).

Proof. Suppose not. Then there exist sequences \(\gamma_i \to \infty \) in \(\Gamma \) and \((\xi_i, \eta_i) \in O^\theta_R(o, \gamma_i o) \times O^i(\theta) \gamma_i o, o \) such that \(\|G^\theta(\xi_i, \eta_i)\| \to \infty \) as \(i \to \infty \). We may assume that \(\xi_i \to \xi \) and \(\eta_i \to \eta \) by passing to subsequences. As \(\gamma_i \to \infty \) \(\theta \)-regularly, Lemma 3.5 implies that \((\xi, \eta) \in \mathcal{F}^{(2)}_\theta \). Since \(\|G^\theta(\xi_i, \eta_i)\| \to \|G^\theta(\xi, \eta)\| < \infty \), this is a contradiction. \(\square \)

Lemma 6.8. Let \(u \in a^+_\theta \setminus \{0\} \). For any \(r, R > 0 \), there exists a compact subset \(Q = Q(r, R) \subset \Omega_\theta \) such that for any

\[
(\xi, \eta) \in \bigcup_{\gamma \in \Gamma_{u, r} \atop \|\mu_\theta(\gamma)\| > \ell_R} \big(O^\theta_R(o, \gamma o) \times O^i(\theta) \gamma o, o \big) \cap \Lambda^{(2)}_\theta,
\]

there exists \(v \in a_\theta \) and \(t \geq 0 \) such that

\[
(\xi, \eta, v) \in Q \quad \text{and} \quad (\xi, \eta, v)a_{[t-1, t+1]} \subset \gamma Q.
\]
Proof. Let \((\xi, \eta) \in (O_R^0(\eta, \gamma) \times O_R^{i(\gamma)}(\gamma, \eta)) \cap A_0\) for some \(\gamma \in \Gamma_{u, r}\) with \(\|\mu_\eta(\gamma)\| > \ell_R\). Then there exists \(k \in K\) such that \(\xi = kP_\theta\) and \(d(ka_0, \eta, \gamma) < R\) for some \(a_0 \in A^+\). Write \(a_0 = ab \in A_0^+B_\theta^+\).

By Lemma 2.7 we have \(\|\mu(\gamma) - \log a_0\| < D\) for some \(D = D(R)\), and hence \(\|\mu_\eta(\gamma) - \log a\| < D\). We also obtain from \(\gamma \in \Gamma_{u, r}\) that \(\|\mu_\eta(\gamma) - tu\| < r\) for some \(t \geq 0\) and hence we have \(\|tu - \log a\| < D + r\). Therefore, we have

\[
d(katwu, \eta, \gamma) \leq d(katwu, ka_0) + d(ka_0, \eta, \gamma) = d(atu, \alpha) + d(ka_0, \eta, \gamma) < D + r + R.
\]

(6.1)

We also note that

\[
\|tu + \log b - \log a_0\| = \|tu - \log a\| < D + r.
\]

Hence there exists \(\tilde{a} \in A\) such that

\[
\|\log \tilde{a}\| < D + r\quad \text{and}\quad atw\tilde{a} \in A^+.
\]

Let \(g_0 \in G\) such that \((g_0P_\theta, gw_0P_1(\theta)) = (\xi, \eta)\). Since \((\xi, \eta) \in O_R^0(\eta, \gamma) \times O_R^{i(\gamma)}(\gamma, \eta)\) and \(\|\mu_\eta(\gamma)\| > \ell_R\), we have \(\|G^\theta(\xi, \eta)\| < \ell_R\). By Proposition 2.8 we can replace \(g_0\) by an element of \(g_0L_\theta\) so that we may assume that

\[
d(o, g_0) \leq c\|G^\theta(\xi, \eta)\| + c' < c\ell_R + c'.
\]

Since \(\xi = kP_\theta = g_0P_\theta\), we have \(g_0^{-1}k \in P_\theta\). We write the Iwasawa decomposition

\[
g_0^{-1}k = m\hat{a}n \in KAN.
\]

Then we have \(m = g_0^{-1}k\hat{a}^{-1} \in P_\theta\hat{a}^{-1} = P_\theta\). In particular, we have \(m \in P_\theta \cap K = M_\theta\). We let \(g = g_0m\). Since \(m \in M_\theta \subset L_\theta\), we still have \((gP_\theta, gw_0P_1(\theta)) = (\xi, \eta)\) and \(d(o, g_0) = d(o, g_0) < c\ell_R + c'\). Moreover, we have \(g^{-1}k = \hat{a}n \in P\). Now for \(s \in [t - 1, t + 1]\), we have

\[
d(gba^s_\eta, kbatwu) \leq d(gba^s_\eta, gbatwu) + d(gbatwu, kbatwu) \leq 1 + d(gbatwu, gbatwu) + d(gbatwu, kbatwu) + d(kbatwu, kbatwu) = 1 + 2d(o, ao) + d(gbatwu, kbatwu).
\]

Since \(g^{-1}k \in P\) and \(ba\hat{a}n \in A^+\), we get \(d(gbatwu, kbatwu) < d(g, ko) = d(\alpha, o) < c\ell_R + c'\). Together with \(\|\log \hat{a}\| < D + r\), we have

\[
d(gba^s_\eta, kbatwu) < 1 + 2(D + r) + c\ell_R + c'.
\]

Since \(d(kbatwu, \gamma, o) < D + r + R\), we finally have

\[
d(gba^s_\eta, \gamma, o) < 1 + 3(D + r) + R + c\ell_R + c'.
\]

We set \(R' = 1 + 3(D + r) + R + c\ell_R + c'\) and \(Q := \{[\gamma] \in \Omega_\theta : d(\alpha, o, \alpha) \leq R'\} \subseteq \Omega_\theta\) which is a compact subset of \(\Omega_\theta\).

Now the image of \(g\) under the projection \(G \rightarrow F_\theta^{(2)} \times a_\theta\) is of the form \((\xi, \eta, v)\) for some \(v \in a_\theta\). Since \(b \in S_\theta\), the product \(gb\) also projects to the same element \((\xi, \eta, v)\). It follows from \(d(o, g) < c\ell_R + c' \leq R'\) that \((\xi, \eta, v) \in Q\). Moreover, since \(d(\gamma^{-1}gba^s_\eta, o) < R'\) for all \(s \in [t - 1, t + 1]\),
we have $\gamma^{-1}(\xi, \eta, v)a_{su} \in Q$ and hence $(\xi, \eta, v)a_{[t-1, t+1]} \subset \gamma Q$. This finishes the proof.

\textbf{Lemma 6.9.} Suppose that $r, R > 0$ and that $\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_{\theta}(\gamma))} = \infty$. Let $Q = Q(r, R)$ be given in Lemma 6.8. Let $T > 0$ and let $\gamma \in \Gamma_{u,r}$ be such that $\|\mu_\theta(\gamma)\| > \ell_R$ and $C_1\|\psi\| + \delta < \psi(\mu_{\theta}(\gamma)) < \delta T - C_1\|\psi\| - \delta$ where $C_1 = C_1(Q)$ is given by Proposition 5.3(1). Then for $Q' := QA_{\theta,2} \subset \Omega_{\theta}$, for any $(\xi, \eta) \in (O_{R}^0(o, \gamma o) \times O_{R}^{i(\theta)}(\gamma o, \gamma o)) \cap \Lambda^{(2)}_{\theta}$, we have

$$\int_0^T \int_{a_0} 1_{Q' \cap \gamma Q' a_{-t}}(\xi, \eta, b)dbdt \geq 2 \text{Vol}(A_{\theta,2})$$

where $A_{\theta,2} = \{a \in A_\theta : \|\log a\| \leq 2\}$.

\textbf{Proof.} By Lemma 6.8, there exist $v \in a_\theta$ and $t_0 \geq 0$ such that $(\xi, \eta, v) \in Q$ and $(\xi, \eta, v)a_{[t_0-1, t_0+1]} \subset \gamma Q$. In other words, $(\xi, \eta, v) \in Q \cap \gamma Q a_{-t}$ for all $t \in [t_0-1, t_0+1]$. Since $\|\mu_{\theta}(\gamma)\| - t_0 u \leq C_1$ by Proposition 5.3(1), we have $|\psi(\mu_{\theta}(\gamma)) - t_0 \delta| < C_1\|\psi\|$. In particular, we have $[t_0-1, t_0+1] \subset [0, T]$ by the hypothesis.

We set $Q' := QA_{\theta,2}$ which is a compact subset of $\tilde{\Omega}_\theta$. We then have for each $t \in [t_0-1, t_0+1]$ that

$$\int_{A_{\theta}} 1_{Q' \cap \gamma Q' a_{-t}}((\xi, \eta, v)b)db \geq \int_{A_{\theta,2}} 1_{Q'((\xi, \eta, v)ba_t)}db \geq \text{Vol}(A_{\theta,2})$$

where the last inequality follows from $(\xi, \eta, v)a_t \in \gamma Q$. Therefore, we have

$$\int_0^T \int_{a_0} 1_{Q' \cap \gamma Q' a_{-t}}(\xi, \eta, b)dbdt = \int_0^T \int_{A_{\theta}} 1_{Q' \cap \gamma Q' a_{-t}}((\xi, \eta, v)b)dbdt$$

$$\geq \int_{t_0-1}^{t_0+1} \int_{A_{\theta}} 1_{Q' \cap \gamma Q' a_{-t}}((\xi, \eta, v)b)dbdt$$

$$\geq 2 \text{Vol}(A_{\theta,2})$$

as desired. \hfill \square

\textbf{Proof of Proposition 6.3(2).} Fix $R > \max(R(\nu), R(\nu_1))$ where $R(\nu), R(\nu_1)$ are defined in Lemma 4.1. Let $Q' = Q(r, R)A_{\theta,2}$ where $Q(r, R)$ is given in Lemma 6.8 so that Q' satisfies the conclusion of Lemma 6.9. For any $\gamma \in \Gamma$ and $t > 0$, we have

$$\tilde{m}(Q' \cap \gamma Q' a_{-t})$$

$$= \int_{F_{\theta}} \left(\int_{a_0} 1_{Q' \cap \gamma Q' a_{-t}}(\xi, \eta, b)db \right) e^{\psi(G_{\theta}(\xi, \eta))}d\nu(\xi)d\nu(\eta)$$

