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Abstract. Let G be any compact non-commutative simple Lie group not
locally isomorphic to SO(3). We present a generalization of a theorem of
Lubotzky, Phillips and Sarnak on distributing points on the sphere S2 (or
S3) to any homogeneous space of G, in particular, to all higher dimensional
spheres. Our results can also be viewed as a quantitative solution to the
generalized Ruziewicz problem for any homogeneous space of G.

1. Introduction

The Ruziewicz problem (also known as the Banach-Ruziewicz problem) asks
whether every finitely additive rotation invariant measure on the sphere Sn,
defined on all Lebesgue measurable sets, is equal to the Lebesgue measure (see
[Lu], [Sa]). It is also equivalent to the question whether the Lebesgue integral
is the only rotation invariant mean on the space L∞(Sn). For n = 1, the answer
is negative. For n ≥ 2, it was answered in the affirmative by Drinfeld (n = 2, 3)
[Dr] and independently by Margulis [Ma1] and Sullivan [Su] for n ≥ 4.

By the results of Rosenblatt [Ro] and Del Junco-Rosenblatt [DR] (see Propo-
sition 3.4.1 in [Lu]), the affirmative answer follows if there exists a finitely
generated subgroup Γ of SO(n + 1) such that the trivial representation of Γ is
isolated in the restriction to Γ of the quasi-regular representation of SO(n+1) on
L2(Sn). The solutions made by Margulis and Sullivan was to present a finitely
generated subgroup of SO(n+ 1) with property (T) for n ≥ 4.

Margulis observed that any connected simple non-commutative compact Lie
group G which is not locally isomorphic to SO(3) possesses a finitely generated
dense subgroup with property (T), and hence gave the affirmative solution to
the generalized Ruziewicz problem: the Haar integral is the unique G-invariant
mean on L∞(Y ) for any homogeneous space Y of G [Ma2, Prop 7, P. 136].

In this paper, for any connected simple non-commutative compact Lie group
G not locally isomorphic to SO(3), we present a sequence of finite subsets S
with estimates on the spectral gap between the trivial representation of the
subgroup Γ := 〈S〉 generated by S and the restriction to Γ of the quasi-regular
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representation of G on the space L2
0(G) of square integrable functions of zero

mean. To measure the spectral gap, we use a Hecke operator.

For a finite subset S of G and a closed subgroup H of G, the Hecke operator
TS on L2(G/H) is defined by

TS f(x) =
1

#S

∑

α∈S

f(α−1x), for any f ∈ L2(G/H) and x ∈ G/H.

It is easy to check that the operator norm of TS is precisely 1 and that TS

preserves the space L2
0(G/H) of square integral functions of zero mean relative to

a G-invariant measure on G. Denote by λS the operator norm of the restriction
TS : L2

0(G/H) → L2
0(G/H). It can be shown that λS < 1 if and only if the

trivial representation of the subgroup 〈S〉 is isolated from the restriction to 〈S〉
of the quasi-regular representation of G on L2(G/H) (cf. [Lu]).

From this viewpoint, the following theorem presents a quantitative solution
to the (generalized) Ruziewicz problem:

Theorem 1.1. Let G be a connected simple non-commutative compact Lie group
which is not locally isomorphic to SO(3) and H a closed subgroup of G. We
construct, for infinitely many primes p, a finite subset Sp such that

λSp
≤ C ·

(

1√
p

)

where C > 0 is a constant independent of p, and

#Sp = min
α∈P+

p

#(G/Pα)(Fp)

pdim(G/Pα)
· p〈α,2ρ〉

where G is a connected simple simply connected Q-group with the same Dynkin
type as G (see Proposition 2.4 for other notations).

