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Abstract. Let M be a geometrically finite hyperbolic manifold. We
present a very general theorem on the shrinking target problem for the
geodesic flow, using its exponential mixing. This includes a strength-
ening of Sullivan’s logarithm law for the excursion rate of the geodesic
flow. More generally, we prove logarithm laws for the first hitting time
for shrinking cusp neighborhoods, shrinking tubular neighborhoods of
a closed geodesic, and shrinking metric balls, as well as give quantita-
tive estimates for the time a generic geodesic spends in such shrinking
targets.

1. Introduction

Let M be a complete hyperbolic manifold of dimension n ≥ 2. Denote
by Gt the geodesic flow on the unit tangent bundle T1(M). If M is of
finite volume, but non-compact, Sullivan [27] showed in 1982 the following
logarithm law for the rate of the excursion of the geodesic flow: for any
o ∈M, and for almost all x ∈ T1(M),

lim sup
t→∞

d(Gt(x), o)

log t
=

1

n− 1
(1.1)

where d(Gt(x), o) is the hyperbolic distance between the basepoint of Gt(x)
and o.

This result can be viewed as a special case of the so-called shrinking target
problem for the geodesic flow, which asks the behavior of a generic geodesic
ray with respect to a given sequence of shrinking subsets. Indeed, if we
consider the family of shrinking cuspidal neighborhoods ht := {z ∈ M :
d(o, z) > t}, t > 1, then (1.1) is equivalent to the following logarithm law
for the first hitting time: for almost all x,

lim inf
t→∞

log τht(x)

t
= n− 1 (1.2)

where τht(x) := inf{s > 0 : Gs(x) ∈ ht}.
In this paper, we investigate shrinking target problems for the geodesic

flow on a geometrically finite hyperbolic manifold M, and prove results
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which are far reaching strengthening and generalizations of (1.2), and hence
of (1.1).

Let Hn denote the n-dimensional hyperbolic space and letG := Isom+(Hn)
be the group of all orientation preserving isometries. We may present a com-
plete hyperbolic manifoldM as the quotient Γ\Hn where Γ is a torsion-free
discrete subgroup of G. We assume that Γ is Zariski dense and geometrically
finite in the whole paper. Denote by Λ ⊂ ∂Hn the limit set of Γ and by
0 < δ ≤ n−1 the critical exponent of Γ. The maximal entropy of the geodesic
flow on T1(M) is given by δ, and there exists a unique ergodic probability
measure of maximal entropy, called the Bowen-Margulis-Sullivan measure,
which we denote by m. The support of m is precisely the non-wandering set
for the geodesic flow and hence the shrinking target problem in this setting
is interesting only for those shrinking subsets in the support of m and for
m-almost all points. Now since Gt is ergodic for m, the Birkhoff ergodic the-
orem says that for a given Borel subset B ⊂ T1(M), we have the following
for m-almost all x ∈ T1(M),

lim
t→∞

`{0 < s < t : Gs(x) ∈ B}
t

= m(B) (1.3)

where ` denotes the Lebesgue measure on R. The shrinking target problem
asks a finer question on the set of times {s > 0 : Gs(x) ∈ Bt} for a given
family {Bt} of shrinking sets and for m-a.e. x. The three main questions
we address in this paper for m-a.e. x ∈ T1(M) are as follows:

(1) (Logarithm laws) Is there a logarithm law for the first hitting time

τBt(x) := inf{s > 0 : Gs(x) ∈ Bt}? (1.4)

(2) (Shrinking rate threshold) How fast can Bt shrink so that

τBt(x) < t

for an infinite sequence of times t tending to ∞ or for all sufficiently
large t� 1?

(3) (Quantitative estimates) How fast can Bt shrink so that1

`{0 < s < t : Gs(x) ∈ Bt} � t ·m(Bt)

for an infinite sequence of times t tending to∞, or for all sufficiently
large t� 1?

In order to address the above questions, we need to impose certain regu-
larity conditions on the shrinking targets. Let K < G be a maximal compact
subgroup and identify M with Γ\G/K. There exists a one parameter di-
agonalizable subgroup A = {at} so that if M denotes the centralizer of A
in K, then the unit tangent bundle T1(M) can be identified with Γ\G/M
in the way that the geodesic flow Gt on T1(M) corresponds to the right

1The notation ft � gt means that for all t > 1, ft ≤ c gt for some absolute constant
c > 0, and we write ft � gt if ft � gt and gt � ft. We sometimes indicate the dependence
of the implied constant in subscripts.
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translation action of at on Γ\G/M . We fix ` � dim(M) and the Sobolev
norm S = S∞,` on C∞(Γ\G) given by

S(Ψ) =
∑
‖D(Ψ)‖∞

where the sum is taken over all monomials in a fixed basis of Lie(G) of order
at most `.

A family of shrinking targets in T1(M) means a collection B = {Bt ⊂
T1(M) : t > 1} such that m(Bt) > 0, Bt ⊃ Bs for s > t, and limt→∞m(Bt) =
0. A family {Bt} of shrinking targets is said to be inner regular (resp. outer
regular) if there exist α > 0 and a family of functions Ψ−t ∈ C∞(T1(M))
(resp. Ψ+

t ∈ C∞(T1(M))) such that

• 0 ≤ Ψ−t ≤ IdBt (resp. IdBt ≤ Ψ+
t � 1);

• m(Bt)� m(Ψ−t ) (resp. m(Ψ+
t )� m(Bt));

• S(Ψ±t )� m(Bt)
−α

where the implied constants are independent of t. A family {Bt} is said to
be regular if it is both inner and outer regular.

We note that this regularity condition is rather mild, and is satisfied
by most families of naturally occurring shrinking targets. Such examples
include shrinking cusp neighborhoods, shrinking tubular neighborhoods of
a closed geodesic and shrinking metric balls, as will be shown later.

In the rest of the introduction, we assume that B = {Bt : t � 1} is a
family of shrinking targets in T1(M).

1.1. Logarithm laws. For discrete time dynamical systems, it is expected
that the first hitting time would be inversely proportional to the measure of
the shrinking target; it is indeed the case for the discretized geodesic flow.
For the continuous geodesic flow, it turns out that it is inversely proportional
to the measure of a thickened set B̃t := ∪|s|<1/2Gs(Bt):

Theorem 1.1. (1) If {Bt} is inner regular, then

lim
t→∞

log(τdBt(x))

− log(m(Bt))
= 1 for m-a.e. x ∈ T1(M).

where τdB(x) = min{n ∈ N : Gnx ∈ B}.
(2) If {B̃t} is inner regular, then

lim
t→∞

log(τBt(x))

− log(m(B̃t))
= 1 for m-a.e. x ∈ T1(M).

Remark 1.5. When | logm(B̃t)| � | logm(Bt)|, the first hitting time for the
discrete flow {Gn : n ∈ N} behaves in the same way for the continuous
flow. This is indeed the case for shrinking cusp neighborhoods or tubular
neighborhoods of a closed geodesic. However, there are also cases when
| logm(B̃t)| is much larger than | logm(Bt)|, such as the case of shrinking
metric balls.
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We note that logarithm laws for the first hitting time were studied for
certain families of shrinking targets in many examples of discrete time dy-
namical systems with fast mixing, see e.g. [6, 7, 8].

1.2. Shrinking rate threshold. In order to ensure that a generic orbit
Gs(x) hits Bt before time t for an infinite sequence of t tending to ∞, the
easy half of the Borel-Canteli lemma implies that it is necessary to have∑

km(B̃k) = ∞, from which lim supt→∞ log2(t)t ·m(B̃t) = ∞ follows. The
first part of the following theorem says that this condition is also sufficient,
up to logarithmic factors. The second part says that a generic orbit Gs(x)
hits Bt before time t, for all sufficiently large t, under a slightly stronger
assumption on the rate of shrinking (see Theorem 4.10).

Theorem 1.2. Suppose that {B̃t} is inner regular.

(1) If lim supt→∞
tm(B̃t)

| log(m(B̃t))|
=∞, then

lim inf
t→∞

τBt(x)

t
≤ 1 for m-a.e. x ∈ T1(M).

(2) If
∑∞

j=1

| log(m(B̃tj ))|
tjm(B̃tj )

<∞ for some sequence tj →∞, then

lim sup
t→∞

τBt(x)

t
≤ 1 for m-a.e. x ∈ T1(M).

1.3. Quantitative estimates. In order to answer a more refined question
regarding the amount of time that a generic geodesic ray spends in a shrink-
ing target, we require our family of targets to be regular and their measures
do not change too fast in the sense that m(Bt) � m(B2t).

With these additional regularity assumptions, we have the following (see
Theorem 4.7 below for a more general result).

Theorem 1.3. Suppose that {Bt} is regular and that m(B2t) � m(Bt).

(1) If lim supt→∞
tm(Bt)

| log(m(Bt))| =∞, then there exists a sequence tk →∞
such that for m-a.e. x,

`{0 < s < tk : Gs(x) ∈ Btk}
tk

� m(Btk).

(2) If
∑∞

j=1
| log(m(B

2j
))|

2jm(B
2j

)
<∞, then for m-a.e. x,

`{0 < s < t : Gs(x) ∈ Bt}
t

� m(Bt).

We observe that unlike Theorems 1.1 and 1.2, the amount of time that
the geodesic flow spends in the targets is governed by the measure of the
original targets rather than by their thickenings.

Remark 1.6. (1) We note that in many examples the measure of the
shrinking targets decay like m(Bt) � t−η for some η > 0. In such



5

cases, we have m(Bt) � m(B2t) and the rest of the conditions of
Theorems 1.2 and 1.3 are satisfied if η < 1.

(2) As mentioned before, the extra conditions on the rate of decay we
have in Theorems 1.2 and 1.3 are sharp, but up to logarithmic fac-
tors. While it would be very interesting to have sharp conditions
on the nose, we note that such a result is notoriously hard. Even
when M has finite volume, sharp results regarding Theorem 1.3(1)
are known only in some very special cases when the shrinking tar-
gets are cusp neighborhoods [27], or spherical balls [21] (or general
spherical targets if one considers discrete time dynamics [13]). There
are no known sharp results regarding Theorem 1.3(2). We refer to
[15] where this kind of problem is studied for systems with almost
perfect mixing.

(3) All the results described above still hold as stated if we replace the
unit tangent bundle T1(M) with the frame bundle Γ\G, provided
δ > n − 2. We note if M contains a co-dimension one properly
immersed totally geodesic sub-manifold of finite volume, then δ >
n− 2, so this stronger condition still holds in many examples.

For some concrete applications of these results, we discuss three families
of shrinking targets to which our theorems apply. In order to define these
families, we fix a left G-invariant and right K-invariant metric d on G which
descends to the hyperbolic metric on Hn = G/K. This metric then naturally
defines a distance function, dist(·, ·) on T1(M) = Γ\G/M .

1.4. Cusp excursion. The convex core of M is defined by core(M) =
Γ\hull(Λ), where hull(Λ) defines the convex hull of the limit set Λ. As
M is geometrically finite, there are finitely many disjoint cuspidal regions
whose complement in core(M) is a compact submanifold. Let hi, 1 ≤ i ≤ k,
denote the pre-images in T1(M) of these cuspidal regions under the base
point projection π : T1(M) →M. For each i, we denote by κi the rank of
hi, that is, the rank of the maximal free abelian subgroup of the stabilizer
StabΓ(hi). It is known that κi < 2δ.

For each i and t > 1, consider the following cusp neighborhood

hi,t := {x ∈ hi : dist(x, ∂hi) > t}. (1.7)

For each i, we show that the shrinking family {hi,t : t > 1} is regular and
that

m(hi,t) � e−(2δ−κi)t. (1.8)

(see section 5.1). Applying our results to this family, we get the following:

Theorem 1.4. Fix 1 ≤ i ≤ k.

