
COUNTING VISIBLE CIRCLES ON THE SPHERE AND

KLEINIAN GROUPS

HEE OH AND NIMISH SHAH

Abstract. For a circle packing P on the sphere invariant under a nonelemen-

tary Kleinian group satisfying certain finiteness conditions, we describe the
asymptotic distribution of circles in P of spherical curvature at most T as T

tends to infinity.

1. Introduction

In the unit sphere S2 = {x2 + y2 + z2 = 1} with the Riemannian metric induced
from R3, the distance (or the spherical distance) between two points is simply the
angle between the rays connecting them to the origin o.

Let P be a collection of circles on the sphere S2, also called a circle packing
on S2. The visual size of a circle C in S2 can be measured by its spherical radius
0 < θ(C) ≤ π/2, that is, the half of the visual angle of C from the origin o = (0, 0, 0).
We label the circles by their spherical curvatures given by

CurvS2(C) := cot θ(C).

We suppose that P is locally finite in the sense that for any T > 0,

#{C ∈ P : CurvS2(C) < T} <∞.

In the beautiful book Indra’s pearls, Mumford, Series and Wright ask the follow-
ing question: ([13, §5.4, pg.155])

How many visible circles are there?

To address this question, for any subset E ⊂ S2 and T > 0, we define

NT (P, E) := #{C ∈ P : C ∩ E 6= ∅, CurvS2(C) < T}.

The main goal of this article is to obtain an asymptotic formula for NT (P, E) as
T → ∞ when P is invariant under a Kleinian group satisfying certain finiteness
assumptions. Our formula involves notions from hyperbolic geometry. Consider
the Poincare ball model B = {x2

1 + x2
2 + x2

3 < 1} of the hyperbolic 3-space with the

metric given by
2·
√
dx2

1+dx2
2+dx2

3

1−(x2
1+x2

2+x2
3)

. The geometric boundary of B naturally identifies

with S2.
In this article, let G denote the group of orientation preserving isometries of B

and Γ < G a non-elementary (=non virtually-abelian) Kleinian group. We denote
by Λ(Γ) ⊂ S2 the limit set of Γ, and by δ = δΓ the critical exponent of Γ. Let
{νx : x ∈ B} be a Patterson-Sullivan density, i.e., a Γ-invariant conformal density
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Figure 1. Sierpinski curve and Apollonian gasket (by C. McMullen)

of dimension δ on Λ(Γ). We denote by mBMS the Bowen-Margulis-Sullivan measure
on the unit tangent bundle T1(Γ\B) associated to {νx}, see §2.2.

For a vector u ∈ T1(B), denote by u+ ∈ S2 the forward end point of the geodesic
determined by u, and by π(u) ∈ B the base point of u. For x1, x2 ∈ B and ξ ∈ S2,
βξ(x1, x2) denotes the signed distance between horospheres based at ξ and passing
through x1 and x2.

Definition 1.1 (Skinning size of P). For a circle packing P on S2 invariant under
Γ, we define 0 ≤ sk(P) ≤ ∞ by

sk(P) :=
∑
i∈I

∫
s∈StabΓ(C†i )\C†i

eδβs+ (x,π(s))dνx(s+)

where x ∈ B, {Ci : i ∈ I} is a set of representatives of Γ-orbits in P and C†i ⊂ T1(B)
is the set of unit normal vectors to the convex hull of Ci.

By the conformal property of {νx}, the definition of sk(P) is independent of the
choice of x ∈ B and the choice of representatives {Ci}.

Theorem 1.2. Let P be a locally finite Γ-invariant circle packing on the sphere S2

with finitely many Γ-orbits. Suppose that |mBMS| < ∞ and sk(P) < ∞. Then for
any Borel subset E ⊂ S2 with νo(∂E) = 0,

lim
T→∞

NT (P, E)

T δ
=

2δ · sk(P)

δ · |mBMS|
· νo(E).

where o = (0, 0, 0). If P is infinite, sk(P) > 0.

Remark 1.3. (1) If Γ is geometrically finite, that is, if Γ admits a finite sided
fundamental domain in B, then |mBMS| <∞ [21].