In [LPS1-2], Lubotzky, Phillips and Sarnak showed how to generate evenly
distributed sequences on the spheres S2 and S3 using Hecke operators. In this
respect, the above theorem is a generalization of their theorem to homogeneous
spaces of an arbitrary compact non-commutative simple Lie group not locally
isomorphic to SO(3), which in particular includes all higher dimensional spheres
Sn. In the case of spheres, our result can be made more explicit:

Theorem 1.2. Let G = SO(n + 1), H = SO(n) so that Sn = G/H and let
n ≥ 4. For any finite prime

{

p 6= 2, 3 if n 6= 1 (mod 4)

p = 1 (mod 4) if n = 1 (mod 4),
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we construct a subset Sp of SO(n + 1) such that

#Sp =

{

(
∑n−1

i=0 p
i) for n even

(
∑(n−1)/2

i=0 pi)(1 + p(n−1)/2) for n odd

and

λSp
≤ C ·

(

1√
p

)

,

where C > 0 is a constant independent of p.

The finite subsets of SO(3) that Lubotzky, Phillips and Sarnak constructed in
[LPS1-2] for S2 (or S3) achieves the optimal bound for λSp

. This was possible due
to Deligne’s theorem on the Ramanujan conjecture for holomorphic cusp forms
[De]. Recently, using a theorem of Harris and Taylor in [HT] on automorphic
forms for GLn(Qp), Clozel obtained Hecke operators on the odd dimensional
spheres with much stronger bounds than Theorem 1.2 [Cl].

The bound for λSp
we have in Theorem 1.2 is based on the information on

the spherical unitary dual of a Qp-split special orthogonal group of rank ≥ 2
obtained in [Oh1]. Though it is believed that this bound should be improved as
the relevant theory in automorphic forms develops, such results are not available
yet. Nonetheless our method has an advantage of dealing with more general ho-
mogeneous spaces of a compact Lie group simultaneously, thus yielding Theorem
1.1.

We remark that Theorem 1.1 implies that for any f ∈ L2(G/H),

‖ 1

#Sp

∑

γ∈Sp

f(γ−1x) − 1

vol(G/H)

∫

G/H

fdω‖ = O

(

1√
p

)

where dω denotes a G-invariant measure on G/H. Moreover a Sobolev type
argument applied to G (cf. [B.1, BR], [Cl]) yields that for any smooth function
f on G/H and for any x ∈ G/H,

∣

∣

∣

∣

∣

∣

1

#Sp

∑

γ∈Sp

f(γ−1x) − 1

vol (G/H)

∫

G/H

fdω

∣

∣

∣

∣

∣

∣

= Of

(

1√
p

)

where the implied constant depends on a Sobolev norm of f .

Theorems 1.1 and 1.2 were previously announced in [Oh2].

Acknowledgment I would like to thank Laurent Clozel, Wee Teck Gan, Alex
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2. Construction of Sp

Let G be a connected simple linear algebraic group defined over Q with abso-
lute rank at least 2. Suppose that G is anisotropic over R, or equivalently G(R)
is compact. This assumption implies that G is anisotropic over Q as well.

Since G splits over a finite extension of Q, it follows from Chebotarev density
theorem (cf. [PR, Theorem 1.2]) that the set

I := {p : G is split over Qp}
is infinite.

Lemma 2.1. There exists a Q-embedding G ↪→ SLN so that G ∩ SLN (Zp) is a
hyper-special compact subgroup of G ∩ SLN(Qp) for each p ∈ I.

Proof. Consider any Q-embedding G ↪→ SLN . Then G ∩ SLN(Zp) is a hyper-
special compact subgroup of G ∩ SLN(Qp) for every prime p outside a finite
subset, say I [Ti]. Let J ⊂ I be the subset of primes p such that G is split over
Qp and G ∩ SLN(Zp) is not a hyper-special compact subgroup of G ∩ SLN(Qp).
For each p ∈ J , since G is split over Qp, G ∩ SLN(Qp) possesses a hyper-special
compact subgroup, say, Kp and there exists a Zp-lattice, say Lp ⊂ QN

p , such
that Kp is the stabilizer of the lattice Lp in G ∩ SLN(Qp) [Ti]. Now by [PR,
Theorem 1.15], one can find a Z-lattice X ⊂ QN such that

X ⊗Z Zp =

{

ZN
p for p /∈ J

Lp for p ∈ J.

