SHRINKING TARGETS FOR THE GEODESIC FLOW ON
GEOMETRICALLY FINITE HYPERBOLIC MANIFOLDS
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ABSTRACT. Let M be a geometrically finite hyperbolic manifold. We
present a very general theorem on the shrinking target problem for the
geodesic flow, using its exponential mixing. This includes a strength-
ening of Sullivan’s logarithm law for the excursion rate of the geodesic
flow. More generally, we prove logarithm laws for the first hitting time
for shrinking cusp neighborhoods, shrinking tubular neighborhoods of
a closed geodesic, and shrinking metric balls, as well as give quantita-
tive estimates for the time a generic geodesic spends in such shrinking
targets.

1. INTRODUCTION

Let M be a complete hyperbolic manifold of dimension n > 2. Denote
by G! the geodesic flow on the unit tangent bundle TY(M). If M is of
finite volume, but non-compact, Sullivan [27] showed in 1982 the following
logarithm law for the rate of the excursion of the geodesic flow: for any
0 € M, and for almost all x € TY(M),

d(G'(x),0) 1

li = 1.1
lﬁsogp logt n—1 (1.1)

where d(G'(z),0) is the hyperbolic distance between the basepoint of Gt(z)
and o.

This result can be viewed as a special case of the so-called shrinking target
problem for the geodesic flow, which asks the behavior of a generic geodesic
ray with respect to a given sequence of shrinking subsets. Indeed, if we
consider the family of shrinking cuspidal neighborhoods b; := {z € M :
d(o,z) > t}, t > 1, then (1.1) is equivalent to the following logarithm law
for the first hitting time: for almost all x,

lim inf w =
t—o0
where 7, (2) :=inf{s > 0: G°(x) € b }.

In this paper, we investigate shrinking target problems for the geodesic

flow on a geometrically finite hyperbolic manifold M, and prove results

~1 (1.2)
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which are far reaching strengthening and generalizations of (1.2), and hence
of (1.1).

Let H" denote the n-dimensional hyperbolic space and let G := Isom™ (H")
be the group of all orientation preserving isometries. We may present a com-
plete hyperbolic manifold M as the quotient I'\H" where I is a torsion-free
discrete subgroup of G. We assume that I" is Zariski dense and geometrically
finite in the whole paper. Denote by A C JH" the limit set of I' and by
0 < § < n—1 the critical exponent of I'. The maximal entropy of the geodesic
flow on T(M) is given by 4, and there exists a unique ergodic probability
measure of maximal entropy, called the Bowen-Margulis-Sullivan measure,
which we denote by m. The support of m is precisely the non-wandering set
for the geodesic flow, and hence the shrinking target problem in this setting
is interesting only for those shrinking subsets in the support of m and for
m-almost all points. Now since G? is ergodic for m, the Birkhoff ergodic the-
orem says that for a given Borel subset B C T*(M), we have the following:
for m-almost all z € TY(M),

lim €{0<8<t:gs(az)€B}:

t—o00 t

m(B), (1.3)

where ¢ denotes the Lebesgue measure on R. The shrinking target problem
asks a finer question on the set of times {s > 0 : G°(x) € B} for a given
family {B;} of shrinking sets and for m-a.e. x. The three main questions
we address in this paper for m-a.e. 2 € T(M) are as follows:

(1) (Logarithm laws) Is there a logarithm law for the first hitting time
7B, (x) := inf{s > 0: G°(z) € B}? (1.4)
(2) (Shrinking rate threshold) How fast can B; shrink so that
7B, (T) <t
for an infinite sequence of times ¢ tending to oo or for all sufficiently

large t > 17
(3) (Quantitative estimates) How fast can B; shrink so that!

o< s<t:G%x) € B} <t-m(By)

for an infinite sequence of times t tending to oo, or for all sufficiently
large t > 17

In order to address the above questions, we need to impose certain regu-
larity conditions on the shrinking targets. Let K < G be a maximal compact
subgroup and identify M with I'\G/K. There exists a one parameter di-
agonalizable subgroup A = {a;} so that if M denotes the centralizer of A
in K, then the unit tangent bundle T'(M) can be identified with T\G /M
in the way that the geodesic flow G* on T!(M) corresponds to the right

1The notation ft < g+ means that for all t > 1, fi < cg: for some absolute constant
¢ > 0, and we write f; < g+ if fi < g+ and g < f:. We sometimes indicate the dependence
of the implied constant in subscripts.



3

translation action of a; on I'\G/M. We fix £ > dim(M) and the Sobolev
norm S = S ¢ on C°(I'\G) given by

S() =Y D)

where the sum is taken over all monomials in a fixed basis of Lie(G) of order
at most £.

A family of shrinking targets in T!(M) means a collection B = {B; C
TY(M) : t > 1} such that m(B;) > 0, B; D B, for s > t, and limy_,oo m(B;) =
0. A family {B;} of shrinking targets is said to be inner regular (resp. outer
regular) if there exist a > 0 and a family of functions ¥; € C®(TY(M))
(resp. W;F € C>(T1(M))) such that

e 0 < U, <Idg, (resp. Idp, < ¥} <« 1);

e m(B;) < m(¥;) (resp. m(¥;") < m(By));

o S(UF) < m(By) @
where the implied constants are independent of ¢. A family {B;} is said to
be regular if it is both inner and outer regular.

We note that this regularity condition is rather mild, and is satisfied
by most families of naturally occurring shrinking targets. Such examples
include shrinking cusp neighborhoods, shrinking tubular neighborhoods of
a closed geodesic and shrinking metric balls, as will be shown later.

In the rest of the introduction, we assume that B = {B; : t > 1} is a
family of shrinking targets in T1(M).

1.1. Logarithm laws. For discrete time dynamical systems, it is expected
that the first hitting time would be inversely proportional to the measure of
the shrinking target; it is indeed the case for the discretized geodesic flow.
For the continuous geodesic flow, it turns out that it is inversely proportional
to the measure of a thickened set B; := Uls|<1/2G°(Bt):

Theorem 1.1. (1) If { B¢} is inner regular, then

log(7f, («))

BN R E A A - 1
Jim “log(m(By)) 1 for m-a.e. z € T"(M).

where T¢(x) = min{n € N: G"z € B}.
(2) If {B:} is inner regular, then

log(7, (7))

_ i 1
ti)r&m—l for m-a.e. x € T(M).

Remark 1.5. When |logm(B;)| < |log m(B;)|, the first hitting time for the
discrete flow {G" : n € N} behaves in the same way for the continuous
flow. This is indeed the case for shrinking cusp neighborhoods or tubular
neighborhoods of a closed geodesic. However, there are also cases when
|log m(B;)| is much larger than |log m(B;)|, such as the case of shrinking
metric balls.
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We note that logarithm laws for the first hitting time were studied for
certain families of shrinking targets in many examples of discrete time dy-
namical systems with fast mixing, see e.g. [6, 7, 8].

1.2. Shrinking rate threshold. In order to ensure that a generic orbit
G*(x) hits B, before time ¢ for an infinite sequence of ¢ tending to oo, the
easy half of the Borel-Canteli lemma implies that it is necessary to have
S m(By,) = oo, from which limsup,_, log?(t)t - m(B;) = oo follows. The
first part of the following theorem says that this condition is also sufficient,
up to logarithmic factors. The second part says that a generic orbit G*(x)
hits B; before time t, for all sufficiently large ¢, under a slightly stronger
assumption on the rate of shrinking (see Theorem 4.10).

Theorem 1.2. Suppose that {B;} is inner regular.

. tm(BE) —
(1) If imsup,_, Toa(m(@)] — then

lim inf TBtt(x) <1 form-a.e. x € THM).

t—o00

1 B
(2) If 3252, % < oo for some sequence tj — oo, then
J

lim sup 75.(7)
t—o00 t

<1 form-a.e. x € THM).

1.3. Quantitative estimates. In order to answer a more refined question
regarding the amount of time that a generic geodesic ray spends in a shrink-
ing target, we require our family of targets to be regular and their measures
do not change too fast in the sense that m(B;) < m(By).

With these additional regularity assumptions, we have the following (see
Theorem 4.7 below for a more general result).

Theorem 1.3. Suppose that {B:} is regular and that m(Bat) < m(By).

(1) If limsup,_, % = 00, then there ezists a sequence tj — o0

such that for m-a.e. x,

o< s<ty:G(x )eBtk}

th (Btk)
()Ifzj 1%<0®thenformae:p
{0<s<t:G°(x)eB

We observe that unlike Theorems 1.1 and 1.2, the amount of time that
the geodesic flow spends in the targets is governed by the measure of the
original targets rather than by their thickenings.

Remark 1.6. (1) We note that in many examples the measure of the
shrinking targets decays like m(B;) < t~" for some n > 0. In such
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cases, we have m(B;) < m(By;) and the rest of the conditions of
Theorems 1.2 and 1.3 are satisfied if n < 1.

(2) As mentioned before, the extra conditions on the rate of decay we
have in Theorems 1.2 and 1.3 are sharp, but up to logarithmic fac-
tors. While it would be very interesting to have sharp conditions
on the nose, we note that such a result is notoriously hard. Even
when M has finite volume, sharp results regarding Theorem 1.3(1)
are known only in some very special cases when the shrinking tar-
gets are cusp neighborhoods [27], or spherical balls [21] (or general
spherical targets if one considers discrete time dynamics [13]). There
are no known sharp results regarding Theorem 1.3(2). We refer to
[15] where this kind of problem is studied for systems with almost
perfect mixing.

(3) All the results described above still hold as stated if we replace the
unit tangent bundle T'(M) with the frame bundle T'\G, provided
0 > n — 2. We note if M contains a co-dimension one properly
immersed totally geodesic sub-manifold of finite volume, then ¢ >
n — 2, so this stronger condition still holds in many examples.