By [16, Lemma 1.13 and Theorem 1.14(2)], if δ > 1 then sk(P) < ∞; and
δ ≤ 1, then we have sk(P) < ∞ if and only if P does not contains an infinite
bouquet of tangent circles glued at a parabolic fixed point of Γ (see Fig. 2, or [15,
Definition 1.3]). We note that by [15, Proposition 3.4] the nonexistence of such

infinite bouquets corresponds to Γ-parabolic-coranks of Ĉ for each C ∈ P being
equal to zero, and in this case [16, Theorem 1.14(2)] implies that sk(P) <∞.

(2) Under the assumption of |mBMS| < ∞, νo is atom-free by [18, Sec.1.5], and
hence the above theorem works for any Borel subset E whose boundary intersects
Λ(Γ) in countably many points. If Γ is Zariski dense in G, then any proper real
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Figure 2. Infinite bouquet of tangent circles

subvariety of S2 has zero νo-measure [6, Cor. 1.4] and hence Theorem 1.2 applies
to any Borel subset E of S2 whose boundary is contained in a countable union of
real algebraic curves.

We combine the above remarks in the following:

Corollary 1.4. Let Γ be a geometrically finite Zariski dense discrete subgroup of G.
Let P be a locally finite Γ-invariant circle packing on S2 which is a union of finitely
many Γ-orbits. Let E be a Borel subset of S2 such that ∂E ∩ Λ(Γ) is contained in
a union of countably many proper real algebraic sub-varieties of S2. Then

lim
T→∞

NT (P, E)

T δ
=

2δ sk(P)

δ|mBMS|
· νo(E).

1.1. Examples. (1) If X is a finite volume hyperbolic 3 manifold with totally
geodesic boundary, its fundamental group Γ := π1(X) is geometrically finite and X
is homeomorphic to Γ\(B ∪Ω(Γ)) where Ω(Γ) is the domain of discontinuity for Γ

[8]. The universal cover X̃ developed in B has geodesic boundary components which
are Euclidean hemispheres normal to S2. Then Ω(Γ) is the union of a countably

many disjoint open disks corresponding to the geodesic boundary components of X̃.
The Ahlfors finiteness theorem [1] implies that the circle packing P on S2 consisting

of the geodesic boundary components of X̃ is locally finite and has finitely many
Γ-orbits. Moreover, sk(P) <∞ as P contains no infinite bouquet of tangent circles.

In the case when π1(X) is convex co-compact, then no disks in Ω(Γ) are tangent
to each other and Λ(Γ) is known to be homeomorphic to a Sierpinski curve [4] (see
Fig. 1).

(2) Starting with four mutually tangent circles on the sphere S2, one can inscribe
into each of the curvilinear triangle a unique circle by an old theorem of Apollonius
of Perga (c. BC 200). Continuing to inscribe the circles this way, one obtains
an Apollonian circle packing on S2 (see Fig. 1). Apollonian circle packings are
examples of circle packing obtained in the way described in (1) (cf. [5] and [10].).

(3) Take k ≥ 1 pairs of mutually disjoint closed disks {(Di, D
′
i) : 1 ≤ i ≤ k} in

S2. For each 1 ≤ i ≤ k, choose γi ∈ G which maps the interior of Di to the exterior
of D′i and vice versa. The group Γ := 〈γi : 1 ≤ i ≤ k〉 is called a Schottky group of
genus k (cf. [11, Sec. 2.7]). Let P := ∪1≤i≤kΓ(Ci) ∪ Γ(C ′i), where Ci and C ′i are
the boundaries of Di and D′i, respectively. Then P is locally finite, as the Γ-orbit
of the disks nest down onto the limit set Λ(Γ), which is totally disconnected. Such
a collection P is called a Schottky dance (see Fig. 3 or [13, Fig. 4.11]).

