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SHRINKING TARGETS FOR THE GEODESIC FLOW
ON GEOMETRICALLY FINITE HYPERBOLIC MANIFOLDS

DUBI KELMER AND HEE OH
(Communicated by Dmitry Kleinbock)

ABSTRACT. Let M be a geometrically finite hyperbolic manifold. We present
a very general theorem on the shrinking target problem for the geodesic flow,
using its exponential mixing. This includes a strengthening of Sullivan’s log-
arithm law for the excursion rate of the geodesic flow. More generally, we
prove logarithm laws for the first hitting time for shrinking cusp neighbor-
hoods, shrinking tubular neighborhoods of a closed geodesic, and shrinking
metric balls, as well as give quantitative estimates for the time a generic geo-
desic spends in such shrinking targets.

1. INTRODUCTION

Let M be a complete hyperbolic manifold of dimension n ≥ 2. Denote by G t

the geodesic flow on the unit tangent bundle T1(M ). If M is of finite volume,
but non-compact, Sullivan [27] showed in 1982 the following logarithm law for
the rate of the excursion of the geodesic flow: for any o ∈M , and for almost all
x ∈ T1(M ),

limsup
t→∞

d(G t (x),o)

log t
= 1

n −1
,(1.1)

where d(G t (x),o) is the hyperbolic distance between the basepoint of G t (x)
and o.

This result can be viewed as a special case of the so-called shrinking target
problem for the geodesic flow, which asks the behavior of a generic geodesic ray
with respect to a given sequence of shrinking subsets. Indeed, if we consider
the family of shrinking cuspidal neighborhoods ht := {z ∈M : d(o, z) > t }, t > 1,
then (1.1) is equivalent to the following logarithm law for the first hitting time:
for almost all x,

liminf
t→∞

logτht (x)

t
= n −1,(1.2)

where τht (x) := inf{s > 0 : G s(x) ∈ ht }.
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In this paper, we investigate shrinking target problems for the geodesic flow
on a geometrically finite hyperbolic manifold M , and prove results which are
far reaching strengthening and generalizations of (1.2), and hence of (1.1).

Let Hn denote the n-dimensional hyperbolic space and let G := Isom+(Hn) be
the group of all orientation preserving isometries. We may present a complete
hyperbolic manifold M as the quotient Γ\Hn where Γ is a torsion-free discrete
subgroup of G . We assume that Γ is Zariski dense and geometrically finite in
the whole paper. Denote by Λ⊂ ∂Hn the limit set of Γ and by 0 < δ≤ n −1 the
critical exponent of Γ. The maximal entropy of the geodesic flow on T1(M ) is
given by δ, and there exists a unique ergodic probability measure of maximal
entropy, called the Bowen–Margulis–Sullivan measure, which we denote by m.
The support of m is precisely the non-wandering set for the geodesic flow, and
hence the shrinking target problem in this setting is interesting only for those
shrinking subsets in the support of m and for m-almost all points. Now since G t

is ergodic for m, the Birkhoff ergodic theorem says that for a given Borel subset
B ⊂ T1(M ), we have the following: for m-almost all x ∈ T1(M ),

lim
t→∞

`{0 < s < t : G s(x) ∈ B}

t
=m(B),(1.3)

where ` denotes the Lebesgue measure on R. The shrinking target problem asks
a finer question on the set of times {s > 0 : G s(x) ∈ Bt } for a given family {Bt } of
shrinking sets and for m-a.e. x. The three main questions we address in this
paper for m-a.e. x ∈ T1(M ) are as follows:

1. (Logarithm laws) Is there a logarithm law for the first hitting time

τBt (x) := inf{s > 0 : G s(x) ∈ Bt }?(1.4)

2. (Shrinking rate threshold) How fast can Bt shrink so that

τBt (x) < t

for an infinite sequence of times t tending to ∞ or for all sufficiently large
t À 1?

3. (Quantitative estimates) How fast can Bt shrink so that1

`{0 < s < t : G s(x) ∈ Bt } ³ t ·m(Bt )

for an infinite sequence of times t tending to ∞, or for all sufficiently large
t À 1?

In order to address the above questions, we need to impose certain regu-
larity conditions on the shrinking targets. Let K < G be a maximal compact
subgroup and identify M with Γ\G/K . There exists a one parameter diagonal-
izable subgroup A = {at } so that if M denotes the centralizer of A in K , then
the unit tangent bundle T1(M ) can be identified with Γ\G/M in the way that
the geodesic flow G t on T1(M ) corresponds to the right translation action of at

1The notation ft ¿ gt means that for all t > 1, ft ≤ c gt for some absolute constant c > 0, and
we write ft ³ gt if ft ¿ gt and gt ¿ ft . We sometimes indicate the dependence of the implied
constant in subscripts.
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on Γ\G/M . We fix `À dim(M ) and the Sobolev norm S = S∞,` on C∞(Γ\G)
given by

S (Ψ) =∑‖D(Ψ)‖∞,

where the sum is taken over all monomials in a fixed basis of Lie(G) of order at
most `.

A family of shrinking targets in T1(M ) means a collection B = {Bt ⊂ T1(M ) :
t > 1} such that m(Bt ) > 0, Bt ⊃ Bs for s > t , and limt→∞m(Bt ) = 0. A family {Bt }
of shrinking targets is said to be inner regular (resp. outer regular) if there exist
α> 0 and a family of functions Ψ−

t ∈C∞(T1(M )) (resp. Ψ+
t ∈C∞(T1(M ))) such

that

• 0 ≤Ψ−
t ≤ IdBt (resp. IdBt ≤Ψ+

t ¿ 1);
• m(Bt ) ¿m(Ψ−

t ) (resp. m(Ψ+
t ) ¿m(Bt ));

• S (Ψ±
t ) ¿m(Bt )−α,

where the implied constants are independent of t . A family {Bt } is said to be
regular if it is both inner and outer regular.

We note that this regularity condition is rather mild, and is satisfied by most
families of naturally occurring shrinking targets. Such examples include shrink-
ing cusp neighborhoods, shrinking tubular neighborhoods of a closed geodesic
and shrinking metric balls, as will be shown later.

In the rest of the introduction, we assume that B = {Bt : t À 1} is a family of
shrinking targets in T1(M ).

1.1. Logarithm laws. For discrete time dynamical systems, it is expected that
the first hitting time would be inversely proportional to the measure of the
shrinking target; it is indeed the case for the discretized geodesic flow. For the
continuous geodesic flow, it turns out that it is inversely proportional to the
measure of a thickened set B̃t :=∪|s|<1/2G

s(Bt ):

THEOREM 1.1.

1. If {Bt } is inner regular, then

lim
t→∞

log(τd
Bt

(x))

− log(m(Bt ))
= 1 for m-a.e. x ∈ T1(M ),

where τd
B (x) = min{n ∈N : G n x ∈ B}.

2. If {B̃t } is inner regular, then

lim
t→∞

log(τBt (x))

− log(m(B̃t ))
= 1 for m-a.e. x ∈ T1(M ).

REMARK 1.2. When | logm(B̃t )| ³ | logm(Bt )|, the first hitting time for the dis-
crete flow {G n : n ∈N} behaves in the same way for the continuous flow. This is
indeed the case for shrinking cusp neighborhoods or tubular neighborhoods of
a closed geodesic. However, there are also cases when | logm(B̃t )| is much larger
than | logm(Bt )|, such as the case of shrinking metric balls.
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We note that logarithm laws for the first hitting time were studied for cer-
tain families of shrinking targets in many examples of discrete time dynamical
systems with fast mixing, see, e.g., [6, 7, 8].

1.2. Shrinking rate threshold. In order to ensure that a generic orbit G s(x) hits
Bt before time t for an infinite sequence of t tending to ∞, the easy half of the
Borel-Canteli lemma implies that it is necessary to have

∑
k m(B̃k ) = ∞, from

which limsupt→∞ log2(t )t ·m(B̃t ) = ∞ follows. The first part of the following
theorem says that this condition is also sufficient, up to logarithmic factors.
The second part says that a generic orbit G s(x) hits Bt before time t , for all
sufficiently large t , under a slightly stronger assumption on the rate of shrinking
(see Theorem 4.11).

THEOREM 1.3. Suppose that {B̃t } is inner regular.

1. If limsup
t→∞

tm(B̃t )

| log(m(B̃t ))| =∞, then

liminf
t→∞

τBt (x)

t
≤ 1 for m-a.e. x ∈ T1(M ).

2. If
∞∑

j=1

| log(m(B̃t j ))|
t jm(B̃t j )

<∞ for some sequence t j →∞, then

limsup
t→∞

τBt (x)

t
≤ 1 for m-a.e. x ∈ T1(M ).

1.3. Quantitative estimates. In order to answer a more refined question regard-
ing the amount of time that a generic geodesic ray spends in a shrinking target,
we require our family of targets to be regular and their measures do not change
too fast in the sense that m(Bt ) ³m(B2t ).

With these additional regularity assumptions, we have the following (see
Theorem 4.8 below for a more general result).

THEOREM 1.4. Suppose that {Bt } is regular and that m(B2t ) ³m(Bt ).

1. If limsup
t→∞

tm(Bt )

| log(m(Bt ))| =∞, then there exists a sequence tk →∞ such that

for m-a.e. x,
`{0 < s < tk : G s(x) ∈ Btk }

tk
³m(Btk ).

2. If
∞∑

j=1

| log(m(B2 j ))|
2 jm(B2 j )

<∞, then for m-a.e. x,

`{0 < s < t : G s(x) ∈ Bt }

t
³m(Bt ).

We observe that unlike Theorems 1.1 and 1.3, the amount of time that the
geodesic flow spends in the targets is governed by the measure of the original
targets rather than by their thickenings.
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REMARK 1.5.

1. We note that in many examples the measure of the shrinking targets de-
cays like m(Bt ) ³ t−η for some η> 0. In such cases, we have m(Bt ) ³m(B2t )
and the rest of the conditions of Theorems 1.3 and 1.4 are satisfied if η< 1.

2. As mentioned before, the extra conditions on the rate of decay we have
in Theorems 1.3 and 1.4 are sharp, but up to logarithmic factors. While
it would be very interesting to have sharp conditions on the nose, we
note that such a result is notoriously hard. Even when M has finite vol-
ume, sharp results regarding Theorem 1.4(1) are known only in some very
special cases when the shrinking targets are cusp neighborhoods [27], or
spherical balls [21] (or general spherical targets if one considers discrete
time dynamics [13]). There are no known sharp results regarding Theorem
1.4(2). We refer to [15] where this kind of problem is studied for systems
with almost perfect mixing.

3. All the results described above still hold as stated if we replace the unit tan-
gent bundle T1(M ) with the frame bundle Γ\G , provided δ> n−2. We note
if M contains a co-dimension one properly immersed totally geodesic sub-
manifold of finite volume, then δ > n −2, so this stronger condition still
holds in many examples.

For some concrete applications of these results, we discuss three families of
shrinking targets to which our theorems apply. In order to define these families,
we fix a left G-invariant and right K -invariant metric d on G which descends
to the hyperbolic metric on Hn = G/K . This metric then naturally defines a
distance function, dist(·, ·) on T1(M ) = Γ\G/M .

1.4. Cusp excursion. The convex core of M is defined by core(M ) = Γ\hull(Λ),
where hull(Λ) defines the convex hull of the limit set Λ. As M is geometrically
finite, there are finitely many disjoint cuspidal regions whose complement in
core(M ) is a compact submanifold. Let hi , 1 ≤ i ≤ k, denote the pre-images in
T1(M ) of these cuspidal regions under the base point projection π : T1(M ) →M .
For each i , we denote by κi the rank of hi , that is, the rank of the maximal free
abelian subgroup of the stabilizer StabΓ(hi ). It is known that κi < 2δ.

For each i and t > 1, consider the following cusp neighborhood

hi ,t := {x ∈ hi : dist(x,∂hi ) > t }.(1.5)

For each i , we show that the shrinking family {hi ,t : t > 1} is regular and that

m(hi ,t ) ³ e−(2δ−κi )t .(1.6)

(see Section 5.1). Applying our results to this family, we get the following:

THEOREM 1.6. Fix 1 ≤ i ≤ k.