For some concrete applications of these results, we discuss three families
of shrinking targets to which our theorems apply. In order to define these
families, we fix a left G-invariant and right K-invariant metric d on G which
descends to the hyperbolic metric on H" = G/ K. This metric then naturally
defines a distance function, dist(-,-) on T}(M) = T'\G/M.

1.4. Cusp excursion. The convex core of M is defined by core(M) =
I'\ hull(A), where hull(A) defines the convex hull of the limit set A. As
M is geometrically finite, there are finitely many disjoint cuspidal regions
whose complement in core(M) is a compact submanifold. Let h;, 1 <i < k,
denote the pre-images in T'(M) of these cuspidal regions under the base
point projection 7 : T}(M) — M. For each 4, we denote by r; the rank of
b;, that is, the rank of the maximal free abelian subgroup of the stabilizer
Stabr(h;). It is known that x; < 20.
For each ¢ and ¢t > 1, consider the following cusp neighborhood

hit = {z € b; : dist(z, Ih;) > t}. (1.7)

For each i, we show that the shrinking family {h;; : ¢ > 1} is regular and
that
m(h;e) = e~ (20RL (1.8)
(see section 5.1). Applying our results to this family, we get the following:

Theorem 1.4. Fiz 1 < <k.
(1) For m-a.e. x € THM),

log 1. . (x
lim M — 96 — k.
t—00 t
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(2) For any 0 <n < 25%}_”, and for m-a.e. x € TH{M),
{0 < s <t:G%(x) € hiplogt} < HL=n(20—ri)
Remark 1.9. As mentioned before, it is not hard to show that

ist(G!(x),0)\ "
log(Tgt(x)) _ <h§ii§p dlst(@W) (1.10)

lim inf
logt

t—o0
where by = (J;<;<; bir- Stratmann and Velani showed that (1.10) is equal
to 20 — max; s; [28], and hence extended Sullivan’s logarithm law (1.1) to
geometrically finite manifolds. Theorem 1.4(1) presents a stronger version,
as we consider excursion to individual cusps as well as obtain an actual limit
rather than lim inf.

For the sake of a concrete application, we give a reformulation of Theorem
1.4(1) in the case of Apollonian manifolds. An Apollonian gasket P = |J C; is
a countable union of circles obtained by repeatedly inscribing circles into the
triangular interstices of four mutually tangent circles with disjoint interiors
in the complex plane (where lines are considered as circles). The symmetry
group {g € PSLy(C) : g(P) = P} is a discrete subgroup of PSLy(C) which
acts on C by Mobius transformations and its torsion-free subgroup of finite
index is called an Apollonian group, which we denote by I'. Via the Poincaré
extension theorem, we can identify PSLy(C) with Isom™ (H?) for the upper-
half space model H? of the hyperbolic space. The quotient manifold I'\H?
is called an Apollonian manifold, which is known to be geometrically finite
with all cusps having rank one. Its limit set is equal to the closure P, and
supports a locally finite Hausdorff measure H of dimension § = 1.30568(8)
[11].

Fix a tangent point £ = C;NCj for i # j and consider a sufficiently small
Euclidean ball B in H? based at £, so that B = I'(B) is a disjoint collection
of Euclidean balls.

Fix o € H3 outside of B, let B(t) C B be the Euclidean ball based at &
and dys (0, B(t)) = dys (o, B) +t. Set By :=T'(B(t)).

The following is a consequence of Theorem 1.4:

Corollary 1.5. Let P be an Apollonian gasket. For H-almost all initial
direction v toward P,

lim log(inf{s > 0 : vs € B:})

t—o00 t

=26 — 1(=1.6113...) (1.11)

where vs denotes the base point of G*(v).

1.5. Tubular neighborhoods. Another natural family of shrinking targets
is given by tubular neighborhoods of a closed geodesic. For a closed geodesic
C C TH{M) and € > 0, we consider the e-tubular neighborhood of C:

Ce:={z € THM) : dist(z,C) < €}.
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The family {C; /; : t > 1} forms a family of shrinking neighborhoods of C. We
show that {Cy : t > 1} is a regular family with m(C; ;) < m(C~1/t) =2
Applying our results to this family of shrinking targets gives the following
result on the amount of time a generic geodesic spirals near a fixed closed
geodesic (cf. [10, Theorem 1.1] for a similar result in a negatively curved
compact manifold).

Theorem 1.6. Let C C TY(M) be a closed geodesic. Then for m-a.e. x €
TY(M), we have the following:

(1)
log TCl/t (x)
im —————
t—o0 logt
(2) For any 0 <n < % and for all t > 1,
{0 < s < t:dist(G%(x),C) <t} = ¢172m,
Remark 1.12. Since for any = € T'(M) we have that
log(7e, . (x — i t -1
lim inf 7{;( Cl/t( ) = ( limsup log(dist(G'(z),C)) ,
t—o0 logt t—00 logt
Theorem 1.6 (1) implies that for m-a.e. z € T*(M),

. —log(dist(G*(z),C)) 1
1 S
I?Liljp logt 26’

= 26;

(1.13)

which was previously shown in [4, Theorem 4] to hold for the special case
of convex co-compact hyperbolic surfaces.

1.6. Shrinking balls. For any fixed g € supp(m), we show that the family
of shrinking metric balls By(wo) := {z € T'(M) : dist(x,x9) < 1/t} is reg-
ular and satisfies m(B¢(zg)) < m(Bat(zp)). When I' is convex co-compact,
m(B; (o)) = t~ 0+ and m(By(z¢)) =< t72 (see §5.2). In particular our
results imply the following:

Theorem 1.7. Let M be convex cocompact. Fiz xy € supp(m). Then for
m-a.e. x € TH{M),
(1)
10g TBt (:EO) (l‘)
t—o0 logt
(2) For0<n< TIH, we have

{0 < s < t:dist(G%(x), mg) < t"} = =20+ hn,

= 2. (1.14)

When M has cusps, the situation is more complicated as m(By(xg)) can
fluctuate, with the fluctuation depending on zy (or more precisely on the
cusp excursions of the geodesic emanating from zq € T!(M)). Combining
our previous results on cusp excursions, we can show the following

Theorem 1.8. Suppose that M has cusps.
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(1) For m-a.e. zg € TYM), and for m-a.e. x € THM),

. 10g 73, () (%)

= 24.
t—o0 logt

(2) For any pair of distinct cusps of ranks ki1, k2, we can find xo €
TY(M) such that for m-a.e. x € TH(M),

10g(7B, (20) (%))

el logt =46 — K1 — R2.

Remark 1.15. We note that if M has finite volume, then § = n — 1 and
m(B;(zg)) =< t~(?*=2). Hence, in this case, the same arguments imply that
for m-a.e. z € T'(M), we have lim;_,o % = 2(n —1). We note
that here the shrinking targets are in T*(M), unlike the results of [21] which
considered shrinking balls inside M, in which case the limit is n — 1 (see

also [17], for related result for the discrete time geodesic flow).

1.7. Strategy of proof. First we define an averaging operator, along the
discrete time, acting on L2(TY(M), m):

T
Ae(0)(x) = 7 3 W(GH ().
k=1

If ¥ is the characteristic function of B, we simply write Ap(B) instead of
Ar(1p). The Birkhoff ergodic theorem implies that for a.e. x € X,

lim Ap(0)(x) :/ Udm.
T—o0 TI(M)

We note that if we had a rate control in this convergence such as

Ar(By)(x) — m(By)| < ¥ m(B”‘j’Tngt”‘, (1.16)

we would get
log 73, () < |log m(B)| + 2log |log m(By)| (1.17)

just from the simple observation that AT% ()(Bt) = 0.
t

An estimate like (1.16) is too strong to be true for a.e. individual points
x. So, instead, we prove its mean-version for all smooth functions ¥ €
L2(TY (M), m), that is,

S(¥)
| 10g(||\1;||2)

VT

for some uniform constant C' > 0. The regularity conditions imposed on the
thickenings B, of our shrinking targets are precisely so that we could apply

[Ar(¥) = m(T)[2 < C (1.18)



(1.18) to smooth functions which approximates 15 and deduce
t

m(By) log |(m(By))|
= :

This effective mean ergodic theorem for B;’s enables us to obtain that for
a.e. x,

A (By) — m(By)||2 < (1.19)

log 73 (x) < |[logm(By)| + O(log [log m(By)]), (1.20)
for all sufficiently large ¢. Using that |Tgt () — 7B, (x)| < 1, we deduce that

lim sup M <
t—oo  —logm(DBy)
This is the non-trivial direction of the logarithm law Theorem 1.1; the other
direction holds for general shrinking targets in any dynamical system (see
e.g. [14, Lemma 2.2]). Theorems 1.2 and 1.3 are also proved in a similar
spirit using the effective mean ergodic theorem.

The use of quantitative mixing of geodesic flow in the shrinking target
problem in the homogeneous setting goes back to the work of Kleinbock
and Margulis [16], and the idea of using an effective mean ergodic theorem
was first introduced in [9] and more explicitly in [13, 14], where these ideas
were used to prove the analogous results for finite volume hyperbolic man-
ifold. In this paper we follow closely the arguments of [13], in particular,
for the discretized geodesic flows; once we establish the relevant result on
exponential decay of matrix coefficients as in Theorem 1.9, the arguments
are essentially identical, although establishing the needed regularity condi-
tions for explicit examples is technically more difficult in the infinite volume
case (see Section 5). On the other hand, our results for continuous flows
are new even for the finite volume case. It is worthwhile mentioning that,
for spherical shrinking targets, the results of [13] also dealt with unipotent
flows having only polynomial decay of matrix coefficients, and established
a dynamical Borel-Cantelli Lemma, which is stronger than the logarithm
law. While it would be very interesting to extend such results to the infinite
volume setting, our current methods do not seem to apply.