$$\geq \int_{O_R^0(o, \gamma o) \times O_R^{i(\theta)}(\gamma o, \gamma o)} \left(\int_{a_0} 1_{Q' \cap \gamma Q' a_{-t}}(\xi, \eta, b)db \right) e^{\psi(G_{\theta}(\xi, \eta))}d\nu(\xi)d\nu(\eta).$$
By Lemma 6.9, if $\gamma \in \Gamma_{u,r}$, $\|\mu_\theta(\gamma)\| > \ell_R$ and $C_1 \|\psi\| + \delta < \psi(\mu_\theta(\gamma)) < \delta T - C_1 \|\psi\| - \delta$ where $C_1 = C_1(Q)$, then

$$\int_0^T \tilde{m}(Q' \cap \gamma Q'_{a-\ell}) dt$$

$$\geq 2 \text{Vol}(A_{\theta,2}) \int_{O_{\ell}^\theta(o, \gamma \alpha) \times O_{\ell}^\theta(o, \gamma \alpha, \alpha)} e^{\psi(G^\theta(\xi, \eta))} d\nu(\xi) d\nu(\eta)$$

$$\geq 2 \text{Vol}(A_{\theta,2}) e^{-\|\psi\| \ell_R} \nu(O^\theta_R(o, \gamma \alpha)) \nu(O^\theta_R(o, \gamma \alpha, \alpha))$$

where the last inequality follows from $\|G^\theta(\xi, \eta)\| < \ell_R$. By Lemma 4.4, we conclude

$$\int_0^T \tilde{m}(Q' \cap \gamma Q'_{a-\ell}) dt \gg e^{-\psi(\mu_\theta(\gamma))}.$$

For each $T \geq 1$, we define

$$\Gamma_T = \{ \gamma \in \Gamma : \|\mu_\theta(\gamma)\| > \ell_R, C_1 \|\psi\| + \delta < \psi(\mu_\theta(\gamma)) < \delta T - (C_1 \|\psi\| + \delta) \}.$$

Since $\#\{ \gamma \in \Gamma : \|\mu_\theta(\gamma)\| \leq \ell_R \}$ and $\#\{ \gamma \in \Gamma : \psi(\mu_\theta(\gamma)) \leq C_1 \|\psi\| + \delta \}$ are finite, we have

$$\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}(Q' \cap \gamma Q'_{a-\ell}) dt \geq \int_0^T \sum_{\gamma \in \Gamma_{u,r} \cap \Gamma_T} \tilde{m}(Q' \cap \gamma Q'_{a-\ell}) dt$$

$$\gg \sum_{\gamma \in \Gamma_{u,r} \cap \Gamma_T} e^{-\psi(\mu_\theta(\gamma))}$$

$$\gg \sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))}.$$

By Lemma 4.4 and Proposition 6.4,

$$\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \ll \sum_{\gamma \in \Gamma_{u,r}} \nu(O^\theta_R(o, \gamma \alpha)) \ll 1.$$

Therefore, we obtain

$$\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}(Q' \cap \gamma Q'_{a-\ell}) dt \gg \sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))}. \quad \square$$

We will apply the following version of Borel-Cantelli lemma.

Lemma 6.10. [1] Lem. 2] Let (Ω, M) be a finite Borel measure space and $\{P_t : t \geq 0\} \subset \Omega$ be such that $(t, \omega) \mapsto 1_{P_t}(\omega)$ is measurable. Suppose that

1. $\int_0^\infty M(P_t) dt = \infty$, and
(2) for all large enough T,
\[
\int_0^T \int_0^T M(P_t \cap P_s) dt ds \ll \left(\int_0^T M(P_t) dt \right)^2
\]
where the implied constant is independent of T.

Then we have
\[
M\left(\left\{ \omega \in \Omega : \int_0^\infty 1_{P_t}(\omega) dt = \infty \right\} \right) > 0.
\]

Proposition 6.11. Suppose that m is u-balanced. If $\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty$ for some $r > 0$, then
\[
\nu(\Lambda^u_{B}) > 0 \quad \text{and} \quad \nu_1(\Lambda^i_{i(\mu)}) > 0.
\]

Proof. Let $Q \subset \bar{\Omega}_\theta$ be a compact subset with $\bar{m}(Q) > 0$. Let $r = r(Q) > 1$ be large enough so that $\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty$ and that Proposition 6.3(1) holds. Let $Q' = Q'(r)$ be a compact subset of $\bar{\Omega}_\theta$ given by Proposition 6.3(2). Replacing Q' with a larger compact subset if necessary, we may assume that $\bar{m}(Q') > 0$.

Since m is u-balanced, we have for $T > 1$ that\footnote{The notation $f(T) \asymp g(T)$ means that $f(T) \ll g(T)$ and $g(T) \ll f(T)$.}
\[
\int_0^T \int_0^T \sum_{\gamma \in \Gamma} \bar{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s}) dt ds \ll \left(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \right)^2
\]
with the implied constant independent of T. Since we already have
\[
\int_0^T \int_0^T \sum_{\gamma, \gamma' \in \Gamma} \bar{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s}) dt ds \ll \left(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \right)^2
\]
and
\[
\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \ll \int_0^T \sum_{\gamma \in \Gamma} \bar{m}(Q' \cap \gamma Q'a_{-t}) dt
\]
by Proposition 6.3, it follows from (6.2) that
\[
\int_0^T \int_0^T \sum_{\gamma, \gamma' \in \Gamma} \bar{m}(Q \cap \gamma Qa_{-t} \cap \gamma' Qa_{-t-s}) dt ds \ll \left(\int_0^T \sum_{\gamma \in \Gamma} \bar{m}(Q \cap \gamma Qa_{-t}) dt \right)^2
\]

By abusing notation, for a subset $U \subset \bar{\Omega}_\theta$, we denote by $[U]$ the image of U under the projection $\bar{\Omega}_\theta \to \Omega_\theta$, i.e., $[U] = \Gamma \setminus U$. We set $M = m|_{[Q]}$ which is a finite Borel measure. We let $P_t = [Q \cap \Gamma Qa_{-t}]$ for $t \geq 0$. Since $\# \{ \gamma \in \Gamma : Qa_{-t} \cap \gamma Qa_{-t} \neq \emptyset \}$ is bounded by a universal constant independent of t, we
have $M(P_t) \asymp \sum_{\gamma \in \Gamma} \tilde{m}(Q \cap \gamma Q a_{-t})$ with the implied constant independent of t. Noting that $\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu\theta(\gamma))} = \infty$, it follows from Proposition 6.3(2) that
\[
\int_0^\infty M(P_t)dt = \infty
\]
and hence the condition (1) in Lemma 6.10 is satisfied.

The following is a rephrase of (6.3):
\[
\int_0^T \int_0^T M(P_t \cap P_{t+s})dsdt \ll \left(\int_0^T M(P_t)dt\right)^2.
\]
It implies
\[
\int_0^T \int_0^T M(P_t \cap P_s)dsdt = 2 \int_0^T \int_0^T M(P_t \cap P_s)dsdt
\leq 2 \int_0^T \int_0^T M(P_t \cap P_{t+s})dsdt
\ll \left(\int_0^T M(P_t)dt\right)^2,
\]
showing that the condition (2) in Lemma 6.10 is satisfied.

Hence, by Lemma 6.10, we have
\[
M\left(\left\{([\xi, \eta, v]) \in [Q]: \int_0^\infty 1_{[Q]}([\xi, \eta, v])dt = \infty\right\}\right) > 0.
\]
In other words, there exists a subset $Q_0 \subset Q$ such that $\tilde{m}(Q_0) > 0$ and for all $([\xi, \eta, v]) \in Q_0$, there exist elements $\gamma_i \in \Gamma$ and $t_i \to \infty$ such that $\gamma_i^{-1}([\xi, \eta, v])a_{t_i} \in Q$ for all $i \geq 1$. Hence we have
\[
([\xi, \eta, v]) \in Q \cap \gamma_i Q a_{-t_i} \quad \text{for all } i \geq 1,
\]
which implies $\xi \in \Lambda^u_{\theta}$ by Lemma 5.5.

Now we conclude that for all $([\xi, \eta, v]) \in Q_0$, $\xi \in \Lambda^u_{\theta}$. Since $\tilde{m}(Q_0) > 0$ and \tilde{m} is equivalent to the product measure $\nu \otimes \nu \otimes db$, it follows that $\nu(\Lambda^u_{\theta}) > 0$ as desired. Since m is A_u-invariant, the u-balanced condition remains same after changing the sign of T. Then the same argument with the negative T gives $\nu(\Lambda^{(u)}_{[\theta]}) > 0$. □

Lemma 6.12. We have either $\nu(\Lambda^u_{\theta}) = 0$ or $\nu(\Lambda^u_{\theta}) = 1$.

Proof. Suppose that $\nu(\Lambda^u_{\theta}) > 0$. Then by Theorem 5.6, we must have $\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu\theta(\gamma))} = \infty$ for some $r > 0$. This implies that ν is the unique (Γ, ψ)-conformal measure on F_{θ} ([9, 20 Thm. 1.5]). On the other hand, if $0 < \nu(\Lambda^u_{\theta}) < 1$, then $\nu := \nu|_{F_{\theta} - \Lambda^u_{\theta}}$ defines another (Γ, ψ)-conformal measure, which would contradict the uniqueness of the (Γ, ψ)-conformal measure. Therefore, $\nu(\Lambda^u_{\theta})$ must be either 0 or 1. □
Proof of Theorem 6.1. By Lemma 6.12 we have \(\nu(\Lambda^u_\theta) = 0 \) or \(\nu(\Lambda^u_\theta) = 1 \). Similarly, noting that \(\psi \circ i \in a^*_i(\theta) \) is \((1, i(\theta)) \)-proper as well, we also have either \(\nu(\Lambda^{i(u)}(\theta)) = 0 \) or \(\nu(\Lambda^{i(u)}(\theta)) = 1 \). Therefore Proposition 6.11 implies that if \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty \) for some \(r > 0 \), then \(\nu(\Lambda^u_\theta) = 1 = \nu(\Lambda^{i(u)}(\theta)) \). On the other hand Theorem 5.6 implies that if \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} < \infty \) for all \(r > 0 \), then \(\nu(\Lambda^u_\theta) = 0 = \nu(\Lambda^{i(u)}(\theta)) \). This proves the theorem. \(\square \)