1. For m-a.e. x ∈ T1(M ),

lim
t→∞

logτhi ,t (x)

t
= 2δ−κi .
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2. For any 0 < η< 1
2δ−κi

, and for m-a.e. x ∈ T1(M ),

`{0 < s < t : G s(x) ∈ hi ,η log t } ³ t 1−η(2δ−κi ).

REMARK 1.7. As mentioned before, it is not hard to show that

liminf
t→∞

log(τht (x))

t
=

(
limsup

t→∞
dist(G t (x),o)

log t

)−1

,(1.7)

where ht =⋃
1≤i≤k hi ,t . Stratmann and Velani showed that (1.7) is equal to 2δ−

maxi κi [28], and hence extended Sullivan’s logarithm law (1.1) to geometrically
finite manifolds. Theorem 1.6(1) presents a stronger version, as we consider
excursion to individual cusps as well as obtain an actual limit rather than liminf.

For the sake of a concrete application, we give a reformulation of Theorem
1.6(1) in the case of Apollonian manifolds. An Apollonian gasket P = ⋃

Ci is
a countable union of circles obtained by repeatedly inscribing circles into the
triangular interstices of four mutually tangent circles with disjoint interiors in
the complex plane (where lines are considered as circles). The symmetry group
{g ∈ PSL2(C) : g (P ) = P } is a discrete subgroup of PSL2(C) which acts on Ĉ by
Möbius transformations and its torsion-free subgroup of finite index is called an
Apollonian group, which we denote by Γ. Via the Poincaré extension theorem,
we can identify PSL2(C) with Isom+(H3) for the upper-half space model H3 of
the hyperbolic space. The quotient manifold Γ\H3 is called an Apollonian man-
ifold, which is known to be geometrically finite with all cusps having rank one.
Its limit set is equal to the closure P , and supports a locally finite Hausdorff
measure H of dimension δ= 1.30568(8) [11].

Fix a tangent point ξ = Ci ∩C j for i 6= j and consider a sufficiently small
Euclidean ball B in H3 based at ξ, so that B = Γ(B) is a disjoint collection of
Euclidean balls.

Fix o ∈ H3 outside of B , let B(t ) ⊂ B be the Euclidean ball based at ξ and
dH3 (o,B(t )) = dH3 (o,B)+ t . Set Bt := Γ(B(t )).

The following is a consequence of Theorem 1.6:

COROLLARY 1.8. Let P be an Apollonian gasket. For H -almost all initial direc-
tion v toward P ,

lim
t→∞

log(inf{s > 0 : vs ∈Bt })

t
= 2δ−1 (= 1.6113...),(1.8)

where vs denotes the base point of G s(v).

1.5. Tubular neighborhoods. Another natural family of shrinking targets is
given by tubular neighborhoods of a closed geodesic. For a closed geodesic
C ⊂ T1(M ) and ε> 0, we consider the ε-tubular neighborhood of C :

Cε := {
x ∈ T1(M ) : dist(x,C ) ≤ ε} .

The family {C1/t : t > 1} forms a family of shrinking neighborhoods of C . We
show that {C1/t : t > 1} is a regular family with m(C1/t ) ³m(C̃1/t ) ³ t−2δ. Apply-
ing our results to this family of shrinking targets gives the following result on
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the amount of time a generic geodesic spirals near a fixed closed geodesic (cf.
[10, Theorem 1.1] for a similar result in a negatively curved compact manifold).

THEOREM 1.9. Let C ⊂ T1(M ) be a closed geodesic. Then for m-a.e. x ∈ T1(M ),
we have the following:

1. lim
t→∞

logτC1/t (x)

log t
= 2δ;

2. For any 0 < η< 1
2δ and for all t > 1,

`{0 < s < t : dist(G s(x),C ) < t−η} ³ t 1−2δη.

REMARK 1.10. Since for any x ∈ T1(M ) we have that

liminf
t→∞

log(τC1/t (x))

log t
=

(
limsup

t→∞
− log(dist(G t (x),C ))

log t

)−1

,

Theorem 1.9 (1) implies that for m-a.e. x ∈ T1(M ),

limsup
t→∞

− log(dist(G t (x),C ))

log t
= 1

2δ
,(1.9)

which was previously shown in [4, Theorem 4] to hold for the special case of
convex co-compact hyperbolic surfaces.

1.6. Shrinking balls. For any fixed x0 ∈ supp(m), we show that the family of
shrinking metric balls Bt (x0) := {x ∈ T1(M ) : dist(x, x0) < 1/t } is regular and satis-
fies m(Bt (x0)) ³m(B2t (x0)). When Γ is convex co-compact, m(Bt (x0)) ³ t−(2δ+1)

and m(B̃t (x0)) ³ t−2δ (see §5.2). In particular our results imply the following:

THEOREM 1.11. Let M be convex cocompact. Fix x0 ∈ supp(m). Then for m-a.e.
x ∈ T1(M ),

1. lim
t→∞

logτBt (x0)(x)

log t
= 2δ;

2. For 0 < η< 1
2δ+1 , we have

`{0 < s < t : dist(G s(x), x0) ≤ tη} ³ t 1−(2δ+1)η.

When M has cusps, the situation is more complicated as m(Bt (x0)) can fluc-
tuate, with the fluctuation depending on x0 (or more precisely on the cusp ex-
cursions of the geodesic emanating from x0 ∈ T1(M )). Combining our previous
results on cusp excursions, we can show the following

THEOREM 1.12. Suppose that M has cusps.

1. For m-a.e. x0 ∈ T1(M ), and for m-a.e. x ∈ T1(M ),

lim
t→∞

logτBt (x0)(x)

log t
= 2δ.

2. For any pair of distinct cusps of ranks κ1,κ2, we can find x0 ∈ T1(M ) such
that for m-a.e. x ∈ T1(M ),

lim
t→∞

log(τBt (x0)(x))

log t
= 4δ−κ1 −κ2.
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REMARK 1.13. We note that if M has finite volume, then δ = n − 1 and
m(B̃t (x0)) ³ t−(2n−2). Hence, in this case, the same arguments imply that for

m-a.e. x ∈ T1(M ), we have limt→∞
logτBt (x0)(x)

log t = 2(n − 1). We note that here

the shrinking targets are in T1(M ), unlike the results of [21] which considered
shrinking balls inside M , in which case the limit is n−1 (see also [17], for related
result for the discrete time geodesic flow).

1.7. Strategy of proof. First we define an averaging operator, along the discrete
time, acting on L2(T1(M ),m):

λT (Ψ)(x) = 1

T

T∑
k=1

Ψ(G k (x)).

If Ψ is the characteristic function of B , we simply write λT (B) instead of λT (1B ).
The Birkhoff ergodic theorem implies that for a.e. x ∈ X ,

lim
T→∞

λT (Ψ)(x) =
∫

T1(M )
Ψdm.

We note that if we had a rate control in this convergence such as

|λT (Bt )(x)−m(Bt )|¿
p
m(Bt )| log(m(Bt ))|p

T
,(1.10)

we would get

logτd
Bt

(x) ≤ | logm(Bt )|+2log | logm(Bt )|(1.11)

just from the simple observation that λτd
Bt

(x)(Bt ) = 0.

An estimate like (1.10) is too strong to be true for a.e. individual points x. So,
instead, we prove its mean-version for all smooth functions Ψ ∈ L2(T1(M ),m),
that is,

‖λT (Ψ)−m(Ψ)‖2 ≤C
‖Ψ‖ log(S (Ψ)

‖Ψ‖2
)

p
T

(1.12)

for some uniform constant C > 0. The regularity conditions imposed on the
thickenings B̃t of our shrinking targets are precisely so that we could apply (1.12)
to smooth functions which approximates 1B̃t

and deduce

‖λT (B̃t )−m(B̃t )‖2 ¿
√
m(B̃t ) log |(m(B̃t ))|p

T
.(1.13)

This effective mean ergodic theorem for B̃t ’s enables us to obtain that for a.e.
x,

logτd
B̃t

(x) ≤ | logm(B̃t )|+O(log | logm(B̃t )|),(1.14)

for all sufficiently large t . Using that |τd
B̃t

(x)−τBt (x)| ≤ 1, we deduce that

limsup
t→∞

logτBt (x)

− logm(B̃t )
≤ 1.
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This is the non-trivial direction of the logarithm law Theorem 1.1; the other
direction holds for general shrinking targets in any dynamical system (see, e.g.,
[14, Lemma 2.2]). Theorems 1.3 and 1.4 are also proved in a similar spirit using
the effective mean ergodic theorem.

The use of quantitative mixing of geodesic flow in the shrinking target prob-
lem in the homogeneous setting goes back to the work of Kleinbock and Mar-
gulis [16], and the idea of using an effective mean ergodic theorem was first
introduced in [9] and more explicitly in [13, 14], where these ideas were used
to prove the analogous results for finite volume hyperbolic manifold. In this
paper we follow closely the arguments of [13], in particular, for the discretized
geodesic flows; once we establish the relevant result on exponential decay of
matrix coefficients as in Theorem 1.14, the arguments are essentially identical,
although establishing the needed regularity conditions for explicit examples is
technically more difficult in the infinite volume case (see Section 5). On the
other hand, our results for continuous flows are new even for the finite volume
case. It is worthwhile mentioning that, for spherical shrinking targets, the re-
sults of [13] also dealt with unipotent flows having only polynomial decay of
matrix coefficients, and established a dynamical Borel–Cantelli Lemma, which
is stronger than the logarithm law. While it would be very interesting to extend
such results to the infinite volume setting, our current methods do not seem to
apply.

Here we will use the following exponential decay of matrix coefficients for
geometrically finite hyperbolic manifolds:

THEOREM 1.14. There exists η0 > 0 such that for any Ψ1,Ψ2 ∈C∞(T1(M )) with
support in one-neighborhood of supp(m), for all t ≥ 1,∫

T1(M )
Ψ1(G t (x))Ψ2(x) dm(x) =m(Ψ1)m(Ψ2)+O(e−η0t S (Ψ1)S (Ψ2)).(1.15)

Moreover, η0 is explicitly computable when δ> n−1
2 , depending only on the spec-

tral gap for the Laplacian on L2(M ). If Γ is convex cocompact or δ> n−2, (1.15)
with m replaced by its M-invariant lift on Γ\G holds for any Ψ1,Ψ2 ∈C∞(Γ\G).

This theorem was obtained in [22, 5] for compactly supported functions un-
der the assumption δ > n−1

2 and in [25] for any convex cocompact Γ (see also
[24] for the same result for the frame flow). In order to study shrinking target
problem for cusp neighborhoods as described in Theorem 1.6, removing the
compact support condition is crucial as we need to study functions that are
positive on cusps. We use the quantitative decay of the matrix coefficient of the
functions L2(Γ\G) with respect to the Haar measure mHaar in [22], and exploit
the product structures of m and mHaar to transfer the exponential rate informa-
tion on the transversal intersections of G t (Bε(x)) for the flow box Bε(x), that
we get from the behavior of the correlation function with respect to mHaar, to
the behavior of the correlation function with respect to m. Here ε depends on
the injectivity radius of x, and as we need to control the exponential rate in-
dependent of the injectivity radius for Theorem 1.14, which is required to deal
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with functions which are not compactly supported, the whole procedure turns
out to be technically quite subtle. The remaining cases of geometrically finite
manifolds with cusps are proved in a recent work of Li–Pan [20].

After some preliminaries given in Section 2, we devote Section 3 to the proof
of Theorem 1.14. With this result in hand, we prove effective mean ergodic theo-
rem in this setting (see Theorem 4.2), and use it in Section 4 to establish results
on shrinking target problems for both the discrete and continuous time flow.
While the results we obtain for the discrete time flow are essentially optimal,
this is not the case for some of the results for continuous time flow. Neverthe-
less, in Section 4.5, we show how one can obtain optimal results for the con-
tinuous flow by translating it into a discrete time flow problem for a thickened
target. In Section 5, we deduce Theorems 1.6, 1.9, 1.11 and 1.12 by proving the
regularity of the corresponding shrinking sets and by computing their volumes
using Sullivan’s shadow lemma and the structure of cusps for geometrically fi-
nite manifolds.