Here we will use the following exponential decay of matrix coefficients for
geometrically finite hyperbolic manifolds:

Theorem 1.9. There exists ng > 0 such that for any ¥y, ¥y € C°(TH(M))
with support in one-neighborhood of supp(m), for all t > 1,

/ U1 (G (2))Va(x) dm(x) = m(¥1)m(Vs) + O(e ™! S(V1)S(V3)).
THM)

(1.21)

Moreover, ng is explicitly computable when 6 > ”T_l, depending only on

the spectral gap for the Laplacian on L?>(M). If T is conver cocompact or

d >n—2, (1.21) with m replaced by its M-invariant lift on T\G holds for
any ¥1,Vy € C*(I'\G).
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This theorem was obtained in ([22], [5]) for compactly supported functions
under the assumption § > "T*l and in [25] for any convex cocompact I’
(see also [24] for the same result for the frame flow). In order to study
shrinking target problem for cusp neighborhoods as described in Theorem
1.4, removing the compact support condition is crucial as we need to study
functions that are positive on cusps. We use the quantitative decay of the
matrix coefficient of the functions L?(I'\G) with respect to the Haar measure
mHaar in [22] and exploit the product structures of m and mt2ar to transfer
the exponential rate information on the transversal intersections of G¢( B¢ (z))
for the flow box B(x), that we get from the behavior of the correlation
function with respect to mH2 to the behavior of the correlation function
with respect to m. Here € depends on the injectivity radius of x, and as we
need to control the exponential rate independent of the injectivity radius
for Theorem 1.9, which is required to deal with functions which are not
compactly supported, the whole procedure turns out to be technically quite
subtle. The remaining cases of geometrically finite manifolds with cusps
are proved in a recent work of Li-Pan [20].

After some preliminaries given in section 2, we devote section 3 to the
proof of Theorem 1.9. With this result in hand, we prove effective mean
ergodic theorem in this setting (see Theorem 4.1), and use it in section 4
to establish results on shrinking target problems for both the discrete and
continuous time flow. While the results we obtain for the discrete time
flow are essentially optimal, this is not the case for some of the results
for continuous time flow. Nevertheless, in section 4.5, we show how one can
obtain optimal results for the continuous flow by translating it into a discrete
time flow problem for a thickened target. In section 5, we deduce Theorems
1.4, 1.6, 1.7 and 1.8 by proving the regularity of the corresponding shrinking
sets and by computing their volumes using Sullivan’s shadow lemma and the
structure of cusps for geometrically finite manifolds.

2. PRELIMINARIES AND NOTATION

2.1. Notations and conventions. Let G = SO(n,1)° be the group of
orientation preserving isometries of H", and I' < G a geometrically finite,
torsion-free, Zariski dense, discrete subgroup of G. We denote by A the
limit set of I', and by 0 < § < n — 1 the Hausdorff dimension of A, which
is equal to the critical exponent of I". Let M = I'\H". Let K < G be a
maximal compact subgroup and identify M with T'\G/K. There exists a
one parameter diagonalizable subgroup A = {a;} so that if M denotes the
centralizer of A in K, then the unit tangent bundle T* (M) can be identified
with T\G/M in the way that the geodesic flow G* on T!(M) corresponds
to the right translation action of a; on I'\G/M. With this identification we
can work in the homogeneous space I'\G and think of subsets and functions
on TY(M) and M respectively as M-invariant (resp. K invariant) subsets
and functions on I'\G.
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We say that two families {B;} and {A;} of shrinking sets are Lipschitz
equivalent and write By < Ay, if there are some positive constants ci, ca such
that Bclt C A C BCQt for all t > 1.

We fix a left G-invariant and right K-invariant metric d on G which de-
scends to the hyperbolic metric on H" = G/K. This induces a unique metric
on G/M which we will also denote by d by abuse of notation. The metric
d defines a distance function on T*(M) = I'\G/M given by dist(I'g,Th) =

infyer d(vg, h).

2.2. Invariant measures. For { € OH", let 3¢ : H" x H" — R denote the
Busemann function for the geodesic flow, defined by

Bé(xvy) - tliglo d(a:,{(t)) - d(y,g(t)),

with £(¢) a unit speed geodesic ray toward £. A family of measures {u, :
x € H"} is called a I'-invariant conformal density of dimension 6, > 0 on
OH", if each p, is a non-zero finite Borel measure on OH" satisfying for any
z,y € H", £ € OH" and v € T,

Vsl = My and %(5) = 6_6”/85(%76)7
K
where Y,z (F) = pz (71 (F)) for any Borel subset F' of OH".

In particular, the Patterson-Sullivan density {v,} is a I'-invariant confor-
mal density supported on the limit set A of dimension § and the Lebesgue
density {my} is a G-invariant conformal density of dimension (n — 1) (both
are unique up to scalar multiplications).

Let 7 : TY(H") — H" be the basepoint projection. For u € T*(H"), we
denote by u* € 9H" the forward and the backward endpoints of the geodesic
determined by u. Fix o € H" so that K fixes 0. The map

u— (uu”,s = By~ (o, m(u)))

is a homeomorphism between T!(H") and (9H" x 9H" —{(¢,€) : £ € OH"}) x
R. In these coordinates, the BMS measure m = mBMS| the Haar measure
mH22r and the Burger-Roblin measure mBR on T!(H") are given by

(1) dm(u) = ePut(0m(W) 38, —(0m(W) dy (uF)dv,(u™)ds.

(2) dmtear(y) = (=184 (0 (w) o(n=1)F,— (07 (W) dpm, (uF)dme(u™)ds.

(3) dmBR(u) = e(=DBu+(0m(w) 0B, (0m (W) g, (ut)dvy(u~)ds.

These measures are all left I'-invariant, and hence descend to correspond-
ing measures on T*(M) . Using T!(H") = G/M, we can lift the above mea-
sures to right M-invariant measures on I'\G, which we still denote by m,
mHaar and mBR by abuse of notation. The measure m is finite and ergodic
with respect to the geodesic flow [27]. We will normalize the Patterson-
Sullivan density {v,} so that m(T*(M)) = m(T'\G) = 1.

Let N = N* and N~ denote the expanding and the contracting horo-
spherical subgroups respectively, i.e.,

Nt ={geG:as9a_s — eass— +o0}.
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Note that

Q= supp(m) = {[g] ET\G : g7, g~ € M)},
where g% := [gM]T € OH".

The BMS measure m has a natural foliation corresponding to the de-
composition PN = G (modulo a Zariski closed subset) with P = N~ AM.
Explicitly, for any g € G, we define the PS-measure and the Lebesgue mea-
sure on the coset gV, by

dfign (gn) = &t M dyy (gn)*, (2.1)
and
djifn (gn) = e Do T dmy (gn)*, (22)
respectively. We also define the measure 7,p on the coset gP by
dvgp(gp) = € dvo(gp)~dt (2:3)

for t = Bgp)-(0,9p). Using the decomposition G = gPN and noting that
(gpn)~ = (gp)~, we have that for any ¥ € C.(G),

(W) = / ) /N O (gpn) iy (gpn)dvyp (gp). (2.4)

Finally, for = [g] € I'\G and € > 0 smaller than the injectivity radius at
x, we denote by d,ugjs\,6 and dv,p, the measures induced by d,&gﬁ, and dvgp
on N, and z P, respectively.

2.3. Cusp decomposition. Let X be the pre-image of the convex core of
M under the base point projection map 7 : '\G — I'\G/K = M and let X
be the unit neighborhood of Xy. Then Q C Xy C X and since M is geomet-
rically finite, X has finite Haar-measure. When M is convex cocompact, X
is compact, and otherwise it can be decomposed into a compact part and
finitely many cusp neighborhoods, as we describe below.

Let A, C A denote the set of parabolic fixed points (i.e. points fixed by
some parabolic element of I'). Since I is geometrically finite, A, consists of
finitely many I'-orbits represented by {1, ...,&} which are called cusps of
M. A cuspidal neighborhood of §; € A, is a set of the form

h; =7 H(T\TH,) (2.5)

where He C H" is some fixed horoball tangent to & such that vHe N He # ()
if and only if ~ fixes €. For each i, the stabilizer Stabr(¢;) is a free abelian
subgroup and we denote its rank by ;. We set kpax := max x; and Ky :=
min x;. Note that 20 > kpax(see [3, Lem. 3.5]).

For x € I'\G, we denote by r, the injectivity radius at x. For all suffi-
ciently small € > 0, let X(¢) = {z € X : r; < €}, so that

Y(e) =X\ X(e)

is compact, and the family X (e) with € < ¢y forms a shrinking family of
cusp neighborhoods.
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More explicitly, we show in section 5.1 that for all sufficiently small € > 0,

X(e) nh <XnN hi,log(e—l)v (26)

and using the measure estimate m(b; jog(c-1)) < €20 (
we get that

see Proposition 5.5),

m(X (€)) = €2~ rmax. (2.7)

2.4. Sobolev norms. The mixing rate of the geodesic flow depends on
the smoothness of the test functions which can be captured by appropriate
Sobolev norms we now define. Given a fixed basis of LieG, | € N, and
1 < p < oo, the Sobolev norm S,,;(V) of ¥ € C*(I'\G) is defined by

Spi(W) =Y [[D(T)[ (2.8)

where the sum is taken over all monomials D of order at most [ in the basis
elements, and H‘IIHI},Iaar denotes the LP(I'\G, m"8¥ ) norm of ¥. While this
norm depends on the choice of basis, changing the basis will only change the
norm by some bounded factor.

We will mostly use the norms S ;, which we will denote by S; to simplify
notation. Since supp(m) C X, it is sufficient for our purpose to consider
functions supported on X, and since X has finite Haar measure we can, and
will, use the bound

Spi (V) < S(U)m™ (X) VP < 8(W),
where the implied constant is independent of ¥ € C*°(X).

3. DECAY OF MATRIX COEFFICIENTS

A crucial ingredient in our proof is the exponential mixing of the geodesic
flow with respect to the BMS-measure. We use the inner product notation:

(a; U, @) = /F\G\I/(:mt)@(:c) dm(z).