The following estimate reduces the divergence of the series \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \) to the local mixing rate for the \(a_t \)-flow:

Corollary 6.13. For all sufficiently large \(r > 0 \), there exist compact subsets \(Q_1, Q_2 \) of \(\Omega_\theta \) with non-empty interior such that for all \(T \geq 1 \),

\[
\left(\int_0^T m(Q_1 \cap Q_{1-a-t}) dt \right)^{1/2} \ll \sum_{\gamma \in \Gamma_{u,r}} \psi(\mu_\theta(\gamma)) \ll \int_0^T m(Q_2 \cap Q_{2a-t}) dt.
\]

Proof. Let \(Q \subset \tilde{\Omega}_\theta \) be a compact subset with non-empty interior. By Proposition 6.3(1), there exists \(r_0 = r_0(Q) > 0 \) such that for all \(T \geq 1 \) and for all \(r \geq r_0 \),

\[
\int_0^T \int_0^r \sum_{\gamma, \gamma' \in \Gamma} \tilde{m}(Q \cap \gamma Q_{a-t} \cap \gamma' Q_{a-t-s}) dt ds \ll \left(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \right)^2.
\]

Fix a small \(\varepsilon > 0 \) so that \(Q^- := \bigcap_{0 \leq s \leq \varepsilon} Q_{a-s} \) has non-empty interior. Since we have

\[
e \int_0^T \int_0^r \tilde{m}(Q^- \cap \gamma Q^-_{a-t}) dt \leq \int_0^T \int_0^r \tilde{m}(Q \cap \gamma(Q \cap Q_{a-s}a_{-t})dsdt,
\]

it follows from (6.4) that for all \(r \geq r_0 \),

\[
\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}(Q^- \cap \gamma Q^-_{a-t}) dt \ll \left(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \right)^2.
\]

Now let \(Q' = Q'(r) \subset \tilde{\Omega}_\theta \) be a compact subset given in Proposition 6.3(2) such that for any \(T > 1 \),

\[
\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}(Q' \cap \gamma Q'_{a-t}) dt \gg \sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))}.
\]
Replacing \(Q' \) with a larger compact subset, we may assume that \(\text{int} \, Q' \neq \emptyset \). Hence it suffices to set \(Q_1 = \Gamma \backslash \Gamma Q' \) and \(Q_2 = \Gamma \backslash \Gamma Q' \) to finish the proof. \(\square \)

Remark 6.14. For \(\theta = \Pi \), Corollary 6.13 was established in [7] for any Zariski dense discrete subgroup of \(G \) (see [7, Proof of Thm. 6.3]). For example, it implies that if \(\Gamma \) is a lattice of \(G \), then for any non-zero \(u \in \mathfrak{a}_\theta^+ \), we have \(\sum_{\gamma \in \Gamma_{u,r}} e^{-2r(\mu(\gamma))} = \infty \) for all \(r > 1 \) large enough where \(2\rho \) denotes the sum of all positive roots. It follows from the Howe-Moore mixing property of the (finite) Haar measure \([16]\).

7. Transitivity Subgroup and Ergodicity of Directional Flows

Let \(\Gamma < G \) be a Zariski dense \(\theta \)-transverse subgroup. We fix \(u \in \mathfrak{a}_\theta^+ - \{0\} \) and a \((\Gamma, \theta)\)-proper linear form \(\psi \in \mathfrak{a}_\theta^* \). We also fix a pair \(\nu, \nu_i \) of \((\Gamma, \psi)\) and \((\Gamma, \psi \circ i)\)-conformal measures on \(\Lambda_\theta \) and \(\Lambda_{i(\theta)} \) respectively. Denote by \(m = m(\nu, \nu_i) \) the associated Bowen-Margulis-Sullivan measures on \(\Omega_\theta \). In this section, we discuss the ergodicity and conservativity of the directional flow

\[A_u = \{ a_t := \exp(tu) : t \in \mathbb{R} \} \]

on \(\Omega_\theta \) with respect to \(m \). We emphasize that the notion of a transitivity subgroup plays a key role in showing the \(A_u \)-ergodicity.

Conservativity of directional flows. Recall the following definitions:

1. A Borel subset \(B \subset \Omega_\theta \) is called a wandering set for \(m \) if for \(m \)-a.e. \(x \in B \), we have \(\int_{-\infty}^{\infty} 1_B(xa_t) \, dt < \infty \).
2. We say that \((\Omega_\theta, A_u, m)\) is conservative if there is no wandering set \(B \subset \Omega_\theta \) with \(m(B) > 0 \).
3. We say that \((\Omega_\theta, A_u, m)\) is completely dissipative if \(\Omega_\theta \) is a countable union of wandering sets modulo \(m \).

The following is proved for \(\theta = \Pi \) in [7, Prop. 4.2] and a similar proof works for general \(\theta \):

Proposition 7.1. The flow \((\Omega_\theta, A_u, m)\) is conservative (resp. completely dissipative) if and only if \(\max \left(\nu(\Lambda^u_\theta), \nu_1(\Lambda^i(u)) \right) > 0 \) (resp. \(\nu(\Lambda^u_\theta) = 0 = \nu_1(\Lambda^i(u)) \)).

Proof. Suppose that there exists a non-wandering subset \(B \) with \(m(B) > 0 \). Setting \(B^\pm := \{ x \in B : \limsup_{t \to \pm \infty} xa_t \cap B \neq \emptyset \} \), we have \(m(B^+ \cup B^-) > 0 \). Since \(m \) is locally equivalent to \(\nu \otimes \nu_1 \otimes db \), if we have \(m(B^+) > 0 \), then \(\nu(\Lambda^u_\theta) > 0 \) by Lemma 5.5. Otherwise, if \(m(B^-) > 0 \), then \(\nu_1(\Lambda^i(u)) > 0 \). It shows the following two implications:

\((\Omega_\theta, A_u, m)\) is conservative \(\Rightarrow \max \left(\nu(\Lambda^u_\theta), \nu_1(\Lambda^i(u)) \right) > 0; \)

\((\Omega_\theta, A_u, m)\) is completely dissipative \(\Leftarrow \nu(\Lambda^u_\theta) = 0 = \nu_1(\Lambda^i(u)) \)

where the second implication is due to the \(\sigma \)-compactness of \(\Omega_\theta \).
Now suppose that $\nu(\Lambda^u_\theta) > 0$ (resp. $\nu(\Lambda^i_{i\theta}) > 0$). By Theorem [5.6]
\[\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_0(\gamma))} = \infty \] (resp. $\sum_{\gamma \in \Gamma_{u,r}} e^{-(\psi(\mu_0(\gamma))} = \infty$) for some $r > 0$. Note that $\gamma \in \Gamma_{u,r}$ if and only if $\|\mu_i(\theta)(γ) - t_i(u)\| < r$ for some $t \geq 0$. Hence it follows from (6.12) that $\nu(\Lambda^u_\theta) = 1$ (resp. $\nu(\Lambda^i_{i\theta}) = 1$). It implies that for m-a.e. $g \in \Omega_\theta$, we have $g^+ \in \Lambda^u_\theta$ (resp. $g^- \in \Lambda^i_{i\theta}$) and hence $\Gamma[g]a_{t_iu}$ is a convergent sequence for some sequence $t_i \to \infty$ (resp. $t_i \to -\infty$). In other words, for m-a.e. $x \in \Omega_\theta$, there exists a compact subset B such that $\int_{-\infty}^{\infty} \mathbbm{1}_B(x_{at}) dt = \infty$. It implies the conservativity of (Ω_θ, A_u, m) by [23] Lem. 6.1].

Density of θ-transitivity subgroups.

Definition 7.2 (θ-transitivity subgroup). For $g \in G$ with $(g^+, g^-) \in \Lambda^{(2)}_\theta$, we define the subset $\mathcal{H}^\theta_P(g)$ of A_θ as follows: for $a \in A_\theta$, $a \in \mathcal{H}^\theta_P(g)$ if and only if there exist $\gamma \in \Gamma$, $s \in \Theta$ and a sequence $n_1, \ldots, n_k \in \mathcal{N}_\theta \cup \mathcal{N}^+_\theta$, such that

1. $((gn_1 \cdots n_r)^+, (gn_1 \cdots n_r)^-) \in \Lambda^{(2)}_\theta$ for all $1 \leq r \leq k$; and
2. $\gamma g_{n_1} \cdots g_{n_k} = gas$.

It is not hard to see that $\mathcal{H}^\theta_P(g)$ is a subgroup (cf. [35] Lem. 3.1]).

We deduce the density of transitive subgroups from Theorem [2.6].

Proposition 7.3. For any $g \in G$ with $(g^+, g^-) \in \Lambda^{(2)}_\theta$, the subgroup $\mathcal{H}^\theta_P(g)$ is dense in A_θ.

Proof. Since $gN^+_\theta P_\theta \subset \mathcal{F}$ is a Zariski open subset, there exists a Zariski dense Schottky subgroup $\Gamma_0 \subset \Gamma$ so that for any loxodromic element $\gamma \in \Gamma_0$, its attracting fixed point y_γ belongs to $gN^+_\theta P_\theta$ (cf. [12] Lem. 7.3], [3].) Note that any non-trivial element of Γ_0 is loxodromic. By Theorem [2.6] it suffices to prove:

\[\{p_\theta(\lambda(\gamma)) : \gamma \in \Gamma_0\} \subset \log \mathcal{H}^\theta_P(g). \]