(1) For m-a.e. x ∈ T1(M),

lim
t→∞

log τhi,t(x)

t
= 2δ − κi.
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(2) For any 0 < η < 1
2δ−κi , and for m-a.e. x ∈ T1(M),

`{0 < s < t : Gs(x) ∈ hi,η log t} � t1−η(2δ−κi).

Remark 1.9. As mentioned before, it is not hard to show that

lim inf
t→∞

log(τht(x))

t
=

(
lim sup
t→∞

dist(Gt(x), o)

log t

)−1

(1.10)

where ht =
⋃

1≤i≤k hi,t. Stratmann and Velani showed that (1.10) is equal

to 2δ − maxi κi [28], and hence extended Sullivan’s logarithm law (1.1) to
geometrically finite manifolds. Theorem 1.4(1) presents a stronger version,
as we consider excursion to individual cusps as well as obtain an actual limit
rather than lim inf.

For the sake of a concrete application, we give a reformulation of Theorem
1.4(1) in the case of Apollonian manifolds. An Apollonian gasket P =

⋃
Ci is

a countable union of circles obtained by repeatedly inscribing circles into the
triangular interstices of four mutually tangent circles with disjoint interiors
in the complex plane (where lines are considered as circles). The symmetry
group {g ∈ PSL2(C) : g(P) = P} is a discrete subgroup of PSL2(C) which

acts on Ĉ by Möbius transformations and its torsion-free subgroup of finite
index is called an Apollonian group, which we denote by Γ. Via the Poincaré
extension theorem, we can identify PSL2(C) with Isom+(H3) for the upper-
half space model H3 of the hyperbolic space. The quotient manifold Γ\H3

is called an Apollonian manifold, which is known to be geometrically finite
with all cusps having rank one. Its limit set is equal to the closure P, and
supports a locally finite Hausdorff measure H of dimension δ = 1.30568(8)
[11].

Fix a tangent point ξ = Ci ∩Cj for i 6= j and consider a sufficiently small
Euclidean ball B in H3 based at ξ, so that B = Γ(B) is a disjoint collection
of Euclidean balls.

Fix o ∈ H3 outside of B, let B(t) ⊂ B be the Euclidean ball based at ξ
and dH3(o,B(t)) = dH3(o,B) + t. Set Bt := Γ(B(t)).

The following is a consequence of Theorem 1.4:

Corollary 1.5. Let P be an Apollonian gasket. For H-almost all initial
direction v toward P,

lim
t→∞

log(inf{s > 0 : vs ∈ Bt})
t

= 2δ − 1(= 1.6113...) (1.11)

where vs denotes the base point of Gs(v).

1.5. Tubular neighborhoods. Another natural family of shrinking targets
is given by tubular neighborhoods of a closed geodesic. For a closed geodesic
C ⊂ T1(M) and ε > 0, we consider the ε-tubular neighborhood of C:

Cε :=
{
x ∈ T1(M) : dist(x, C) ≤ ε

}
.
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The family {C1/t : t > 1} forms a family of shrinking neighborhoods of C. We

show that {C1/t : t > 1} is a regular family with m(C1/t) � m(C̃1/t) � t−2δ.
Applying our results to this family of shrinking targets gives the following
result on the amount of time a generic geodesic spirals near a fixed closed
geodesic (cf. [10, Theorem 1.1] for a similar result in a negatively curved
compact manifold).

Theorem 1.6. Let C ⊂ T1(M) be a closed geodesic. Then for m-a.e. x ∈
T1(M), we have the following:

(1)

lim
t→∞

log τC1/t(x)

log t
= 2δ;

(2) For any 0 < η < 1
2δ and for all t > 1,

`{0 < s < t : dist(Gs(x), C) < t−η} � t1−2δη.

Remark 1.12. Since for any x ∈ T1(M) we have that

lim inf
t→∞

log(τC1/t(x))

log t
=

(
lim sup
t→∞

− log(dist(Gt(x), C))
log t

)−1

,

Theorem 1.6 (1) implies that for m-a.e. x ∈ T1(M),

lim sup
t→∞

− log(dist(Gt(x), C))
log t

=
1

2δ
, (1.13)

which was previously shown in [4, Theorem 4] to hold for the special case
of convex co-compact hyperbolic surfaces.

1.6. Shrinking balls. For any fixed x0 ∈ supp(m), we show that the family
of shrinking metric balls Bt(x0) := {x ∈ T1(M) : dist(x, x0) < 1/t} is reg-
ular and satisfies m(Bt(x0)) � m(B2t(x0)). When Γ is convex co-compact,

m(Bt(x0)) � t−(2δ+1) and m(B̃t(x0)) � t−2δ (see §5.2). In particular our
results imply the following:

Theorem 1.7. Let M be convex cocompact. Fix x0 ∈ supp(m). Then for
m-a.e. x ∈ T1(M),

(1)

lim
t→∞

log τBt(x0)(x)

log t
= 2δ. (1.14)

(2) For 0 < η < 1
2δ+1 , we have

`{0 < s < t : dist(Gs(x), x0) ≤ tη} � t1−(2δ+1)η.

When M has cusps, the situation is more complicated as m(Bt(x0)) can
fluctuate, with the fluctuation depending on x0 (or more precisely on the
cusp excursions of the geodesic emanating from x0 ∈ T1(M)). Combining
our previous results on cusp excursions, we can show the following

Theorem 1.8. Suppose that M has cusps.
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(1) For m-a.e. x0 ∈ T1(M), and for m-a.e. x ∈ T1(M),

lim
t→∞

log τBt(x0)(x)

log t
= 2δ.

(2) For any pair of distinct cusps of ranks κ1, κ2, we can find x0 ∈
T1(M) such that for m-a.e. x ∈ T1(M),

lim
t→∞

log(τBt(x0)(x))

log t
= 4δ − κ1 − κ2.

Remark 1.15. We note that if M has finite volume, then δ = n − 1 and
m(B̃t(x0)) � t−(2n−2). Hence, in this case, the same arguments imply that

for m-a.e. x ∈ T1(M), we have limt→∞
log τBt(x0)(x)

log t = 2(n − 1). We note

that here the shrinking targets are in T1(M), unlike the results of [21] which
considered shrinking balls inside M, in which case the limit is n − 1 (see
also [17], for related result for the discrete time geodesic flow).

1.7. Strategy of proof. First we define an averaging operator, along the
discrete time, acting on L2(T1(M),m):

λT (Ψ)(x) =
1

T

T∑
k=1

Ψ(Gk(x)).

If Ψ is the characteristic function of B, we simply write λT (B) instead of
λT (1B). The Birkhoff ergodic theorem implies that for a.e. x ∈ X,

lim
T→∞

λT (Ψ)(x) =

∫
T1(M)

Ψdm.

We note that if we had a rate control in this convergence such as

|λT (Bt)(x)−m(Bt)| �
√
m(Bt)| log(m(Bt))|√

T
, (1.16)

we would get

log τdBt(x) ≤ | logm(Bt)|+ 2 log | logm(Bt)| (1.17)

just from the simple observation that λτdBt (x)(Bt) = 0.

An estimate like (1.16) is too strong to be true for a.e. individual points
x. So, instead, we prove its mean-version for all smooth functions Ψ ∈
L2(T1(M),m), that is,

‖λT (Ψ)−m(Ψ)‖2 ≤ C
‖Ψ‖ log(S(Ψ)

‖Ψ‖2 )
√
T

(1.18)

for some uniform constant C > 0. The regularity conditions imposed on the
thickenings B̃t of our shrinking targets are precisely so that we could apply



9

(1.18) to smooth functions which approximates 1B̃t and deduce

‖λT (B̃t)−m(B̃t)‖2 �

√
m(B̃t) log |(m(B̃t))|

√
T

. (1.19)

This effective mean ergodic theorem for B̃t’s enables us to obtain that for
a.e. x,

log τd
B̃t

(x) ≤ | logm(B̃t)|+O(log | logm(B̃t)|), (1.20)

for all sufficiently large t. Using that |τd
B̃t

(x)− τBt(x)| ≤ 1, we deduce that

lim sup
t→∞

log τBt(x)

− logm(B̃t)
≤ 1.

This is the non-trivial direction of the logarithm law Theorem 1.1; the other
direction holds for general shrinking targets in any dynamical system (see
e.g. [14, Lemma 2.2]). Theorems 1.2 and 1.3 are also proved in a similar
spirit using the effective mean ergodic theorem.

The use of quantitative mixing of geodesic flow in the shrinking target
problem in the homogeneous setting goes back to the work of Kleinbock and
Margulis [16], and the idea of using an effective mean ergodic theorem was
first introduced in [9] and more explicitly in [13, 14], where these ideas were
used to prove the analogous results for finite volume hyperbolic manifold.

Here we will use the following exponential decay of matrix coefficients for
geometrically finite hyperbolic manifolds:

Theorem 1.9. There exists η0 > 0 such that for any Ψ1,Ψ2 ∈ C∞(T1(M))
with support in one-neighborhood of supp(m), for all t ≥ 1,∫

T1(M)
Ψ1(Gt(x))Ψ2(x) dm(x) = m(Ψ1)m(Ψ2) +O(e−η0tS(Ψ1)S(Ψ2)).

(1.21)
Moreover, η0 is explicitly computable when δ > n−1

2 , depending only on

the spectral gap for the Laplacian on L2(M). If Γ is convex cocompact or
δ > n − 2, (1.21) with m replaced by its M -invariant lift on Γ\G holds for
any Ψ1,Ψ2 ∈ C∞(Γ\G).

This theorem was obtained in ([22], [5]) for compactly supported functions
under the assumption δ > n−1

2 and in [25] for any convex cocompact Γ
(see also [24] for the same result for the frame flow). In order to study
shrinking target problem for cusp neighborhoods as described in Theorem
1.4, removing the compact support condition is crucial as we need to study
functions that are positive on cusps. We use the quantitative decay of the
matrix coefficient of the functions L2(Γ\G) with respect to the Haar measure
mHaar in [22], and exploit the product structures of m and mHaar to transfer
the exponential rate information on the transversal intersections of Gt(Bε(x))
for the flow box Bε(x), that we get from the behavior of the correlation
function with respect to mHaar, to the behavior of the correlation function
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with respect to m. Here ε depends on the injectivity radius of x, and as we
need to control the exponential rate independent of the injectivity radius
for Theorem 1.9, which is required to deal with functions which are not
compactly supported, the whole procedure turns out to be technically quite
subtle. The remaining cases of geometrically finite manifolds with cusps
are proved in a recent work of Li-Pan [20].

After some preliminaries given in section 2, we devote section 3 to the
proof of Theorem 1.9. With this result in hand, we prove effective mean
ergodic theorem in this setting (see Theorem 4.1), and use it in section 4
to establish results on shrinking target problems for both the discrete and
continuous time flow. While the results we obtain for the discrete time
flow are essentially optimal, this is not the case for some of the results
for continuous time flow. Nevertheless, in section 4.5, we show how one can
obtain optimal results for the continuous flow by translating it into a discrete
time flow problem for a thickened target. In section 5, we deduce Theorems
1.4, 1.6, 1.7 and 1.8 by proving the regularity of the corresponding shrinking
sets and by computing their volumes using Sullivan’s shadow lemma and the
structure of cusps for geometrically finite manifolds.