The common exterior of hemispheres above the initial disks Di and D′i is a
fundamental domain for Γ in B and hence Γ is geometrically finite. Since P has no
infinite bouquet of tangent circles, Theorem 1.2 applies by Remark 1.3 (1).
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Figure 3. Schottky dance (from Indra’s Pearls, by D.Mumford, C.
Series and D. Wright, copyright Cambridge University Press 2002)

1.2. Counting in terms of the visual distance. Let Ĉ ⊂ B denote the convex
hull of C. Then (cf. [22, P.24]) since o = (0, 0, 0), we have

(1.1) sin θ(C) = 1/ cosh d(Ĉ, o) and CurvS(C) = sinh d(Ĉ, o).

Since 2 sinh(T ) ∼ eT as T → ∞, Theorem 1.2 follows from the following result
for x = o.

Theorem 1.5. Keeping the same assumption as in Theorem 1.2, we have, for any
x ∈ B,

(1.2) lim
T→∞

#{C ∈ P : C ∩ E 6= ∅, d(Ĉ, x) < T}
eδ·T

=
sk(P)

δ · |mBMS|
· νx(E).

Using this result, in the last section we also obtain the counting estimate in
terms of Euclidean curvatures of circles in P (see Theorem 4.1), and thus provide
a shorter proof of [15, Theorem 1.4].

Acknowledgments. We are very grateful to Curt McMullen for generously shar-
ing his intuition and ideas. The applicability of our results in [16] to the question
addressed in this paper came up in the conversation of the first named author with
him. We also thank Yves Benoist, Jeff Brock, and Richard Schwartz for useful
conversations. Our sincere thanks are due to the referees of this article for careful
reading and useful suggestions.

2. Equistribution of normal translates of a hyperbolic surface

In this section, we set up notations as well as recall a result from [16] on limiting
distribution of normal geodesic evolution of a hyperbolic surface.

2.1. Group theoretic notations for hyperbolic space and hyperbolic sur-
faces. Fix a circle C0 ⊂ S2. Denote by Ĉ0 ⊂ B the convex hull of C0, that is, Ĉ0

is the smallest convex set in B containing all geodesics whose end points are in C0.
Then Ĉ0 is a two dimensional hyperbolic disc isometrically imbedded in B. Let

C†0 ⊂ T1(B) denote the set of unit normal vectors to Ĉ0. Let p0 ∈ Ĉ0 and X0 ∈ C†0
based at p0.
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Let K be the stabilizer subgroup of p0 in G and M ⊂ K be the stabilizer of X0

in G. Then under the maps gK 7→ gp0 and gM 7→ gX0 we identify G/K with B
and G/M with T1(B), respectively. Let

H = {h ∈ G : hC0 = C0} = {h ∈ G : hĈ0 = Ĉ0}.

Then H · p0 = Ĉ0 and H ·X0 = C†0 . Here H has two connected components, one

of which is the group of orientation preserving hyperbolic isometries of Ĉ0. Also
M ⊂ H.

Proposition 2.1 ([15, Lemma 3.2]). Let Γ be a discrete subgroup of G.

(1) If Γ(C0) = {γC0 : γ ∈ Γ} is infinite, then [Γ : H ∩ Γ] =∞.
(2) Γ(C0) is a locally finite packing

⇔ the natural projection map (Γ ∩H)\Ĉ0 → Γ\B is proper
⇔ the natural inclusion (Γ ∩H)\H → Γ\G is proper.

2.2. Patterson-Sullivan conformal density and BMS and BR measures.
For u ∈ T1(B), we define u+ ∈ S2 = ∂B (resp. u− ∈ S2) the forward (resp.
backward) endpoint of the geodesic determined by u and π(u) ∈ B the basepoint.

Let Γ be a non-elementary Klenian group. Let {νx : x ∈ B} be a Γ-invariant
conformal density on S2 of dimension δ = δΓ; that is, each νx is a finite measure on
B and

γ∗νx = νγx for all γ ∈ Γ and(2.1)

dνy
dνx

(ξ) = e−δβξ(y,x) for all ξ ∈ S2,(2.2)

where γ∗νx(R) = νx(γ−1R) and the Busemann function βξ(y, x) is given by

(2.3) βξ(y, x) = lim
t→∞

d(y, ξt)− d(x, ξt),

for any geodesic ray {ξt} such that limt→∞ ξt = ξ.
Let {mx : x ∈ B} be the G-invariant (Lebesgue) probability conformal density

of dimension 2 on S2.
We define the Bowen-Margulis-Sullivan measure mBMS ([2], [12], [21]) and the