2. PRELIMINARIES AND NOTATION

2.1. Notations and conventions. Let G ∼= SO(n,1)o be the group of orientation
preserving isometries ofHn , and Γ<G a geometrically finite, torsion-free, Zariski
dense, discrete subgroup of G . We denote by Λ the limit set of Γ, and by 0 <
δ≤ n −1 the Hausdorff dimension of Λ, which is equal to the critical exponent
of Γ. Let M = Γ\Hn . Let K < G be a maximal compact subgroup and identify
M with Γ\G/K . There exists a one parameter diagonalizable subgroup A = {at }
so that if M denotes the centralizer of A in K , then the unit tangent bundle
T1(M ) can be identified with Γ\G/M in the way that the geodesic flow G t on
T1(M ) corresponds to the right translation action of at on Γ\G/M . With this
identification we can work in the homogeneous space Γ\G and think of subsets
and functions on T1(M ) and M respectively as M-invariant (resp. K invariant)
subsets and functions on Γ\G .

We say that two families {Bt } and {At } of shrinking sets are Lipschitz equi-
valent and write Bt ³ At , if there are some positive constants c1,c2 such that
Bc1t ⊆ At ⊆ Bc2t for all t > 1.

We fix a left G-invariant and right K -invariant metric d on G which descends
to the hyperbolic metric on Hn =G/K . This induces a unique metric on G/M
which we will also denote by d by abuse of notation. The metric d defines a
distance function on T1(M ) = Γ\G/M given by dist(Γg ,Γh) = infγ∈Γd(γg ,h).

2.2. Invariant measures. For ξ ∈ ∂Hn , let βξ : Hn ×Hn → R denote the Buse-
mann function for the geodesic flow, defined by

βξ(x, y) = lim
t→∞d(x,ξ(t ))−d(y,ξ(t )),

with ξ(t ) a unit speed geodesic ray toward ξ. A family of measures {µx : x ∈Hn}
is called a Γ-invariant conformal density of dimension δµ > 0 on ∂Hn , if each µx
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is a non-zero finite Borel measure on ∂Hn satisfying for any x, y ∈Hn , ξ ∈ ∂Hn

and γ ∈ Γ,

γ∗µx =µγx and
dµy

dµx
(ξ) = e−δµβξ(y,x),

where γ∗µx (F ) =µx (γ−1(F )) for any Borel subset F of ∂Hn .
In particular, the Patterson–Sullivan density {νx } is a Γ-invariant conformal

density supported on the limit set Λ of dimension δ and the Lebesgue density
{mx } is a G-invariant conformal density of dimension (n −1) (both are unique
up to scalar multiplications).

Let π : T1(Hn) →Hn be the basepoint projection. For u ∈ T1(Hn), we denote by
u± ∈ ∂Hn the forward and the backward endpoints of the geodesic determined
by u. Fix o ∈Hn so that K fixes o. The map

u 7→ (u+,u−, s =βu−(o,π(u)))

is a homeomorphism between T1(Hn) and (∂Hn ×∂Hn − {(ξ,ξ) : ξ ∈ ∂Hn})×R. In
these coordinates, the BMS measure m =mBMS, the Haar measure mHaar, and
the Burger–Roblin measure mBR on T1(Hn) are given by

1. dm(u) = eδβu+ (o,π(u)) eδβu− (o,π(u)) dνo(u+)dνo(u−)d s.
2. dmHaar(u) = e(n−1)βu+ (o,π(u)) e(n−1)βu− (o,π(u)) dmo(u+)dmo(u−)d s.
3. dmBR(u) = e(n−1)βu+ (o,π(u)) eδβu− (o,π(u)) dmo(u+)dνo(u−)d s.

These measures are all left Γ-invariant, and hence descend to corresponding
measures on T1(M ) . Using T1(Hn) = G/M , we can lift the above measures to
right M-invariant measures on Γ\G , which we still denote by m, mHaar and mBR

by abuse of notation. The measure m is finite and ergodic with respect to the
geodesic flow [27]. We will normalize the Patterson–Sullivan density {νx } so that
m(T1(M )) =m(Γ\G) = 1.

Let N = N+ and N− denote the expanding and the contracting horospherical
subgroups respectively, i.e.,

N± = {g ∈G : as g a−s → e as s →±∞}.

Note that
Ω := supp(m) = {[g ] ∈ Γ\G : g+, g− ∈Λ(Γ)},

where g± := [g M ]± ∈ ∂Hn .
The BMS measure m has a natural foliation corresponding to the decompo-

sition P N =G (modulo a Zariski closed subset) with P = N−AM . Explicitly, for
any g ∈ G , we define the PS-measure and the Lebesgue measure on the coset
g N , by

d µ̃PS
g N (g n) = eδβ(g n)+ (o,g n)dνo(g n)+,(2.1)

and

d µ̃`g N (g n) = e(n−1)β(g n)+ (o,g n)dmo(g n)+,(2.2)

respectively. We also define the measure ν̃g P on the coset g P by

d ν̃g P (g p) = eδt dνo(g p)−d t(2.3)

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 401–434



412 DUBI KELMER AND HEE OH

for t =β(g p)−(o, g p). Using the decomposition G =g P N and noting that (g pn)−=
(g p)−, we have that for any Ψ ∈Cc (G),

m(Ψ) =
∫

g P

∫
N
Ψ(g pn)d µ̃PS

g pN (g pn)dνg P (g p).(2.4)

Finally, for x = [g ] ∈ Γ\G and ε> 0 smaller than the injectivity radius at x, we
denote by dµPS

xNε
and dνxPε

the measures induced by d µ̃PS
g N and d ν̃g P on xNε

and xPε respectively.

2.3. Cusp decomposition. Let X0 be the pre-image of the convex core of M

under the base point projection map π : Γ\G → Γ\G/K = M and let X be the
unit neighborhood of X0. Then Ω⊆ X0 ⊆ X and since M is geometrically finite,
X has finite Haar-measure. When M is convex cocompact, X is compact, and
otherwise it can be decomposed into a compact part and finitely many cusp
neighborhoods, as we describe below.

Let Λp ⊂Λ denote the set of parabolic fixed points (i.e., points fixed by some
parabolic element of Γ). Since Γ is geometrically finite, Λp consists of finitely
many Γ-orbits represented by {ξ1, . . . ,ξk } which are called cusps of M . A cuspi-
dal neighborhood of ξi ∈Λp is a set of the form

hi =π−1(Γ\ΓHξi )(2.5)

where Hξ ⊆Hn is some fixed horoball tangent to ξ such that γHξ∩Hξ 6= ; if and
only if γ fixes ξ. For each i , the stabilizer StabΓ(ξi ) is a free abelian subgroup
and we denote its rank by κi . We set κmax := maxκi and κmin := minκi . Note
that 2δ> kmax(see [3, Lemma 3.5]).

For x ∈ Γ\G , we denote by rx the injectivity radius at x. For all sufficiently
small ε> 0, let X (ε) = {x ∈ X : rx < ε}, so that

Y (ε) := X àX (ε)

is compact, and the family X (ε) with ε < ε0 forms a shrinking family of cusp
neighborhoods.

More explicitly, we show in Section 5.1 that for all sufficiently small ε> 0,

X (ε)∩hi ³ X ∩hi ,log(ε−1),(2.6)

and using the measure estimate m
(
hi ,log(ε−1)

)³ ε2δ−κi (see Proposition 5.5), we
get that

m(X (ε)) ³ ε2δ−κmax .(2.7)

2.4. Sobolev norms. The mixing rate of the geodesic flow depends on the
smoothness of the test functions which can be captured by appropriate Sobolev
norms we now define. Given a fixed basis of LieG , l ∈ N, and 1 ≤ p ≤∞, the
Sobolev norm Sp,l (Ψ) of Ψ ∈C∞(Γ\G) is defined by

Sp,l (Ψ) =∑‖D(Ψ)‖Haar
p ,(2.8)

where the sum is taken over all monomials D of order at most l in the basis
elements, and ‖Ψ‖Haar

p denotes the Lp (Γ\G ,mHaar)-norm of Ψ. While this norm
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depends on the choice of basis, changing the basis will only change the norm
by some bounded factor.

We will mostly use the norms S∞,l , which we will denote by Sl to simplify
notation. Since supp(m) ⊂ X , it is sufficient for our purpose to consider func-
tions supported on X , and since X has finite Haar measure we can, and will,
use the bound

Sp,l (Ψ) ≤Sl (Ψ)mHaar(X )1/p ¿Sl (Ψ),

where the implied constant is independent of Ψ ∈C∞(X ).

3. DECAY OF MATRIX COEFFICIENTS

A crucial ingredient in our proof is the exponential mixing of the geodesic
flow with respect to the BMS-measure. We use the inner product notation:

〈atΨ,Φ〉 =
∫
Γ\G

Ψ(xat )Φ(x) dm(x).

By the remarks following Theorem 1.14, the following theorem is the only
missing part of it, given the works [24] and [20].

THEOREM 3.1. Suppose that δ > max
{n−1

2 ,n −2
}

(resp. δ > n−1
2 ). Then there

exist an explicit η0 > 0 (depending only on the spectral gap of L2(M )) and l ∈N,
such that for any bounded Ψ,Φ ∈C∞(X ) (resp. Ψ,Φ ∈C∞(X )M )

〈atΨ,Φ〉 =m(Ψ) ·m(Φ)+O(e−η0t Sl (Ψ)Sl (Φ)).

In the rest of this section, we assume

δ> (n −1)/2.

Theorem 3.1 with an explicit η0 depending only on the spectral gap of L2(M )
is then proved in ([22, Theorem 6.16], [5]) under the assumption that the test
functions are compactly supported. In order to complete the proof of the theo-
rem we need to remove the assumption on the support of the test functions.

To do this, we will approximate Ψ as the sum Ψε+ (Ψ−Ψε) where Ψε is a
smooth function supported on Y (ε), and similarly for Φ. In view of (2.7), the
main term will be reduced to 〈atΨε,Φε〉, for which the result follows from [22,
Theorem 6.16]. However, since the dependence on the supports of Ψε and Φε
was not made explicit in terms of ε in [22], we need to redo their arguments
while keeping track of the dependence on ε as well as on all implied constants
along the proof.

3.1. Control of BR measures. Since mBR(Γ\G) =∞ when Γ<G is not a lattice,
and some of the implied constants in [22, Thm. 6.16] depend on mBR(supp(Ψ)),
we need the following result to control the dependence on these measures.

LEMMA 3.2. Assume that δ > n−1
2 . Then there exists c > 0 such that for any K -

invariant subset Y ⊂ Γ\G with mHaar(Y ) <∞, we have

mBR(Y ) ≤ c ·
√
mHaar(Y ).
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Proof. Recall that by [26] and [19], there exists a positive eigenfunction φ0 ∈
C∞(Γ\G)K for the Laplace operator such that

−∆φ0 = δ(n −1−δ)φ0.

Under the assumption δ> n−1
2 , we have ‖φ0‖Haar

2 <∞. If Ψ denotes the indica-
tor function of Y , then Ψ is K -invariant and hence by [18, Lemma 6.7]

mBR(Ψ) =
∫

X
Ψ(x)φ0(x)dmHaar(x),

and in particular mBR(Y ) ≤ ‖φ0‖Haar
2

√
mHaar(Y ), as claimed.

Since X is K -invariant with mHaar(X ) <∞, the following is a consequence of
Lemma 3.2:

COROLLARY 3.3. If δ> (n−1)
2 , then mBR(X ) <∞.

3.2. Test function supported on small balls. For a subset S ⊆ G and ε > 0, Sε
denotes the ε-neighborhood of e in S, that is, Sε = {g ∈ S : d(g ,e) ≤ ε}. Set Bε :=
PεNε; and note that Gε ³ Bε for all sufficiently small ε> 0. In this subsection, we
will prove the following.