Fixing any non-trivial element $\gamma \in \Gamma_0$, write $\gamma = ha_\gamma mh^{-1} \in hA^+Mh^{-1}$ for some $h \in G$. Then $\lambda(\gamma) = \log a_\gamma$ and $y_\gamma = hP \in \Lambda$; hence $y^\theta_\gamma := hP_\theta \in gN^+_\theta P_\theta$. Using $P_\theta = N_\theta A_\theta S_\theta$, we can write $h \in g\tilde{n}A_\theta S_\theta$ for some $\tilde{n} \in N^+_\theta$ and $n \in N_\theta$. By replacing h with $g\tilde{n}$, we may assume that $h = g\tilde{n}N^+_\theta N_\theta$ and $\gamma = hash^{-1}$ for some $s \in S_\theta$ where a is the A_θ-component of a_γ in the decomposition $a_\gamma \in A^+_\theta B^+_{\theta}$ so that $p_\theta(\log a_\gamma) = \log a$. It remains to show that $a \in \mathcal{H}^\theta_P(g)$. We first note from $\gamma = hash^{-1}$ and $h = g\tilde{n}$ that

$$\gamma = (gas)((as)^{-1}n(as))((as)^{-1}n(as))^{-1}n^{-1}g^{-1}$$

and hence

\[\gamma g\tilde{n}((as)^{-1}n^{-1}(as))((as)^{-1}n^{-1}(as)) = gas. \]
Writing \(n_1 = \bar{n}, \ n_2 = n, \ n_3 = (as)^{-1}n^{-1}(as) \) and \(n_4 = (as)^{-1}\bar{n}^{-1}(as) \), we have \(n_1, n_4 \in N_\theta^+ \) and \(n_2, n_3 \in N_\theta \). By (7.2), the elements \(n_i, 1 \leq i \leq 4 \), satisfy the second condition for \(a \in \mathcal{H}_\Gamma^\theta(g) \). We now check the first condition:

\begin{itemize}
 \item \(gn_1P_\theta = g\bar{n}P_\theta = hP_\theta = y_\gamma P_\theta = \Lambda_\theta \) and \(gn_1w_0P_{i(\theta)} = gw_0P_{i(\theta)} = \Lambda_i(\theta); \)
 \item \(gn_1n_2P_\theta = hP_\theta \in \Lambda_\theta \) and \(gn_1n_2w_0P_{i(\theta)} = hw_0P_{i(\theta)} = y_\gamma^{-1} \in \Lambda_i(\theta); \)
 \item \(gn_1n_2n_3P_\theta = gn_1n_2P_\theta \in \Lambda_\theta \) and \(gn_1n_2n_3w_0P_{i(\theta)} = \gamma^{-1}g\gamma^{-1}n_4^{-1}n_3w_0P_{i(\theta)} = \gamma^{-1}g\gamma^{-1}n_4^{-1}w_0P_{i(\theta)} \in \Lambda_i(\theta) \) by (7.2);\)
 \item \(gn_1n_2n_3n_4P_\theta = \gamma^{-1}gP_\theta = \gamma^{-1}1P_\theta \in \Lambda_\theta \) and \(gn_1n_2n_3n_4w_0P_{i(\theta)} = gn_1n_2n_3w_0P_{i(\theta)} \in \Lambda_i(\theta). \)
\end{itemize}

This proves that \(a \in \mathcal{H}_\Gamma^\theta(g) \) and completes the proof. \(\square \)

Stable and unstable foliations for directional flows. Recall the notation that for \(g \in G \), we set

\[[g] = (g^+, g^-, \beta^\theta_g(e, g)) \in F_{\theta}^{(2)} \times a_\theta. \]

Lemma 7.4. Let \(g \in G, n \in N_\theta \) and \(\bar{n} \in N_\theta^+ \). Then

\[[gn] = (g^+, (gn)^-, \beta^\theta_{gn}(e, g)); \]
\[[\bar{gn}] = ((gn)^+, g^-, \beta^\theta_{gn}(e, g) + \mathcal{G}^\theta((gn)^+, g^-) - \mathcal{G}^\theta(g^+, g^-)). \]

Proof. Since \((gn)^+ = gnP_\theta = gP_\theta \), we have

\[\beta^\theta_{gn}(e, gn) - \beta^\theta_{gn}(e, g) = \beta^\theta_{gn}(e, n) = 0 \]

and therefore \([gn] = (g^+, (gn)^-, \beta^\theta_{gn}(e, g)) \). To see the second identity, we first note that \(g\bar{n}w_0P_{i(\theta)} = gw_0P_{i(\theta)} \), that is, \((g\bar{n})^- = g^-\). Since \(\beta^\theta_{e^-}(e, \bar{n}) = 0 \), we have

\[\mathcal{G}^\theta((g\bar{n})^+, g^-) = \beta^\theta_{(g\bar{n})^+}(e, g\bar{n}) + i(\beta^\theta_{g\bar{n}}(e, g)) + i(\beta^\theta_{e^-}(e, \bar{n})) = \beta^\theta_{(g\bar{n})^+}(e, g\bar{n}) + i(\beta^\theta_{g\bar{n}}(e, g)). \]

Since \(\mathcal{G}^\theta(g^+, g^-) = \beta^\theta_{g^+}(e, g) + i(\beta^\theta_{g}(e, g)) \), we get

\[\beta^\theta_{(g\bar{n})^+}(e, g\bar{n}) = \beta^\theta_{g^+}(e, g) + \mathcal{G}^\theta((g\bar{n})^+, g^-) - \mathcal{G}^\theta(g^+, g^-) \]

proving the second identity. \(\square \)

We say a metric \(d \) on \(\Omega_\theta \) **admissible** if it extends to a metric of the one-point compactification of \(\Omega_\theta \) (if \(\Omega_\theta \) is compact, any metric is admissible). Since \(\Omega_\theta \) is a second countable locally compact Hausdorff space (Theorem 5.1), there exists an admissible metric.

For \(x \in \Omega_\theta \), we define \(W^ss(x) \) (resp. \(W^ssu(x) \)) to be the set of all \(y \in \Omega_\theta \) such that \(d(xa_t, ya_t) \to 0 \) as \(t \to +\infty \) (resp. \(t \to -\infty \)). They form strongly stable and unstable foliations in \(\Omega_\theta \) with respect to the flow \(\{a_t\} \) respectively. In turns out that with respect to any admissible metric \(d \) on \(\Omega_\theta \), the \(N\theta \)
and N^+_θ-orbits are contained in the stable and unstable foliations of the directional flow $\{a_t\}$ on Ω_θ respectively.

The following proposition is important in applying Hopf-type arguments; this observation is due to Blayac-Canary-Zhu-Zimmer [3].

Proposition 7.5. Let d be an admissible metric on Ω_θ. For any $g \in G$ with $[g] \in \Omega_\theta$, we have:

1. $\{\Gamma[gn] \in \Omega_\theta : n \in N_\theta\} \subset W^{ss}(\Gamma[g])$;
2. $\{\Gamma[gn] \in \Omega_\theta : \tilde{n} \in N^+_\theta\} \subset W^{su}(\Gamma[g])$.

Proof. Let $[g] = (\xi, \eta, v) \in \Omega_\theta$ and assume that $(gn)^- \in \Lambda_{i(\theta)}$ for $n \in N_\theta$.

1. By Lemma 7.4, we have $\gamma_i(\cdot, e) \to -\infty$ as $i \to \infty$ and the sequence γ_i is unbounded. Now, by the same arguments as in the proof of [20] Lem. 9.9, Prop. 9.10, we get that for any $\zeta \in \Lambda_{i(\theta)}$ in general position with ξ, we have $\gamma_i \to \eta_0$ as $i \to \infty$. Since $[gn] = (\xi, (gn)^-, v)$ by Lemma 7.4, we have

$$\gamma_i[gn]a_{t_i}u = (\gamma_i, \eta, v + \beta_\xi^0(\gamma_i^{-1}, e) + t_iu) \to (\xi_0, \eta_0, v_0)$$

for some $(\xi_0, \eta_0, v_0) \in \tilde{Q}$. In particular, for any linear form $\phi \in \mathfrak{a}_\theta^+$ positive on \mathfrak{a}_θ^+, we must have $\phi(\beta_\xi^0(\gamma_i^{-1}, e)) \to -\infty$ as $i \to \infty$ and the sequence γ_i is unbounded. Therefore, two sequences $\gamma_i[a_{t_i}u]$ and $\gamma_i[gn]a_{t_i}u$ converge to the same limit, which is a contradiction to the assumption $d(\Gamma[g]a_{t_i}u, \Gamma[gn]a_{t_i}u) > \varepsilon$ for all $i \geq 1$. Hence (1) is proved.

To show (2), suppose to the contrary that there exist $\varepsilon > 0$ and a sequence $t_i \to \infty$ such that $d(\Gamma[g]a_{-t_i}, \Gamma[gn]a_{-t_i}) > \varepsilon$ for all $i \geq 1$. We set the compact subsets $Q \subset \Omega_\theta$ and $Q \subset \Omega_\theta$ same as above and assume that for some sequence $\gamma_i \in \Gamma$, $\gamma_i[a_{t_i}u] \in Q$ for all $i \geq 1$. By passing to a subsequence, we have the convergence

$$\gamma_i[a_{-t_i}] = (\gamma_i, \eta, v + \beta_\xi^0(\gamma_i^{-1}, e) - t_iu) \to (\xi_1, \eta_1, v_1)$$

for some $(\xi_1, \eta_1, v_1) \in \tilde{Q}$. In particular, for any linear form $\phi \in \mathfrak{a}_\theta^+$ positive on \mathfrak{a}_θ^+, we have $\phi(\beta_\xi^0(\gamma_i^{-1}, e)) \to \infty$ as $i \to \infty$ and the sequence γ_i is unbounded. Again, by the same arguments as in the proof of [20] Lem. 9.9, Prop. 9.10, we obtain that for any $\zeta \in \Lambda_{i(\theta)}$ in general position with η, the sequence $\gamma_i\zeta$ converges to ξ_1 as $i \to \infty$. By Lemma 7.4, we have

$$\gamma_i[gn] = (\gamma_i, (gn)^+, \gamma_i, v + \beta_\xi^0(\gamma_i^{-1}, e) + \Theta^0(\gamma_i(gn)^+, \gamma_i\eta) - \Theta^0(\gamma_i\xi, \gamma_i\eta)).$$
and therefore
\[\gamma_i [g^n] a_{-t_i} \rightarrow (\xi_1, \eta_1, v_1) \text{ as } i \rightarrow \infty. \]

Again, two sequences \(\gamma_i [g] a_{-t_i} \) and \(\gamma_i [g^n] a_{-t_i} \) converge to the same limit, contradicting the assumption that \(d(\Gamma [g] a_{-t_i}, \Gamma [g^n] a_{-t_i}) > \varepsilon \) for all \(i \geq 1 \).

This proves (2).

For a \((\Gamma, \theta)\)-proper form \(\phi \in \mathbb{a}_0^+ \), the action of \(A_u = \{ a_t : t \in \mathbb{R} \} \) on \(\Omega_\theta \) induces a right \(A_u \)-action via the projection \(\Omega_\theta \rightarrow \Omega_\phi \) where \(\Omega_\phi \) is defined in (5.9). Note that when \(u \in \text{int} \mathcal{L}_\theta \), the condition \(\phi(u) > 0 \) is satisfied for any \((\Gamma, \theta)\)-proper \(\phi \in \mathbb{a}_0^+ \) [20 Lem. 4.3].