Burger-Roblin measure mBR ([3], [18]) associated to {νx} and {mx} to be the
measures on T1(Γ\B) induced by the following Γ-invariant measures on T1(B) re-
spectively: for x ∈ B,

dm̃BMS(u) = eδβu+ (x,π(u)) eδβu− (x,π(u)) dνx(u+)dνx(u−)dt;

dm̃BR(u) = e2βu+ (x,π(u)) eδβu− (x,π(u)) dmx(u+)dνx(u−)dt.

By the conformal properties (2.2) of {νx} and {mx}, these definitions are in-
dependent of the choice of x ∈ B. Moreover both of these measures are invariant
under the left action of Γ on T1(B). Let mBMS and mBR denote the corresponding
measures on Γ\T1(B) = T1(Γ\B).

2.3. Comparison of visual density of circles corresponding to different
base points. Let P and Γ be as in the statement of Theorem 1.5. For any y ∈ B
and any E ⊂ S, set

(2.4) N y
T (P, E) = #{C ∈ P : C ∩ E 6= ∅, d(y, Ĉ) < T}.
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Proposition 2.2. Choose x ∈ B. Suppose that there exists a constant D ≥ 0 such
that for any F ⊂ S2 with νo(∂F ) = 0, we have

(2.5) lim
T→∞

N x
T (P, F )

eδT
= D · νx(F ).

Then for any y ∈ B and any E ⊂ S2 with νo(∂E) = 0, we get

lim
T→∞

N y
T (P, E)

eδT
= D · νy(E).

Remark 2.3. (1) By the conformality property (2.2), νo and νy are absolutely con-
tinuous with respect to each other, so νo(∂F ) = 0 if and only if νy(∂F ) = 0.

(2) Due to Proposition 2.2, in order to prove Theorem 1.5, it is enough to derive
its conclusion (1.2) for a particular choice x = p0.

Proof. Let ε > 0 be given. For any ξ ∈ S2 there exists an open disc D in S2 centered
at ξ such that

(2.6) |βξ1(x, y)− βξ2(x, y)| ≤ ε, for all ξ1, ξ2 ∈ D,

and νo(∂D) = 0; such a disc D exists because we can let the radius of D tend to 0
over an uncountable set or radii, the boundaries of concentric discs of distinct radii
are disjoint, and νo is finite. By (2.2) and (2.6), for any ξ ∈ D we have

(2.7) νy(F )e−δε ≤ νx(F )eδβξ(x,y) ≤ νy(F )eδε, for any measurable F ⊂ D.

We cover S2 by finitely many such discs Di, 1 ≤ i ≤ k, and let

Ei = E ∩Di \ (∪j<iDj), for 1 ≤ i ≤ k.

For subsets A and B of S2, ∂(A ∩B) ⊂ ∂(A) ∪ ∂(B). Therefore

∂(Ei) ⊂ ∂(E) ∪ ∪kj=1∂(Dj).

Therefore νo(∂(Ei)) = 0, and hence νy(∂Ei) = 0 by Remark 2.3(1), and in partic-
ular νy(int(Ei)) = νy(Ei).

For each i, choose a closed set Fi = (Ei)
−
η := {ξ ∈ Ei : d(ξ, ∂(Ei)) > η} such

that νy(Fi) ≥ e−ενy(Ei) and νo(∂Fi) = 0. Such Fi exists because (Ei)
−
η ↑ int(E)

and hence νy((Ei)
−
η ) → νy(int(Ei)) = νy(Ei) as η → 0, and ∂((Ei)

−
η ) are disjoint

for distinct η’s, so we can find arbitrarily small η > 0 such that νo(∂((Ei)
−
η )) = 0.