By the remarks following Theorem 1.9, this following theorem is the only
missing part of it, given the works [24] and [20].

Theorem 3.1. Suppose that § > max{";t,n — 2} (resp. § > "“51). Then
there exist an explicit ng > 0 (depending only on the spectral gap of L*(M))

and | € N, such that for any bounded ¥,® € C*(X) (resp. VU, o €
Co(X)M)
(a; ¥, @) = m(¥) - m(P) + O(e ™S (V)S;(P)).
In the rest of this section, we assume
d>(n—-1)/2.

Theorem 3.1 with an explicit ng depending only on the spectral gap of
L?*(M) is then proved in ([22, Theorem 6.16], [5]) under the assumption
that the test functions are compactly supported. In order to complete the
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proof of the theorem we need to remove the assumption on the support of
the test functions.

To do this, we will approximate ¥ as the sum ¥, + (U — ¥,) where W, is
a smooth function supported on Y (€), and similarly for ®. In view of (2.7),
the main term will be reduced to (a;¥., ®.), for which the result follows
from [22, Theorem 6.16]. However, since the dependence on the supports
of U, and ®. was not made explicit in terms of € in [22], we need to redo
their arguments while keeping track of the dependence on € as well as on all
implied constants along the proof.

3.1. Control of BR measures. Since mB®(I"\G) = oo when I' < G is not
a lattice, and some of the implied constants in [22, Thm. 6.16] depend on
mBR(supp(¥)), we need the following result to control the dependence on
these measures.

Lemma 3.2. Assume that § > "T_l Then there exists ¢ > 0 such that for
any K-invariant subset Y C T\G with m"8¥ (V) < oo, we have

mBR(Y) < ¢ (/miaar(y),

Proof. Recall that by [26] and [19], there exists a positive eigenfunction
$o € C(I'\G)¥ for the Laplace operator such that
—Aqb(] = 5(’/1 —1- (S)Qbo

Under the assumption § > 271, we have [¢o5#e" < co. If ¥ denotes the
indicator function of Y, then ¥ is K-invariant and hence by [18, Lem. 6.7]

mBR(w) = /X W () o () dm o (1),

and in particular mBR(Y) < ||¢ 528" \/mHaar (V) as claimed. O

Since X is K-invariant with m2% (X)) < oo, the following is a consequence
of Lemma 3.2:

Corollary 3.3. If§ > (ngl), then mBR(X) < occ.

3.2. Test function supported on small balls. For a subset S C G and
e > 0, Sc denotes the e-neighborhood of e in S, that is, Sc = {g € S :
d(g,e) < €}. Set B := P.N¢; and note that G, < B, for all sufficiently
small € > 0. In this subsection, we will prove the following.

Proposition 3.4. Suppose § > max{”T_l,n — 2} (resp. ¢ > ”T_l) There
exist | € N depending only on dim(G) and n > 0 (depending only on the
spectral gap of T') such that for any e € (0,1) small and any x € Y (e) N €,
for all ®, ¥ € C®(xB.) (resp. ®,¥ € C®(xB.M)M ), we have that

(U, ®) = m(T)m(P) + O(e S (V)S;(P))

where the implied constant is absolute.
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Proof. Fix ®,¥ € C*°(zB,). In the case when 71 < § <n — 2, we assume
that &, ¥ € C*°(xB:M) are M-invariant. We have

(a ¥, D) :/ . / . \P(xpnat)q)(xpn)dugsjv(xpn)duzp(:rp).
rpexle JxpiNe

Now, for fixed p € P, letting ¢ = @|,,n. € C°(xpNe), we estimate the
inner integral
/ \I/(xpnat)‘I)(xpn)duzPSN(:cpn) :/ \Il(xpnat)qﬁ(xpn)dugsjv(:npn)
xpNe

TpNe
(3.1)
as follows.
Fix a small 0 < ¢y < €2 and consider the functions \Ifgg on I'\G defined by

Uh(y)= sup ¥(yg), Y (y)= inf ¥(yg)
9€Ge 9€Ge,

and let
U2 (ap) = / W Gapm) S o).
xp

We then have that

vep(UE) = m(TE)  and / WESy (8)dv,p(2p) = m(®).

xPe
Moroever, since ¥(z) = UZ (2) + O(e0Sx0,1(V)), we get that
m(¥;) = m(P) + O(eSoo,1(V)),
where we used that m(X) < oo. We will also use the notation

S (y) == sup o(yn),
nENel

and similarly get that 5 (6F) = iR (9) + O(€185,1(0))-
Now by ([22, Lem. 6.2], [5]), there exists some absolute constant ¢ > 0,
such that the integral

| wapnaotam)dutsyan) (32)

is bounded from above and below, respectively, by

(Lt ce)e™ D ok (wp)dnr, (xpa_y),
PEP(t)

where P, (t) is the finite set defined by

P.(t) ={p € P. : xpNcay N xpN, # 0}.
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Moreover, by the proof of [22, Thm. 6.7], there are positive constants n > 0
(depending only on the spectral gap of I') and « > 0 such that

Z w .fL'p ¢ e~ teg (':L‘pa’ t) - VZP(¢60)MmpN(¢e téo)

PEPx(1)
+O(e + ) ARRALS + 0(e 7 S5(1)S2,(6))
where
AGY = Soo 1 (W)mPM (supp(¥)) < Soc 1 (V).
(by Lemma 3.2), and

ALS 1= 800 1 () 1ty (SUPD(9)) < Soo,1 () iy (TP N).-

Notice that the injectivity radii of the supports of ¢ and 1) are at least € and
since we chose €y < €2 much smaller, all the implied constants are absolute
and independent of € and ¢.

Combining these results and estimating

vep(tey) = m(Ug) = m(¥) + O(0S,1(P)),
and
Hopn (De-r,) = Hopne (9) + O(€0So0,1(9)),
we get that

[ wlemmans(emm)duti(eom) = m(@)ukS (@)1 +Ofer)
+ O(€0S00,1 (W)So0,1 (1) + O(e ™ + €)S00,1 (1) S00,1 (¢ gy (zpN)
+ O0(e7 ™S9 (V) S2,())-

Since all implied constants are independent of €y, taking the limit as
€o — 0 gives

/  Wlapna)dapn)dpbiy(arm) = m(@)uES (0

+O0(e "SI (V)Si(@) g (xpNe))) + O™ S2,1(V)S2(9))

where we used that Sj(¢) < §;(P).
Now, integrating over z P,, and noting that foE HESN(QS)dep(:cp) =m(P),
the main term is indeed m(¥)m(®). Next, since

/ MESN(xpNe))deP(Z'p) = / / dugsNduxp(:cp) =m(B) <1,
zPe P JxpN,

the integral of the first remainder term is bounded by O(e "8 (¥)S;(®)).
For the second remainder term, we bound Sz ;(¢) < S§;(®), /ufcpN(:cpNE) to
get that
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[ Saut@)arten) < S@ b aoN) [ [t Gaomdvepa)
xPe P JxpNe

= S®)(ubpn (zpN)) 2 mBR (2 PN,).
We now use Lemma 3.2 to bound

mPR(zP.N,) < mBR(zP.N.K) < \/ mHaar (z PN K),

and since there is a uniform constant ¢ > 0 such that P.N. K C P, K, noting
that P.K = N” A K, we can bound

mHaar(xPENeK) < mHaar(xPceK) < MﬁpN(ZL‘pNE)
to get that

SQJ ((I)|sze )dl/mp (.CUp) <K Sl((I)).
x P,

Combining the two remainder terms, and bounding all norms by &;(¥)S;(®)
we get that

(U, D) = m(T)m(P) + O(e S (V)S)(P))
where the implied constant is absolute. O

3.3. General test functions. We now use a partition of unity to reduce
the case of a general test function to the case of functions with small support.

For e € (0,1) sufficiently small, let Q. be a maximal family of points in
X NY, such that the sets yBes, y € Q¢, are disjoint and meet Ya, and let
Q. :={y € Q¢ : yB2 NYy # 0}. Note that the collection {yBo : y €
Q} covers X NYs and that {yBsBas : y € QL} covers X N Yy. Since
mtear(X) < oo, we have #Q, = O(e~3dm(@)),

Fix a non-negative function 3. € C*°(B,) taking values in [0,1] which
is 1 on BsBgs and 0 outside B (note that BsBeis C By C Be2). We
can choose f3. so that S;(f8.) < ¢ 3. For each y € Q. define a function

By,e(yb) := Be(b) on yBe.
Lemma 3.5. For any z € UyeQ' yB.2, we have

> Beelz) > 1.

ZEQE
Proof. Lety € Q.. Ifx € yBes Bes, then 8 ((z) = Land hence ) _ o S.(x) >

1. Now suppose that x € yBe \ yBs B, in which case xBs NyBgs = 0.
Since y € Y3, and = € yB,2 we have that x € Y5 N X. By the maximality
of Q., there exists z € Q. such that zBs N zBs # (). This implies that

x € zBsBgs and hence 8, ¢(z) > 1. O

Now consider the normalized function (supported on yB.) given by
By.e
ZZGQE ﬁz,e

Oéy’E =
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Lemma 3.6. For any y € Q., we have Sj(ay,) < € P, where p and the
implied constant depend only on | and dim(G).

Proof. Let se(x) = >_.cq. Bze(x) so that ay(z) = B;:‘ézg) Since oy is
supported on yB.2, we only need to bound its derivatives there in which

case we have that sc(z) = > .o B:e(x) > 1. Taking derivatives of the

quotient ay . = Bue and using the bound s¢(x) > 1 together with the bound

Se

Soi(8e) < e 3#Q, < ¢ 3HdM(G) proves the lemma. O

Lemma 3.7. The function 7c 1=} o/ ay,e belongs to C*°(X) and satisfies
that 0 < 71. <1, 7. =1 on X NYy, and 7. = 0 outside Y.