Proposition 7.6. Let \(\phi \in \mathbb{a}_0^+ \) be a \((\Gamma, \theta)\)-proper form such that \(\phi(u) > 0 \) and let \(d \) be any admissible \(\mathbb{R} \)-metric on \(\Omega_\phi \). For any \(g \in G \) with \([g]_\phi \in \Omega_\phi \), we have

\[
\{ \Gamma [gn]_\phi \in \Omega_\phi : n \in \mathcal{N}_\theta \} \subset W^{ss}(\Gamma [g]_\phi);
\[
\{ \Gamma [g^n]_\phi \in \Omega_\phi : n \in \mathcal{N}_\theta^+ \} \subset W^{su}(\Gamma [g]_\phi),
\]

where \(W^{ss}(x) \) (resp. \(W^{su}(x) \)) is the set of all \(y \in \Omega_\phi \) such that \(d(xa_t, ya_t) \rightarrow 0 \) as \(t \rightarrow +\infty \) (resp. \(t \rightarrow -\infty \)) for \(x \in \Omega_\phi \).

Proof. We can proceed exactly as in the proof of Proposition [7.5] replacing \(\Omega_\theta \) by \(\Omega_\phi \), keeping in mind that the condition \(\phi(u) > 0 \) ensures that the convergence of the sequence \(\phi(\beta_\xi^\theta(\gamma_i^{-1}, e)) \pm t_i \phi(u) \) in (7.3) and (7.4) implies that \(\phi(\beta_\xi^\theta(\gamma_i^{-1}, e)) \rightarrow \mp \infty \).

Lemma 7.7. If \((\Omega_\theta, A_\theta, \mathbb{m})\) is conservative, then it is \(A_\theta \)-ergodic.

Proof. Choose any \(\phi \in \mathbb{a}_0^+ \) which is positive on \(\mathbb{a}_0^+ \); in particular, \(\phi \) is \((\Gamma, \theta)\)-proper. Consider \(\bar{\Omega}_\phi, \Omega_\phi \) and \(\mathbb{m}^\phi = \mathbb{m}_{\phi, \nu} \) as defined in (5.9) and (5.11). The conservativity of the \(A_\theta \)-action on \((\Omega_\theta, \mathbb{m})\) then implies the conservativity of the \(\mathbb{R} \)-action on \((\Omega_\phi, \mathbb{m}^\phi)\), and the \(A_\theta \)-ergodicity on \((\Omega_\theta, \mathbb{m})\) follows if we show the ergodicity of \((\Omega_\phi, \mathbb{R}, \mathbb{m}^\phi)\).

Let \(f \) be a bounded \(\mathbb{m}^\phi \)-measurable \(\mathbb{R} \)-invariant function on \(\Omega_\phi \). We need to show that \(f \) is constant \(\mathbb{m}^\phi \)-a.e. Choose any admissible metric on \(\Omega_\phi \) which exists by Theorem [5.7] and apply Proposition [7.6]. By a theorem of Coudé [11], it follows that there exists an \(\mathbb{m}^\phi \)-null subset \(W_0 \subset \Omega_\phi \) such that if \(\Gamma [g]_\phi \), \(\Gamma [gn]_\phi \in W_0 \) for \(g \in G \) and \(n \in \mathcal{N}_\theta \cup \mathcal{N}_\theta^+ \), then

\[f(\Gamma [g]_\phi) = f(\Gamma [gn]_\phi). \]

Let \(\bar{f} : \bar{\Omega}_\phi \rightarrow \mathbb{R} \) and \(\bar{W}_0 \subset \bar{\Omega}_\phi \) be \(\Gamma \)-invariant lifts of \(f \) and \(W_0 \) respectively. Since \(f \) is \(\mathbb{R} \)-invariant, we may assume that \(\bar{W}_0 \) is \(\mathbb{R} \)-invariant as well. For any \([g]_\phi, [h]_\phi \in \bar{\Omega}_\phi \) with \(g^+ = h^+ \), we can find \(n \in \mathcal{N}_\theta \) such that \([gn]_\phi = [h]_\phi \) by (2.5). Similarly, if \(g^- = h^- \), we can find \(n \in \mathcal{N}_\theta^+ \) and \(a \in A_\theta \) such that \([gna]_\phi = [h]_\phi \). Hence, by the \(\mathbb{R} \)-invariance of \(f \) and hence of \(\bar{f} \), for any \(\varepsilon \), it extends to a metric on the one-point compactification of \(\Omega_\phi \).

\(\langle \xi, \eta, s \rangle, \langle \xi', \eta', s' \rangle \in \tilde{W}_0 \) such that \(\xi = \xi' \) or \(\eta = \eta' \), we have \(\tilde{f}(\xi, \eta, s) = \tilde{f}(\xi', \eta', s') \).

Let

\[
W^+ := \{ \xi \in \Lambda_\theta \colon (\xi, \eta, s) \in \tilde{W}_0 \text{ for all } s \in \mathbb{R} \text{ and } \nu_1\text{-a.e. } \eta' \};
\]

\[
W^- := \{ \eta \in \Lambda_\theta \colon (\xi', \eta, s) \in \tilde{W}_0 \text{ for all } s \in \mathbb{R} \text{ and } \nu_1\text{-a.e. } \xi' \}.
\]

Then \(\nu(W^+) = \nu_\ell(W^-) = 1 \) by Fubini’s theorem. Hence the set \(W' := (W^+ \times W^-) \cap \Lambda_\theta^{(2)} \) has full \(\nu \otimes \nu_\ell \)-measure. We choose a \(\nu \otimes \nu_\ell \)-conull subset \(W \subset W' \) such that \(W \times \mathbb{R} \subset \tilde{W}_0 \). Let \((\xi, \eta), (\xi', \eta') \in W \). Then there exists \(\eta_1 \in \Lambda_\theta \) so that \((\xi, \eta_1), (\xi', \eta_1) \in W \). Hence for any \(s \in \mathbb{R} \), we get

\[
\tilde{f}(\xi, \eta, s) = \tilde{f}(\xi, \eta_1, s) = \tilde{f}(\xi', \eta_1, s) = \tilde{f}(\xi', \eta', s).
\]

Therefore, \(\tilde{f} \) is constant on \(W \times \mathbb{R} \), and hence \(f \) is constant \(m\phi \)-a.e., completing the proof.

\[\square\]

Ergodicity of directional flows. We now prove the following analog of the Hopf dichotomy:

Proposition 7.8. The directional flow \((\Omega_\theta, A_u, m)\) is conservative if and only if \((\Omega_\theta, A_u, m)\) is ergodic.

Proof. Suppose that \((\Omega_\theta, A_u, m)\) is conservative. Since this implies that \((\Omega_\theta, A_u, m)\) is conservative, we have \((\Omega_\theta, A_\theta, m)\) is ergodic by Lemma 7.7.

Let \(f : \Omega_\theta \to \mathbb{R} \) be a bounded measurable function which is \(A_u \)-invariant. By the \(A_\theta \)-ergodicity, it suffices to prove that \(f \) is \(A_\theta \)-invariant.

Choose any admissible metric on \(\Omega_\theta \) which exists by Theorem 5.1. Similarly to the proof of Lemma 7.7 Proposition 7.5 and [11] imply that there exists an \(m \)-conull subset \(W_0 \subset \Omega_\theta \) such that if \(\Gamma[g], \Gamma[gn] \in W_0 \) for \(g \in G \) and \(n \in N_\theta \cup N_\theta^+ \), then

\[
f(\Gamma[g]) = f(\Gamma[gn]).
\]

Consider the \(\Gamma \)-invariant lifts \(\tilde{f} : \tilde{\Omega}_\theta \to \mathbb{R} \) and the \(\tilde{m} \)-conull subset \(\tilde{W}_0 \subset \tilde{\Omega}_\theta \) of \(f \) and \(W_0 \) respectively. Let

\[
W_1 := \{ (\xi, \eta) \in \Lambda_\theta^{(2)} \colon (\xi, \eta, b) \in \tilde{W}_0 \text{ for } db\text{-a.e. } b \in a_\theta \};
\]

\[
W := \{ (\xi, \eta) \in W_1 : (\xi, \eta'), (\xi', \eta) \in W_1 \text{ for } \nu\text{-a.e. } \xi' \in \Lambda_\theta, \nu_1\text{-a.e. } \eta' \in \Lambda_1(\theta) \}.
\]

By Fubini’s theorem, \(W \) has the full \(\nu \otimes \nu_1 \)-measure and we may assume that \(W \) is \(\Gamma \)-invariant as well. For all small \(\varepsilon > 0 \), we define \(\tilde{f}_\varepsilon : \tilde{\Omega} \to \mathbb{R} \) by

\[
\tilde{f}_\varepsilon([g]) = \frac{1}{\text{Vol}(A_\theta, \varepsilon)} \int_{A_{\theta, \varepsilon}} \tilde{f}([gb]) db
\]

Then for \(g \in G \) and \(n \in N_\theta \cup N_\theta^+ \) such that \((g^+, g^-), ((gn)^+, (gn)^-) \in W \), we have \(\tilde{f}_\varepsilon([g]) = \tilde{f}_\varepsilon([gn]) \) and \(\tilde{f}_\varepsilon \) is continuous on \([g]A_\theta \).

Since \(\tilde{f} = \lim_{\varepsilon \to 0} \tilde{f}_\varepsilon \) \(\tilde{m} \)-a.e., it suffices to show that \(\tilde{f}_\varepsilon \) is \(A_\theta \)-invariant. Fix \(g \in G \) such that \((g^+, g^-) \in W \). By Proposition 7.3 and the continuity of \(\tilde{f}_\varepsilon \) on each \(A_\theta \)-orbit, it is again sufficient to show that \(\tilde{f}_\varepsilon \) is invariant
under $\mathcal{H}_\Gamma^\theta(g)$. Let $a \in \mathcal{H}_\Gamma^\theta(g)$. Then there exist $\gamma \in \Gamma$ and a sequence $n_1, \ldots, n_k \in N_\theta \cup N_\theta^+$ such that

1. $(gn_1 \cdots n_r)^+ \in A_\theta$ and $(gn_1 \cdots n_r)^- \in \Lambda_{i(\theta)}$ for all $1 \leq r \leq k$; and
2. $gn_1 \cdots n_k = \gamma ga$ for some $s \in S_\theta$.