2. Preliminaries and notation

2.1. Notations and conventions. Let G ∼= SO(n, 1)o be the group of
orientation preserving isometries of Hn, and Γ < G a geometrically finite,
torsion-free, Zariski dense, discrete subgroup of G. We denote by Λ the
limit set of Γ, and by 0 < δ ≤ n − 1 the Hausdorff dimension of Λ, which
is equal to the critical exponent of Γ. Let M = Γ\Hn. Let K < G be a
maximal compact subgroup and identify M with Γ\G/K. There exists a
one parameter diagonalizable subgroup A = {at} so that if M denotes the
centralizer of A in K, then the unit tangent bundle T1(M) can be identified
with Γ\G/M in the way that the geodesic flow Gt on T1(M) corresponds
to the right translation action of at on Γ\G/M . With this identification we
can work in the homogeneous space Γ\G and think of subsets and functions
on T1(M) and M respectively as M -invariant (resp. K invariant) subsets
and functions on Γ\G.

We say that two families {Bt} and {At} of shrinking sets are Lipschitz
equivalent and write Bt � At, if there are some positive constants c1, c2 such
that Bc1t ⊆ At ⊆ Bc2t for all t > 1.

We fix a left G-invariant and right K-invariant metric d on G which de-
scends to the hyperbolic metric on Hn = G/K. This induces a unique metric
on G/M which we will also denote by d by abuse of notation. The metric
d defines a distance function on T1(M) = Γ\G/M given by dist(Γg,Γh) =
infγ∈Γ d(γg, h).
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2.2. Invariant measures. For ξ ∈ ∂Hn, let βξ : Hn ×Hn → R denote the
Busemann function for the geodesic flow, defined by

βξ(x, y) = lim
t→∞

d(x, ξ(t))− d(y, ξ(t)),

with ξ(t) a unit speed geodesic ray toward ξ. A family of measures {µx :
x ∈ Hn} is called a Γ-invariant conformal density of dimension δµ > 0 on
∂Hn, if each µx is a non-zero finite Borel measure on ∂Hn satisfying for any
x, y ∈ Hn, ξ ∈ ∂Hn and γ ∈ Γ,

γ∗µx = µγx and
dµy
dµx

(ξ) = e−δµβξ(y,x),

where γ∗µx(F ) = µx(γ−1(F )) for any Borel subset F of ∂Hn.
In particular, the Patterson-Sullivan density {νx} is a Γ-invariant confor-

mal density supported on the limit set Λ of dimension δ and the Lebesgue
density {mx} is a G-invariant conformal density of dimension (n− 1) (both
are unique up to scalar multiplications).

Let π : T1(Hn) → Hn be the basepoint projection. For u ∈ T1(Hn), we
denote by u± ∈ ∂Hn the forward and the backward endpoints of the geodesic
determined by u. Fix o ∈ Hn so that K fixes o. The map

u 7→ (u+, u−, s = βu−(o, π(u)))

is a homeomorphism between T1(Hn) and (∂Hn×∂Hn−{(ξ, ξ) : ξ ∈ ∂Hn})×
R. In these coordinates, the BMS measure m = mBMS, the Haar measure
mHaar, and the Burger-Roblin measure mBR on T1(Hn) are given by

(1) dm(u) = eδβu+ (o,π(u)) eδβu− (o,π(u)) dνo(u
+)dνo(u

−)ds.

(2) dmHaar(u) = e(n−1)βu+ (o,π(u)) e(n−1)βu− (o,π(u)) dmo(u
+)dmo(u

−)ds.

(3) dmBR(u) = e(n−1)βu+ (o,π(u)) eδβu− (o,π(u)) dmo(u
+)dνo(u

−)ds.

These measures are all left Γ-invariant, and hence descend to correspond-
ing measures on T1(M) . Using T1(Hn) = G/M , we can lift the above mea-
sures to right M -invariant measures on Γ\G, which we still denote by m,
mHaar and mBR by abuse of notation. The measure m is finite and ergodic
with respect to the geodesic flow [27]. We will normalize the Patterson-
Sullivan density {νx} so that m(T1(M)) = m(Γ\G) = 1.

Let N = N+ and N− denote the expanding and the contracting horo-
spherical subgroups respectively, i.e.,

N± = {g ∈ G : asga−s → e as s→ ±∞}.

Note that

Ω := supp(m) = {[g] ∈ Γ\G : g+, g− ∈ Λ(Γ)},

where g± := [gM ]± ∈ ∂Hn.
The BMS measure m has a natural foliation corresponding to the de-

composition PN = G (modulo a Zariski closed subset) with P = N−AM .
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Explicitly, for any g ∈ G, we define the PS-measure and the Lebesgue mea-
sure on the coset gN , by

dµ̃PS
gN (gn) = e

δβ(gn)+ (o,gn)
dνo(gn)+, (2.1)

and
dµ̃`gN (gn) = e

(n−1)β(gn)+ (o,gn)
dmo(gn)+, (2.2)

respectively. We also define the measure ν̃gP on the coset gP by

dν̃gP (gp) = eδtdνo(gp)
−dt (2.3)

for t = β(gp)−(o, gp). Using the decomposition G = gPN and noting that

(gpn)− = (gp)−, we have that for any Ψ ∈ Cc(G),

m(Ψ) =

∫
gP

∫
N

Ψ(gpn)dµ̃PS
gpN (gpn)dνgP (gp). (2.4)

Finally, for x = [g] ∈ Γ\G and ε > 0 smaller than the injectivity radius at
x, we denote by dµPS

xNε
and dνxPε the measures induced by dµ̃PS

gN and dν̃gP
on xNε and xPε respectively.

2.3. Cusp decomposition. Let X0 be the pre-image of the convex core of
M under the base point projection map π : Γ\G→ Γ\G/K =M and let X
be the unit neighborhood of X0. Then Ω ⊆ X0 ⊆ X and sinceM is geomet-
rically finite, X has finite Haar-measure. WhenM is convex cocompact, X
is compact, and otherwise it can be decomposed into a compact part and
finitely many cusp neighborhoods, as we describe below.

Let Λp ⊂ Λ denote the set of parabolic fixed points (i.e. points fixed by
some parabolic element of Γ). Since Γ is geometrically finite, Λp consists of
finitely many Γ-orbits represented by {ξ1, . . . , ξk} which are called cusps of
M. A cuspidal neighborhood of ξi ∈ Λp is a set of the form

hi = π−1(Γ\ΓHξi) (2.5)

where Hξ ⊆ Hn is some fixed horoball tangent to ξ such that γHξ ∩Hξ 6= ∅
if and only if γ fixes ξ. For each i, the stabilizer StabΓ(ξi) is a free abelian
subgroup and we denote its rank by κi. We set κmax := maxκi and κmin :=
minκi. Note that 2δ > kmax(see [3, Lem. 3.5]).

For x ∈ Γ\G, we denote by rx the injectivity radius at x. For all suffi-
ciently small ε > 0, let X(ε) = {x ∈ X : rx < ε}, so that

Y (ε) := X \X(ε)

is compact, and the family X(ε) with ε < ε0 forms a shrinking family of
cusp neighborhoods.

More explicitly, we show in section 5.1 that for all sufficiently small ε > 0,

X(ε) ∩ hi � X ∩ hi,log(ε−1), (2.6)

and using the measure estimate m(hi,log(ε−1)) � ε2δ−κi (see Proposition 5.5),
we get that

m(X(ε)) � ε2δ−κmax . (2.7)
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2.4. Sobolev norms. The mixing rate of the geodesic flow depends on
the smoothness of the test functions which can be captured by appropriate
Sobolev norms we now define. Given a fixed basis of LieG, l ∈ N, and
1 ≤ p ≤ ∞, the Sobolev norm Sp,l(Ψ) of Ψ ∈ C∞(Γ\G) is defined by

Sp,l(Ψ) =
∑
‖D(Ψ)‖Haar

p (2.8)

where the sum is taken over all monomials D of order at most l in the basis
elements, and ‖Ψ‖Haar

p denotes the Lp(Γ\G,mHaar)-norm of Ψ. While this
norm depends on the choice of basis, changing the basis will only change the
norm by some bounded factor.

We will mostly use the norms S∞,l, which we will denote by Sl to simplify
notation. Since supp(m) ⊂ X, it is sufficient for our purpose to consider
functions supported on X, and since X has finite Haar measure we can, and
will use the bound

Sp,l(Ψ) ≤ Sl(Ψ)mHaar(X)1/p � Sl(Ψ),

where the implied constant is independent of Ψ ∈ C∞(X).

3. Decay of matrix coefficients

A crucial ingredient in our proof is the exponential mixing of the geodesic
flow with respect to the BMS-measure. We use the inner product notation:

〈atΨ,Φ〉 =

∫
Γ\G

Ψ(xat)Φ(x) dm(x).

By the remarks following Theorem 1.9, this following theorem is the only
missing part of it, given the works [24] and [20].

Theorem 3.1. Suppose that δ > max{n−1
2 , n − 2} (resp. δ > n−1

2 ). Then

there exist an explicit η0 > 0 (depending only on the spectral gap of L2(M))
and l ∈ N, such that for any bounded Ψ,Φ ∈ C∞(X) (resp. Ψ,Φ ∈
C∞(X)M )

〈atΨ,Φ〉 = m(Ψ) ·m(Φ) +O(e−η0tSl(Ψ)Sl(Φ)).

In the rest of this section, we assume

δ > (n− 1)/2.

Theorem 3.1 with an explicit η0 depending only on the spectral gap of
L2(M) is then proved in ([22, Theorem 6.16], [5]) under the assumption
that the test functions are compactly supported. In order to complete the
proof of the theorem we need to remove the assumption on the support of
the test functions.

To do this, we will approximate Ψ as the sum Ψε + (Ψ−Ψε) where Ψε is
a smooth function supported on Y (ε), and similarly for Φ. In view of (2.7),
the main term will be reduced to 〈atΨε,Φε〉, for which the result follows
from [22, Theorem 6.16]. However, since the dependence on the supports
of Ψε and Φε was not made explicit in terms of ε in [22], we need to redo
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their arguments while keeping track of the dependence on ε as well as on all
implied constants along the proof.

3.1. Control of BR measures. Since mBR(Γ\G) =∞ when Γ < G is not
a lattice, and some of the implied constants in [22, Thm. 6.16] depend on
mBR(supp(Ψ)), we need the following result to control the dependence on
these measures.

Lemma 3.2. Assume that δ > n−1
2 . Then there exists c > 0 such that for

any K-invariant subset Y ⊂ Γ\G with mHaar(Y ) <∞, we have

mBR(Y ) ≤ c ·
√
mHaar(Y ).

Proof. Recall that by [26] and [19], there exists a positive eigenfunction
φ0 ∈ C∞(Γ\G)K for the Laplace operator such that

−∆φ0 = δ(n− 1− δ)φ0.

Under the assumption δ > n−1
2 , we have ‖φ0‖Haar

2 < ∞. If Ψ denotes the
indicator function of Y , then Ψ is K-invariant and hence by [18, Lem. 6.7]

mBR(Ψ) =

∫
X

Ψ(x)φ0(x)dmHaar(x),

and in particular mBR(Y ) ≤ ‖φ0‖Haar
2

√
mHaar(Y ), as claimed. �

Since X is K-invariant with mHaar(X) < ∞, the following follows from
Lemma 3.2:

Corollary 3.3. If δ > (n−1)
2 , then mBR(X) <∞.

3.2. Test function supported on small balls. For a subset S ⊆ G and
ε > 0, Sε denotes the ε-neighborhood of e in S, that is, Sε = {g ∈ S :
d(g, e) ≤ ε}. Set Bε := PεNε; and note that Gε � Bε for all sufficiently
small ε > 0. In this subsection, we will prove the following.