M, it is clear that 0 < 7. < 1. Note that if
ZyeQe 51/,6

y € Qc\ Q., then yBo NYy = 0. Hence if x € X N Yy satisfies = ¢
yBe, then By (x) = 0. This shows that > o By.e(x) = ZyeQ; By.e(x).
Moroever, since X N Yy is covered by {yBsBas : y € QL}, we have that
Zyng By.e(x) # 0 on X NYy and hence indeed 7. = 1 there. Next, since
for any y € Q., we have that yB.2 C Y;; so 7.(x) = 0 outside of Y.. Finally
we can bound 8;(7¢) < Zyng Sy, < e pH3dim(G), O

Proof. Since 7. =

Proof of Theorem 3.1. Suppose first that § > max{%,n — 2}. Now, for
given ¥, & € C*>°(X), consider

U=V .7 = Z \I/-ozy’e and @ := 7 = Z (I)'ay’e'
veQ. vede

Note that S;(¥ - ay.c) <K Sj(y,)S(V) < €7P85(V), with p as in Lemma 3.6.
Now applying Proposition 3.4 to each ¥ - ay . and @ - oy for y,9/ € QL,
and recalling that #Q, = O(e31™%) we get that

(T, D) = m(T)m(D,) + O(e Pe S (T)S; (D)) (3.3)

with pg = 2p 4+ 6 dim(G).
It follows from (2.7) that for dp := 25 — Kmax > 0,

m(¥ — ) < [ ¥]joom(Xae) < €| ¥ oc,
and similarly m(® — ®.) < €%||®||o. Hence
(00, B) — (0T, B)] < €] o ] o
We then deduce
(@0, @) = m(W)m(®) + O[] o |[B]lc) + O e S (1)5(®)).

nt

Taking € = e %+ro and recalling that Sy 0 < S;, we get that
(U, ®) = m(¥)m(P®) + O(e ™S (V)S;(P))

with ng = 6(:7?;1. This concluds the proof when § > max{%;%,n — 2}.
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Finally, for n > 3, if "T_l <d<n-—2 and ¥ and ® are M-invariant,
we can replace ay . with an M-invariant function a?])f[g(:n) = [ oy.c(xm)dm
and run the same argument to get (3.3). Then the rest of the proof is

identical. |

4. SHRINKING TARGET PROBLEMS

We now use the results on the exponential decay of matrix coefficients to
prove an effective mean ergodic theorem and apply it to various shrinking
target problems. As before, we assume that I' is a geometrically finite,
Zariski dense subgroup of G = SO(n,1)°. For n > 5, in the case where
I" has a cusp and 6 < n — 2, all functions and shrinking targets on X we
consider below are assumed to be M-invariant so that Theorem 1.9 applies
to them. All functions below are also assumed to be real-valued functions.

Remark 4.1. While we state our results for the geodesic flow on geometrically
finite hyperbolic manifolds, we note that the results in this section are quite
general and hold for any dynamical system on a measure space (X, m) for
which one has exponential decay of correlation in the sense of Theorem 3.1

4.1. Effective mean ergodic theorem. Fix ¢ as given in Theorem 3.1.
For notational convenience, we introduce the norm
_Si(v)

S*VY) = o] for any non-zero ¢ € C*(X) N L*(X, m),

where || || denotes the L?-norm of W. In the entire section, we will take A to
be either the Lebesgue measure on R (when considering a continuous time
flow) or the counting measure on Z (for a discrete time flow). For T' > 1,
consider the averaging operator Ay on L?(X, m) given by

T
MW@ = 7 [ V)i,

Theorem 4.1. For any non-zero ¥ € C*(X), and for all T > 1,
(1 +log(S*(9))) - [¥|”
T :

Proof. Since we have |Ar(¥) — m(¥)[|2 = | Ar(¥)]|? — m(¥)?, it is enough
to estimate ||Ar(¥)||?. Now, expand

T T
rel? = o /0 /0 /X wa, _1) U () dm ()N (1 )dA(t2)

IA7(2) = m(9)]* <

T
- 4 / ) /X W(2a,) ¥ (a)dm(a)(T - [t))dA(?)

where we used that ) is translation invariant and A([0, T)N[t, t+T1")) = T —|¢|
(where in the discrete case we may and will assume that ¢ and 7" are integers).
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Now fix a large parameter M to be determined later. For |t| > M large
we use Theorem 1.9 to get that

/ U(zay)¥(z)dm(z) = m(¥)% + O(S(¥)2e !,

X

for some 1y € (0,1). On the other hand, for |t| < M small, we bound
(a; U, ) < || W2, to get that

2,—moM

|2 = m()?+O(|9[2%) + 0(EHE"2),

using m(V¥) < ||¥||. Using these estimates, we get that
M| + S(@)?e~mM
T .
It remains to set M = 2log(S*(3))no~! to finish the proof. O

AT (®) — m(P) [ <

Following [13], for a non-negative function ¥ on X, we define
Cru = {z € X : Pr(¥)() - m(¥)| > "5} (4.2)
Cry ={z € X : M (¥)(x) = 0}.

Note that C%\I, CCru.
As a direct consequence of the effective mean ergodic theorem, we get the
following bounds:

Proposition 4.2. For a non-negative ¥ € C*(X) and T > 1, we have
log(S™(¥))|| ¥

m(CT,\p) <K T. m(\Il)2
Proof. On one hand,
] 2
Pr(0) = m(@)? > [ Pr(@)(@) - (@) > EEREE),
Cr,w
On the other hand, by Theorem 4.1,
log(S*(0))||w|?
Putting these two together gives the result. O

Having control on the measures of these subsets has immediate conse-
quences to several shrinking target problems. Indeed, a simple adaptation
of [13, Lemmas 13 and 14] gives the following result.

Lemma 4.3. Let {¥;};>1 C L*(X,m) be a decreasing family of bounded
non-negative functions.
(1) If ij(ijih\I,tj) < oo for some subsequence t; — oo, then for
m-a.e. x € X,
MUy(z) #£0  forallt >, 1.
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(2) If there exists C > 1 such that m(Wy;) < C - m(Wyit1) for all j > 1
and ), m(02j*17\1/2j) < 00, then for m-a.e. z € X,

M (Py)(z) > migt) forall t >, 1.

(3) If there exists C > 1 such that m(¥y;) < C - m(Woj+1) for all j > 1
and 3, m(Cyjr gy ;) < 00, then for m-a.e. x € X,
A (Uy)(x) < (4C) - m(Ty)  for allt >, 1.

4.2. Hitting along a subsequence. In the rest of this section, let B =
{B:} be a family of shrinking targets in X. Recall that a family B is inner
regular (resp. outer regular) if there exist ¢ > 0,« > 0 and smooth positive
functions 0 < ¥;” < Idp, (resp. Idg, < ¥} < ¢) such that

e m(B;) <c-m(¥;) (resp. m(¥;") < c-m(By));

o S(U) <c-m(By)°.
A family B is regular if it is inner and outer regular. When we want to
emphasize the parameters ¢ and «, we say that a family is (¢, a)-regular.
Our first application of the effective mean ergodic theorem is the following.

Proposition 4.4. Assume that B is inner reqular and satisfies

im inf Hoe(m(B))| _
i it G =0

Then there is a subsequence t; — oo such that for m-a.e. x € X,
A{t <tj:may € By }) > t;m(By;).

If B is also outer regular, then for m-a.e. x € X,
AM{t <tj:xay € By }) < tym(By;).

Proof. Since B is inner regular, there are functions ¥; € C*°(X) with 0 <
U, < Idp, such that log(S*(¥;)) < log(m(By)) and m(¥;) > m(B;). The
mean ergodic theorem (Theorem 4.1) applied to ¥; implies that

(1 + log(S* (W) [ Wel*
t

[Ae(®e) —m()|? <
Set W, := —2t_ to get that

m(¥¢)
(1 + log(S*(T))[We]* _ |log(m(By))|
m(\IJt)Z -t m(Bt) -t ’

where we used that ||¥;||> < m(B;). From our assumption, there is some

log(m(B:,)) = .
m(TJ)t;] — 0. Hence )\tj (\Ijtj) — 1lin LZ(F\G, m)

and, after perhaps passing to another subsequence, we get A (\fltj)(x) —1
for m-a.e x € X. For any x in this full measure subset, the inequality

~ A{t<t;: By .
At (Wy)(z) < W implies that A\({t < t; : wa; € By }) >
J
tim(B,) as claimed. Assuming that{B:} is also outer regular, repeating

H/\t(\ijt) —- 1> <

subsequence t; such that
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the same argument for functions approximating Idp, from above gives the
other inequality. O

In particular, taking A to be the Lebesgue measure gives the first part of
Theorem 1.3. Moreover, by taking A to be the counting measure, we get the
following consequence implying a discrete version of Theorem 1.2(1).

Corollary 4.5. If B is inner regular and liminf,_ w =0, then

{k € N: zay € By} is unbounded for m-a.e. x € X.

Proof. Applying the above result with A the counting measure shows that
for m-a.e. z € X,

#{k <t;:xay, € By} > t;m(By;) = oo,

along some subsequence t;. Since By, C By for any k < t;, it follows that
the subset {k : zay € By} is unbounded as well. (]

4.3. Orbits eventually always hitting. The results of the previous sec-
tion allow us to control how orbits hit the shrinking targets along a sub-
sequence of times, however, under the same hypothesis we could also have
different subsequences for which this asymptotic fails, and for which the set
{k < kj : may € By, } may even be empty (see e.g. [13, Proposition 12]). A
more subtle question is to ask what conditions on the shrinking sets guar-
antee that the truncated orbit {za; : j < k} is eventually always hitting
the targets Bj, and moreover, how large is their intersection? This is the
content of the following Theorem 4.6, which is a discrete version of Theorem
1.2(2).

oo |log(m(By;))l <
j=1 tj—lm(Bt]-)

oo for some sequence t; — oco. Then for m-a.e. x € X and for all t >, 1,
we have {k € N: k <t, za, € B} # 0.