PROPOSITION 3.4. Suppose δ> max
{n−1

2 ,n −2
}

(resp. δ> n−1
2 ). There exist l ∈N

depending only on dim(G) and η > 0 (depending only on the spectral gap of Γ)
such that for any ε ∈ (0,1) small and any x ∈ Y (ε)∩Ω, for all Φ,Ψ ∈ C∞(xBε)
(resp. Φ,Ψ ∈C∞(xBεM)M ), we have that

〈atΨ,Φ〉 =m(Ψ)m(Φ)+O(e−ηt Sl (Ψ)Sl (Φ)),

where the implied constant is absolute.

Proof. Fix Φ,Ψ ∈ C∞(xBε). In the case when n−1
2 < δ ≤ n −2, we assume that

Φ,Ψ ∈C∞(xBεM) are M-invariant. We have

〈atΨ,Φ〉 =
∫

xp∈xPε

∫
xpNε

Ψ(xpnat )Φ(xpn)dµPS
xpN (xpn)dνxP (xp).

Now, for fixed p ∈ Pε, letting φ = Φ|xpNε
∈ C∞

c (xpNε), we estimate the inner
integral∫

xpNε

Ψ(xpnat )Φ(xpn)dµPS
xpN (xpn)=

∫
xpNε

Ψ(xpnat )φ(xpn)dµPS
xpN (xpn)(3.1)

as follows.
Fix a small 0 < ε0 < ε2 and consider the functions Ψ±

ε0
on Γ\G defined by

Ψ+
ε0

(y) = sup
g∈Gε0

Ψ(y g ), Ψ−
ε0

(y) = inf
g∈Gε0

Ψ(y g )

and let

ψ±
ε0

(xp) =
∫

xpN
Ψ±
ε0

(xpn)dµPS
xpN (xpn).

We then have that

νxP (ψ±
ε0

) =m(Ψ±
ε0

) and
∫

xPε

µPS
xpN (φ)dνxP (xp) =m(Φ).
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Moroever, since Ψ(x) =Ψ±
ε0

(x)+O(ε0S∞,1(Ψ)), we get that

m(Ψ±
ε0

) =m(Ψ)+O(ε0S∞,1(Ψ)),

where we used that m(X ) <∞. We will also use the notation

φ+
ε1

(y) := sup
n∈Nε1

φ(yn),

and similarly get that µPS
y N (φ+

ε1
) =µPS

y N (φ)+O(ε1S∞,1(φ)).
Now by ([22, Lemma 6.2], [5]), there exists some absolute constant c > 0, such

that the integral ∫
xpNε

Ψ(xpnat )φ(xpn)dµPS
xpN (xpn)(3.2)

is bounded from above and below, respectively, by

(1± cε0)e−δt
∑

p∈Px (t )
ψ±

cε0
(xp)φ±

ce−t ε0
(xpa−t ),

where Px (t ) is the finite set defined by

Px (t ) = {p ∈ Pε : xpNεat ∩xpNε 6= ;}.

Moreover, by the proof of [22, Theorem 6.7], there are positive constants η> 0
(depending only on the spectral gap of Γ) and α> 0 such that

e−δt
∑

p∈Px (t )
ψ±
ε0

(xp)φ+
e−t ε0

(xpa−t ) = νxP (ψ±
ε0

)µPS
xpN (φ±

e−t ε0
)

+O(e−ηt +εα0 )ABR
Ψ APS

φ +O(e−ηt S2,l (Ψ)S2,l (φ))

where
ABR
Ψ :=S∞,1(Ψ)mBR(supp(Ψ)) ¿S∞,1(Ψ),

(by Lemma 3.2), and

APS
φ :=S∞,1(φ)µPS

xpN (supp(φ)) ≤S∞,1(φ)µPS
xpN (xpNε).

Notice that the injectivity radii of the supports of φ and ψ are at least ε and
since we chose ε0 ¿ ε2 much smaller, all the implied constants are absolute and
independent of ε and ε0.

Combining these results and estimating

νxP (ψ±
ε0

) =m(Ψ±
ε0

) =m(Ψ)+O(ε0S∞,1(Ψ)),

and
µPS

xpN (φ±
e−t ε0

) =µPS
xpN (φ)+O(ε0S∞,1(φ)),

we get that∫
xpNε

Ψ(xpnat )φ(xpn)dµPS
xpN (xpn) =m(Ψ)µPS

xpN (φ)(1+O(ε0))

+O(ε0S∞,1(Ψ)S∞,1(Ψ))+O(e−ηt +εα0 )S∞,1(Ψ)S∞,1(φ)µPS
xpN (xpNε)

+O(e−ηt S2,l (Ψ)S2,l (φ)).
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Since all implied constants are independent of ε0, taking the limit as ε0 → 0
gives∫

xpNε

Ψ(xpnat )φ(xpn)dµPS
xpN (xpn)

=m(Ψ)µPS
xpN (φ)+O(e−ηt Sl (Ψ)Sl (Φ)µPS

xpN (xpNε)))+O(e−ηt S2,l (Ψ)S2,l (φ)),

where we used that Sl (φ) ≤Sl (Φ).
Now, integrating over xPε, and noting that

∫
xPε

µPS
xpN (φ)dνxP (xp) =m(Φ), the

main term is indeed m(Ψ)m(Φ). Next, since∫
xPε

µPS
xpN (xpNε))dνxP (xp) =

∫
xPε

∫
xpNε

dµPS
xpN dνxP (xp) =m(Bε) ≤ 1,

the integral of the first remainder term is bounded by O(e−ηt Sl (Ψ)Sl (Φ)). For

the second remainder term, we bound S2,l (φ) ≤Sl (Φ)
√
µ`xpN (xpNε) to get that∫

xPε

S2,l (Φ|xpNε
)dνxP (xp)

¿Sl (Φ)(µ`xpN (xpNε))−1/2
∫

xPε

∫
xpNε

dµ`xpN (xpn)dνxP (xp)

=Sl (Φ)(µ`xpN (xpNε))−1/2mBR(xPεNε).

We now use Lemma 3.2 to bound

mBR(xPεNε) ≤mBR(xPεNεK ) ¿
√
mHaar(xPεNεK ),

and since there is a uniform constant c > 0 such that PεNεK ⊆ PcεK , noting that
PεK = N−

ε AεK , we can bound

mHaar(xPεNεK ) ¿mHaar(xPcεK ) ¿µ`xpN (xpNε)

to get that ∫
xPε

S2,l (Φ|xpNε
)dνxP (xp) ¿Sl (Φ).

Combining the two remainder terms, and bounding all norms by Sl (Ψ)Sl (Φ)
we get that

〈atΨ,Φ〉 =m(Ψ)m(Φ)+O(e−ηt Sl (Ψ)Sl (Φ))

where the implied constant is absolute.

3.3. General test functions. We now use a partition of unity to reduce the case
of a general test function to the case of functions with small support.

For ε ∈ (0,1) sufficiently small, let Qε be a maximal family of points in X ∩Yε
such that the sets yBε3 , y ∈Qε, are disjoint and meet Y2ε, and let

Q ′
ε := {y ∈Qε : yBε2 ∩Y4ε 6= ;}.

Note that the collection {yBε2 : y ∈Qε} covers X ∩Y2ε and that {yBε3 Bε3 : y ∈Q ′
ε}

covers X ∩Y4ε. Since mHaar(X ) <∞, we have #Qε =O(ε−3dim(G)).

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 401–434



SHRINKING TARGETS FOR THE GEODESIC FLOW 417

Fix a non-negative function βε ∈C∞(Bε) taking values in [0,1] which is 1 on
Bε3 Bε3 and 0 outside Bε2 (note that Bε3 Bε3 ⊆ B2ε3 ⊂ Bε2 ). We can choose βε so
that Sl (βε) ¿ ε−3l . For each y ∈Qε, define a function βy,ε(yb) :=βε(b) on yBε.

LEMMA 3.5. For any x ∈⋃
y∈Q ′

ε
yBε2 , we have∑

z∈Qε

βz,ε(x) ≥ 1.

Proof. Let y ∈ Q ′
ε. If x ∈ yBε3 Bε3 , then βy,ε(x) = 1 and hence

∑
z∈Qε

βz,ε(x) ≥ 1.
Now suppose that x ∈ yBε2àyBε3 Bε3 , in which case xBε3∩yBε3 =;. Since y ∈ Y3ε

and x ∈ yBε2 we have that x ∈ Y2ε∩X . By the maximality of Qε, there exists z ∈Qε

such that xBε3∩zBε3 6= ;. This implies that x ∈ zBε3 Bε3 and hence βz,ε(x) ≥ 1.

Now consider the normalized function (supported on yBε) given by

αy,ε := βy,ε∑
z∈Qε

βz,ε
.

LEMMA 3.6. For any y ∈ Q ′
ε, we have Sl (αy,ε) ¿ ε−p , where p and the implied

constant depend only on l and dim(G).

Proof. Let sε(x) = ∑
z∈Qε

βz,ε(x) so that αy,ε(x) = βy,ε(x)
sε(x) . Since αy,ε is supported

on yBε2 , we only need to bound its derivatives there in which case we have that

sε(x) =∑
z∈Qε

βz,ε(x) ≥ 1. Taking derivatives of the quotient αy,ε = βy,ε

sε
and using

the bound sε(x) ≥ 1 together with the bound S∞,l (sε) ¿ ε−3l #Qε¿ ε−3(l+dim(G))

proves the lemma.

LEMMA 3.7. The function τε := ∑
y∈Q ′

ε
αy,ε belongs to C∞(X ) and satisfies that

0 ≤ τε ≤ 1, τε = 1 on X ∩Y4ε, and τε = 0 outside Yε.

Proof. Since τε =
∑

y∈Q′
ε
βy,ε∑

y∈Qε βy,ε
, it is clear that 0 ≤ τε ≤ 1. Note that if y ∈ Qε àQ ′

ε,

then yBε2 ∩Y4ε =;. Hence if x ∈ X ∩Y4ε satisfies x 6∈ yBε2 , then βy,ε(x) = 0. This
shows that

∑
y∈Qε

βy,ε(x) = ∑
y∈Q ′

ε
βy,ε(x). Moroever, since X ∩Y4ε is covered by

{yBε3 Bε3 : y ∈ Q ′
ε}, we have that

∑
y∈Q ′

ε
βy,ε(x) 6= 0 on X ∩Y4ε and hence indeed

τε = 1 there. Next, since for any y ∈ Q ′
ε, we have that yBε2 ⊆ Yε; so τε(x) = 0

outside of Yε. Finally we can bound Sl (τε) ≤∑
y∈Q ′

ε
Slαy,ε¿ ε−p+3dim(G).

Proof of Theorem 3.1. Suppose first that δ > max
{n−1

2 ,n − 2
}
. Now, for given

Ψ,Φ ∈C∞(X ), consider

Ψε :=Ψ ·τε =
∑

y∈Q ′
ε

Ψ ·αy,ε and Φε :=Φ ·τε =
∑

y∈Q ′
ε

Φ ·αy,ε.

Note that Sl (Ψ ·αy,ε) ¿ Sl (αy,ε)Sl (Ψ) ¿ ε−pSl (Ψ), with p as in Lemma 3.6.
Now applying Proposition 3.4 to each Ψ ·αy,ε and Φ ·αy ′,ε for y, y ′ ∈ Q ′

ε, and
recalling that #Qε =O(ε−3dimG ), we get that

〈atΨε,Φε〉 =m(Ψε)m(Φε)+O(ε−p0 e−ηt Sl (Ψ)Sl (Φ))(3.3)

with p0 = 2p +6dim(G).
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It follows from (2.7) that for δ0 := 2δ−κmax > 0,

m(Ψ−Ψε) ≤ ‖Ψ‖∞m(X4ε) ¿ εδ0‖Ψ‖∞,

and similarly m(Φ−Φε) ¿ εδ0‖Φ‖∞. Hence

|〈atΨ,Φ〉−〈atΨε,Φε〉|¿ εδ0‖Ψ‖∞‖Φ‖∞.