Proposition 3.4. Suppose δ > max{n−1
2 , n − 2} (resp. δ > n−1

2 ). There
exist l ∈ N depending only on dim(G) and η > 0 (depending only on the
spectral gap of Γ) such that for any ε ∈ (0, 1) small and any x ∈ Y (ε) ∩ Ω,
for all Φ,Ψ ∈ C∞(xBε) (resp. Φ,Ψ ∈ C∞(xBεM)M ), we have that

〈atΨ,Φ〉 = m(Ψ)m(Φ) +O(e−ηtSl(Ψ)Sl(Φ))

where the implied constant is absolute.

Proof. Fix Φ,Ψ ∈ C∞(xBε). In the case when n−1
2 < δ ≤ n− 2, we assume

that Φ,Ψ ∈ C∞(xBεM) are M -invariant. We have

〈atΨ,Φ〉 =

∫
xp∈xPε

∫
xpNε

Ψ(xpnat)Φ(xpn)dµPS
xpN (xpn)dνxP (xp).
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Now, for fixed p ∈ Pε, letting φ = Φ|xpNε ∈ C∞c (xpNε), we estimate the
inner integral∫

xpNε

Ψ(xpnat)Φ(xpn)dµPS
xpN (xpn) =

∫
xpNε

Ψ(xpnat)φ(xpn)dµPS
xpN (xpn)

(3.1)
as follows.

Fix a small 0 < ε0 < ε2 and consider the functions Ψ±ε0 on Γ\G defined by

Ψ+
ε0(y) = sup

g∈Gε0
Ψ(yg), Ψ−ε0(y) = inf

g∈Gε0
Ψ(yg)

and let

ψ±ε0(xp) =

∫
xpN

Ψ±ε0(xpn)dµPS
xpN (xpn).

We then have that

νxP (ψ±ε0) = m(Ψ±ε0) and

∫
xPε

µPS
xpN (φ)dνxP (xp) = m(Φ).

Moroever, since Ψ(x) = Ψ±ε0(x) +O(ε0S∞,1(Ψ)), we get that

m(Ψ±ε0) = m(Ψ) +O(ε0S∞,1(Ψ)),

where we used that m(X) <∞. We will also use the notation

φ+
ε1(y) := sup

n∈Nε1
φ(yn),

and similarly get that µPS
yN (φ+

ε1) = µPS
yN (φ) +O(ε1S∞,1(φ)).

Now by ([22, Lem. 6.2], [5]), there exists some absolute constant c > 0,
such that the integral∫

xpNε

Ψ(xpnat)φ(xpn)dµPS
xpN (xpn) (3.2)

is bounded from above and below, respectively, by

(1± cε0)e−δt
∑

p∈Px(t)

ψ±cε0(xp)φ±
ce−tε0

(xpa−t),

where Px(t) is the finite set defined by

Px(t) = {p ∈ Pε : xpNεat ∩ xpNε 6= ∅}.

Moreover, by the proof of [22, Thm. 6.7], there are positive constants η > 0
(depending only on the spectral gap of Γ) and α > 0 such that

e−δt
∑

p∈Px(t)

ψ±ε0(xp)φ+
e−tε0

(xpa−t) = νxP (ψ±ε0)µPS
xpN (φ±

e−tε0
)

+O(e−ηt + εα0 )ABR
Ψ APS

φ +O(e−ηtS2,l(Ψ)S2,l(φ))

where

ABR
Ψ := S∞,1(Ψ)mBR(supp(Ψ))� S∞,1(Ψ),
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(by Lemma 3.2), and

APS
φ := S∞,1(φ)µPS

xpN (supp(φ)) ≤ S∞,1(φ)µPS
xpN (xpNε).

Notice that the injectivity radii of the supports of φ and ψ are at least ε and
since we chose ε0 � ε2 much smaller, all the implied constants are absolute
and independent of ε and ε0.

Combining these results and estimating

νxP (ψ±ε0) = m(Ψ±ε0) = m(Ψ) +O(ε0S∞,1(Ψ)),

and

µPS
xpN (φ±

e−tε0
) = µPS

xpN (φ) +O(ε0S∞,1(φ)),

we get that∫
xpNε

Ψ(xpnat)φ(xpn)dµPS
xpN (xpn) = m(Ψ)µPS

xpN (φ)(1 +O(ε0))

+O(ε0S∞,1(Ψ)S∞,1(Ψ)) +O(e−ηt + εα0 )S∞,1(Ψ)S∞,1(φ)µPS
xpN (xpNε)

+O(e−ηtS2,l(Ψ)S2,l(φ)).

Since all implied constants are independent of ε0, taking the limit as
ε0 → 0 gives∫

xpNε

Ψ(xpnat)φ(xpn)dµPS
xpN (xpn) = m(Ψ)µPS

xpN (φ)

+O(e−ηtSl(Ψ)Sl(Φ)µPS
xpN (xpNε))) +O(e−ηtS2,l(Ψ)S2,l(φ))

where we used that Sl(φ) ≤ Sl(Φ).
Now, integrating over xPε, and noting that

∫
xPε

µPS
xpN (φ)dνxP (xp) = m(Φ),

the main term is indeed m(Ψ)m(Φ). Next, since∫
xPε

µPS
xpN (xpNε))dνxP (xp) =

∫
xPε

∫
xpNε

dµPS
xpNdνxP (xp) = m(Bε) ≤ 1,

the integral of the first remainder term is bounded by O(e−ηtSl(Ψ)Sl(Φ)).

For the second remainder term, we bound S2,l(φ) ≤ Sl(Φ)
√
µ`xpN (xpNε) to

get that∫
xPε

S2,l(Φ|xpNε )dνxP (xp) � Sl(Φ)(µ`xpN (xpNε))
−1/2

∫
xPε

∫
xpNε

dµ`xpN (xpn)dνxP (xp)

= Sl(Φ)(µ`xpN (xpNε))
−1/2mBR(xPεNε).

We now use Lemma 3.2 to bound

mBR(xPεNε) ≤ mBR(xPεNεK)�
√
mHaar(xPεNεK),

and since there is a uniform constant c > 0 such that PεNεK ⊆ PcεK, noting
that PεK = N−ε AεK, we can bound

mHaar(xPεNεK)� mHaar(xPcεK)� µ`xpN (xpNε)
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to get that ∫
xPε

S2,l(Φ|xpNε )dνxP (xp)� Sl(Φ).

Combining the two remainder terms, and bounding all norms by Sl(Ψ)Sl(Φ)
we get that

〈atΨ,Φ〉 = m(Ψ)m(Φ) +O(e−ηtSl(Ψ)Sl(Φ))

where the implied constant is absolute. �

3.3. General test functions. We now use a partition of unity to reduce
the case of a general test function to the case of functions with small support.

For ε ∈ (0, 1) sufficiently small, let Qε be a maximal family of points in
X ∩ Yε such that the sets yBε3 , y ∈ Qε, are disjoint and meet Y2ε, and let
Q′ε := {y ∈ Qε : yBε2 ∩ Y4ε 6= ∅}. Note that the collection {yBε2 : y ∈
Qε} covers X ∩ Y2ε and that {yBε3Bε3 : y ∈ Q′ε} covers X ∩ Y4ε. Since

mHaar(X) <∞, we have #Qε = O(ε−3 dim(G)).
Fix a non-negative function βε ∈ C∞(Bε) taking values in [0, 1] which

is 1 on Bε3Bε3 and 0 outside Bε2 (note that Bε3Bε3 ⊆ B2ε3 ⊂ Bε2). We
can choose βε so that Sl(βε) � ε−3l. For each y ∈ Qε, define a function
βy,ε(yb) := βε(b) on yBε.

Lemma 3.5. For any x ∈
⋃
y∈Q′ε yBε2, we have∑
z∈Qε

βz,ε(x) ≥ 1.

Proof. Let y ∈ Q′ε. If x ∈ yBε3Bε3 , then βy,ε(x) = 1 and hence
∑

z∈Qε βz,ε(x) ≥
1. Now suppose that x ∈ yBε2 \ yBε3Bε3 , in which case xBε3 ∩ yBε3 = ∅.
Since y ∈ Y3ε and x ∈ yBε2 we have that x ∈ Y2ε ∩X. By the maximality
of Qε, there exists z ∈ Qε such that xBε3 ∩ zBε3 6= ∅. This implies that
x ∈ zBε3Bε3 and hence βz,ε(x) ≥ 1. �

Now consider the normalized function (supported on yBε) given by

αy,ε :=
βy,ε∑
z∈Qε βz,ε

.

Lemma 3.6. For any y ∈ Q′ε, we have Sl(αy,ε) � ε−p, where p and the
implied constant depend only on l and dim(G).

Proof. Let sε(x) =
∑

z∈Qε βz,ε(x) so that αy,ε(x) =
βy,ε(x)
sε(x) . Since αy,ε is

supported on yBε2 , we only need to bound its derivatives there in which
case we have that sε(x) =

∑
z∈Qε βz,ε(x) ≥ 1. Taking derivatives of the

quotient αy,ε =
βy,ε
sε

and using the bound sε(x) ≥ 1 together with the bound

S∞,l(sε)� ε−3l#Qε � ε−3(l+dim(G)) proves the lemma. �

Lemma 3.7. The function τε :=
∑

y∈Q′ε αy,ε belongs to C∞(X) and satisfies

that 0 ≤ τε ≤ 1, τε = 1 on X ∩ Y4ε, and τε = 0 outside Yε.
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Proof. Since τε =

∑
y∈Q′ε

βy,ε∑
y∈Qε βy,ε

, it is clear that 0 ≤ τε ≤ 1. Note that if

y ∈ Qε \ Q′ε, then yBε2 ∩ Y4ε = ∅. Hence if x ∈ X ∩ Y4ε satisfies x 6∈
yBε2 , then βy,ε(x) = 0. This shows that

∑
y∈Qε βy,ε(x) =

∑
y∈Q′ε βy,ε(x).

Moroever, since X ∩ Y4ε is covered by {yBε3Bε3 : y ∈ Q′ε}, we have that∑
y∈Q′ε βy,ε(x) 6= 0 on X ∩ Y4ε and hence indeed τε = 1 there. Next, since

for any y ∈ Q′ε, we have that yBε2 ⊆ Yε; so τε(x) = 0 outside of Yε. Finally

we can bound Sl(τε) ≤
∑

y∈Q′ε Slαy,ε � ε−p+3 dim(G). �

Proof of Theorem 3.1. Suppose first that δ > max{n−1
2 , n − 2}. Now, for

given Ψ,Φ ∈ C∞(X), consider

Ψε := Ψ · τε =
∑
y∈Q′ε

Ψ · αy,ε and Φε := Φ · τε =
∑
y∈Q′ε

Φ · αy,ε.

Note that Sl(Ψ ·αy,ε)� Sl(αy,ε)Sl(Ψ)� ε−pSl(Ψ), with p as in Lemma 3.6.
Now applying Proposition 3.4 to each Ψ · αy,ε and Φ · αy′,ε for y, y′ ∈ Q′ε,
and recalling that #Qε = O(ε−3 dimG), we get that

〈atΨε,Φε〉 = m(Ψε)m(Φε) +O(ε−p0e−ηtSl(Ψ)Sl(Φ)) (3.3)

with p0 = 2p+ 6 dim(G).
It follows from (2.7) that for δ0 := 2δ − κmax > 0,

m(Ψ−Ψε) ≤ ‖Ψ‖∞m(X4ε)� εδ0‖Ψ‖∞,

and similarly m(Φ− Φε)� εδ0‖Φ‖∞. Hence

|〈atΨ,Φ〉 − 〈atΨε,Φε〉| � εδ0‖Ψ‖∞‖Φ‖∞.