It remains to conjugate the embedding by an element g ∈ GLN (Q) which
changes the basis ZN to X, to finish the proof. �

We fix a Q-embedding G ↪→ SLN as in the above lemma and fix a prime p 6= 3
belonging to the set I. For any ring J containing Z, the notation G(J) denotes
the subgroup G ∩ SLN (J).

For simplicity, we set

G = G(R), Gp = G(Qp) and Kp = G(Zp).

We note that G is a connected [Bo2, 24.6] compact simple real Lie group
and Gp is a Qp-split simple Lie group of which Kp is a hyper-special compact
subgroup. Then there exists a maximal Qp-split torus Ap of Gp such that the
following Cartan decomposition holds:

Gp = qα∈P+
p
Kpα(p)Kp

where P+
p denotes the set of positive co-characters of Ap (cf. [Gr]). We set

αp = α(p) for simplicity.
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For k ∈ N, the notation kZ[ 1
p
] denotes the subring of Q generated by kZ and

1
p
. We now denote by Γ the image of the congruence subgroup

{g ∈ G(Z[
1

p
]) | g ≡ IN (mod 3Z[

1

p
])}

under the diagonal embedding into G×Gp.
Since G is anisotropic over Q, Γ is a uniform lattice in G × Gp [Bo1]. In

addition, Γ is torsion-free by a lemma of Minkowski (cf. [PR, Lemma 4.19, P.
232]).

Denote by Γp the image of Γ under the canonical projection of G×Gp to Gp.
Clearly Γp is a torsion-free uniform lattice in Gp as well. It follows that there
exists a finite subset ∆p of Gp such that for any g ∈ Gp, there exist unique
elements γ ∈ Γp and δ ∈ ∆p such that g ∈ γδKp.

For a ∈ Gp, the notation deg(a) means the cardinality of the set KpaKp/Kp.

For any α ∈ P+
p , we may write KpαpKp as qdeg(αp)

j=1 γjδjKp with uniquely deter-
mined elements γj ∈ Γp and δj ∈ ∆p, 1 ≤ j ≤ deg(αp).

We now set

(2.2) S(αp) = {γj ∈ Γp | 1 ≤ j ≤ deg(αp)}
where γj is counted with (possible) multiplicity so that #S(αp) = deg(αp).
Since Γ = {(γ, γ) ∈ G× Gp | γ ∈ Γp}, S(αp) may be considered as a subset

of G, which then acts on G by left translations.

Definition 2.3. The Hecke operator TS(αp) on L2(G) is defined as follows:

TS(αp)(f)(x) =
1

#S(αp)

∑

γ∈S(αp)

f(γ−1x)

for f ∈ L2(G) and x ∈ G.

By the following formula given in [Gr, Prop. 7.4], we can compute the cardi-
nality of the set S(αp).

Proposition 2.4. For any α ∈ P+
p , we have

deg(αp) =
#(G/Pα)(Fp)

pdim(G/Pα)
· p〈α,2ρ〉

where Pα denotes the standard (maximal) parabolic subgroup of G defined by α,
2ρ denotes the sum of all positive roots of Gp with respect to Ap and Fp denotes
the finite field of order p.

In order to give an estimate on the cardinality of ∆p = #Γp\Gp/Kp, let
G(A) denote the adele group attached to G. Denote by hG the cardinality of
the double coset space G(Q)\G(A)/(G ×

∏

q G(Zq)). It is well known that the
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number hG, called the class number of G, is finite (cf. [PR, Theorem 5.1, P.
251]).

The following shows that the cardinality #∆p is bounded by a constant in-
dependent of p:

Lemma 2.5. We have

#∆p ≤ hG · # SLN(F3).

Proof. Note that

G(Z[
1

p
]) = G(Q) ∩ (G×

∏

q 6=p

G(Zq))

where G(Q) is identified with its image under the diagonal mapping into G(A).
It is then easy to check that the following canonical map deduced from the
obvious embedding Gp → G(A) is injective:

G(Z[
1

p
])\Gp/Kp → G(Q)\G(A)/(G×

∏

q

G(Zq)).

Therefore

#G(Z[
1

p
])\Gp/Kp ≤ hG.