For each $i = 1, \ldots, k$, we denote by $N_i = N_\theta$ if $n_i \in N_\theta$ and $N_i = N_\theta^+$ if $n_i \in N_\theta^+$. We may assume that $N_i \neq N_{i+1}$ for all $1 \leq i \leq k - 1$. Noting that W is Γ-invariant, we consider a sequence of k-tuples $(n_{1,j}, \ldots, n_{k,j}) \in N_1 \times \cdots \times N_k$ as follows:

Case 1: $N_k = N_\theta^+$. In this case, we have

$$(\gamma g)^+ = (gn_1 \cdots n_k)^+ \quad \text{and} \quad (\gamma g)^- = (gn_1 \cdots n_{k-1})^-.$$

Take a sequence of k-tuples $(n_{1,j}, \ldots, n_{k,j}) \in N_1 \times \cdots \times N_k$ converging to (n_1, \ldots, n_k) as $j \to \infty$ so that for each j, we have

1. $((gn_{1,j} \cdots n_{r,j})^+, (gn_{1,j} \cdots n_{r,j})^-) \in W$ for all $1 \leq r \leq k$;
2. $(\gamma g)^- = (gn_{1,j} \cdots n_{k-1,j})^- \quad \text{and}$
3. $(\gamma g)^+ = (gn_{1,j} \cdots n_{k,j})^+.$

This is possible since $(g^+, g^-), ((\gamma g)^+, (\gamma g)^-)$ $\in W$ and W has the full $\nu \otimes \nu$-measure. Since $n_{k,j} \in N_\theta^+$, we indeed have $(\gamma g)^- = (gn_{1,j} \cdots n_{k,j})^-$ as well, and therefore $gn_{1,j} \cdots n_{k,j} = \gamma ga_j s_j$ for some $a_j \in A_\theta$ and $s_j \in S_\theta$. In particular, we have

$$[gn_{1,j} \cdots n_{k,j}] = [\gamma ga_j] \in \tilde{\Omega}_\theta \quad \text{for all } j \geq 1.$$

Case 2: $N_k = N_\theta$. In this case, we have

$$(\gamma g)^+ = (gn_1 \cdots n_{k-1})^+ \quad \text{and} \quad (\gamma g)^- = (gn_1 \cdots n_k)^-.$$

We then take a sequence of k-tuples $(n_{1,j}, \ldots, n_{k,j}) \in N_1 \times \cdots \times N_k$ converging to (n_1, \ldots, n_k) as $j \to \infty$ so that for each j, we have

1. $((gn_{1,j} \cdots n_{r,j})^+, (gn_{1,j} \cdots n_{r,j})^-) \in W$ for all $1 \leq r \leq k$;
2. $(\gamma g)^+ = (gn_{1,j} \cdots n_{k-1,j})^+ \quad \text{and}$
3. $(\gamma g)^- = (gn_{1,j} \cdots n_{k,j})^-.$

Since $n_{k,j} \in N_\theta$, we have $(\gamma g)^+ = (gn_{1,j} \cdots n_{k,j})^+$ as well, and therefore $gn_{1,j} \cdots n_{k,j} = \gamma ga_j s_j$ for some $a_j \in A_\theta$ and $s_j \in S_\theta$. In particular, we have

$$[gn_{1,j} \cdots n_{k,j}] = [\gamma ga_j] \in \tilde{\Omega}_\theta \quad \text{for all } j \geq 1.$$

In either case, we have that for each $j \geq 1$,

$$\tilde{f}_\varepsilon([\gamma ga_j]) = \tilde{f}_\varepsilon([gn_{1,j} \cdots n_{k,j}]) = \tilde{f}_\varepsilon([gn_{1,j} \cdots n_{k-1,j}]) = \cdots = \tilde{f}_\varepsilon([g]).$$

Since \tilde{f}_ε is Γ-invariant, it implies

$$\tilde{f}_\varepsilon([ga_j]) = \tilde{f}_\varepsilon([g]) \quad \text{for all } j \geq 1.$$

Since a_j converges to a as $j \to \infty$, we get $\tilde{f}_\varepsilon([ga]) = \tilde{f}_\varepsilon([g])$ by the continuity of \tilde{f}_ε on $g \Lambda_\theta$. This shows that \tilde{f}_ε is invariant under $\mathcal{H}_\Gamma^\theta(g)$, finishing the proof of ergodicity.
Now suppose that the flow \((\Omega_\theta, A_\theta, m)\) is ergodic. Then by the Hopf decomposition theorem, it is either conservative or completely dissipative. Suppose to the contrary that \((\Omega_\theta, A_\theta, m)\) is completely dissipative. Then it is isomorphic to a translation on \(\mathbb{R}\) with respect to the Lebesgue measure which yields an easy contradiction (see, e.g., proof of [20, Thm. 10.2]). Therefore, \((\Omega_\theta, A_\theta, m)\) is conservative.

Proof of Theorem 1.1. The equivalences among (1)-(4) follow from Lemma 6.12, Proposition 7.1 and Proposition 7.8. Suppose that the \((\Gamma, \psi)\)-conformal measure implies that \((\Gamma, \theta)\)-proper hypothesis on \(\psi\) since \((\psi \circ \mu_\theta)(\Gamma_{u,r}) \subset (-\infty, ||\psi||r]\). Therefore we have \(\psi(u) = \psi^\theta_T(u) > 0\).

Moreover the abscissa of convergence of \(s \mapsto \sum_{\gamma \in \Gamma_{u,r}} e^{-s\psi(\mu_\theta(\gamma))}\) is equal to one.

Proof. First note that the existence of the \((\Gamma, \psi)\)-conformal measure implies that \(\psi \geq \psi^\theta_T\) by Theorem 4.3. Now suppose that \(\psi(u) > \psi^\theta_T(u)\). We may assume that \(u\) is a unit vector as both \(\psi\) and \(\psi^\theta_T\) are homogeneous of degree one. By the definition of \(\psi^\theta_T\), there exists an open cone \(C\) containing \(u\) so that \(\sum_{\gamma \in \Gamma_{\mu_\theta(\gamma)} \subset \mathcal{C}} e^{-\psi(u)||\mu_\theta(\gamma)||} < \infty\). Since \(\mu_\theta(\Gamma_{u,r})\) is contained in \(C\) possibly except for finitely many elements, we have

\[
\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \ll \sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(u)||\mu_\theta(\gamma)||} < \infty,
\]

which is a contradiction. Therefore, \(\psi(u) = \psi^\theta_T(u)\). Moreover, it follows from \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty\) that \(\#\Gamma_{u,r} = \infty\). If \(\psi(u) \leq 0\), it contradicts the \((\Gamma, \theta)\)-proper hypothesis on \(\psi\) since \((\psi \circ \mu_\theta)(\Gamma_{u,r}) \subset (-\infty, ||\psi||r]\). Therefore we have \(\psi(u) = \psi^\theta_T(u) > 0\).

We now show the last claim. Since \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} \geq \sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty\), the abscissa of convergence of \(s \mapsto \sum_{\gamma \in \Gamma} e^{-s\psi(\mu_\theta(\gamma))}\) is equal to one by Theorem 4.3. Hence the abscissa of convergence of \(s \mapsto \sum_{\gamma \in \Gamma_{u,r}} e^{-s\psi(\mu_\theta(\gamma))}\) is at most one. Since \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi(\mu_\theta(\gamma))} = \infty\), it must be exactly one. \(\square\)

8. Ergodic dichotomy for subspace flows

Let \(\Gamma\) be a Zariski dense \(\theta\)-transverse subgroup of \(G\). Let \(W < a_\theta\) be a non-zero linear subspace and set \(A_W = \exp W\). In this section, we consider the subspace flow \(A_W\) on \(\Omega_\theta\) and explain how the proof of Theorem 1.1 extends to this setting so that we obtain Theorem 1.1 adapting the argument of Pozzetti-Sambarino [26] on relating the subspace flows with directional flows.
For $R > 0$, we set
\[\Gamma_{W,R} = \{ \gamma \in \Gamma : \| \mu_{\theta}(\gamma) - W \| < R \}. \]
If $W = a_{\theta}$, then $\Gamma_{W,R} = \Gamma$ for all $R > 0$.

Definition 8.1 (W-conical points). We say $\xi \in F_{\theta}$ is a W-conical point of Γ if there exist $R > 0$ and a sequence $\gamma_i \in \Gamma_{W,R}$ such that $\xi \in O_{\theta, R}(o, \gamma_i o)$ for all $i \geq 1$. We denote by Λ^W_{θ} the set of all W-conical points of Γ.

Fix a (Γ, θ)-proper linear form $\psi \in a^\ast_{\theta}$. Let ν, ν_1 be a pair of (Γ, ψ) and $(\Gamma, \psi \circ i)$-conformal measures on Λ_θ and $\Lambda_{i(\theta)}$ respectively, and let $m = m_{\nu, \nu_1}$ denote the associated Bowen-Margulis-Sullivan measure on Ω_θ.

If $W \cap L_\theta = \{0\}$ or $W \subset \ker \psi$, then the (Γ, θ)-proper hypothesis on ψ implies that $\Gamma_{W,R}$ is finite for all $R > 0$, and hence $\Lambda^W_{\theta} = \Lambda_i(\theta)$ and $(\Omega_{\theta}, A_W, m)$ is completely dissipative and non-ergodic.

In the rest of this section, we suppose that $W \cap L_\theta \neq \{0\}$ and $W \not\subset \ker \psi$.

Recalling that $\psi \geq 0$ on L_θ by [20, Lem. 4.3], $W \cap \ker \psi$ is a codimension one subspace of W intersecting int L_θ only at 0.

Set
\[W^\circ = a_{\theta}/(W \cap \ker \psi) \quad \text{and} \quad \tilde{\Omega}_{W^\circ} := \Lambda_{\theta}^{(2)} \times W^\circ. \]
Recalling the spaces $\tilde{\Omega}_\psi$ and Ω_ψ defined in (5.9), the projection $\tilde{\Omega}_\theta \rightarrow \tilde{\Omega}_\psi$ factors through $\tilde{\Omega}_{W^\circ}$. Since the Γ-action on $\tilde{\Omega}_\psi$ is properly discontinuous (Theorem 5.7), the induced Γ-action on $\tilde{\Omega}_{W^\circ}$ is also properly discontinuous. Moreover, the trivial vector bundle $\Omega_\theta \rightarrow \Omega_\psi$ in (5.10) factors through (8.1) $\Omega_{W^\circ} := \Gamma \backslash \tilde{\Omega}_{W^\circ}$.