We then deduce

〈atΨ,Φ〉 = m(Ψ)m(Φ) +O(εδ0‖Ψ‖∞‖Φ‖∞) +O(ε−p0e−ηtSl(Ψ)Sl(Φ)).

Taking ε = e
− ηt
δ0+p0 and recalling that S∞,0 � Sl, we get that

〈atΨ,Φ〉 = m(Ψ)m(Φ) +O(e−η0tSl(Ψ)Sl(Φ))

with η0 = ηδ0
δ0+p1

. This concluds the proof when δ > max{n−1
2 , n− 2}.

Finally, for n > 3, if n−1
2 < δ ≤ n − 2, and Ψ and Φ are M -invariant,

we can replace αy,ε with an M -invariant function αMy,ε(x) =
∫
M αy,ε(xm)dm

and run the same argument to get (3.3). Then the rest of the proof is
identical. �

4. Shrinking target problems

We now use the results on the exponential decay of matrix coefficients to
prove an effective mean ergodic theorem and apply it to various shrinking
target problems. As before, we assume that Γ is a geometrically finite,
Zariski dense subgroup of G = SO(n, 1)◦. For n ≥ 5, in the case where
Γ has a cusp and δ ≤ n − 2, all functions and shrinking targets on X we
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consider below are assumed to be M -invariant so that Theorem 1.9 applies
to them. All functions below are also assumed to be real-valued functions.

Remark 4.1. While we state our results for the geodesic flow on geometrically
finite hyperbolic manifolds, we note that the results in this section are quite
general and hold for any dynamical system on a measure space (X,m) for
which one has exponential decay of correlation in the sense of Theorem 3.1

4.1. Effective mean ergodic theorem. Fix ` as given in Theorem 3.1.
For notational convenience, we introduce the norm

S∗(Ψ) :=
Sl(Ψ)

‖Ψ‖
for any non-zero ψ ∈ C∞(X) ∩ L2(X,m),

where ‖Ψ‖ denotes the L2-norm of Ψ. In the entire section, we will take λ to
be either the Lebesgue measure on R (when considering a continuous time
flow) or the counting measure on Z (for a discrete time flow). For T ≥ 1,
consider the averaging operator λT on L2(X,m) given by

λT (Ψ)(x) =
1

T

∫ T

0
Ψ(xat)dλ(t).

Theorem 4.1. For any non-zero Ψ ∈ C∞(X), and for all T � 1,

‖λT (Ψ)−m(Ψ)‖2 � (1 + log(S∗(Ψ))) · ‖Ψ‖2

T
.

Proof. Since we have ‖λT (Ψ) − m(Ψ)‖2 = ‖λT (Ψ)‖2 − m(Ψ)2, it is enough
to estimate ‖λT (Ψ)‖2. Now, expand

‖λTΨ‖2 =
1

T 2

∫ T

0

∫ T

0

∫
X

Ψ(xat1−t2)Ψ(x)dm(x)dλ(t1)dλ(t2)

=
1

T 2

∫ T

−T

∫
X

Ψ(xat)Ψ(x)dm(x)(T − |t|)dλ(t)

where we used that λ is translation invariant and λ([0, T )∩[t, t+T )) = T−|t|
(where in the discrete case we may and will assume that t and T are integers).

Now fix a large parameter M to be determined later. For |t| ≥ M large
we use Theorem 1.9 to get that∫

X
Ψ(xat)Ψ(x)dm(x) = m(Ψ)2 +O(S(Ψ)2e−η0|t|),

for some η0 ∈ (0, 1). On the other hand, for |t| < M small, we bound
〈atΨ,Ψ〉 ≤ ‖Ψ‖2, to get that

‖λTΨ‖2 = m(Ψ)2 +O(‖Ψ‖2MT ) +O(S(Ψ)2e−η0M

T ),

using m(Ψ) ≤ ‖Ψ‖. Using these estimates, we get that

‖λT (Ψ)−m(Ψ)‖2 � M‖Ψ‖2 + S(Ψ)2e−η0M

T
.
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It remains to set M = 2 log(S∗(ψ))η0
−1 to finish the proof. �

Following [13], for a non-negative function Ψ on X, we define

CT,Ψ := {x ∈ X : |λT (Ψ)(x)−m(Ψ)| ≥ m(Ψ)
2 }; (4.2)

CoT,Ψ := {x ∈ X : λT (Ψ)(x) = 0}. (4.3)

Note that CoT,Ψ ⊆ CT,Ψ.
As a direct consequence of the effective mean ergodic theorem, we get the

following bounds:

Proposition 4.2. For a non-negative Ψ ∈ C∞(X) and T ≥ 1, we have

m(CT,Ψ)� log(S∗(Ψ))‖Ψ‖2

T ·m(Ψ)2
.

Proof. On one hand,

‖λT (Ψ)−m(Ψ)‖2 ≥
∫
CT,Ψ
|λT (Ψ)(x)−m(Ψ)|2dm ≥

(m(Ψ))2m(CT,Ψ)

4
.

On the other hand, by Theorem 4.1,

‖λT (Ψ)−m(Ψ)‖2 � log(S∗(Ψ))‖Ψ‖2

T
.

Putting these two together gives the result. �

Having control on the measures of these subsets has immediate conse-
quences to several shrinking target problems. Indeed, a simple adaptation
of [13, Lemmas 13 and 14] gives the following result.

Lemma 4.3. Let {Ψt}t≥1 ⊆ L2(X,m) be a decreasing family of bounded
non-negative functions.

(1) If
∑

j m(Cotj−1,Ψtj
) < ∞ for some subsequence tj → ∞, then for

m-a.e. x ∈ X,

λtΨt(x) 6= 0 for all t�x 1.

(2) If there exists C > 1 such that m(Ψ2j ) ≤ C ·m(Ψ2j+1) for all j � 1
and

∑
j m(C2j−1,Ψ

2j
) <∞, then for m-a.e. x ∈ X,

λt(Ψt)(x) ≥ m(Ψt)

4C
for all t�x 1.

(3) If there exists C > 1 such that m(Ψ2j ) ≤ C ·m(Ψ2j+1) for all j � 1
and

∑
j m(C2j+1,Ψ

2j
) <∞, then for m-a.e. x ∈ X,

λt(Ψt)(x) ≤ (4C) ·m(Ψt) for all t�x 1.
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4.2. Hitting along a subsequence. In the rest of this section, let B =
{Bt} be a family of shrinking targets in X. Recall that a family B is inner
regular (resp. outer regular) if there exist c > 0, α > 0 and smooth positive
functions 0 ≤ Ψ−t ≤ IdBt (resp. IdBt ≤ Ψ+

t ≤ c) such that

• m(Bt) ≤ c ·m(Ψ−t ) (resp. m(Ψ+
t ) ≤ c ·m(Bt));

• S(Ψ±t ) ≤ c ·m(Bt)
−α.

A family B is regular if it is inner and outer regular. When we want to
emphasize the parameters c and α, we say that a family is (c, α)-regular.
Our first application of the effective mean ergodic theorem is the following.

Proposition 4.4. Assume that B is inner regular and satisfies

lim inf
t→∞

| log(m(Bt))|
tm(Bt)

= 0.

Then there is a subsequence tj →∞ such that for m-a.e. x ∈ X,

λ({t ≤ tj : xat ∈ Btj})� tjm(Btj ).

If B is also outer regular, then for m-a.e. x ∈ X,

λ({t ≤ tj : xat ∈ Btj}) � tjm(Btj ).

Proof. Since B is inner regular, there are functions Ψt ∈ C∞(X) with 0 ≤
Ψt ≤ IdBt such that log(S∗(Ψt)) � log(m(Bt)) and m(Ψt) � m(Bt). The
mean ergodic theorem (Theorem 4.1) applied to Ψt implies that

‖λt(Ψt)−m(Ψt)‖2 �
(1 + log(S∗(Ψt)))‖Ψt‖2

t
.

Set Ψ̃t := Ψt
m(Ψt)

to get that

‖λt(Ψ̃t)− 1‖2 � (1 + log(S∗(Ψt)))‖Ψt‖2

m(Ψt)2 · t
� | log(m(Bt))|

m(Bt) · t
,

where we used that ‖Ψt‖2 ≤ m(Bt). From our assumption, there is some

subsequence tj such that
log(m(Btj ))

m(Btj )·tj → 0. Hence λtj (Ψ̃tj )→ 1 in L2(Γ\G,m)

and, after perhaps passing to another subsequence, we get λtj (Ψ̃tj )(x)→ 1
for m-a.e x ∈ X. For any x in this full measure subset, the inequality

λtj (Ψ̃tj )(x) ≤ λ({t≤tj :xat∈Btj })
tjm(Ψtj ) implies that λ({t ≤ tj : xat ∈ Btj}) �

tjm(Btj ) as claimed. Assuming that{Bt} is also outer regular, repeating
the same argument for functions approximating IdBt from above gives the
other inequality. �

In particular, taking λ to be the Lebesgue measure gives the first part of
Theorem 1.3. Moreover, by taking λ to be the counting measure, we get the
following consequence implying a discrete version of Theorem 1.2(1).

Corollary 4.5. If B is inner regular and lim inft→∞
| log(m(Bt))|

m(Bt)t
= 0, then

{k ∈ N : xak ∈ Bk} is unbounded for m-a.e. x ∈ X.
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Proof. Applying the above result with λ the counting measure shows that
for m-a.e. x ∈ X,

#{k ≤ tj : xak ∈ Btj} � tjm(Btj )→∞,
along some subsequence tj . Since Btj ⊆ Bk for any k ≤ tj , it follows that
the subset {k : xak ∈ Bk} is unbounded as well. �

4.3. Orbits eventually always hitting. The results of the previous sec-
tion allow us to control how orbits hit the shrinking targets along a sub-
sequence of times, however, under the same hypothesis we could also have
different subsequences for which this asymptotic fails, and for which the set
{k ≤ kj : xak ∈ Bkj} may even be empty (see e.g. [13, Proposition 12]). A
more subtle question is to ask what conditions on the shrinking sets guar-
antee that the truncated orbit {xaj : j ≤ k} is eventually always hitting
the targets Bk, and moreover, how large is their intersection? This is the
content of the following Theorem 4.6, which is a discrete version of Theorem
1.2(2).

Theorem 4.6. Assume that B is inner regular and that
∑∞

j=1

| log(m(Btj ))|
tj−1m(Btj ) <

∞ for some sequence tj → ∞. Then for m-a.e. x ∈ X and for all t �x 1,
we have {k ∈ N : k ≤ t, xak ∈ Bt} 6= ∅.

Proof. From the inner regularity, we can find smooth functions 0 ≤ Ψt ≤
IdBt satisfying log(Sl(Ψt))� log(m(Bt)) and m(Bt)� m(Ψt). By Proposi-
tion 4.2, we can estimate thatfor any s, t > 1

m(Cs,Ψt)�
| log(S∗(Ψt))| · ‖Ψt‖2

sm(Ψt)2
� | log(m(Bk))|

sm(Bt)
.

Since m(Ctj−1,Ψtj
) � | log(m(Btj ))|

tj−1m(Btj ) , we obtain
∑

j m(Ctj−1,Ψtj
) < ∞. Hence

by the first part of Lemma 4.3, we have that for m-a.e. x ∈ X, λtΨt(x) 6= 0
for all sufficiently large t. Taking λ to be the counting measure on N, this
implies that {k ∈ N : k ≤ t, xak ∈ Bt} 6= ∅ for all sufficiently large t. �

Theorem 4.7 implies Theorem 1.3(2).

Theorem 4.7. Assume that B is regular and that m(B2t) � m(Bt). If∑∞
j=1

| log(m(B
2j

))|
2jm(B

2j
)

<∞, then, for m-a.e. x, and for all t�x 1,

#{j ≤ t : xaj ∈ Bt}
t

� `{s ≤ t : xas ∈ Bt}
t

� m(Bt).