Theorem 4.6. Assume that B is inner reqular and that

Proof. From the inner regularity, we can find smooth functions 0 < ¥; <
Idp, satisfying log(S;(¥;)) < log(m(B;)) and m(B;) < m(¥;). By Proposi-
tion 4.2, we can estimate thatfor any s,¢t > 1

los(8" (W] |2 _ |1o(m(By))
sm(0y)2 sm(By)
log(m (B¢
Since m(Cy,_,,w,,) < bjimi((éi))‘,
by the first part of Lemma 4.3, we have that for m-a.e. x € X, \yWy(z) #0
for all sufficiently large t. Taking A to be the counting measure on N, this
implies that {k € N: k <t, za, € B;} # 0 for all sufficiently large ¢. O

m(Csw,) <

we obtain ij(Ctjfh\ptj) < o0o. Hence

Theorem 4.7 implies Theorem 1.3(2).
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Theorem 4.7. Assume that B is regular and that m(By) < m(By). If

oo  |log(m(B,;))]
ijl TB;}) < 00, then, for m-a.e. x, and for allt >, 1,

#{j <t:waj € By} _{s<t:xas € B} —m

t t
Proof. Let \II?E be functions which approximate Idp, from above and be-
low such that 0 < ¥, < Idp, < ¥ < ¢, log(S;(¥F)) < log(m(By)) and
m(¥;") < m(¥;) < m(B;). For each of these functions we can use Proposi-
tion 4.2 as before to estimate m(C&\I,ti) < %. Taking s = 2/*1 and
t =27, we get that ) m(CQjﬂ,\I,Qij) < 00. So by the second and third part

(Bt).

of Lemma 4.3 we get that for m-a.e. x € X and for all sufficiently large ¢,
we have
m(B;) < m(¥;) < MU, < M(Idg,) < WP < m(T)) < m(By).

This implies that A\¢(Idp,) < m(B;). Finally, taking A to be the counting
measure on N (resp. the Lebesgue measure) gives the result for discrete
(resp. continuous) time flow. O

4.4. Logarithm law for the first hitting time. Using similar arguments
utilizing the effective mean ergodic theorem, we can prove the logarithm law
for the first hitting time for the discrete flow. Recall the discrete first hitting
time function
78 (x) = min{k € N : za;, € B}. (4.4)
Theorem 4.8. If B is inner reqular, then
o log(r, (2)
t—oo —log(m(By))
Proof. We first note that the bound
log(7¢ (x
lim inf M > 1,
t—oo —log(m(By))
holds for m-a.e.x; indeed, this holds in general for any monotone sequence of

shrinking targets in a measure preserving dynamical system (see [14, Lemma
2.2]). It is thus sufficient to show that for m-a.e. z,

log(7, ()

=1 form-a.e x€X.

limsup ———-— < 1.
o —log(m(By)) ~
Fix a small € > 0 and set
log(7& (x
A ={r e X: lirnsupM > 1+ 2¢}.

t—oo —log m(Bt)

Note that if x € AT, then there are arbitrarily large values of ¢ for which

Tﬁt (x) > W, and hence z € C} ) y, Where ¥; = Idp, and

1
ke(t) = LwI
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Now for any j € N, we choose y; € (2]%, 2%] such that either ¢; = sup{¢ :
m(B;) > y;} satisfies m(By;) = y; or there is no t with m(B;) € [y;,y;-1)
(if the function ¢ — m(B;) is continuous, we may simply take y; = 277. In
general, since the function ¢ — m(By) is monotone decreasing, it has at most
countably many points of discontinuity and hence we can always find such
points). We partition [0, 00) into intervals I; = {t : m(B;) € [yj+1,y;)} and

write
AcNU UG

keN j>ktel;
For all sufficiently large j and any ¢ with m(B;) € [y;+1,y;), we have that

ke(t) € [2(1+e)(j)72(1+2e)(j+2)] so that C,‘;(t)ﬂ,t C Cg(1+€)].’\pt. Since By; C By
for all t <t;, we get C&Heh’% - CS(HE)J’,%JF We can thus further bound

+ o
-Ae - ﬂ U C2(1+e)j,\1/tj'
keN j>k,1;7#0

From our choice of y; and t;, we have that m(¥;,) = y; € (2]%, 2%] Since

{Bt} is inner regular, we have 0 < ¥, < Wy, with m(¥; ) < m(¥y;) and
log(8*(¥;.)) < [log(m(¥y;))| < j. Using Proposition 4.2 for the smooth
functions as before, we bound
J —ej
m(CQj(l+€),\Ijtj) S m(Czj(1+e)’\I/;j) < W < 32 6].
Hence m(Af) < 3., 7279 < k27 for all k € N. Therefore m(Af) = 0
and

————- <142 for mae. xe€X.
tsoo  —logm(By)

This holds for any € > 0. Hence, by taking a sequence of €¢; — 0, we finish
the proof. O

4.5. Thickening along the flow. We note that if {k € N : zay € By} is
unbounded (resp. {j < k : za; € B} # 0), then {t € R : za; € By} is
unbounded (resp. {t <k : za; € By} # (). Hence the same assumptions on
the shrinking rate of m(B;) as in Proposition 4.4 give the same conclusions
also for the continuous flow. However, it is possible for the set {t € (0, 00) :
xa; € B} to be unbounded even when it is bounded for the discrete time
flow. In order to get the correct thresholds for the continuous flow, one
needs to consider the thickened targets.
For any set B C X we define its thickening B to be

B= |J Ba.. (4.5)
|s|<1/2

In the following lemma we observe that the shrinking target problems for
the continuous flow can be translated to similar problems for the discrete
flow hitting the thickened targets.
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Lemma 4.9. For any B C X and x € X, we have:

(1) Ifza; € B for somet € R, then xay, € B for k € Z with [t—k| < 1/2.
(2) If xay, € B with k € Z, then xa; € B for some t with |t — k| < 1/2.
(3) Imp(2) — 7h(2)] < 1/2.

The proof of these observations is easy once stated and we omit the details.
Using this, we get the following sharper results for the continuous time flow,
which imply Theorems 1.1 and 1.2.

Theorem 4.10. Suppose that the family {Bt}tzl of thickened targets is
mner reqular.
(1) If liminfy_, % = 0 then for m-a.e. x € X, {t e R: za; €
k
By} is unbounded.

00 log(m(B.;
(2) If 3272 %(B;)))I < oo, then for m-a.e. x € X,

{0<s<t:zas € B} #0 forallt>>, 1.
(3) For m-a.e. x € X,

log7p,(z)

t=o0 —logm(B)

Proof. The first condition (with k replaced by k + 1) implies that the set
{k € N:za € Bk+1} is unbounded. For each k in this set, there is some
ty € [k —1/2,k + 1/2] with xza;, € By+1 C By, proving the first part.

For the second part, the summability condition implies that for m-a.e. x,
we have that {za; : j < k)} N By, # 0 for all sufficiently large k > ko. Now
for t > ko + 1 and k := [t], there is some j < k with za; € By; hence there
is s <t with zas € By C By.

Finally for the last part, since |7p(z) — Tg(ﬂj‘)| < 1/2, we get that

log 7¢ ()
lim M = lim — Bt
t—oo —Jogm(B)  t—o° —log m(By)

O

Remark 4.6. The problem of estimating ¢{t < k : za; € By}, for the contin-
uous time flow, does not easily reduce to the discrete time problem for the
thickened targets. Here, knowing that xa; € By, only tells us that xa; € By
for some t close to k but not on the amount of time spent there. Hence, to get
| log(m(By;))l
27 m(B,;)
the original sets and not the thickened sets. In particular, if m(By) < k™ for
some a > 1 and m(By) = k= for some b < 1, then by reducing to the thick-
ened case, we know that for all sufficiently large k, {t < k : za; € B} # 0,
but we do not get an asymptotic estimate for the size of these sets.

asymptotics we need the stronger condition that Zj; < oo for
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5. EXPLICIT EXAMPLES

In this section, we consider explicit examples of shrinking targets given
by shrinking cusp neighborhoods, shrinking metric balls and shrinking tubu-
lar neighborhoods, and show that they are regular and approximate their
measure.

5.1. Cusp neighborhoods. Let by, --,b; and b;; be the cusp neighbor-
hoods defined in (2.5). In order to apply our results for these sets we need
to verify that the family {h;;};>1 is regular and satisfies m(h; ;) < e tH(20—ri)
where k; is the rank of the parabolic fixed points associated to h;. While
the upper bound m(h; ;) < e~ 120=£i) is proved in [2] and [23], we could not
find a reference where the lower bound is established; so we include a proof
for the convenience of readers.

The important feature of a geometrically finite group is that all of its para-
bolic fixed points are bounded, i.e., the stabilizer of £ in I' acts cocompactly
on A — {&} for each parabolic fixed point . This is the main ingredient
of the argument below. We refer to [1] for the description of horoballs in
geometrically finite manifolds that will be used below.

We will work here with the upper half space model

H" = {z = (z,y) : € R""L, y > 0},

and fix our base point to be o = (0,1). Since we will work with one fixed
cusp, we may assume without loss of generality that it is the infiniy oco. Set
I'eo := Stabr oo and & to be the rank of co. Without loss of generality, we
assume that I'y, = Z*. Fix a horoball H(0) C H" such that

Lo = {7 € D H(0) NyH(0) # 0} = {y € T': H(0) = vH(0)}.

In fact, ﬁ(()) is of the form {(z,y) : y = yo} for some yo > 0. For
the notational simplicity, we assume 3o = 1. Set H(t) = {z € H(0) :
d(z,0H(0)) >t} = {(x,y) : y > e'}. Without loss of generality, we may
assume 7(h;) = Too\H (t) where oo = by.