We then deduce

〈atΨ,Φ〉 =m(Ψ)m(Φ)+O(εδ0‖Ψ‖∞‖Φ‖∞)+O(ε−p0 e−ηt Sl (Ψ)Sl (Φ)).

Taking ε= e−
ηt

δ0+p0 and recalling that S∞,0 ¿Sl , we get that

〈atΨ,Φ〉 =m(Ψ)m(Φ)+O(e−η0t Sl (Ψ)Sl (Φ))

with η0 = ηδ0

δ0+p1
. This concluds the proof when δ> max

{n−1
2 ,n −2

}
.

Finally, for n > 3, if n−1
2 < δ ≤ n −2, and Ψ and Φ are M-invariant, we can

replace αy,ε with an M-invariant function αM
y,ε(x) = ∫

M αy,ε(xm)dm and run the
same argument to get (3.3). Then the rest of the proof is identical.

4. SHRINKING TARGET PROBLEMS

We now use the results on the exponential decay of matrix coefficients to
prove an effective mean ergodic theorem and apply it to various shrinking target
problems. As before, we assume that Γ is a geometrically finite, Zariski dense
subgroup of G = SO(n,1)◦. For n ≥ 5, in the case where Γ has a cusp and δ ≤
n −2, all functions and shrinking targets on X we consider below are assumed
to be M-invariant so that Theorem 1.14 applies to them. All functions below are
also assumed to be real-valued functions.

REMARK 4.1. While we state our results for the geodesic flow on geometrically
finite hyperbolic manifolds, we note that the results in this section are quite
general and hold for any dynamical system on a measure space (X ,m) for which
one has exponential decay of correlation in the sense of Theorem 3.1

4.1. Effective mean ergodic theorem. Fix ` as given in Theorem 3.1. For nota-
tional convenience, we introduce the norm

S ∗(Ψ) := Sl (Ψ)

‖Ψ‖ for any non-zero ψ ∈C∞(X )∩L2(X ,m),

where ‖Ψ‖ denotes the L2-norm of Ψ. In the entire section, we will take λ to be
either the Lebesgue measure on R (when considering a continuous time flow)
or the counting measure on Z (for a discrete time flow). For T ≥ 1, consider the
averaging operator λT on L2(X ,m) given by

λT (Ψ)(x) = 1

T

∫ T

0
Ψ(xat )dλ(t ).

THEOREM 4.2. For any non-zero Ψ ∈C∞(X ), and for all T À 1,

‖λT (Ψ)−m(Ψ)‖2 ¿ (1+ log(S ∗(Ψ))) · ‖Ψ‖2

T
.
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Proof. Since we have ‖λT (Ψ)−m(Ψ)‖2 = ‖λT (Ψ)‖2 −m(Ψ)2, it is enough to esti-
mate ‖λT (Ψ)‖2. Now, expand

‖λTΨ‖2 = 1

T 2

∫ T

0

∫ T

0

∫
X
Ψ(xat1−t2 )Ψ(x)dm(x)dλ(t1)dλ(t2)

= 1

T 2

∫ T

−T

∫
X
Ψ(xat )Ψ(x)dm(x)(T −|t |)dλ(t ),

where we used that λ is translation invariant and λ([0,T )∩ [t , t +T )) = T − |t |
(where in the discrete case we may and will assume that t and T are integers).

Now fix a large parameter M to be determined later. For |t | ≥ M large we use
Theorem 1.14 to get that∫

X
Ψ(xat )Ψ(x)dm(x) =m(Ψ)2 +O(S (Ψ)2e−η0|t |),

for some η0 ∈ (0,1). On the other hand, for |t | < M small, we bound 〈atΨ,Ψ〉 ≤
‖Ψ‖2, to get that

‖λTΨ‖2 =m(Ψ)2 +O(‖Ψ‖2 M
T )+O(S (Ψ)2e−η0 M

T ),

using m(Ψ) ≤ ‖Ψ‖. Using these estimates, we get that

‖λT (Ψ)−m(Ψ)‖2 ¿ M‖Ψ‖2 +S (Ψ)2e−η0M

T
.

It remains to set M = 2log(S ∗(ψ))η0
−1 to finish the proof.

Following [13], for a non-negative function Ψ on X , we define

CT,Ψ := {
x ∈ X : |λT (Ψ)(x)−m(Ψ)| ≥ m(Ψ)

2

}
;(4.1)

C o
T,Ψ := {x ∈ X :λT (Ψ)(x) = 0}.(4.2)

Note that C o
T,Ψ ⊆CT,Ψ.

As a direct consequence of the effective mean ergodic theorem, we get the
following bounds:

PROPOSITION 4.3. For a non-negative Ψ ∈C∞(X ) and T ≥ 1, we have

m(CT,Ψ) ¿ log(S ∗(Ψ))‖Ψ‖2

T ·m(Ψ)2 .

Proof. On one hand,

‖λT (Ψ)−m(Ψ)‖2 ≥
∫
CT,Ψ

|λT (Ψ)(x)−m(Ψ)|2dm≥ (m(Ψ))2m(CT,Ψ)

4
.

On the other hand, by Theorem 4.2,

‖λT (Ψ)−m(Ψ)‖2 ¿ log(S ∗(Ψ))‖Ψ‖2

T
.

Putting these two together gives the result.

Having control on the measures of these subsets has immediate consequences
to several shrinking target problems. Indeed, a simple adaptation of [13, Lem-
mas 13 and 14] gives the following result.
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LEMMA 4.4. Let {Ψt }t≥1 ⊆ L2(X ,m) be a decreasing family of bounded non-nega-
tive functions.

1. If
∑

j m
(
C o

t j−1,Ψt j

)<∞ for some subsequence t j →∞, then for m-a.e. x ∈ X ,

λtΨt (x) 6= 0 for all t Àx 1.

2. If there exists C > 1 such that m(Ψ2 j ) ≤ C ·m(Ψ2 j+1 ) for all j À 1 and∑
j m

(
C2 j−1,Ψ2 j

)<∞, then for m-a.e. x ∈ X ,

λt (Ψt )(x) ≥ m(Ψt )

4C
for all t Àx 1.

3. If there exists C > 1 such that m(Ψ2 j ) ≤ C ·m(Ψ2 j+1 ) for all j À 1 and∑
j m

(
C2 j+1,Ψ2 j

)<∞, then for m-a.e. x ∈ X ,

λt (Ψt )(x) ≤ (4C ) ·m(Ψt ) for all t Àx 1.

4.2. Hitting along a subsequence. In the rest of this section, let B = {Bt } be a
family of shrinking targets in X . Recall that a family B is inner regular (resp.
outer regular) if there exist c > 0,α> 0 and smooth positive functions 0 ≤Ψ−

t ≤
IdBt (resp. IdBt ≤Ψ+

t ≤ c) such that

• m(Bt ) ≤ c ·m(Ψ−
t ) (resp. m(Ψ+

t ) ≤ c ·m(Bt ));
• S (Ψ±

t ) ≤ c ·m(Bt )−α.

A family B is regular if it is inner and outer regular. When we want to empha-
size the parameters c and α, we say that a family is (c,α)-regular. Our first
application of the effective mean ergodic theorem is the following.

PROPOSITION 4.5. Assume that B is inner regular and satisfies

liminf
t→∞

| log(m(Bt ))|
tm(Bt )

= 0.

Then there is a subsequence t j →∞ such that for m-a.e. x ∈ X ,

λ
({

t ≤ t j : xat ∈ Bt j

})À t jm(Bt j ).

If B is also outer regular, then for m-a.e. x ∈ X ,

λ
({

t ≤ t j : xat ∈ Bt j

})³ t jm(Bt j ).

Proof. Since B is inner regular, there are functions Ψt ∈ C∞(X ) with 0 ≤Ψt ≤
IdBt such that log(S ∗(Ψt )) ¿ log(m(Bt )) and m(Ψt ) Àm(Bt ). The mean ergodic
theorem (Theorem 4.2) applied to Ψt implies that

‖λt (Ψt )−m(Ψt )‖2 ¿ (1+ log(S ∗(Ψt )))‖Ψt‖2

t
.

Set Ψ̃t := Ψt
m(Ψt ) to get that

‖λt (Ψ̃t )−1‖2 ¿ (1+ log(S ∗(Ψt )))‖Ψt‖2

m(Ψt )2 · t
¿ | log(m(Bt ))|

m(Bt ) · t
,

where we used that ‖Ψt‖2 ≤m(Bt ). From our assumption, there is some subse-

quence t j such that
log(m(Bt j ))

m(Bt j )·t j
→ 0. Hence λt j (Ψ̃t j ) → 1 in L2(Γ\G ,m) and, after
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perhaps passing to another subsequence, we get λt j (Ψ̃t j )(x) → 1 for m-a.e x ∈ X .
For any x in this full measure subset, the inequality

λt j (Ψ̃t j )(x) ≤
λ({t ≤ t j : xat ∈ Bt j })

t jm(Ψt j )

implies that λ({t ≤ t j : xat ∈ Bt j }) À t jm(Bt j ) as claimed. Assuming that {Bt } is
also outer regular, repeating the same argument for functions approximating
IdBt from above gives the other inequality.

In particular, taking λ to be the Lebesgue measure gives the first part of Theo-
rem 1.4. Moreover, by taking λ to be the counting measure, we get the following
consequence implying a discrete version of Theorem 1.3(1).

COROLLARY 4.6. If B is inner regular and

liminf
t→∞

| log(m(Bt ))|
m(Bt )t

= 0,

then {k ∈N : xak ∈ Bk } is unbounded for m-a.e. x ∈ X .

Proof. Applying the above result with λ the counting measure shows that for
m-a.e. x ∈ X ,

#{k ≤ t j : xak ∈ Bt j } À t jm(Bt j ) →∞,

along some subsequence t j . Since Bt j ⊆ Bk for any k ≤ t j , it follows that the
subset {k : xak ∈ Bk } is unbounded as well.

4.3. Orbits eventually always hitting. The results of the previous section allow
us to control how orbits hit the shrinking targets along a subsequence of times,
however, under the same hypothesis we could also have different subsequences
for which this asymptotic fails, and for which the set {k ≤ k j : xak ∈ Bk j } may
even be empty (see, e.g. [13, Proposition 12]). A more subtle question is to
ask what conditions on the shrinking sets guarantee that the truncated orbit
{xa j : j ≤ k} is eventually always hitting the targets Bk , and moreover, how large
is their intersection? This is the content of the following Theorem 4.7, which is
a discrete version of Theorem 1.3(2).

THEOREM 4.7. Assume that B is inner regular and that

∞∑
j=1

| log(m(Bt j ))|
t j−1m(Bt j )

<∞

for some sequence t j →∞. Then for m-a.e. x ∈ X and for all t Àx 1, we have
{k ∈N : k ≤ t , xak ∈ Bt } 6= ;.

Proof. From the inner regularity, we can find smooth functions 0 ≤Ψt ≤ IdBt

satisfying log(Sl (Ψt )) ¿ log(m(Bt )) and m(Bt ) ¿m(Ψt ). By Proposition 4.3, we
can estimate thatfor any s, t > 1

m(Cs,Ψt ) ¿ | log(S ∗(Ψt ))| · ‖Ψt‖2

sm(Ψt )2 ¿ | log(m(Bk ))|
sm(Bt )

.
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Since m
(
Ct j−1,Ψt j

) ¿ | log(m(Bt j ))|
t j−1m(Bt j ) , we obtain

∑
j m

(
Ct j−1,Ψt j

) < ∞. Hence by the

first part of Lemma 4.4, we have that for m-a.e. x ∈ X , λtΨt (x) 6= 0 for all suf-
ficiently large t . Taking λ to be the counting measure on N, this implies that
{k ∈N : k ≤ t , xak ∈ Bt } 6= ; for all sufficiently large t .

Theorem 4.8 implies Theorem 1.4(2).