Hence we have a $W \cap \ker \psi$-equivariant homeomorphism:
\[\Omega_\theta \simeq \Omega_{W^\circ} \times (W \cap \ker \psi). \]
Denote by m' the A_{θ}-invariant Radon measure on Ω_{W° such that $m = m' \otimes \Leb_{W \cap \ker \psi}$.

Definition 8.2. We say that m is W-balanced if there exists $u \in W \cap L_\theta$ with $\psi(u) > 0$ (which always exists by the hypothesis on W) such that (Ω_{W°, m') is u-balanced.

The main point of the proof of Theorem 1.3 is to relate the action of A_W on Ω_θ with that of a directional flow on Ω_{W° as in the work of Pozzetti-Sambarino [26]. Once we do that, we can proceed similarly to the proof of Theorem 1.1.

Fix a unit vector $u \in W \cap L_\theta$ with $\psi(u) > 0$ such that m' is u-balanced. Set $a_{tu} = \exp(tu)$ for $t \in \mathbb{R}$ and $A_u = A_{\mathbb{R}u} = \{a_{tu} : t \in \mathbb{R}\}$. Consider the A_u-action on (Ω_{W°, m'). Since $W = \mathbb{R}u + (W \cap \ker \psi)$, we have:
Lemma 8.3. The A_W-action on (Ω_θ, m) is ergodic (resp. conservative, non-ergodic, completely dissipative) if and only if the A_w-action on (Ω_{W°, m') ergodic (resp. conservative, non-ergodic, completely dissipative).

Among the ingredients for the proof of Theorem 1.1, Lemma 5.2 and Proposition 5.3 were repeatedly used and played fundamental roles in the proof. The following analogue of Lemma 5.2 can be proved by a similar argument as in the proof of Lemma 5.2.

Lemma 8.4. Suppose that $d_i \in a_t \exp(W \cap \psi) B_\theta^+$, $t_i > 0$ and $\gamma_i \in \Gamma$ are infinite sequences such that $\gamma_i h_i m_i d_i$ is bounded for some bounded sequence $h_i \in G$ with $h_i P \in \Lambda$ and $m_i \in M_\theta$. Then after passing to a subsequence, we have that for all $i \geq 1$,

\[d_i \in w A^+ w^{-1} \quad \text{for some } w \in W \cap M_\theta. \]

Proof. As in the proof of Lemma 5.2 there exists a Weyl element $w \in W$ such that $d_i \in w A^+ w^{-1}$ for all $i \geq 1$ after passing to a subsequence, and moreover $w \in M_\theta$ or $w \in M_\theta w_0$. We claim that the latter case $w \in M_\theta w_0$ cannot happen. Suppose that $w \in M_\theta w_0$ and write $d_i = a_t \exp(W \cap \psi) b_i$ for $a_i \in \exp(W \cap \psi)$ and $b_i \in B_\theta^+$. Since $w \in M_\theta w_0$, we get $\mu_{i(\theta)}(d_i) = \log(w_0^{-1} a_t a_i w_0)$ for all $i \geq 1$. In particular, $t_i + \log a_i \in -a_0^+$.

Since the sequence $\gamma_i h_i m_i d_i$ is bounded by the hypothesis, the sequence $\mu_{i(\theta)}(\gamma_i^{-1}) - \mu_{i(\theta)}(d_i)$ is bounded as well by Lemma 2.7. Since $\mu_{\theta}(\gamma_i^{-1}) = -A \mu_{\theta}(\gamma_i)$ and $\mu_{i(\theta)}(d_i) = A \mu_{0}(t_i u + \log a_i)$, it follows that $\mu_{\theta}(\gamma_i) = -(t_i u + \log a_i) + q_i$ for some bounded sequence $q_i \in \mathfrak{a}_0$. Applying ψ, we get $\psi(\mu_{\theta}(\gamma_i)) = -t_i \psi(u) + \psi(q_i)$ since $\log a_i \in \ker \psi$. Since $\psi(u) > 0$, $\psi(\mu_{\theta}(\gamma_i))$ is uniformly bounded. The (Γ, θ)-properness of ψ implies that γ_i is a finite sequence, yielding a contradiction. Therefore, the case $w \in M_\theta w_0$ cannot occur; so $w \in M_\theta$.

Let $p : \mathfrak{a}_0 \to W^\circ$ denote the projection map. Choose a norm $\| \cdot \|$ on W°. Then for a constant $c > 1$ depending only on the Lipschitz constant of p, we have for all $R > 0$,

\[\{ \gamma \in \Gamma : \| p(\mu_{\theta}(\gamma)) - R u \| < R/c \} \subset \Gamma_{W,R} \subset \{ \gamma \in \Gamma : \| p(\mu_{\theta}(\gamma)) - R u \| < c R \}. \]

Using this relation and Lemma 8.4, similar arguments as in sections 5 and 6 apply to the A_w-flow on Ω_{W°, replacing $\Gamma_{W,R}$ with $\Gamma_{W,R}$. In particular, applying Lemma 8.4 in place of Lemma 5.2, the following analogs of Proposition 5.3 and Lemma 5.5(2) respectively can be proved similarly.

Proposition 8.5. Let $Q \subset \Omega_{W^\circ}$ be a compact subset. There are positive constants $C_1 = C_1(Q), C_2 = C_2(Q)$ and $R = R(Q)$ such that if $h \in Q \cap \gamma Q a_{-t} u$ for some $h \in G$, $\gamma \in \Gamma$ and $t > 0$, then the following hold:

1. $\| p(\mu_{\theta}(\gamma)) - t u \| < C_1$;
2. $\langle h^+, h^- \rangle \in O_{R_0}(a, \gamma a) \times O_{R_0}(\gamma a, a)$;
3. $\| G^\theta(h^+, h^-) \| < C_2$.

Lemma 8.6. The following are equivalent for any $\xi \in \Lambda_\theta$:

1. $\xi \in \Lambda^W_\theta$;
2. $\xi = gP_\theta \in \mathcal{F}_\theta$ for some $g \in G$ such that $[g] \in \Omega_\theta$ and $\limsup g(A_W \cap A^+) \neq \emptyset$;
3. the sequence $[(\xi, \eta, v)]_{t_i} \in \Lambda_\iota(\theta)$ is relatively compact in Ω_W° for some $\eta \in \Lambda_i(\theta)$, $v \in W^\circ$ and $t_i \to \infty$.

In particular, a W-conical point of Γ is a u-conical point for the action of A_u on Ω_W° and vice versa. Note also that $\psi(p(\mu_\theta(\gamma))) = \psi(\mu_\theta(\gamma))$ for all $\gamma \in \Gamma$. Following the proof of Proposition 6.3 while applying Proposition 8.5 in the place of Proposition 5.3, we get:

Proposition 8.7. Suppose that $\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} = \infty$ for some $R > 0$. Set $\delta = \psi(u) > 0$.

1. For any compact subset $Q \subset \tilde{\Omega}_W^\circ$, there exists $R = R(Q) > 0$ such that for any $T > 1$, we have

$$\int_0^T \int_0^T \sum_{\gamma, \gamma' \in \Gamma} \tilde{m}'(Q \cap \gamma Qa_{-tu} \cap \gamma' Qa_{-(t+s)u}) dt ds \ll \left(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} \right)^2 .$$

2. For any $R > 0$, there exists a compact subset $Q' = Q'(R) \subset \tilde{\Omega}_W^\circ$ such that

$$\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}'(Q' \cap \gamma Q'a_{-tu}) dt \gg \sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} .$$

The proof of Theorem 5.6 works verbatim for Λ^W_θ so that the convergence $\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} < \infty$ for all $R > 0$ implies that $\nu(\Lambda^W_\theta) = 0$. Together with Proposition 8.7, we deduce the following by applying the same argument as in the proof of Theorem 6.1:

Theorem 8.8. Suppose that m is W-balanced. The following are equivalent:

1. $\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} = \infty$ for some $R > 0$;
2. $\nu(\Lambda^W_\theta) = 1 = \nu(\Lambda^W_i(\theta))$.

Similarly, the following are also equivalent:

1. $\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} < \infty$ for all $R > 0$.
2. $\nu(\Lambda^W_\theta) = 0 = \nu(\Lambda^W_i(\theta))$.

Since the recurrence of the A_u-flow on Ω_W° is related to the W-conical set as stated in Lemma 8.6, the arguments in section 7 for the directional
ERGODIC DICHOTOMY

flow \((\Omega_{W^\circ}, A_u, m')\) yield the following equivalences:

\[(8.2) \]

\[\max \left(\nu(A^W_\theta), \nu(A^{i(\theta)}_{\iota(\theta)}) \right) > 0 \iff (\Omega_{W^\circ}, A_u, m') \text{ is conservative} \]

\[\iff (\Omega_{W^\circ}, A_u, m') \text{ is ergodic}; \]

\[\max \left(\nu(A^W_\theta), \nu(A^{i(\theta)}_{\iota(\theta)}) \right) = 0 \iff (\Omega_{W^\circ}, A_u, m') \text{ is completely dissipative} \]

\[\iff (\Omega_{W^\circ}, A_u, m') \text{ is non-ergodic}. \]

By Lemma 8.3, Theorem 1.3 follows from Theorem 8.8 and (8.2), as in the proof of Theorem 1.1.

Remark 8.9. The \(W\)-balanced condition on \(m\) was needed because \(Q\) and \(Q'\) in Proposition 8.7 may not be the same in principle. However when \(W = a_\theta\), we have \(\Gamma_{W,R} = \Gamma\) for any \(R > 0\) and \(Q\) and \(Q'\) in Proposition 8.7 can be taken to be the same set, and hence the \(W\)-balanced condition is not needed in the proof of Theorem 1.3.