Choose a fundamental domain Fa, C R®! for the action of I'sc on R?~!
containing the origin so that the sets, int(7Fy ), are mutually disjoint for
v € T'oo. Note that H'(t) = {z = (7,y) : ¢ € Foo : y > €'} is a fundamental
domain for 7(h) = I'so\H (t). We can choose a compact fundamental paral-
lelepiped P containing Foo N A such that I'«oP covers A\ {oco} and int(yP)s
are mutually disjoint for all v € I'sx. We may choose P to contain the origin
so that if H(t) := H'(t) Nhull(A), then

(Foo MA) x [e',00) C H(t) C P x [e!,00). (5.1)

As P is compact, we have for any z € H(t), we have d(T'o, z) = d(o, 2),
and for z € 9H (t),

d(To,z) = d(o,2) =t +O(e™").

The following is also clear from (5.1):
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Proposition 5.1. The injectivity radius r, at any point z € OH(t) satisfies
r, < e~ !, where the implied constants are uniform for all t > 1.

We will use the following well-known fact:
Proposition 5.2. There exists ¢ > 0 such that for all t > 0,
H(t+c¢) C{ze€hull(A)NH(0) : d(z,T0) >t} C H(t—c).

Next we want to estimate the measure m(h;) for large ¢. For any £~ #
£t € OH" — {00} and s € R, we denote by & the unit speed geodesic from
€™ to &7 (where s is the signed distance from the highest point of the geo-
desic), and recall that this gives us the coordinates (7, &7, s) parametrizing
TYHM). Let A’ = A\ {co} and let Py = Foo NA.

We first show the following;:

/WO [ Mg (r6dm(s %)

Proof. Let Fr C H" be a fundamental domain for I'\H" containing o such
that for t > 0 sufficiently large, we have that Fp N H(t) = H'(t), so that
m(bh:) = le vy [y dm. Since {(£7, €t,s) - {€51 N {oo} # 0} has m-
measure zero, we can rewrite this in the (£7,£%, s) coordinates as

/Tl( IdH/@)dm—/,///IdH/ r(€))dm(e, €4, 5).

Now decomposing A’ as a union over translates vPy with v € T's,, we can
rewrite

miv) = 3 [ [ [ e ime e

R ASIPS

_ /P 0 /% / Id 10y (7(€6))Am(E ™, €7 5)

¥,y €0

- //ﬂ»o/ld 7(6,))dm(E™, ", 5)

v€l'o

Lemma 5.3.

m(h;) = Z/

’)’EF 7)0

where for the second line we made a change of variables § — 7§ and in the
last line we used that H(t) = U,er, vH'(2). O

In order to evaluate this, we need the following geometric estimate.

Lemma 5.4. Let £~ € Py and €T € yPy with v € T'sy. Then there exists
¢ > 0 such that

/Id (r(€:))ds = {d(o,’yo) —2t+0O(1) ifd(o,v0) > 2t —c (5.2)

0 otherwise.
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Proof. Recall that o = (0,1) and note that yo = (v, 1) for some v € R*~!,
Since Py is a compact set containing the origin, then Py is a compact set
(of the same diameter) containing v and hence ||~ — £F| = |jv|| + O(1)
where || - || is the Euclidian norm on R"~!. Note that sup{t : £ N H(t) #
0} = log(HE ¢ H) and d(o,v0) = log(||lv||)+O(1). Hence if d(o,v0) < 2t —c,
then €N H(t ) 0.

Now assume that £ N H(t) # () and let 21, z4 € H" be the first and second
intersections of the geodesic & with OH (0) and 29, z3 the first and second
intersections with 0H(t). Writing 2z; = (x;,y;), we have that ||z1| and
||xa — v|| are uniformly bounded and that ||x2|| and ||z3 — v| are bounded
by O(e?); this implies that d(z1,0), d(z4,70), d(22,a0) and d(z3,vaz0) are
all uniformly bounded. Now on one hand, d(z1, 24) = d(0,v0) + O(1), and
on the other hand, since z1, 29, 23, 24 all lie on the same geodesic, we have
d(z1,24) = d(z1,22) + d(22,23) + d(23,24). The middle term is precisely
Je 14y (7(&s))ds and d(z1, 22) = d(0, az0) + O(1) =t + O(1) and similarly
d(z3,24) =t + O(1), concluding the proof. O

Recall the notation by = Ujs|<1/29 bt

Proposition 5.5. We have m(h;) =< m(h;) =< e H20—5),

Proof. From Lemma 5.3, we have

m(b) = Z/ /%o/Id 7(6,))dm(E™, €%, ) =

vETl

/ / / Id, )8 Ber (0mEN+Be— (0mEN) 4y (€= )y (£+)ds
Po J/vPo

Next note that for any &~ € Py and €T € vPy and v € Iy, the sum
Be+(0,m(&s)) + Be-(0,m(&s)) is independent of s and is uniformly bounded.
Indeed, let s; be the least time such that z; := 7w(&;) € H(0) and note
that d(z1,0) = O(1) is uniformly bounded. Now, for z = 7w({s), on one
hand B¢+ (21,2) + Be-(21,2) = s — 51 + 51 — s = 0, and on the other hand
|Bet (21, 2) — Bex (0, 2)| < d(21,0) which is uniformly bounded.

With this observation together with Lemma 5.4, we get that

m) = 3 wPorP) [ g (r(€)ds

vEl'w

= S u(PoreyPo)(d(o,70) — 2t + O(1))

v€l'o
d(o,y0)>2t—c

v€l'

Next, to estimate v,(7Po) = V40(Po), we use the I'-conformality to get that

Vo(/Py) = / 5109 4y, ().
Po
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To estimate [B¢(v0,0), let 21,22 be the two points in the intersection of
O0H(0) and the geodesic connecting & to v¢. Then d(z1,0) and d(z2,~0) are
uniformly bounded and Be¢(21,22) = d(21,22) = d(v0,0) + O(1) implying
that B¢(v0,0) = d(y0,0) + O(1). Plugging in this estimate gives

mh) = Y 0 d(o,50) — 20+ O(1).
Y€l
d(o,v0)>2t—c

We may write I'o as {7, : v € Z*} where , is the translation by v. Note
that d(o,v,(0)) = 2log ||v|| + O(1). Hence

m(h) = Y e el 2l0g v - 2t + O(1))

VEL"R
lvl|=Ce*

= > Il log(llvfle™)

vELF
lvl|>Cet

- / e I TRl ™) < o—t(25-10)
S || =€

as claimed.
For the thickened target, for any x € bh; and |s| <1/2,if xa; € hy—1, then
b, C by C bhy—1. Hence m(h;) = e *(29=%) a5 well. (|

Next we show regularity.
Proposition 5.6. Both families {b; : t > 1} and {b, : t > 1} are regular-

Proof. Since h; C b C b1 it is enough to show that {b¢} is regular. Let
H'(t) denote the fundamental domain for T's,\ H (t) defined above, and Fr a
fundamental domain for T\H" such that Fr N H(t) = H'(t). For any t > 1
let 1 be smooth functions on T's,\H (t) taking values in [0, 1] satisfying

g1y <o <Idgry <9f <Idgrg-y),

and we can choose them so that S(¢/;°) = O(1), independent of ¢.

Since FrNH (t) = H'(t), we can lift the functions ¥ to right K-invariant,
and left [-invariant functions \II?E on G. As such, by looking at their values
on a fixed fundamental domain, we see that

0< IdbtJrl SV, < Idht < \Ijj <Idp,, <1

Since m(h;) =< m(het1), we also get that m(W) =< m(b), implying that {h;}
is regular. ([

Proof of Theorem 1.J. Applying Theorem 1.1 to the shrinking targets B; =
hi: gives (1). For (2), fix some 7 < 26%& and let ¢ :==1—n(26 — k;) > 0.
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Consider the shrinking family {B; = b; ;)10¢() }, Which is regular and satisfies
m(By;) =< m(By) < t~(2%=%)7_ In particular we have that

log(m(By; log(j
Z g((2))xz g(j)

2im(Bsy;) 9¢ 9

J
so Theorem 1.3(2) implies Theorem 1.4(2). O

5.2. Shrinking balls in I'\G. In this subsection, our goal is to show that
for x € supp(m), the family {xG. : 0 < e < 1} is regular as stated in
Proposition 5.9. We may assume that o € hull A and fix v, € T,(H") so
that M = Stab(v,). For £ € OH" and € > 0, let Bg(e) denote the Euclidian
ball of radius € around £&. When I' is convex co-compact, Sullivan’s shadow
lemma implies that v,(Bg(€)) < €, but when T' has cusps, the measure
Vo(Bg(€)) fluctuates as e — 0. Nevertheless, we have the following:

Lemma 5.7. For any £ € A, the following holds for all sufficiently small
e>0:

(1) min{e’, e~ " min} < v,(Be(€)) < max{ed, €20 Fmax],

(2) vo(Be(26)) < vl Be(e)).
Proof. For ¢ € Alet & C hull(A) denote the unit speed geodesic ray connect-

ing o to &. Let b(&) C O(H™) denote the shadow at infinity of the hyperbolic
hyperplane meeting &; orthogonally. Then

b(&) = Be(e) forexe.
If {&1,- -+ , &} denotes the set of all representatives of I'-orbits in the set of

parabolic limit points, and H¢, C H" is a sufficiently deep horoball based at

&, then H := U,’le I'(Hg,) forms a family of disjoint horoballs.
Now by [28, Theorem 2], we have

Vo (b(£))) = e~ d+d(ETO)(s(E)=0) (5.3)

where k(&) is the rank of &; if & € I'(H,) for some ¢, and k(&;) = 6 otherwise.
Now, to prove (1), let € = e~ t. First, if & is not in H, the claim follows easily.
Next, if & € T'(Hg,), then s(&) = k; and v,(b(&;)) < e dtd&To)0—r)) 1f
k; <9, then
0t < 5t +d(&,T0)(0 — ki) < (20 — Kmin)
and hence e~!(20=#min) < 1, (b(&)) < e~ %. Now if k; > J, then
—0t < =0t +d(&,T0)(ki — 9) < t(Kmax — 20),

so that e ™% < v,(b(&;)) < e~ (29=#max)t This proves (1).