Proof. Let Ψ±t be functions which approximate IdBt from above and be-
low such that 0 ≤ Ψ−t ≤ IdBt ≤ Ψ+

t ≤ c, log(Sl(Ψ±t )) � log(m(Bt)) and
m(Ψ+

t ) � m(Ψ−t ) � m(Bt). For each of these functions we can use Proposi-

tion 4.2 as before to estimate m(Cs,Ψ±t )� | log(m(Bt))|
sm(Bt)

. Taking s = 2j±1 and

t = 2j , we get that
∑

j m(C2j±1,Ψ±
2j

) < ∞. So by the second and third part



23

of Lemma 4.3 we get that for m-a.e. x ∈ X and for all sufficiently large t,
we have

m(Bt)� m(Ψ−t )� λtΨ
−
t ≤ λt(IdBt) ≤ λtΨ

+
t � m(Ψ+

t )� m(Bt).

This implies that λt(IdBt) � m(Bt). Finally, taking λ to be the counting
measure on N (resp. the Lebesgue measure) gives the result for discrete
(resp. continuous) time flow. �

4.4. Logarithm law for the first hitting time. Using similar arguments
utilizing the effective mean ergodic theorem, we can prove the logarithm law
for the first hitting time for the discrete flow. Recall the discrete first hitting
time function

τdB(x) = min{k ∈ N : xak ∈ B}. (4.4)

Theorem 4.8. If B is inner regular, then

lim
t→∞

log(τdBt(x))

− log(m(Bt))
= 1 for m-a.e. x ∈ X.

Proof. We first note that the bound

lim inf
t→∞

log(τdBt(x))

− log(m(Bt))
≥ 1,

holds for m-a.e.x; indeed, this holds in general for any monotone sequence of
shrinking targets in a measure preserving dynamical system (see [14, Lemma
2.2]). It is thus sufficient to show that for m-a.e. x,

lim sup
t→∞

log(τdBt(x))

− log(m(Bt))
≤ 1.

Fix a small ε > 0 and set

A+
ε := {x ∈ X : lim sup

t→∞

log(τdBt(x))

− logm(Bt)
> 1 + 2ε}.

Note that if x ∈ A+
ε , then there are arbitrarily large values of t for which

τdBt(x) ≥ 1
m(Bt)1+2ε , and hence x ∈ Cokε(t),Ψt where Ψt = IdBt and

kε(t) = b 1

(m(Bt))1+2ε
c.

Now for any j ∈ N, we choose yj ∈ ( 1
2j+1 ,

1
2j

] such that either tj = sup{t :
m(Bt) ≥ yj} satisfies m(Btj ) = yj or there is no t with m(Bt) ∈ [yj , yj−1)

(if the function t 7→ m(Bt) is continuous, we may simply take yj = 2−j . In
general, since the function t 7→ m(Bt) is monotone decreasing, it has at most
countably many points of discontinuity and hence we can always find such
points). We partition [0,∞) into intervals Ij = {t : m(Bt) ∈ [yj+1, yj)} and
write

A+
ε ⊆

⋂
k∈N

⋃
j>k

⋃
t∈Ij

Cokε(t),Ψt .
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For all sufficiently large j and any t with m(Bt) ∈ [yj+1, yj), we have that

kε(t) ∈ [2(1+ε)(j), 2(1+2ε)(j+2)] so that Cokε(t),Ψt ⊆ C
o
2(1+ε)j ,Ψt

. Since Btj ⊆ Bt
for all t < tj , we get Co

2(1+ε)j ,Ψt
⊆ Co

2(1+ε)j ,Ψtj
. We can thus further bound

A+
ε ⊆

⋂
k∈N

⋃
j>k,Ij 6=∅

Co
2(1+ε)j ,Ψtj

.

From our choice of yj and tj , we have that m(Ψtj ) = yj ∈ ( 1
2j+1 ,

1
2j

]. Since

{Bt} is inner regular, we have 0 ≤ Ψ−tj ≤ Ψtj with m(Ψ−tj ) � m(Ψtj ) and

log(S∗(Ψ−tj )) � | log(m(Ψtj ))| � j. Using Proposition 4.2 for the smooth

functions as before, we bound

m(C2j(1+ε),Ψtj
) ≤ m(C2j(1+ε),Ψ−tj

)� j

2j(1+ε)2−j
� j2−εj .

Hence m(A+
ε ) ≤

∑
j>k j2

−εj � k2−εk for all k ∈ N. Therefore m(A+
ε ) = 0

and

lim sup
t→∞

log(τdBt(x))

− logm(Bt)
≤ 1 + 2ε for m-a.e. x ∈ X.

This holds for any ε > 0. Hence, by taking a sequence of εj → 0, we finish
the proof. �

4.5. Thickening along the flow. We note that if {k ∈ N : xak ∈ Bk} is
unbounded (resp. {j ≤ k : xaj ∈ Bk} 6= ∅), then {t ∈ R : xat ∈ Bt} is
unbounded (resp. {t ≤ k : xat ∈ Bk} 6= ∅). Hence the same assumptions on
the shrinking rate of m(Bt) as in Proposition 4.4 give the same conclusions
also for the continuous flow. However, it is possible for the set {t ∈ (0,∞) :
xat ∈ Bt} to be unbounded even when it is bounded for the discrete time
flow. In order to get the correct thresholds for the continuous flow, one
needs to consider the thickened targets.

For any set B ⊆ X we define its thickening B̃ to be

B̃ =
⋃
|s|<1/2

Bas. (4.5)

In the following lemma we observe that the shrinking target problems for
the continuous flow can be translated to similar problems for the discrete
flow hitting the thickened targets.

Lemma 4.9. For any B ⊆ X and x ∈ X, we have:

(1) If xat ∈ B for some t ∈ R, then xak ∈ B̃ for k ∈ Z with |t−k| ≤ 1/2.

(2) If xak ∈ B̃ with k ∈ Z, then xat ∈ B for some t with |t− k| ≤ 1/2.
(3) |τB(x)− τd

B̃
(x)| ≤ 1/2.

The proof of these observations is easy once stated and we omit the details.
Using this, we get the following sharper results for the continuous time flow,
which imply Theorems 1.1 and 1.2.
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Theorem 4.10. Suppose that the family {B̃t}t≥1 of thickened targets is
inner regular.

(1) If lim infk→∞
| log(m(B̃k)|
m(B̃k)k

= 0 then for m-a.e. x ∈ X, {t ∈ R : xat ∈
Bt} is unbounded.

(2) If
∑∞

j=1
| log(m(B̃

2j
))|

2jm(B̃
2j

)
<∞, then for m-a.e. x ∈ X,

{0 < s < t : xas ∈ Bt} 6= ∅ for all t�x 1.

(3) For m-a.e. x ∈ X,

lim
t→∞

log τBt(x)

− logm(B̃t)
= 1.

Proof. The first condition (with k replaced by k + 1) implies that the set

{k ∈ N : xak ∈ B̃k+1} is unbounded. For each k in this set, there is some
tk ∈ [k − 1/2, k + 1/2] with xatk ∈ Bk+1 ⊆ Btk , proving the first part.

For the second part, the summability condition implies that for m-a.e. x,
we have that {xaj : j ≤ k)} ∩ B̃k 6= ∅ for all sufficiently large k > k0. Now

for t ≥ k0 + 1 and k := btc, there is some j ≤ k with xaj ∈ B̃k; hence there
is s ≤ t with xas ∈ Bk ⊆ Bt.

Finally for the last part, since |τB(x)− τd
B̃

(x)| ≤ 1/2, we get that

lim
t→∞

log τBt(x)

− logm(B̃t)
= lim

t→∞

log τd
B̃t

(x)

− logm(B̃t)
.

�

Remark 4.6. The problem of estimating `{t ≤ k : xat ∈ Bk}, for the contin-
uous time flow, does not easily reduce to the discrete time problem for the
thickened targets. Here, knowing that xak ∈ B̃k only tells us that xat ∈ Bk
for some t close to k but not on the amount of time spent there. Hence, to get

asymptotics we need the stronger condition that
∑∞

j=1
| log(m(B

2j
))|

2jm(B
2j

)
<∞ for

the original sets and not the thickened sets. In particular, if m(Bk) � k−a for

some a ≥ 1 and m(B̃k) � k−b for some b < 1, then by reducing to the thick-
ened case, we know that for all sufficiently large k, {t ≤ k : xat ∈ Bk} 6= ∅,
but we do not get an asymptotic estimate for the size of these sets.

5. Explicit examples

In this section, we consider explicit examples of shrinking targets given
by shrinking cusp neighborhoods, shrinking metric balls and shrinking tubu-
lar neighborhoods, and show that they are regular and approximate their
measure.
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5.1. Cusp neighborhoods. Let h1, · · · , hk and hi,t be the cusp neighbor-
hoods defined in (2.5). In order to apply our results for these sets we need

to verify that the family {hi,t}t≥1 is regular and satisfies m(hi,t) � e−t(2δ−κi)
where κi is the rank of the parabolic fixed points associated to hi. While
the upper bound m(hi,t)� e−t(2δ−κi) is proved in [2] and [23], we could not
find a reference where the lower bound is established; so we include a proof
for the convenience of readers.

The important feature of a geometrically finite group is that all of its para-
bolic fixed points are bounded, i.e., the stabilizer of ξ in Γ acts cocompactly
on Λ − {ξ} for each parabolic fixed point ξ. This is the main ingredient
of the argument below. We refer to [1] for the description of horoballs in
geometrically finite manifolds that will be used below.

We will work here with the upper half space model

Hn = {z = (x, y) : x ∈ Rn−1, y > 0},
and fix our base point to be o = (0, 1). Since we will work with one fixed
cusp, we may assume without loss of generality that it is the infiniy ∞. Set
Γ∞ := StabΓ∞ and κ to be the rank of ∞. Without loss of generality, we
assume that Γ∞ = Zκ. Fix a horoball H̃(0) ⊂ Hn such that

Γ∞ = {γ ∈ Γ : H̃(0) ∩ γH̃(0) 6= ∅} = {γ ∈ Γ : H̃(0) = γH̃(0)}.
In fact, H̃(0) is of the form {(x, y) : y = y0} for some y0 > 0. For

the notational simplicity, we assume y0 = 1. Set H̃(t) = {z ∈ H̃(0) :

d(z, ∂H̃(0)) ≥ t} = {(x, y) : y ≥ et}. Without loss of generality, we may

assume π(ht) = Γ∞\H̃(t) where h∞,t = ht.
Choose a fundamental domain F∞ ⊆ Rn−1 for the action of Γ∞ on Rn−1

containing the origin so that the sets, int(γF∞), are mutually disjoint for
γ ∈ Γ∞. Note that H ′(t) = {z = (x, y) : x ∈ F∞ : y ≥ et} is a fundamental

domain for π(ht) = Γ∞\H̃(t). We can choose a compact fundamental paral-
lelepiped P containing F∞ ∩Λ such that Γ∞P covers Λ \ {∞} and int(γP)s
are mutually disjoint for all γ ∈ Γ∞. We may choose P to contain the origin
so that if H(t) := H ′(t) ∩ hull(Λ), then

(F∞ ∩ Λ)× [et,∞) ⊂ H(t) ⊂ P × [et,∞). (5.1)

As P is compact, we have for any z ∈ H(t), we have d(Γo, z) = d(o, z),
and for z ∈ ∂H(t),

d(Γo, z) = d(o, z) = t+O(e−t).