THEOREM 4.8. Assume that B is regular and that m(B2t ) ³m(Bt ). If

∞∑
j=1

| log(m(B2 j ))|
2 jm(B2 j )

<∞,

then, for m-a.e. x, and for all t Àx 1,

#{ j ≤ t : xa j ∈ Bt }

t
³ `{s ≤ t : xas ∈ Bt }

t
³m(Bt ).

Proof. Let Ψ±
t be functions which approximate IdBt from above and below such

that 0 ≤Ψ−
t ≤ IdBt ≤Ψ+

t ≤ c, log(Sl (Ψ±
t )) ¿ log(m(Bt )) and m(Ψ+

t ) ³m(Ψ−
t ) ³

m(Bt ). For each of these functions we can use Proposition 4.3 as before to

estimate m
(
Cs,Ψ±

t

)¿ | log(m(Bt ))|
sm(Bt ) . Taking s = 2 j±1 and t = 2 j , we get that∑

j
m

(
C2 j±1,Ψ±

2 j

)<∞.

So by the second and third part of Lemma 4.4 we get that for m-a.e. x ∈ X and
for all sufficiently large t , we have

m(Bt ) ¿m(Ψ−
t ) ¿λtΨ

−
t ≤λt (IdBt ) ≤λtΨ

+
t ¿m(Ψ+

t ) ¿m(Bt ).

This implies that λt (IdBt ) ³m(Bt ). Finally, taking λ to be the counting measure
on N (resp. the Lebesgue measure) gives the result for discrete (resp. continu-
ous) time flow.

4.4. Logarithm law for the first hitting time. Using similar arguments utilizing
the effective mean ergodic theorem, we can prove the logarithm law for the first
hitting time for the discrete flow. Recall the discrete first hitting time function

τd
B (x) = min{k ∈N : xak ∈ B}.(4.3)

THEOREM 4.9. If B is inner regular, then

lim
t→∞

log(τd
Bt

(x))

− log(m(Bt ))
= 1 for m-a.e. x ∈ X .

Proof. We first note that the bound

liminf
t→∞

log(τd
Bt

(x))

− log(m(Bt ))
≥ 1,
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holds for m-a.e.x; indeed, this holds in general for any monotone sequence of
shrinking targets in a measure preserving dynamical system (see [14, Lemma
2.2]). It is thus sufficient to show that for m-a.e. x,

limsup
t→∞

log(τd
Bt

(x))

− log(m(Bt ))
≤ 1.

Fix a small ε> 0 and set

A +
ε :=

{
x ∈ X : limsup

t→∞

log(τd
Bt

(x))

− logm(Bt )
> 1+2ε

}
.

Note that if x ∈A +
ε , then there are arbitrarily large values of t for which

τd
Bt

(x) ≥ 1

m(Bt )1+2ε ,

and hence x ∈C o
kε(t ),Ψt

where Ψt = IdBt and

kε(t ) =
⌊

1

(m(Bt ))1+2ε

⌋
.

Now for any j ∈ N, we choose y j ∈
(

1
2 j+1 , 1

2 j

]
such that either t j = sup{t :

m(Bt ) ≥ y j } satisfies m(Bt j ) = y j or there is no t with m(Bt ) ∈ [y j , y j−1) (if the

function t 7→ m(Bt ) is continuous, we may simply take y j = 2− j . In general,
since the function t 7→m(Bt ) is monotone decreasing, it has at most countably
many points of discontinuity and hence we can always find such points). We
partition [0,∞) into intervals I j = {t :m(Bt ) ∈ [y j+1, y j )} and write

A +
ε ⊆ ⋂

k∈N

⋃
j>k

⋃
t∈I j

C o
kε(t ),Ψt

.

For all sufficiently large j and any t with m(Bt ) ∈ [y j+1, y j ), we have that kε(t ) ∈
[2(1+ε)( j ),2(1+2ε)( j+2)] so that C o

kε(t ),Ψt
⊆C o

2(1+ε) j ,Ψt
. Since Bt j ⊆ Bt for all t < t j , we

get C o
2(1+ε) j ,Ψt

⊆C o
2(1+ε) j ,Ψt j

. We can thus further bound

A +
ε ⊆ ⋂

k∈N

⋃
j>k,I j 6=;

C o
2(1+ε) j ,Ψt j

.

From our choice of y j and t j , we have that m(Ψt j ) = y j ∈
(

1
2 j+1 , 1

2 j

]
. Since {Bt }

is inner regular, we have 0 ≤Ψ−
t j
≤Ψt j with m(Ψ−

t j
) ³m(Ψt j ) and log(S ∗(Ψ−

t j
)) ¿

| log(m(Ψt j ))|¿ j . Using Proposition 4.3 for the smooth functions as before, we
bound

m
(
C2 j (1+ε),Ψt j

)≤m
(
C2 j (1+ε),Ψ−

t j

)¿ j

2 j (1+ε)2− j
¿ j 2−ε j .

Hence m(A +
ε ) ≤∑

j>k j 2−ε j ¿ k2−εk for all k ∈N. Therefore m(A +
ε ) = 0 and

limsup
t→∞

log(τd
Bt

(x))

− logm(Bt )
≤ 1+2ε for m-a.e. x ∈ X .

This holds for any ε > 0. Hence, by taking a sequence of ε j → 0, we finish the
proof.

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 401–434



424 DUBI KELMER AND HEE OH

4.5. Thickening along the flow. We note that if {k ∈N : xak ∈ Bk } is unbounded
(resp. { j ≤ k : xa j ∈ Bk } 6= ;), then {t ∈ R : xat ∈ Bt } is unbounded (resp. {t ≤ k :
xat ∈ Bk } 6= ;). Hence the same assumptions on the shrinking rate of m(Bt ) as in
Proposition 4.5 give the same conclusions also for the continuous flow. However,
it is possible for the set {t ∈ (0,∞) : xat ∈ Bt } to be unbounded even when it is
bounded for the discrete time flow. In order to get the correct thresholds for the
continuous flow, one needs to consider the thickened targets.

For any set B ⊆ X we define its thickening B̃ to be

B̃ = ⋃
|s|<1/2

B as .(4.4)

In the following lemma we observe that the shrinking target problems for the
continuous flow can be translated to similar problems for the discrete flow hit-
ting the thickened targets.

LEMMA 4.10. For any B ⊆ X and x ∈ X , we have:

1. If xat ∈ B for some t ∈R, then xak ∈ B̃ for k ∈Z with |t −k| ≤ 1/2.
2. If xak ∈ B̃ with k ∈Z, then xat ∈ B for some t with |t −k| ≤ 1/2.
3. |τB (x)−τd

B̃
(x)| ≤ 1/2.

The proof of these observations is easy once stated and we omit the details.
Using this, we get the following sharper results for the continuous time flow,
which imply Theorems 1.1 and 1.3.

THEOREM 4.11. Suppose that the family {B̃t }t≥1 of thickened targets is inner
regular.

1. If liminf
k→∞

| log(m(B̃k )|
m(B̃k )k

= 0 then for m-a.e. x ∈ X , {t ∈ R : xat ∈ Bt } is un-

bounded.

2. If
∞∑

j=1

| log(m(B̃2 j ))|
2 jm(B̃2 j )

<∞, then for m-a.e. x ∈ X ,

{0 < s < t : xas ∈ Bt } 6= ; for all t Àx 1.

3. For m-a.e. x ∈ X ,

lim
t→∞

logτBt (x)

− logm(B̃t )
= 1.

Proof. The first condition (with k replaced by k +1) implies that the set {k ∈N :
xak ∈ B̃k+1} is unbounded. For each k in this set, there is some tk ∈ [k −1/2,k +
1/2] with xatk ∈ Bk+1 ⊆ Btk , proving the first part.

For the second part, the summability condition implies that for m-a.e. x,
we have that {xa j : j ≤ k)}∩ B̃k 6= ; for all sufficiently large k > k0. Now for
t ≥ k0 +1 and k := btc, there is some j ≤ k with xa j ∈ B̃k ; hence there is s ≤ t
with xas ∈ Bk ⊆ Bt .
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Finally for the last part, since |τB (x)−τd
B̃

(x)| ≤ 1/2, we get that

lim
t→∞

logτBt (x)

− logm(B̃t )
= lim

t→∞

logτd
B̃t

(x)

− logm(B̃t )
.

REMARK 4.12. The problem of estimating `{t ≤ k : xat ∈ Bk }, for the continuous
time flow, does not easily reduce to the discrete time problem for the thickened
targets. Here, knowing that xak ∈ B̃k only tells us that xat ∈ Bk for some t close
to k but not on the amount of time spent there. Hence, to get asymptotics we

need the stronger condition that
∑∞

j=1
| log(m(B2 j ))|

2 jm(B2 j )
<∞ for the original sets and

not the thickened sets. In particular, if m(Bk ) ³ k−a for some a ≥ 1 and m(B̃k ) ³
k−b for some b < 1, then by reducing to the thickened case, we know that for
all sufficiently large k, {t ≤ k : xat ∈ Bk } 6= ;, but we do not get an asymptotic
estimate for the size of these sets.

5. EXPLICIT EXAMPLES

In this section, we consider explicit examples of shrinking targets given by
shrinking cusp neighborhoods, shrinking metric balls and shrinking tubular
neighborhoods, and show that they are regular and approximate their measure.

5.1. Cusp neighborhoods. Let h1, . . . ,hk and hi ,t be the cusp neighborhoods
defined in (2.5). In order to apply our results for these sets we need to verify
that the family {hi ,t }t≥1 is regular and satisfies m(hi ,t ) ³ e−t (2δ−κi ) where κi is
the rank of the parabolic fixed points associated to hi . While the upper bound
m(hi ,t ) ¿ e−t (2δ−κi ) is proved in [2] and [23], we could not find a reference where
the lower bound is established; so we include a proof for the convenience of
readers.

The important feature of a geometrically finite group is that all of its parabolic
fixed points are bounded, i.e., the stabilizer of ξ in Γ acts cocompactly on Λ−{ξ}
for each parabolic fixed point ξ. This is the main ingredient of the argument
below. We refer to [1] for the description of horoballs in geometrically finite
manifolds that will be used below.

We will work here with the upper half space model

Hn = {z = (x, y) : x ∈Rn−1, y > 0},

and fix our base point to be o = (0,1). Since we will work with one fixed cusp, we
may assume without loss of generality that it is the infiniy ∞. Set Γ∞ := StabΓ∞
and κ to be the rank of ∞. Without loss of generality, we assume that Γ∞ =Zκ.
Fix a horoball H̃(0) ⊂Hn such that

Γ∞ = {γ ∈ Γ : H̃(0)∩γH̃(0) 6= ;} = {γ ∈ Γ : H̃(0) = γH̃(0)}.

In fact, H̃(0) is of the form {(x, y) : y = y0} for some y0 > 0. For the notational
simplicity, we assume y0 = 1. Set

H̃(t ) = {z ∈ H̃(0) : d(z,∂H̃(0)) ≥ t } = {(x, y) : y ≥ e t }.

Without loss of generality, we may assume π(ht ) = Γ∞\H̃(t ) where h∞,t = ht .
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Choose a fundamental domain F∞ ⊆Rn−1 for the action of Γ∞ on Rn−1 con-
taining the origin so that the sets, int(γF∞), are mutually disjoint for γ ∈ Γ∞.
Note that H ′(t ) = {z = (x, y) : x ∈ F∞ : y ≥ e t } is a fundamental domain for
π(ht ) = Γ∞\H̃(t ). We can choose a compact fundamental parallelepiped P

containing F∞∩Λ such that Γ∞P covers Λà {∞} and int(γP )s are mutually
disjoint for all γ ∈ Γ∞. We may choose P to contain the origin so that if H(t ) :=
H ′(t )∩hull(Λ), then

(F∞∩Λ)× [e t ,∞) ⊂ H(t ) ⊂P × [e t ,∞).(5.1)

As P is compact, we have for any z ∈ H(t ), we have d(Γo, z) = d(o, z), and for
z ∈ ∂H(t ),

d(Γo, z) = d(o, z) = t +O(e−t ).