By (2.3), there exists Tε > 0 such that if C ∈ P with d(x, Ĉ) ≥ Tε and C∩Ei 6= ∅
for some i, then for any ξ ∈ Ei,

(2.8) |d(y, Ĉ)− (d(x, Ĉ) + βξ(x, y))| ≤ ε,

and further if

(2.9) C ∩ Fi 6= ∅ ⇒ C ∩ Fj = ∅, for all j 6= i,

because for sufficiently large Tε > 0, d(x, Ĉ) > Tε implies that the spherical diame-
ter of C is less than the minimum of spherical distances between distinct nonempty
Fi and Fj .

Then by (2.8) and (2.9), for any ξ ∈ Ei,

N y
T (P, Ei)−N y

Tε
(P, Ei) ≤ N x

T+βξ(x,y)+ε(P, Ei) and(2.10)

N y
T (P, Fi) ≥ Nx

T+βξ(x,y)−ε(P, Fi)−N
x
Tε+d(x,y)+1(P, Fi).(2.11)
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By local finiteness of P, N y
Tε

(P, Ei) <∞. Hence by (2.10), (2.5) and (2.7),

lim sup
T→∞

N y
T (P, Ei)
eδT

≤ D · νx(Ei)e
δ(βξ(x,y)+ε) ≤ D · νy(Ei)e

δ(2ε),

and by (2.11), (2.5) and (2.7),

lim inf
T→∞

N y
T (P, Fi)
eδT

≥ D · νx(Fi)e
δ(βξ(x,y)−ε) ≥ D · νy(Ei)e

−(1+2δ)ε.

By summing over 1 ≤ i ≤ k, we get

lim sup
T→∞

N y
T (P, E)

eδT
− lim inf

T→∞

N y
T (P, E)

eδT
≤ D · νy(E)(e2δε − e−(1+2δ)ε),

and the conclusion follows by taking the limit as ε→ 0. �

2.4. Equidistribution for orthogonal translates of a hyperbolic surface.

We consider the following two measures on H/M ∼= H · X0 = C†0 : Choose any
x ∈ B, and define

(2.12) dµLeb
C†0

(s) = e2βs+ (x,π(s))dmx(s+) and dµPS
C†0

(s) := eδβs+ (x,π(s))dνx(s+),

we note that the map s 7→ s+ from C†0 → S2 \C0 is a differomorphism [16, Lemma
2.1]. These definitions are in fact independent of the choice of x. The measures
µLeb
C†0

and µPS
C†0

are invariant under the action of H and H ∩ Γ, respectively. We will

denote the corresponding measures on the quotient space (H ∩ Γ)\C†0 by µLeb and
µPS, respectively.

Let Gt denote the geodesic flow on T1(B). Then for any v ∈ C†0 , t 7→ Gt(v) is

the geodesic orthogonal to C0 with tangent v. And the image of Gt(C†0) in B is a
union of two connected codimension one submanifolds in B consisting of points at
distance t from C0 on each side of C0. In the next result we describe the limiting

distribution of the geodesic evolution of C†0 modulo Γ in Γ\T1(B) = T1(Γ\B).
Let A = {at : t ∈ R} be the one-parameter subgroup of G such that atX0 =

Gt(X0) for all t ∈ R. Then M is the centralizer of A in K. Now if we write v ∈
C†0 = H ·X0

∼= H/M as v = sX0 = sM = [s] for s ∈ H, then Gt(v) = satX0 = [sat].

Theorem 2.4 ([16, Theorem 1.2]). Suppose that the natural projection map (Γ ∩
H)\Ĉ0 → Γ\B is proper. If |mBMS| < ∞ and |µPS| := µPS(H ∩ Γ\C†0) < ∞, then
for any ψ ∈ Cc(Γ\G/M), we have

lim
t→∞

e(2−δ)t
∫

[s]∈(Γ∩H)\C†0
ψ([sat])dµ

Leb([s]) =
|µPS|
|mBMS|

mBR(ψ) as t→∞.

Moreover if [Γ : H ∩ Γ] =∞ then |µPS| > 0.

Note that due to Proposition 2.1, the properness condition in Theorem 2.4 is
satisfied if ΓC0 is a locally finite circle packing.