For (2), we claim that v,(b(&41)) < v6(b(&:)). In the case when &, &1 €

I'(He,) for some i, we have that |d(&,'0) — d(§+1,T0)| < 1. Now, using
(5.3) we get

Vo(b(€+1)) _ (d(grs1.T0)—d(€rT0))(0—ki) - 1
Vo(b(&t))
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If this case does not happen, there must be some ¢’ € [t, ¢+ 1] such that the
projection of & in core(M) lies in the compact part core(M) — U;I"\ Hg,,
and hence d(&,T0) = O(1). But then also d(&,T'o) and d(§4+1,T0) are
bounded and v,(b(&41)) = vo(b(&)) =< €% as well. O

Proposition 5.8. Let K C X be a compact subset. Let §_— = min{d, 26 —
kmax} and 04 = max{d, 20 — kmyin}. For any x € KN, we have that for all
0<e<ry,

1) €1+dimM+25+ < m(xGE) < €1+dimM+2<L,
2) m(zGae) < m(zG,),

3) m(xG A1) < e 'm(2Gy),

(4) m(zG.M) =< e IMm(zG,),

where all the implied constants above are uniform over all x € K.

Proof. Fix a compact subset Fy C G such that £ = I'\I'Fy. First, since we
assume € < ry, we have that m(zG.) = m(gG.) for x = [g]. We will use the
flow boxes

B(g,€) :=gB(e) = g(NT N~ NN NtAM)M_A.. (5.4)

It is shown in [12, Lemma 4.7] that B(g,¢) < gG. and that
m(B(g,€)) = (1 + O(€))2ev4(0) (9N 05 )Wy (0) (9N, v, ) volar (M), (5.5)
where volys (M,) = e1™M) and all implied constants are absolute.

We can estimate v, (gNFvE) < vo(Byx (€)), with the implied constants
uniform for g € Fy. Hence by Lemma 5.7, we have

O+ < Vg(o) (gNEiU;t) < -,
Since volys(M,) < e M we get that
625++1+dimM < m(gB(e)) < 62(L—|—1—|—di1rnM

proving (1). (2) follows similarly from Lemma 5.7(2). (3) and (4) follow
easily from the above description of gB(e). O

Proposition 5.9. Fiz a compact set KK C X. There exist some ¢ > 1 and
a > 1(depending on l, and KC) such that the family {zG¢ : © € KNQ, € <1y}
and the family of their thickenings are regular for S.

Proof. We can find smooth functions ¥F : G — [0,1) such that
_ 1 g€ Gy n 1 gedG.
‘I’ - \If =
o=y S we={g 56
satisfying S;(VF) < e7!. For x € KN Q, let ¥F (zg) := ¥F(g). Then

0< ¥, <Idq, < V.

We then have that
S(VE) < e <m(Go) e,
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for a = m < m(zGe) so that
m(zG.) < m(2Gejp) < m(V, ), and similarly m(¥} ) < m(zG).
The same argument shows that the thickened sets G A; are (¢, )-regular

for some constant ¢ > 1 and o = W. O

and that m(zG.pp) < m(¥,

a:,e)

The proofs of Propositions 5.8 and 5.9 can easily be adapted for the
following;:

Proposition 5.10. Let M be convex cocompact. Fix xy € supp(m). Then
the families {xoGeM} and {xoG M A, )2} are regular and m(zoG M) <
2+ and m(xoGeM Ay 9) = €20 with the implied constants uniform over
all xq.

When M has cusps, we do not have such asymptotics for m(z¢G.M) and
m(z0GM Ay j2) uniformly for all 2o € supp(m). Nevertheless, we have the
following estimates:

Proposition 5.11. Let K C X be a compact subset of X, and let xo =
[goM] € KN Q.

(1) If both g(T .90 € OH" are parabolic fixed points corresponding to cusps
of ranks k1 and ko respectively, then

m(zoG M) = etoti—rm—rz,
(2) If oA is bounded, then
m(zoG M) = 21,

(3) If sup;er dwoanlo) o then

log [¢|
1 M
lim 28(M@GM)) _ o5
e—0 log e

Proof. Without loss of generality, we may assume that gg = e. Set & := ay
and let £ := limy .1, &. Recall that by [12, Lemma 4.7] and (5.5), we
have
m(zoGeM) < m(B(go, €)M ) < € - vo(Be+(€))vo(Be-(e€)).

It thus remains to estimate v,(Bg+(€)) in each of the above cases. When
&% are parabolic limit points, there exists tq such that for all t > ¢ (resp,
t < —tg), we have that &y, € He= is in the horoball centered at fi. Since
€% are parabolic limit points, this implies that for t > tq, we have that
d(&,To) = |t| + O(1), and hence, setting € = e~ !l by (5.3), we can estimate
Vo(Be+(€)) < €20=r1 and similarly Vo(Be-(€)) < €20=r2 proving (1).

Next, the boundedness of z9gA means that sup, d(§;, o) < oo. In this
case, (5.3) implies that v,(Bex (€)) < €°, proving (2).

d(zoat,l'o)

gl < 00, again taking e = e, (5.3) now

Finally, assuming that sup
implies that

¢’[log(e)| ™ < vo(Bex (€)) < €’[log(e)|,



33

and hence
log(m(zoGcM)) = (20 + 1) loge + O(log | log €]).
This proves (3). O
We finish this section with the proofs of Theorems 1.7 and 1.8.

Proof of Theorem 1.7. (1) follows by applying Theorem 1.1 to the shrinking
targets By = woGy /M with thickening By = xoGy /M A, /o which is inner
regular with log(m(B;)) = —20t + O(1) by Proposition 5.10.

For (2) we consider the shrinking targets By := xoG;—» M. Note that for
any x € M, we have that d(G*(x), x¢) < t~" exactly when G*(z) € B;. Since
m(B;) = t~129+1) | we have > % < oo when (26 + 1)n < 1. So (2)
follows from Theorem 1.3(2). O
Proof of Theorem 1.8. For (1), we note that Theorem 1.4(1) implies that
for m-a.e. zg € TH(M),

d(g* 1
lim sup (*(x0), 0) <
00 log(t) 20 — Kmax
For any such wg, the families {B; = 20G1 M} and {B,} are regular.
By Proposition 5.11(3), we have lim; —losm(Br)) _ 95 4 1, and hence

N logt
limy o0 % = 26. Now, using this limit together with Theorem 1.1,
we get that for m-a.e. z € TH(M)
log (75, (2))  log(r, (@) _

im =20 and =
t—oo  log(t) t=o0 —log(m(By))

For (2), given two cusps &1, & with ranks k1, k2, consider a geodesic con-
necting &; to & and let gg € TH(H") be any point on this geodesic, and
set 29 = [go] € TH(M). Consider the shrinking targets B; = roG1 /M. By
Proposition 5.11(1), we have log(m(B;)) = — (40 — k1 — k2) log(t) +O(1) and
hence (2) follows from Theorem 1.1.

O

5.3. Shrinking tubular neighborhoods. For a fixed closed geodesic C C
TH(M) and € > 0, we set Cc = {x € TY(M) : d(C,z) < €}. The proof of
Theorem 1.6 follows as above from the following.

Proposition 5.12. The families {C. : € < eg}~ and C, = {zas:x €Ce, |s| <
1/2} are both regular and satisfy m(Cc) < m(C,) < €2,

Proof. Recall the notations X, X (¢) and Y (¢) = X — X (¢) from section 2.3.
They are all M-invariant subsets of I'\G, and in the following proof, we will
regard them as subsets in I'\G/M. We can present C = [go]AM /M and
an element of C is represented by [go]a;M for a unique 0 < ¢ < L where
L is the length of C. Let ¢y be sufficiently small so that C C Y (ey) and
let 0 < € < ¢y. Let Q¢ denote a maximal set of points x; € C such that
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the sets z;G.M are pairwise disjoint. Writing z; = xoas, the condition that
z;G.NzjG. = ) imply that [t;—t;] > € and the maximality condition implies
that |¢; — tl+1] < 3e. Hence #Q, =< Le~'. Since

U szeMgceg U xiG?;eM
T €Qe T €Qe

we can estimate

> m@GM) <m(C) < > m(2:iGaM).

wiEQe xieQe

Now Proposition 5.11(2) implies that m(g;G.M) < €2+ where the im-
plied constant does not depend on 7. Summing over all z; € @, we get that
indeed m(C,) = €%.

Next, to show regularity, for each point x; € Q, let \I’jE be smooth
non-negative functions approx1mat1ng ;G M from below and .fngeM from
above respectively, with S;(¥ Eﬂ-) < el and define ¥F = 3, \I/E’Z.. Since
the sets x;GeM are pairwise disjoint, we have that U7 < Ide, < U1 and
moreover

m(¥}) < Zm($iG3€ < Z (2;GeM) < m(Ce),

and similarly that m(C.) < m(¥_). Since #Q. < ¢!, we can bound

S(TF) < e « m(Co)~ with a = &, showing that the family {C.} is

(¢, ) regular for some ¢ > 1, and o = l;—él

Finally, note that there is ¢ > 1 such that a_;Geas C G for all |s| < 1/2.
Then any point x € ée is of the form x = xgatgasM with 0 <t < L,g € G,
and |s| < 1/2. We can write gas = asa_sgas € asGee, to get that z €
200115Gee € Cee. Therefore C. C C, C Cp, implying that {C.} is also regular
with m(C) =< m(C.). O
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