The following is also clear from (5.1):

PROPOSITION 5.1. The injectivity radius rz at any point z ∈ ∂H(t ) satisfies rz ³
e−t , where the implied constants are uniform for all t À 1.

We will use the following well-known fact:

PROPOSITION 5.2. There exists c > 0 such that for all t ≥ 0,

H(t + c) ⊂ {z ∈ hull(Λ)∩H(0) : d(z,Γo) ≥ t } ⊆ H(t − c).

Next we want to estimate the measure m(ht ) for large t . For any ξ− 6= ξ+ ∈
∂Hn − {∞} and s ∈ R, we denote by ξs the unit speed geodesic from ξ− to ξ+
(where s is the signed distance from the highest point of the geodesic), and
recall that this gives us the coordinates (ξ−,ξ+, s) parametrizing T1(M ). Let
Λ′ =Λà {∞} and let P0 =F∞∩Λ.

We first show the following:

LEMMA 5.3.

m(ht ) = ∑
γ∈Γ∞

∫
P0

∫
γP0

∫
R

IdH̃(t )(π(ξs))dm(ξ−,ξ+, s).

Proof. Let FΓ ⊆Hn be a fundamental domain for Γ\Hn containing o such that
for t ≥ 0 sufficiently large, we have that FΓ ∩ H̃(t ) = H ′(t ), so that m(ht ) =∫

T1(M ) IdH ′(t ) dm. Since {(ξ−,ξ+, s) : {ξ±}∩ {∞} 6= ;} has m-measure zero, we can
rewrite this in the (ξ−,ξ+, s) coordinates as∫

T1(M )
IdH ′(t ) dm=

∫
Λ′

∫
Λ′

∫
R

IdH ′(t )(π(ξs))dm(ξ−,ξ+, s).

Now decomposing Λ′ as a union over translates γP0 with γ ∈ Γ∞, we can rewrite

m(ht ) = ∑
γ,γ′∈Γ∞

∫
γP0

∫
γ′P0

∫
R

IdH ′(t )(π(ξs))dm(ξ−,ξ+, s)

= ∑
γ,γ′∈Γ∞

∫
P0

∫
γ′P0

∫
R

Idγ−1 H ′(t )(π(ξs))dm(ξ−,ξ+, s)

= ∑
γ∈Γ∞

∫
P0

∫
γP0

∫
R

IdH̃(t )(π(ξs))dm(ξ−,ξ+, s),
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where for the second line we made a change of variables ξ 7→ γξ and in the last
line we used that H̃(t ) =⋃

γ∈Γ∞ γH ′(t ).

In order to evaluate this, we need the following geometric estimate.

LEMMA 5.4. Let ξ− ∈P0 and ξ+ ∈ γP0 with γ ∈ Γ∞. Then there exists c > 0 such
that ∫

R
IdH̃(t )(π(ξs))d s =

{
d(o,γo)−2t +O(1) if d(o,γo) > 2t − c

0 otherwise.
(5.2)

Proof. Recall that o = (0,1) and note that γo = (v,1) for some v ∈ Rn−1. Since
P0 is a compact set containing the origin, then γP0 is a compact set (of the
same diameter) containing v and hence ‖ξ−−ξ+‖ = ‖v‖+O(1) where ‖ ·‖ is the
Euclidian norm on Rn−1. Note that

sup{t : ξ∩H(t ) 6= ;} = log
(‖ξ−−ξ+‖

2

)
and d(o,γo) = log(‖v‖)+O(1). Hence if d(o,γo) < 2t − c, then ξ∩H(t ) =;.

Now assume that ξ∩ H(t ) 6= ; and let z1, z4 ∈ Hn be the first and second
intersections of the geodesic ξs with ∂H̃(0) and z2, z3 the first and second inter-
sections with ∂H(t ). Writing zi = (xi , yi ), we have that ‖x1‖ and ‖x4−v‖ are uni-
formly bounded and that ‖x2‖ and ‖x3 −v‖ are bounded by O(e t ); this implies
that d(z1,o), d(z4,γo), d(z2, at o) and d(z3,γat o) are all uniformly bounded.
Now on one hand, d(z1, z4) = d(o,γo) +O(1), and on the other hand, since
z1, z2, z3, z4 all lie on the same geodesic, we have

d(z1, z4) = d(z1, z2)+d(z2, z3)+d(z3, z4).

The middle term is precisely
∫
R IdH̃(t )(π(ξs))d s and d(z1, z2) = d(o, at o)+O(1) =

t +O(1) and similarly d(z3, z4) = t +O(1), concluding the proof.

Recall the notation h̃t =∪|s|<1/2G
sht .

PROPOSITION 5.5. We have m(ht ) ³m(h̃t ) ³ e−t (2δ−κ).

Proof. From Lemma 5.3, we have

m(ht ) = ∑
γ∈Γ∞

∫
F∞

∫
γF∞

∫
R

IdH̃(t )(π(ξs))dm(ξ−,ξ+, s)

= ∑
γ∈Γ∞

∫
P0

∫
γP0

∫
R

IdH̃(t )(π(ξs))eδ(βξ+ (o,π(ξs ))+βξ− (o,π(ξs )))dνo(ξ−)dνo(ξ+)d s.

Next note that for any ξ− ∈P0 and ξ+ ∈ γP0 and γ ∈ Γ∞, the sum βξ+(o,π(ξs))+
βξ−(o,π(ξs)) is independent of s and is uniformly bounded. Indeed, let s1 be the
least time such that z1 :=π(ξsi ) ∈ H(0) and note that d(z1,o) =O(1) is uniformly
bounded. Now, for z =π(ξs), on one hand βξ+(z1, z)+βξ−(z1, z) = s− s1+ s1− s =
0, and on the other hand |βξ±(z1, z)−βξ±(o, z)| ≤ d(z1,o) which is uniformly
bounded.
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With this observation together with Lemma 5.4, we get that

m(ht ) ³ ∑
γ∈Γ∞

νo(P0)νo(γP0)
∫
R

IdH̃(t )(π(ξs))d s

³ ∑
γ∈Γ∞

d(o,γo)≥2t−c

νo(P0)νo(γP0)(d(o,γo)−2t +O(1)).

Next, to estimate νo(γP0) = νγo(P0), we use the Γ-conformality to get that

νo(γP0) =
∫
P0

e−δβξ(γo,o)dνo(ξ).

To estimate βξ(γo,o), let z1, z2 be the two points in the intersection of ∂H(0)
and the geodesic connecting ξ to γξ. Then d(z1,o) and d(z2,γo) are uniformly
bounded and βξ(z1, z2) = d(z1, z2) = d(γo,o) +O(1) implying that βξ(γo,o) =
d(γo,o)+O(1). Plugging in this estimate gives

m(ht ) ³ ∑
γ∈Γ∞

d(o,γo)≥2t−c

e−δd(o,γo)(d(o,γo)−2t +O(1)).

We may write Γ∞ as {γv : v ∈Zκ} where γv is the translation by v . Note that
d(o,γv (o)) = 2log‖v‖+O(1). Hence

m(ht ) ³ ∑
v∈Zκ

‖v‖≥Ce t

e−δ(2log‖v‖+O(1))(2log‖v‖−2t +O(1))

³ ∑
v∈Zκ

‖v‖≥Ce t

‖v‖−2δ log(‖v‖e−t )

³
∫

x∈Rk ,|x|≥e t
‖x‖−2δ log(‖x‖e−t )d x ³ e−t (2δ−κ)

as claimed.
For the thickened target, for any x ∈ ht and |s| ≤ 1/2, if xat ∈ ht−1, then ht ⊆

h̃t ⊆ ht−1. Hence m(h̃t ) ³ e−t (2δ−κ) as well.

Next we show regularity.

PROPOSITION 5.6. Both families {ht : t ≥ 1} and {h̃t : t ≥ 1} are regular.

Proof. Since ht ⊆ h̃t ⊆ ht−1 it is enough to show that {ht } is regular. Let H ′(t )
denote the fundamental domain for Γ∞\H̃(t ) defined above, and FΓ a funda-
mental domain for Γ\Hn such that FΓ∩ H̃(t ) = H ′(t ). For any t ≥ 1 let ψ±

t be
smooth functions on Γ∞\H̃(t ) taking values in [0,1] satisfying

IdH ′(t+1) ≤ψ−
t ≤ IdH ′(t ) ≤ψ+

t ≤ IdH ′(t−1),

and we can choose them so that S (ψ±
t ) =O(1), independent of t .

Since FΓ∩H̃(t ) = H ′(t ), we can lift the functions ψ±
t to right K -invariant, and

left Γ-invariant functions Ψ±
t on G . As such, by looking at their values on a fixed

fundamental domain, we see that

0 ≤ Idht+1 ≤Ψ−
t ≤ Idht ≤Ψ+

t ≤ Idht−1 ≤ 1.
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Since m(ht ) ³ m(ht±1), we also get that m(Ψ±
t ) ³ m(ht ), implying that {ht } is

regular.

Proof of Theorem 1.6. Applying Theorem 1.1 to the shrinking targets Bt = hi ,t

gives (1). For (2), fix some η< 1
2δ−κi

and let c := 1−η(2δ−κ j ) > 0. Consider the
shrinking family {Bt = hi ,η log(t )}, which is regular and satisfies m(B2t ) ³m(Bt ) ³
t−(2δ−κi )η. In particular we have that∑

j

log(m(B2 j ))

2 jm(B2 j )
³∑

j

log( j )

2c j
<∞,

so Theorem 1.4(2) implies Theorem 1.6(2).

5.2. Shrinking balls in Γ\G. In this subsection, our goal is to show that for x ∈
supp(m), the family {xGε : 0 < ε< 1} is regular as stated in Proposition 5.9. We
may assume that o ∈ hullΛ and fix vo ∈ To(Hn) so that M = Stab(vo). For ξ ∈ ∂Hn

and ε > 0, let Bξ(ε) denote the Euclidian ball of radius ε around ξ. When Γ is
convex co-compact, Sullivan’s shadow lemma implies that νo(Bξ(ε)) ³ εδ, but
when Γ has cusps, the measure νo(Bξ(ε)) fluctuates as ε→ 0. Nevertheless, we
have the following:

LEMMA 5.7. For any ξ ∈Λ, the following holds for all sufficiently small ε> 0:

1. min{εδ,ε2δ−κmin } ¿ νo(Bξ(ε)) ¿ max{εδ,ε2δ−κmax }.
2. νo(Bξ(2ε)) ¿ νo(Bξ(ε)).

Proof. For ξ ∈ Λ let ξt ⊂ hull(Λ) denote the unit speed geodesic ray connect-
ing o to ξ. Let b(ξt ) ⊂ ∂(Hn) denote the shadow at infinity of the hyperbolic
hyperplane meeting ξt orthogonally. Then

b(ξt ) = Bξ(ε) for ε³ e−t .

If {ξ1, · · · ,ξk } denotes the set of all representatives of Γ-orbits in the set of para-
bolic limit points, and Hξi ⊂Hn is a sufficiently deep horoball based at ξi , then
H :=⋃k

i=1Γ(Hξi ) forms a family of disjoint horoballs.
Now by [28, Theorem 2], we have

νo(b(ξt )) ³ e−δt+d(ξt ,Γo)(κ(ξt )−δ),(5.3)

where κ(ξt ) is the rank of ξi if ξt ∈ Γ(Hξi ) for some i , and κ(ξt ) = δ otherwise.
Now, to prove (1), let ε = e−t . First, if ξt is not in H , the claim follows easily.
Next, if ξt ∈ Γ(Hξi ), then κ(ξt ) = κi and νo(b(ξt )) ³ e−δt+d(ξt ,Γo)(δ−κi )). If κi ≤ δ,
then

δt ≤ δt +d(ξt ,Γo)(δ−κi ) ≤ t (2δ−κmin)

and hence e−t (2δ−κmin) ¿ νo(b(ξt )) ¿ e−δt . Now if κi > δ, then

−δt ≤−δt +d(ξt ,Γo)(κi −δ) ≤ t (κmax −2δ),

so that e−δt ¿ νo(b(ξt )) ¿ e−(2δ−κmax)t . This proves (1).