The following is also clear from (5.1):

Proposition 5.1. The injectivity radius rz at any point z ∈ ∂H(t) satisfies
rz � e−t, where the implied constants are uniform for all t� 1.

We will use the following well-known fact:

Proposition 5.2. There exists c > 0 such that for all t ≥ 0,

H(t+ c) ⊂ {z ∈ hull(Λ) ∩H(0) : d(z,Γo) ≥ t} ⊆ H(t− c).
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Next we want to estimate the measure m(ht) for large t. For any ξ− 6=
ξ+ ∈ ∂Hn − {∞} and s ∈ R, we denote by ξs the unit speed geodesic from
ξ− to ξ+ (where s is the signed distance from the highest point of the geo-
desic), and recall that this gives us the coordinates (ξ−, ξ+, s) parametrizing
T1(M). Let Λ′ = Λ \ {∞} and let P0 = F∞ ∩ Λ.

We first show the following:

Lemma 5.3.

m(ht) =
∑
γ∈Γ∞

∫
P0

∫
γP0

∫
R

IdH̃(t)(π(ξs))dm(ξ−, ξ+, s).

Proof. Let FΓ ⊆ Hn be a fundamental domain for Γ\Hn containing o such

that for t ≥ 0 sufficiently large, we have that FΓ ∩ H̃(t) = H ′(t), so that
m(ht) =

∫
T1(M) IdH′(t) dm. Since {(ξ−, ξ+, s) : {ξ±} ∩ {∞} 6= ∅} has m-

measure zero, we can rewrite this in the (ξ−, ξ+, s) coordinates as∫
T1(M)

IdH′(t) dm =

∫
Λ′

∫
Λ′

∫
R

IdH′(t)(π(ξs))dm(ξ−, ξ+, s).

Now decomposing Λ′ as a union over translates γP0 with γ ∈ Γ∞, we can
rewrite

m(ht) =
∑

γ,γ′∈Γ∞

∫
γP0

∫
γ′P0

∫
R

IdH′(t)(π(ξs))dm(ξ−, ξ+, s)

=
∑

γ,γ′∈Γ∞

∫
P0

∫
γ′P0

∫
R

Idγ−1H′(t)(π(ξs))dm(ξ−, ξ+, s)

=
∑
γ∈Γ∞

∫
P0

∫
γP0

∫
R

IdH̃(t)(π(ξs))dm(ξ−, ξ+, s)

where for the second line we made a change of variables ξ 7→ γξ and in the
last line we used that H̃(t) =

⋃
γ∈Γ∞

γH ′(t). �

In order to evaluate this, we need the following geometric estimate.

Lemma 5.4. Let ξ− ∈ P0 and ξ+ ∈ γP0 with γ ∈ Γ∞. Then there exists
c > 0 such that∫

R
IdH̃(t)(π(ξs))ds =

{
d(o, γo)− 2t+O(1) if d(o, γo) > 2t− c
0 otherwise.

(5.2)

Proof. Recall that o = (0, 1) and note that γo = (v, 1) for some v ∈ Rn−1.
Since P0 is a compact set containing the origin, then γP0 is a compact set
(of the same diameter) containing v and hence ‖ξ− − ξ+‖ = ‖v‖ + O(1)
where ‖ · ‖ is the Euclidian norm on Rn−1. Note that sup{t : ξ ∩ H(t) 6=
∅} = log(‖ξ

−−ξ+‖
2 ) and d(o, γo) = log(‖v‖)+O(1). Hence if d(o, γo) < 2t−c,

then ξ ∩H(t) = ∅.
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Now assume that ξ ∩H(t) 6= ∅ and let z1, z4 ∈ Hn be the first and second

intersections of the geodesic ξs with ∂H̃(0) and z2, z3 the first and second
intersections with ∂H(t). Writing zi = (xi, yi), we have that ‖x1‖ and
‖x4 − v‖ are uniformly bounded and that ‖x2‖ and ‖x3 − v‖ are bounded
by O(et); this implies that d(z1, o), d(z4, γo), d(z2, ato) and d(z3, γato) are
all uniformly bounded. Now on one hand, d(z1, z4) = d(o, γo) + O(1), and
on the other hand, since z1, z2, z3, z4 all lie on the same geodesic, we have
d(z1, z4) = d(z1, z2) + d(z2, z3) + d(z3, z4). The middle term is precisely∫
R IdH̃(t)(π(ξs))ds and d(z1, z2) = d(o, ato) +O(1) = t+O(1) and similarly

d(z3, z4) = t+O(1), concluding the proof. �

Recall the notation h̃t = ∪|s|<1/2Gsht.

Proposition 5.5. We have m(ht) � m(h̃t) � e−t(2δ−κ).

Proof. From Lemma 5.3, we have

m(ht) =
∑
γ∈Γ∞

∫
F∞

∫
γF∞

∫
R

IdH̃(t)(π(ξs))dm(ξ−, ξ+, s) =

∑
γ∈Γ∞

∫
P0

∫
γP0

∫
R

IdH̃(t)(π(ξs))e
δ(βξ+ (o,π(ξs))+βξ− (o,π(ξs)))dνo(ξ

−)dνo(ξ
+)ds

Next note that for any ξ− ∈ P0 and ξ+ ∈ γP0 and γ ∈ Γ∞, the sum
βξ+(o, π(ξs)) + βξ−(o, π(ξs)) is independent of s and is uniformly bounded.
Indeed, let s1 be the least time such that z1 := π(ξsi) ∈ H(0) and note
that d(z1, o) = O(1) is uniformly bounded. Now, for z = π(ξs), on one
hand βξ+(z1, z) + βξ−(z1, z) = s − s1 + s1 − s = 0, and on the other hand
|βξ±(z1, z)− βξ±(o, z)| ≤ d(z1, o) which is uniformly bounded.

With this observation together with Lemma 5.4, we get that

m(ht) �
∑
γ∈Γ∞

νo(P0)νo(γP0)

∫
R

IdH̃(t)(π(ξs))ds

�
∑
γ∈Γ∞

d(o,γo)≥2t−c

νo(P0)νo(γP0)(d(o, γo)− 2t+O(1))

Next, to estimate νo(γP0) = νγo(P0), we use the Γ-conformality to get that

νo(γP0) =

∫
P0

e−δβξ(γo,o)dνo(ξ).

To estimate βξ(γo, o), let z1, z2 be the two points in the intersection of
∂H(0) and the geodesic connecting ξ to γξ. Then d(z1, o) and d(z2, γo) are
uniformly bounded and βξ(z1, z2) = d(z1, z2) = d(γo, o) + O(1) implying
that βξ(γo, o) = d(γo, o) +O(1). Plugging in this estimate gives

m(ht) �
∑
γ∈Γ∞

d(o,γo)≥2t−c

e−δd(o,γo)(d(o, γo)− 2t+O(1)).
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We may write Γ∞ as {γv : v ∈ Zκ} where γv is the translation by v. Note
that d(o, γv(o)) = 2 log ‖v‖+O(1). Hence

m(ht) �
∑
v∈Zκ
‖v‖≥Cet

e−δ(2 log ‖v‖+O(1))(2 log ‖v‖ − 2t+O(1))

�
∑
v∈Zκ
‖v‖≥Cet

‖v‖−2δ log(‖v‖e−t)

�
∫
x∈Rk,|x|≥et

‖x‖−2δ log(‖x‖e−t)dx � e−t(2δ−κ)

as claimed.
For the thickened target, for any x ∈ ht and |s| ≤ 1/2, if xat ∈ ht−1, then

ht ⊆ h̃t ⊆ ht−1. Hence m(h̃t) � e−t(2δ−κ) as well. �

Next we show regularity.

Proposition 5.6. Both families {ht : t ≥ 1} and {h̃t : t ≥ 1} are regular.

Proof. Since ht ⊆ h̃t ⊆ ht−1 it is enough to show that {ht} is regular. Let

H ′(t) denote the fundamental domain for Γ∞\H̃(t) defined above, and FΓ a

fundamental domain for Γ\Hn such that FΓ ∩ H̃(t) = H ′(t). For any t ≥ 1

let ψ±t be smooth functions on Γ∞\H̃(t) taking values in [0, 1] satisfying

IdH′(t+1) ≤ ψ−t ≤ IdH′(t) ≤ ψ+
t ≤ IdH′(t−1),

and we can choose them so that S(ψ±t ) = O(1), independent of t.

Since FΓ∩H̃(t) = H ′(t), we can lift the functions ψ±t to right K-invariant,
and left Γ-invariant functions Ψ±t on G. As such, by looking at their values
on a fixed fundamental domain, we see that

0 ≤ Idht+1 ≤ Ψ−t ≤ Idht ≤ Ψ+
t ≤ Idht−1 ≤ 1.

Since m(ht) � m(ht±1), we also get that m(Ψ±t ) � m(ht), implying that {ht}
is regular. �

Proof of Theorem 1.4. Applying Theorem 1.1 to the shrinking targets Bt =
hi,t gives (1). For (2), fix some η < 1

2δ−κi and let c := 1 − η(2δ − κj) > 0.

Consider the shrinking family {Bt = hi,η log(t)}, which is regular and satisfies

m(B2t) � m(Bt) � t−(2δ−κi)η. In particular we have that∑
j

log(m(B2j ))

2jm(B2j )
�
∑
j

log(j)

2cj
<∞,

so Theorem 1.3(2) implies Theorem 1.4(2). �
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5.2. Shrinking balls in Γ\G. In this subsection, our goal is to show that
for x ∈ supp(m), the family {xGε : 0 < ε < 1} is regular as stated in
Proposition 5.9. We may assume that o ∈ hull Λ and fix vo ∈ To(Hn) so
that M = Stab(vo). For ξ ∈ ∂Hn and ε > 0, let Bξ(ε) denote the Euclidian
ball of radius ε around ξ. When Γ is convex co-compact, Sullivan’s shadow
lemma implies that νo(Bξ(ε)) � εδ, but when Γ has cusps, the measure
νo(Bξ(ε)) fluctuates as ε→ 0. Nevertheless, we have the following:

Lemma 5.7. For any ξ ∈ Λ, the following holds for all sufficiently small
ε > 0:

(1) min{εδ, ε2δ−κmin} � νo(Bξ(ε))� max{εδ, ε2δ−κmax}.
(2) νo(Bξ(2ε))� νo(Bξ(ε)).

Proof. For ξ ∈ Λ let ξt ⊂ hull(Λ) denote the unit speed geodesic ray connect-
ing o to ξ. Let b(ξt) ⊂ ∂(Hn) denote the shadow at infinity of the hyperbolic
hyperplane meeting ξt orthogonally. Then

b(ξt) = Bξ(ε) for ε � e−t.
If {ξ1, · · · , ξk} denotes the set of all representatives of Γ-orbits in the set of
parabolic limit points, and Hξi ⊂ Hn is a sufficiently deep horoball based at

ξi, then H :=
⋃k
i=1 Γ(Hξi) forms a family of disjoint horoballs.

Now by [28, Theorem 2], we have

νo(b(ξt)) � e−δt+d(ξt,Γo)(κ(ξt)−δ), (5.3)

where κ(ξt) is the rank of ξi if ξt ∈ Γ(Hξi) for some i, and κ(ξt) = δ otherwise.
Now, to prove (1), let ε = e−t. First, if ξt is not in H, the claim follows easily.