2.5. Haar measure on G in terms of µLeb
C†0

. Let A+ = {at : t ≥ 0}. We have

the following generalized Cartan decomposition ([19, Prop. 7.1.3]): G = HA+K,
in the sense that every element of g ∈ G can be written as g = hatk, where t ≥ 0,
h ∈ H and k ∈ K. Also if hatk = h′at′k

′, with t, t′ > 0, then that t = t′, h = h′m2,
and k = m−1k′ for some m ∈M .
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Let dm correspond the Haar probability measure on M . Writing h = sm ∈
C†0 × M , let dh = dµLeb

C†0
(s)dm and let dk = dmp0

(k.X−0 )dm, then dh and dk

correspond to Haar measures on H and K, respectively. Then the following defines
a Haar measure on G [19, Prop. 8.1.1]: for any ψ ∈ Cc(G),

(2.13)

∫
G

ψ(g)dg =

∫
HA+K

ψ(hatk) 4 sinh t · cosh t dhdtdk.

We denote by dλ the unique right G-invariant measure on H\G which is com-
patible with the choice of dg and dh: for ψ ∈ Cc(G) and ψ̄ ∈ Cc(H\G) given by
ψ̄[g] :=

∫
h∈H ψ(hg)dh, ∫

G

ψ dg =

∫
[g]∈H\G

ψ([g])dλ[g].

Hence dλ([atk]) = (4 sinh t · cosh t) dtdk.

2.6. An asymptotic property relating mBR to νp0
. Fixing a left-invariant met-

ric on G, we denote by Uε an ε-ball around e, and for S ⊂ G, we set Sε = S ∩ Uε.
For each small ε > 0, we choose a non-negative function ψε ∈ Cc(G) supported
inside Uε and

∫
G
ψεdg = 1 and define Ψε ∈ Cc(Γ\G) by

(2.14) Ψε(g) =
∑
γ∈Γ

ψε(γg).

For a Borel subset E ⊂ S2, let

(2.15) EX0
:= {k ∈ K : kX−0 ∈ E} ⊂ K,

and define functions ψEε on G/M and ΨE
ε on Γ\G/M by

(2.16) ψEε (g) =

∫
k∈(EX0

)−1

ψε(gk)dk and ΨE
ε (g) =

∫
k∈(EX0

)−1

Ψε(gk)dk.

Proposition 2.5. If νp0
(∂E) = 0, then

lim
ε→0

mBR(ΨE
ε ) = νp0(E).

Proof. We have mBR(ΨE
ε ) = m̃BR(ψEε ). Let Ω = (EX0)−1. Then

νp0
(∂(Ω−1X−0 )) = νp0

(∂E) = 0.

Set f = χK , the characteristic function of K. Then for any g ∈ G,

ψEε (g) =

∫
k∈Ω

f(k)ψε(gk)dk =: f ∗Ω ψε(g),

as per the notation of [16, eq.(7.4)]. By [16, Prop. 7.5],

lim
ε→0

m̃BR(f ∗Ω ψε) =

∫
k∈Ω−1

f(k−1)dνp0
(kX−0 ) = νp0

(E),

here we note that the choice of the Haar measure dg considered in (2.13) is same
as the one considered for [16, Prop. 7.5] due to [16, Section 8]. �
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3. Proof of Theorem 1.5

It is enough to prove the theorem under the assumption that P = ΓC0.
Let t0 = d(o, p0) and ε0 > 0 be such that sin(ε0) = 1/ cosh(t0) (see (1.1)).

Given 0 < ε < ε0, let Pε = {C ∈ P : θ(C) ≤ ε/2}, and let Tε > 0 be such that
sin(ε/2) = 1/ cosh(Tε). Note that Tε > t0.

Given E ⊂ S2, define

E+
ε = {x ∈ S2 : dist(x,E) < ε} and E−ε = S2 \ (S2 \ E)+

ε .

Then E+
ε is open and E−ε is compact, and as ε→ 0,

(3.1) E+
ε ↓ E and E−ε ↑ int(E).

For T > 0, define (see (2.15))

BT (E) = HA+
T (EX0)−1, where A+

T = {at : 0 ≤ t < T}.