Similarly to Corollary 6.13, we have the following estimates which reduce the divergence of the series \(\sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\gamma)}\) to the local mixing rate for the \(a_\theta\)-flow:

Corollary 8.10. For all sufficiently large \(R > 0\), there exist compact subsets \(Q_1, Q_2\) of \(\Omega_{W^\circ}\) with non-empty interior such that for all \(T \geq 1\),

\[\left(\int_0^T m'(Q_1 \cap Q_{1-a^-})dt \right)^{1/2} \ll \sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\gamma)} \ll \int_0^T m'(Q_2 \cap Q_{2-a^-})dt. \]

9. Dichotomy theorems for Anosov subgroups

In this last section, let \(\Gamma < G\) be a Zariski dense \(\theta\)-Anosov subgroup defined as in the introduction. Recall that \(\mathcal{L}_\theta \subset a_\theta^+\) denotes the \(\theta\)-limit cone of \(\Gamma\). Denote by \(\mathcal{T}_\Gamma^\theta \subset a_\theta^+\) the set of all linear forms tangent to the growth indicator \(\psi_\Gamma^\theta\) and by \(\mathcal{M}_\Gamma^\theta\) the set of all \(\Gamma\)-conformal measures on \(\Lambda_\theta\). There are one-to-one correspondences between the following sets ([20, Coro. 1.12], [32, Thm. A]):

\[\mathbb{P}(\text{int } \mathcal{L}_\theta) \longleftrightarrow \mathcal{T}_\Gamma^\theta \longleftrightarrow \mathcal{M}_\Gamma^\theta. \]

Namely, for each unit vector \(v \in \text{int } \mathcal{L}_\theta\), there exists a unique \(\psi_v \in a_\theta^+\) which is tangent to \(\psi_\Gamma^\theta\) at \(v\) and a unique \((\Gamma, \psi_v)\)-conformal measure \(\nu_v\) supported on \(\Lambda_\theta\). We have \(\psi_v \circ i \in a_{\iota(\theta)}^+\) is tangent to \(\psi_{\Gamma(i(\theta))}\) at \(i(v)\) and \(\nu_{\iota(v)}\) is a \((\Gamma, \psi_v \circ i)\)-conformal measure on \(\Lambda_{\iota(\theta)}\). Denote by \(m_v\) the Bowen-Margulis-Sullivan measure on \(\Omega_{\psi_v}\) associated with the pair \((\nu_v, \nu_{\iota(v)})\).

What distinguishes \(\theta\)-Anosov subgroups from general \(\theta\)-transverse subgroups is that \(\Omega_{\psi_v}\) is a compact metric space ([31 and [9, Appendix]) and hence \(\Omega_{\psi_v}\) is a vector bundle over a compact space \(\Omega_{\psi_v}\) with fiber ker \(\psi_v \simeq \mathbb{R}^{\#\theta-1}\). We use the following local mixing for directional flows due to Sambarino.
Theorem 9.1 (32, Thm. 2.5.2, see also 10 for θ = Π). Let Γ < G be a θ-Anosov subgroup and v ∈ int Lθ. Then there exists κv > 0 such that for any f1, f2 ∈ Cc(Ωθ),

\[
\lim_{t \to \infty} t^{\frac{\#θ - 1}{2}} \int_{\Omega_θ} f_1(x)f_2(x \exp(tv))d\tilde{m}_v(x) = \kappa_v m_v(f_1)m_v(f_2).
\]

In particular, for any v ∈ int Lθ, m_v is v-balanced.

Corollary 9.2. For any v ∈ int Lθ and any bounded Borel subset Q ⊂ Ωθ with non-empty interior, we have for any T > 0,

\[
\int_0^T \sum_{\gamma \in \Gamma} \tilde{m}_v(Q \cap \gamma Q \exp(-tv))dt \asymp \int_0^T t^{1 - \#\theta} dt.
\]

Proof. Given Q ⊂ Ωθ with non-empty interior, we choose \(\tilde{v}_1, \tilde{v}_2 \in C_c(\Omega_\theta)\) so that \(0 \leq \tilde{v}_1 \leq 1_Q \leq \tilde{v}_2\) and \(\tilde{m}_v(\tilde{v}_1) > 0\). For each \(i = 1, 2\), we define the function \(f_i \in C_c(\Omega_\theta)\) by \(f_i(\Gamma[g]) = \sum_{\gamma \in \Gamma} \tilde{v}_i(\gamma g)\). By Theorem 9.1, for each \(i = 1, 2\), we have

\[
\int_{\Omega_\theta} \sum_{\gamma \in \Gamma} f_i(\gamma g \exp(tv))\tilde{v}_i(|g|)d\tilde{m}_v(|g|) = \int_{\Omega_\theta} f_i(x \exp(tv))f_i(x)d\tilde{m}_v(x) \asymp t^{1 - \#\theta}.
\]

□

By Corollary 6.13 and Corollary 9.2, we get:

Proposition 9.3. Let v ∈ int Lθ and \(\delta = \psi_v(v)\). For all sufficiently large \(r > 0\), we have that

\[
(9.1) \left(\int_0^T t^{1 - \#\theta} dt\right)^{1/2} \ll \sum_{\gamma \in \Gamma_{v,r}} e^{-\psi_v(\mu_\theta(\gamma))} \ll \int_0^T t^{1 - \#\theta} dt.
\]

Theorem 9.4. For any v ∈ int Lθ and \(u \in \mathbb{Q}_0^+ - \{0\}\), the following are equivalent:

1. \(\#\theta \leq 3\) and \(\mathbb{R}u = \mathbb{R}v\);
2. \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi_v(\mu_\theta(\gamma))} = \infty\) for some \(r > 0\).

Proof. Note that \(\int_0^\infty t^{1 - \#\theta} dt = \infty\) if and only if \(\#\theta \leq 3\). Then (1) implies (2) by Proposition 9.3. To show the implication (2) ⇒ (1), suppose that \(\sum_{\gamma \in \Gamma_{u,r}} e^{-\psi_v(\mu_\theta(\gamma))} = \infty\) for some \(r > 0\). By Lemma 7.9 \(\psi_v(u) = \psi^\theta_v(u)\). It follows from the strict concavity of \(\psi^\theta_v\) [20, Thm. 12.2] that \(\psi_v\) can be tangent to \(\psi^\theta_v\) only in the direction \(\mathbb{R}v\). Therefore \(\mathbb{R}u = \mathbb{R}v\). Now \(\#\theta \leq 3\) follows from Proposition 9.3. □

Here is the special case of Theorem 1.6 for \(\dim W = 1\):
Theorem 9.5. Let $\Gamma < G$ be a Zariski dense θ-Anosov subgroup. For any $u \in \interior L$, the following are equivalent:

1. $\# \theta \leq 3$ (resp. $\# \theta \geq 4$);
2. $\nu_u(\Lambda_\theta^u) = 1$ (resp. $\nu_u(\Lambda_\theta^u) = 0$);
3. $(\Omega_\theta, A_u, m_u)$ is ergodic and conservative (resp. non-ergodic and completely dissipative);
4. $\sum_{\gamma \in \Gamma_u, R} e^{-\psi_u(\mu_\theta(\gamma))} = \infty$ for some $R > 0$ (resp. $\sum_{\gamma \in \Gamma_u, R} e^{-\psi_u(\mu_\theta(\gamma))} < \infty$ for all $R > 0$).

Proof. Since m_u is u-balanced by Theorem 9.1, the equivalences among (2)-(4) follow from Theorem 1.1. By Theorem 9.4, we have (1) \iff (4). \square

Codimension dichotomy for Anosov subgroups. We now deduce Theorem 1.6. We use the notations from Theorem 1.6 and set $\psi = \psi_u$. As in section 8, we consider the quotient space $W_\diamond = a_\theta/(W \cap \ker \psi)$ and set $\Omega_{W^\circ} = \Gamma \backslash \Lambda_\theta^u \times W^\circ$ (see [8,1]). We denote by m_u' the A_θ-invariant Radon measure on Ω_{W° such that $m_u = m_u' \otimes \text{Leb}_{W \cap \ker \psi}$. As before, Ω_{W° is a vector bundle over a compact metric space Ω_ψ with fiber $\mathbb{R}^{\dim W^\circ - 1}$, and the local mixing theorem for the $\{a_{tu}\}$-flow on Ω_{W° [32 Thm. 2.5.2] says that there exists $\kappa_u > 0$ such that for any $f_1, f_2 \in C_c(\Omega_{W^\circ})$,

\[
\lim_{t \to \infty} t^{\frac{\dim W^\circ - 1}{2}} \int_{\Omega_{W^\circ}} f_1(x) f_2(xa_{tu}) dm_u'(x) = \kappa_u m_u'(f_1) m_u'(f_2).
\]

We then obtain the following version of Proposition 9.3 using Corollary 8.10 and 9.2.

Proposition 9.6. For $\delta = \psi(u) > 0$ and all sufficiently large $R > 0$, we have

\[
\left(\int_0^T t^{\frac{1-\dim W^\circ}{2}} dt \right)^{1/2} \ll \sum_{\gamma \in \Gamma_{W,R}, \psi(\mu_\theta(\gamma)) \leq \delta T} e^{-\psi(\mu_\theta(\gamma))} \ll \int_0^T t^{\frac{1-\dim W^\circ}{2}} dt.
\]

Since $\dim W^\circ - 1 = \text{codim } W$ and hence $\dim W^\circ \leq 3 \iff \text{codim } W \leq 2$, the following is immediate from Proposition 9.6.

Proposition 9.7. If Γ is a Zariski dense θ-Anosov subgroup, then

\[
\text{codim } W \leq 2 \iff \sum_{\gamma \in \Gamma_{W,R}} e^{-\psi(\mu_\theta(\gamma))} = \infty \text{ for some } R > 0.
\]

Hence the equivalence (1) \iff (4) in Theorem 1.6 follows. Since the local mixing for $(\Omega_{W^\circ}, \{a_{tu}\}, m_u')$ implies that m_u' is u-balanced, and hence m_u is W-balanced, we can apply Theorem 1.3 to obtain the equivalences (2)-(4) in Theorem 1.6. Therefore Theorem 1.6 follows.

References

Department of Mathematics, Yale University, New Haven, CT 06511
Email address: dongryul.kim@yale.edu

Department of Mathematics, Yale University, New Haven, CT 06511 and Korea Institute for Advanced Study, Seoul
Email address: hee.oh@yale.edu

Department of Mathematics, Yale University, New Haven, CT 06511
Email address: amy.wang.yw735@yale.edu