Next, if ξt ∈ Γ(Hξi), then κ(ξt) = κi and νo(b(ξt)) � e−δt+d(ξt,Γo)(δ−κi)). If
κi ≤ δ, then

δt ≤ δt+ d(ξt,Γo)(δ − κi) ≤ t(2δ − κmin)

and hence e−t(2δ−κmin) � νo(b(ξt))� e−δt. Now if κi > δ, then

−δt ≤ −δt+ d(ξt,Γo)(κi − δ) ≤ t(κmax − 2δ),

so that e−δt � νo(b(ξt))� e−(2δ−κmax)t. This proves (1).
For (2), we claim that νo(b(ξt+1)) � νo(b(ξt)). In the case when ξt, ξt+1 ∈

Γ(Hξi) for some i, we have that |d(ξt,Γo) − d(ξt+1,Γo)| � 1. Now, using
(5.3) we get

νo(b(ξt+1))

νo(b(ξt))
� e(d(ξt+1,Γo)−d(ξt,Γo))(δ−ki) � 1.

If this case does not happen, there must be some t′ ∈ [t, t+ 1] such that the
projection of ξt′ in core(M) lies in the compact part core(M) − ∪iΓ\Hξi ,
and hence d(ξt′ ,Γo) = O(1). But then also d(ξt,Γo) and d(ξt+1,Γo) are
bounded and νo(b(ξt+1)) � νo(b(ξt)) � e−δt as well. �

Proposition 5.8. Let K ⊆ X be a compact subset. Let δ− = min{δ, 2δ −
kmax} and δ+ = max{δ, 2δ− kmin}. For any x ∈ K∩Ω, we have that for all
0 < ε < rx,
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(1) ε1+dimM+2δ+ � m(xGε)� ε1+dimM+2δ− ,
(2) m(xG2ε) � m(xGε),
(3) m(xGεA1) � ε−1m(xGε),

(4) m(xGεM) � ε− dim(M)m(xGε),

where all the implied constants above are uniform over all x ∈ K.

Proof. Fix a compact subset F0 ⊆ G such that K = Γ\ΓF0. First, since we
assume ε ≤ rx, we have that m(xGε) = m(gGε) for x = [g]. We will use the
flow boxes

B(g, ε) := gB(ε) = g(N+
ε N

− ∩N−ε N+AM)MεAε. (5.4)

It is shown in [12, Lemma 4.7] that B(g, ε) � gGε and that

m(B(g, ε)) = (1 +O(ε))2ενg(o)(gN
+
ε v

+
o )νg(o)(gN

−
ε v
−
o ) volM (Mε), (5.5)

where volM (Mε) � εdim(M) and all implied constants are absolute.
We can estimate νg(o)(gN

±
ε v
±
o ) � νo(Bg±(ε)), with the implied constants

uniform for g ∈ F0. Hence by Lemma 5.7, we have

εδ+ � νg(o)(gN
±
ε v
±
o )� εδ− .

Since volM (Mε) � εdimM , we get that

ε2δ++1+dimM � m(gB(ε))� ε2δ−+1+dimM

proving (1). (2) follows similarly from Lemma 5.7(2). (3) and (4) follow
easily from the above description of gB(ε). �

Proposition 5.9. Fix a compact set K ⊆ X. There exist some c > 1 and
α > 1(depending on `, and K) such that the family {xGε : x ∈ K∩Ω, ε < rx}
and the family of their thickenings are regular for Sl.

Proof. We can find smooth functions Ψ±ε : G→ [0, 1) such that

Ψ−ε (g) =

{
1 g ∈ Gε/2
0 g 6∈ Gε

}
Ψ+
ε (g) =

{
1 g ∈ Gε
0 g 6∈ G2ε

}
satisfying Sl(Ψ±ε )� ε−l. For x ∈ K ∩ Ω, let Ψ±x,ε(g) := Ψ±ε (xg). Then

0 ≤ Ψ−x,ε ≤ IdxGε ≤ Ψ+
x,ε.

We then have that

Sl(Ψx,ε)� ε−l � m(Gε)
−α,

for α = l
1+dim(M)+δ−

and that m(xGε/2) ≤ m(Ψ−x,ε) ≤ m(xGε) so that

m(xGε)� m(xGε/2) ≤ m(Ψ−x,ε), and similarly m(Ψ+
x,ε)� m(xGε).

The same argument shows that the thickened sets xGεA1 are (c, α)-regular
for some constant c > 1 and α = l

dim(M)+δ−
. �

The proofs of Propositions 5.8 and 5.9 can easily be adapted for the
following:



32 DUBI KELMER AND HEE OH

Proposition 5.10. Let M be convex cocompact. Fix x0 ∈ supp(m). Then
the families {x0GεM} and {x0GεMA1/2} are regular and m(x0GεM) �
ε2δ+1 and m(x0GεMA1/2) � ε2δ with the implied constants uniform over
all x0.

WhenM has cusps, we do not have such asymptotics for m(x0GεM) and
m(x0GεMA1/2) uniformly for all x0 ∈ supp(m). Nevertheless, we have the
following estimates:

Proposition 5.11. Let K ⊆ X be a compact subset of X, and let x0 =
[g0M ] ∈ K ∩ Ω.

(1) If both g+
0 , g

−
0 ∈ ∂Hn are parabolic fixed points corresponding to cusps

of ranks κ1 and κ2 respectively, then

m(x0GεM) � ε4δ+1−κ1−κ2 .

(2) If x0A is bounded, then

m(x0GεM) � ε2δ+1.

(3) If supt∈R
d(x0at,Γo)

log |t| <∞, then

lim
ε→0

log(m(x0GεM))

log ε
= 2δ + 1.

Proof. Without loss of generality, we may assume that g0 = e. Set ξt := at
and let ξ± := limt→±∞ ξt. Recall that by [12, Lemma 4.7] and (5.5), we
have

m(x0GεM) � m(B(g0, ε)M) � ε · νo(Bξ+(ε))νo(Bξ−(ε)).

It thus remains to estimate νo(Bξ±(ε)) in each of the above cases. When

ξ± are parabolic limit points, there exists t0 such that for all t ≥ t0 (resp,
t < −t0), we have that ξ±t ∈ Hξ± is in the horoball centered at ξ±. Since

ξ± are parabolic limit points, this implies that for t ≥ t0, we have that
d(ξt,Γo) = |t|+O(1), and hence, setting ε = e−|t| by (5.3), we can estimate
νo(Bξ+(ε)) � ε2δ−κ1 and similarly νo(Bξ−(ε)) � ε2δ−κ2 , proving (1).

Next, the boundedness of x0A means that supt d(ξt,Γo) < ∞. In this
case, (5.3) implies that νo(Bξ±(ε)) � εδ, proving (2).

Finally, assuming that sup d(x0at,Γo)
log |t| <∞, again taking ε = e−t, (5.3) now

implies that

εδ| log(ε)|−c1 � νo(Bξ±(ε))� εδ| log(ε)|c1 ,
and hence

log(m(x0GεM)) = (2δ + 1) log ε+O(log | log ε|).

This proves (3). �

We finish this section with the proofs of Theorems 1.7 and 1.8.
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Proof of Theorem 1.7. (1) follows by applying Theorem 1.1 to the shrinking

targets Bt = x0G1/tM with thickening B̃t = x0G1/tMA1/2 which is inner

regular with log(m(B̃t)) = −2δt+O(1) by Proposition 5.10.
For (2) we consider the shrinking targets Bt := x0Gt−ηM . Note that for

any x ∈M, we have that d(Gs(x), x0) < t−η exactly when Gs(x) ∈ Bt. Since

m(Bt) � t−η(2δ+1), we have
∑

j
log(m(B

2j
)

2jm(B
2j

)
< ∞ when (2δ + 1)η < 1. So (2)

follows from Theorem 1.3(2). �

Proof of Theorem 1.8. For (1), we note that Theorem 1.4(1) implies that
for m-a.e. x0 ∈ T1(M),

lim sup
t→∞

d(Gs(x0), o)

log(t)
≤ 1

2δ − κmax
.

For any such x0, the families {Bt = x0G1/tM} and {B̃t} are regular.

By Proposition 5.11(3), we have limt→∞
− log(m(Bt))

log t = 2δ + 1, and hence

limt→∞
log(m(B̃t))
− log t = 2δ. Now, using this limit together with Theorem 1.1,

we get that for m-a.e. x ∈ T1(M)

lim
t→∞

log(τBt(x))

log(t)
= 2δ and lim

t→∞

log(τBt(x))

− log(m(B̃t))
= 1.

For (2), given two cusps ξ1, ξ2 with ranks κ1, κ2, consider a geodesic con-
necting ξ1 to ξ2 and let g0 ∈ T1(Hn) be any point on this geodesic, and
set x0 = [g0] ∈ T1(M). Consider the shrinking targets Bt = x0G1/tM . By

Proposition 5.11(1), we have log(m(B̃t)) = −(4δ−κ1−κ2) log(t)+O(1) and
hence (2) follows from Theorem 1.1.

�

5.3. Shrinking tubular neighborhoods. For a fixed closed geodesic C ⊂
T1(M) and ε > 0, we set Cε = {x ∈ T1(M) : d(C, x) < ε}. The proof of
Theorem 1.6 follows as above from the following.

Proposition 5.12. The families {Cε : ε < ε0} and C̃ε = {xas : x ∈ Cε, |s| ≤
1/2} are both regular and satisfy m(Cε) � m(C̃ε) � ε2δ.

Proof. Recall the notations X,X(ε) and Y (ε) = X −X(ε) from section 2.3.
They are all M -invariant subsets of Γ\G, and in the following proof, we will
regard them as subsets in Γ\G/M . We can present C = [g0]AM/M and
an element of C is represented by [g0]atM for a unique 0 ≤ t < L where
L is the length of C. Let ε0 be sufficiently small so that C ⊆ Y (ε0) and
let 0 < ε ≤ ε0. Let Qε denote a maximal set of points xi ∈ C such that
the sets xiGεM are pairwise disjoint. Writing xi = x0ati the condition that
xiGε∩xjGε = ∅ imply that |ti−tj | ≥ ε and the maximality condition implies
that |ti − ti+1| ≤ 3ε. Hence #Qε � Lε−1. Since⋃

xi∈Qε

xiGεM ⊆ Cε ⊆
⋃

xi∈Qε

xiG3εM,
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we can estimate∑
xi∈Qε

m(xiGεM) ≤ m(Cε) ≤
∑
xi∈Qε

m(xiG3εM).

Now Proposition 5.11(2) implies that m(giGεM) � ε2δ+1 where the im-
plied constant does not depend on i. Summing over all xi ∈ Qε, we get that
indeed m(Cε) � ε2δ.

Next, to show regularity, for each point xi ∈ Qε, let Ψ±ε,i be smooth
non-negative functions approximating xiGεM from below and xiG3εM from
above respectively, with Sl(Ψ±ε,i) � ε−l, and define Ψ±ε =

∑
i Ψ±ε,i. Since

the sets xiGεM are pairwise disjoint, we have that Ψ−ε ≤ IdCε ≤ Ψ+
ε and

moreover

m(Ψ+
ε ) ≤

∑
Qε

m(xiG3εM)�
∑
Qε

m(xiGεM) ≤ m(Cε),

and similarly that m(Cε) � m(Ψ−ε ). Since #Qε � ε−1, we can bound

Sl(Ψ±ε )� ε−(l+1) � m(Cε)−α with α = l+1
2δ , showing that the family {Cε} is

(c, α) regular for some c > 1, and α = l+1
2δ .

Finally, note that there is c ≥ 1 such that a−sGεas ⊆ Gcε for all |s| ≤ 1/2.

Then any point x ∈ C̃ε is of the form x = x0atgasM with 0 ≤ t ≤ L, g ∈ Gε
and |s| ≤ 1/2. We can write gas = asa−sgas ∈ asGcε, to get that x ∈
x0at+sGcε ∈ Ccε. Therefore Cε ⊆ C̃ε ⊆ Ccε, implying that {C̃ε} is also regular

with m(C̃ε) � m(Cε). �
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