Let c+ε = #(P \ Pε) < ∞ and c−ε = #([e]Γ ∩ [e]A+
t0+Tε

K) < ∞, where [e]
represents the coset of identity in (Γ ∩ H)\G, and note that [e]Γ is discrete and
A+
t0+Tε

K is relatively compact.

Lemma 3.1 (Basic counting). Given T > Tε,

#([e](Γ ∩BT (E−ε )))− c−ε ≤ N
p0

T (P, E) ≤ #([e](Γ ∩BT (E+
ε ))) + c+ε .(3.2)

Proof. Let C ∈ P. Assume that θ(C) < ε, or equivalently d(Ĉ, o) > Tε > t0. Let
int(C) denote the smaller of the two open discs in S2 bounded by C. Then the
following statements are equivalent:

(1) d(Ĉ, p0) = t;

(2) the distance between the orthogonal projection x of p0 onto Ĉ is t;
(3) there exists ξ ∈ int(C) such that the directed geodesic from p0 to ξ intersects

Ĉ perpendicularly at a distance t from p0;
(4) there exists k ∈ K such that ξ = kX−0 ∈ int(C) and ka−tX0 ∈ C†;
(5) there exists γ ∈ Γ such that γC0 = C ∈ Pε and there exists k ∈ K such

that kX−0 ∈ int(γC0), and ka−tX0 ∈ γC†0 = γHX0;
(6) t > Tε, k ∈ (int(γC0))X0

, and γ ∈ Γ ∩ ka−tH.

Therefore if C = γC0 ∈ Pε for some γ ∈ Γ, d(Ĉ, p0) < T and C ∩ E 6= ∅ then
int(C) ⊂ E+

ε , and

γ ∈ Γ ∩ (E+
ε )X0

(A+
T )−1H = Γ ∩BT (E+

ε )−1.

Also γC0 = γ′C0 for some γ′ ∈ Γ if and only if γ−1γ′ ∈ H ∩ Γ. Therefore

#{γC0 ∈ Pε : γ ∈ Γ, d(γĈ0, p0) < T, γC0 ∩ E 6= ∅}
≤ #{(Γ ∩BT (E+

ε )−1)/(H ∩ Γ)} = #{(Γ ∩H)\(Γ ∩BT (E+
ε ))}.

This gives the second inequality in (3.2).

Conversely, if γ ∈ Γ ∩ (E−ε )X0

(
A+
T \ A

+
t0+Tε

)−1
H then int(γC0) ∩ E−ε 6= ∅,

d(γĈ0, p0) < T and d(γĈ0, o) > Tε. Therefore θ(γC0) < ε/2, and hence γC0 ⊂ E.
Therefore γC0 ∈ P. This leads to the first inequality in (3.2). �



10 HEE OH AND NIMISH SHAH

Strong wavefront lemma. By [7, Thm. 1.6], there exists ε1 > 0, such that given
0 < ε < ε1, there exists T ′ε > 0 such that

(3.3) HatkUε ⊂ HatA2εkK2ε, for all t ≥ T ′ε , and k ∈ K.

There exists 0 < α < 1 (depending only on d(o, p0)) such that for any ε > 0 and
k ∈ K2αε, we have dist(kξ, ξ) < ε for all ξ ∈ S2. Therefore if T > T ′αε then by (3.3)

BT (E+
ε ) ⊂ BT+2ε(E

+
2ε)Uαε and BT−2ε(E

−
2ε)Uαε ⊂ BT (E−ε ).

Fix 0 < ε < min(ε0, ε1). Define the counting functions F±T on Γ\G by

F±T (g) :=
∑

[γ]∈(Γ∩H)\Γ

χBT±2ε(E
±
2ε)

(γg).

Then for any g ∈ Uαε and T > T ′αε,

F−T (g)− d1 ≤ #[e](Γ ∩BT (E−ε )), F+
T (g) ≥ #[e](Γ ∩BT (E+

ε ))− d1,

where d1 = #(Γ ∩ A+
T ′αε

KUε1) < ∞. Put m± = d1 + c±ε . By Lemma 3.1, for all

T > max(Tε, T
′
αε) we have

F−T (g)−m− ≤ N p0

T (P, E) ≤ F+
T (g) +m+.