JOURNAL OF MODERN DYNAMICS VOLUME 17, 2021, 401–434



430 DUBI KELMER AND HEE OH

For (2), we claim that νo(b(ξt+1)) ³ νo(b(ξt )). In the case when ξt ,ξt+1 ∈
Γ(Hξi ) for some i , we have that |d(ξt ,Γo)−d(ξt+1,Γo)|¿ 1. Now, using (5.3) we
get

νo(b(ξt+1))

νo(b(ξt ))
³ e(d(ξt+1,Γo)−d(ξt ,Γo))(δ−ki ) ³ 1.

If this case does not happen, there must be some t ′ ∈ [t , t + 1] such that the
projection of ξt ′ in core(M ) lies in the compact part core(M )−∪iΓ\Hξi , and
hence d(ξt ′ ,Γo) =O(1). But then also d(ξt ,Γo) and d(ξt+1,Γo) are bounded and
νo(b(ξt+1)) ³ νo(b(ξt )) ³ e−δt as well.

PROPOSITION 5.8. Let K ⊆ X be a compact subset. Let δ− = min{δ,2δ−kmax}
and δ+ = max{δ,2δ−kmin}. For any x ∈K ∩Ω, we have that for all 0 < ε< rx ,

1. ε1+dim M+2δ+ ¿m(xGε) ¿ ε1+dim M+2δ− ,
2. m(xG2ε) ³m(xGε),
3. m(xGεA1) ³ ε−1m(xGε),
4. m(xGεM) ³ ε−dim(M)m(xGε),

where all the implied constants above are uniform over all x ∈K .

Proof. Fix a compact subset F0 ⊆ G such that K = Γ\ΓF0. First, since we as-
sume ε ≤ rx , we have that m(xGε) = m(gGε) for x = [g ]. We will use the flow
boxes

B(g ,ε) := gB(ε) = g (N+
ε N−∩N−

ε N+AM)MεAε.(5.4)

It is shown in [12, Lemma 4.7] that B(g ,ε) ³ gGε and that

m(B(g ,ε)) = (1+O(ε))2ενg (o)(g N+
ε v+

o )νg (o)(g N−
ε v−

o )volM (Mε),(5.5)

where volM (Mε) ³ εdim(M) and all implied constants are absolute.
We can estimate νg (o)(g N±

ε v±
o ) ³ νo(Bg±(ε)), with the implied constants uni-

form for g ∈F0. Hence by Lemma 5.7, we have

εδ+ ¿ νg (o)(g N±
ε v±

o ) ¿ εδ− .

Since volM (Mε) ³ εdim M , we get that

ε2δ++1+dim M ¿m(gB(ε)) ¿ ε2δ−+1+dim M

proving (1). (2) follows similarly from Lemma 5.7(2). (3) and (4) follow easily
from the above description of gB(ε).

PROPOSITION 5.9. Fix a compact set K ⊆ X . There exist some c > 1 and α >
1(depending on ` and K ) such that the family {xGε : x ∈K ∩Ω, ε< rx } and the
family of their thickenings are regular for Sl .

Proof. We can find smooth functions Ψ±
ε : G → [0,1) such that

Ψ−
ε (g ) =

{
1 g ∈Gε/2

0 g 6∈Gε
Ψ+
ε (g ) =

{
1 g ∈Gε

0 g 6∈G2ε

satisfying Sl (Ψ±
ε ) ¿ ε−l . For x ∈K ∩Ω, let Ψ±

x,ε(xg ) :=Ψ±
ε (g ). Then

0 ≤Ψ−
x,ε ≤ IdxGε

≤Ψ+
x,ε.
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We then have that

Sl (Ψ±
x,ε) ¿ ε−l ¿m(Gε)

−α,

for α = l
1+dim(M)+δ− and that m(xGε/2) ≤ m(Ψ−

x,ε) ≤ m(xGε) so that m(xGε) ¿
m(xGε/2) ≤m(Ψ−

x,ε), and similarly m(Ψ+
x,ε) ¿m(xGε).

The same argument shows that the thickened sets xGεA1 are (c,α)-regular
for some constant c > 1 and α= l

dim(M)+δ− .

The proofs of Propositions 5.8 and 5.9 can easily be adapted for the following:

PROPOSITION 5.10. Let M be convex cocompact. Fix x0 ∈ supp(m). Then the
families {x0GεM } and {x0GεM A1/2} are regular and m(x0GεM) ³ ε2δ+1 and
m(x0GεM A1/2) ³ ε2δ with the implied constants uniform over all x0.

When M has cusps, we do not have such asymptotics for m(x0GεM) and
m(x0GεM A1/2) uniformly for all x0 ∈ supp(m). Nevertheless, we have the follow-
ing estimates:

PROPOSITION 5.11. Let K ⊆ X be a compact subset of X , and let x0 = [g0M ] ∈
K ∩Ω.

1. If both g+
0 , g−

0 ∈ ∂Hn are parabolic fixed points corresponding to cusps of
ranks κ1 and κ2 respectively, then

m(x0GεM) ³ ε4δ+1−κ1−κ2 .

2. If x0 A is bounded, then

m(x0GεM) ³ ε2δ+1.

3. If supt∈R
d(x0at ,Γo)

log |t | <∞, then

lim
ε→0

log(m(x0GεM))

logε
= 2δ+1.

Proof. Without loss of generality, we may assume that g0 = e. Set ξt := at and
let ξ± := limt→±∞ ξt . Recall that by [12, Lemma 4.7] and (5.5), we have

m(x0GεM) ³m(B(g0,ε)M) ³ ε ·νo(Bξ+(ε))νo(Bξ−(ε)).

It thus remains to estimate νo(Bξ±(ε)) in each of the above cases. When ξ± are
parabolic limit points, there exists t0 such that for all t ≥ t0 (resp, t < −t0), we
have that ξ±t ∈ Hξ± is in the horoball centered at ξ±. Since ξ± are parabolic
limit points, this implies that for t ≥ t0, we have that d(ξt ,Γo) = |t |+O(1), and
hence, setting ε= e−|t | by (5.3), we can estimate νo(Bξ+(ε)) ³ ε2δ−κ1 and similarly
νo(Bξ−(ε)) ³ ε2δ−κ2 , proving (1).

Next, the boundedness of x0 A means that supt d(ξt ,Γo) < ∞. In this case,
(5.3) implies that νo(Bξ±(ε)) ³ εδ, proving (2).

Finally, assuming that sup d(x0at ,Γo)
log |t | <∞, again taking ε = e−t , (5.3) now im-

plies that

εδ| log(ε)|−c1 ¿ νo(Bξ±(ε)) ¿ εδ| log(ε)|c1 ,
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and hence
log(m(x0GεM)) = (2δ+1)logε+O(log | logε|).

This proves (3).

We finish this section with the proofs of Theorems 1.11 and 1.12.

Proof of Theorem 1.11. (1) follows by applying Theorem 1.1 to the shrinking tar-
gets Bt = x0G1/t M with thickening B̃t = x0G1/t M A1/2 which is inner regular with
log(m(B̃t )) =−2δt +O(1) by Proposition 5.10.

For (2) we consider the shrinking targets Bt := x0Gt−ηM . Note that for any
x ∈M , we have that d(G s(x), x0) < t−η exactly when G s(x) ∈ Bt . Since m(Bt ) ³
t−η(2δ+1), we have

∑
j

log(m(B2 j )

2 jm(B2 j )
< ∞ when (2δ+ 1)η < 1. So (2) follows from

Theorem 1.4(2).

Proof of Theorem 1.12. For (1), we note that Theorem 1.6(1) implies that for m-
a.e. x0 ∈ T1(M ),

limsup
t→∞

d(G s(x0),o)

log(t )
≤ 1

2δ−κmax
.

For any such x0, the families {Bt = x0G1/t M } and {B̃t } are regular. By Proposition

5.11(3), we have limt→∞
− log(m(Bt ))

log t = 2δ+ 1, and hence limt→∞
log(m(B̃t ))
− log t = 2δ.

Now, using this limit together with Theorem 1.1, we get that for m-a.e. x ∈
T1(M )

lim
t→∞

log(τBt (x))

log(t )
= 2δ and lim

t→∞
log(τBt (x))

− log(m(B̃t ))
= 1.

For (2), given two cusps ξ1,ξ2 with ranks κ1,κ2, consider a geodesic con-
necting ξ1 to ξ2 and let g0 ∈ T1(Hn) be any point on this geodesic, and set
x0 = [g0] ∈ T1(M ). Consider the shrinking targets Bt = x0G1/t M . By Proposition
5.11(1), we have log(m(B̃t )) =−(4δ−κ1 −κ2) log(t )+O(1) and hence (2) follows
from Theorem 1.1.

5.3. Shrinking tubular neighborhoods. For a fixed closed geodesic C ⊂ T1(M )
and ε> 0, we set Cε = {x ∈ T1(M ) : d(C , x) < ε}. The proof of Theorem 1.9 follows
as above from the following.

PROPOSITION 5.12. The families {Cε : ε < ε0} and C̃ε = {xas : x ∈ Cε, |s| ≤ 1/2}
are both regular and satisfy m(Cε) ³m(C̃ε) ³ ε2δ.

Proof. Recall the notations X , X (ε) and Y (ε) = X − X (ε) from Section 2.3. They
are all M-invariant subsets of Γ\G , and in the following proof, we will regard
them as subsets in Γ\G/M . We can present C = [g0]AM/M and an element of
C is represented by [g0]at M for a unique 0 ≤ t < L where L is the length of C .
Let ε0 be sufficiently small so that C ⊆ Y (ε0) and let 0 < ε ≤ ε0. Let Qε denote
a maximal set of points xi ∈ C such that the sets xi GεM are pairwise disjoint.
Writing xi = x0ati the condition that xi Gε∩x j Gε =; imply that |ti − t j | ≥ ε and
the maximality condition implies that |ti − ti+1| ≤ 3ε. Hence #Qε ³ Lε−1. Since⋃

xi∈Qε

xi GεM ⊆Cε ⊆
⋃

xi∈Qε

xi G3εM ,
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we can estimate ∑
xi∈Qε

m(xi GεM) ≤m(Cε) ≤
∑

xi∈Qε

m(xi G3εM).

Now Proposition 5.11(2) implies that m(gi GεM) ³ ε2δ+1 where the implied
constant does not depend on i . Summing over all xi ∈ Qε, we get that indeed
m(Cε) ³ ε2δ.

Next, to show regularity, for each point xi ∈ Qε, let Ψ±
ε,i be smooth non-

negative functions approximating xi GεM from below and xi G3εM from above
respectively, with Sl (Ψ±

ε,i ) ¿ ε−l , and define Ψ±
ε =∑

i Ψ
±
ε,i . Since the sets xi GεM

are pairwise disjoint, we have that Ψ−
ε ≤ IdCε

≤Ψ+
ε and moreover

m(Ψ+
ε ) ≤∑

Qε

m(xi G3εM) ¿∑
Qε

m(xi GεM) ≤m(Cε),

and similarly that m(Cε) ¿m(Ψ−
ε ). Since #Qε ¿ ε−1, we can bound Sl (Ψ±

ε ) ¿
ε−(l+1) ¿m(Cε)−α with α= l+1

2δ , showing that the family {Cε} is (c,α) regular for

some c > 1, and α= l+1
2δ .

Finally, note that there is c ≥ 1 such that a−sGεas ⊆Gcε for all |s| ≤ 1/2. Then
any point x ∈ C̃ε is of the form x = x0at g as M with 0 ≤ t ≤ L, g ∈Gε and |s| ≤ 1/2.
We can write g as = as a−s g as ∈ asGcε, to get that x ∈ x0at+sGcε ∈Ccε. Therefore
Cε ⊆ C̃ε ⊆Ccε, implying that {C̃ε} is also regular with m(C̃ε) ³m(Cε).
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