Integrating against Ψε (see (2.14)), we obtain

〈F−T ,Ψε〉 −m− ≤ N p0

T (P, E) ≤ 〈F+
T ,Ψε〉+m+,

where the inner product is taken with respect dg.
Setting Ξt = 4 sinh t · cosh t, we have

〈F±T ,Ψε〉 =

∫
g∈Γ∩H\G

χBT±2ε
(g)Ψε(g) dg

=

∫
k∈((E±2ε)X0

)−1

∫ T±2ε

0

∫
s∈Γ∩H\C†0

(∫
m∈M

Ψε(satmk) dm

)
Ξt dµ

Leb(s)dtdk

=

∫
k∈((E±2ε)X0

)−1

(∫ T±2ε

0

Ξt

∫
s∈Γ∩H\C†0

Ψε
k(sat) dµ

Leb(s)dt
)
dk,

where Ψε
g1
∈ Cc(Γ\G)M is given by Ψε

g1
(g) =

∫
m∈M Ψε(gmg1) dm.

Hence by Theorem 2.4, and using Ξt ∼ e2t, and δ > 0, we deduce that

lim
T→∞

e−δ(T±2ε)〈F±T±2ε,Ψε〉 =
|µPS
C†0
|

δ · |mBMS|

∫
k∈((E±2ε)X0

)−1

mBR(Ψε
k) dk

=
|µPS
C†0
|

δ · |mBMS|
mBR(Ψ

E±2ε
ε ), by (2.16).

Hence

|µPS
C†0
|

δ · |mBMS|
mBR(Ψ

E−2ε
ε )eδ(−2ε) ≤ lim inf

T→∞

Np0

T (P, E)

eδT
(3.4)

|µPS
C†0
|

δ · |mBMS|
mBR(Ψ

E+
2ε

ε )eδ(2ε) ≥ lim sup
T→∞

Np0

T (P, E)

eδT
.(3.5)
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Fix any η > 0. By Proposition 2.5,

lim sup
ε→0

mBR(Ψ
E+

2ε
ε ) ≤ lim

ε→0
mBR(Ψ

E+
η

ε ) = νp0
(E+

η )

lim inf
ε→0

mBR(Ψ
E−2ε
ε ) ≥ lim

ε→0
mBR(Ψ

E−η
ε ) = νp0

(E−η ).

By (3.1)

lim
η→0

νp0
(E+

η \ E−η ) = νp0
(∂E).

Therefore if we assume that νp0(∂E) = 0, then

lim
T→∞

Np0

T (P, E)

eδT
=

|µPS|
δ · |mBMS|

νp0
(E).

�

4. Counting with respect to Euclidean curvature

Let o = (0, 1) ∈ R2 × R>0
∼= H2. Let ξ ∈ R2 and consider unit speed hyperbolic

geodesic [o, ξ) := {ξt : t ≥ 0} joining o to ξ. For any t > 0, let Cξ(t) be the
circle in R2 such that the hyperbolic geodesic joining ξ(t) with any point of Cξ(t) is

perpendicular to the geodesic [o, ξ). Then d(Ĉξ(t), o) = t. Let Curv(Cξ(t)) denote
the Euclidean curvature of Cξ(t). Then

lim
t→∞

Curv(Cξ(t))/e
t = 1/(1 + |ξ|2),

and the converge is uniform for ξ in a compact set. Now using the arguments as
in the Proof of Proposition 2.2, it is straightforward to deduce the following result
from Theorem 1.5.

Theorem 4.1 ([15, Theorem 1.4]). Let P be a locally finite packing of circles in
R2 invariant under a non-elementary Klenian group Γ with finitely many Γ-orbits.
Suppose that |mBMS| <∞ and sk(P) <∞. Then for any bounded set E ⊂ R2 with
νo(∂E) = 0, we have

lim
T→∞

#{C ∈ P : Curv(C) < T, C ∩ E 6= ∅}
T δ

=
sk(P)

δ · |mBMS|

∫
ξ∈E

(1 + |ξ|2)δ dνo(ξ).
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