If Γ0 denotes the kernel of the canonical projection map

SLN (Z[
1

p
]) → SLN(Z[

1

p
]/3Z[

1

p
])

it is easy to check that the natural map

G(Z[
1

p
])/Γp → SLN(Z[

1

p
])/Γ0

is injective. Since # SLN (Z[1
p
])/Γ0 ≤ # SLN (F3), the claim follows. �

Let ΞPGL2(Qp) denote the Harish-Chandra function of PGL2(Qp), and l et ξp
be the bi-Kp-invariant function of Gp defined as

ξp(αp) =
∏

β∈Q

ΞPGL2(Qp)

(

β(αp) 0
0 1

)

where Q is a strongly orthogonal system, which is maximal in the sense of [Oh1],
of the root system of Gp with respect to Ap, with the ordering given by P+

p .
Since G has absolute rank at least 2 and Gp is split over Qp, the Qp-rank of

Gp is at least 2. Hence the following is a special case of [Oh1, Theorem 1.1].
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Theorem 2.6. For any infinite dimensional irreducible unitary representation
ρp of Gp with Kp-invariant unit vectors vp and wp, we have

|〈ρp(αp)vp, wp〉| ≤ ξp(αp)

for any α ∈ P+
p .

We remark that if β is the highest root in the root system of (Gp, Ap), then

ξp(αp) ≤ ΞPGL2(Qp)

(

β(αp) 0
0 1

)

[Oh1] and in particular, for any non-trivial α ∈ P+
p ,

ξp(αp) ≤
2√
p

since

ΞPGL2(Qp)

(

p 0
0 1

)

=
2
√
p

p+ 1
.

Denote by λS(αp) the operator norm of the restriction TS(αp) : L2
0(G) → L2

0(G)
where L2

0(G) = {f ∈ L2(G) :
∫

fdg = 0}.
Theorem 2.7. Let p 6= 3 be any prime contained in I. For any non-trivial
α ∈ P+

p we have

λS(αp) ≤ #∆p · ξp(αp)

where the cardinality #S(αp) is given in Proposition 2.4. In particular, by
Lemma 2.5, we have

λS(αp) ≤ C · p−1/2

where C > 0 is a constant independent of p.

3. The norm estimate on the related local Hecke operators

In the next two sections, where we continue the notations defined in section
2, we prove Theorem 2.7. We fix the Haar measure µp on Gp so that µp(Kp) = 1
and the probability Haar measure µ∞ on G. Then the product µ∞×µp induces
the G×Gp-right invariant measure on the quotient Γ\G×Gp, which we denote

by µ. The notation L2(Γ\G×Gp)
Kp denotes the subset of right Kp-invariant

functions in L2(Γ\G×Gp).

Definition 3.1. For any a ∈ Gp, we consider the local Hecke operator T̃a acting

on L2(Γ\G×Gp)
Kp defined by

T̃a(ψ)(g, gp) =
1

deg(a)

∑

x∈KpaKp/Kp

ψ(g, gpx)

for ψ ∈ L2(Γ\G×Gp)
Kp, g ∈ G and gp ∈ Gp.
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It is easy to check that it is well defined.
Note that Gp acts on L2(Γ\G×Gp) in the following way: for any a ∈ Gp,

a.f(g, gp) = f(g, gpa)

for any g ∈ G and gp ∈ Gp. In particular, this action is a unitary action on the
Hilbert space L2(Γ\G×Gp). Since Γ\G×Gp is compact, L2(Γ\G×Gp) can be
written as a direct sum of irreducible unitary Gp-representations. We write

L2(Γ\G×Gp) = Wf ⊕W⊥
f

whereWf is the direct sum of finite dimensional irreducibleGp-sub-representations
occurring in L2(Γ\G×Gp) and W⊥

f its orthogonal complement.

The main theorem of this section is the following:

Theorem 3.2. For any φ ∈ L2(Γ\G×Gp)
Kp ∩W⊥

f and any α ∈ P+
p ,

‖T̃αp
(φ)‖ ≤ ξp(αp)‖φ‖.

A crucial but elementary observation for a proof of Theorem 3.2 is the re-
lation between the local Hecke operator and the matrix coefficients of the Gp-
representation on L2(Γ\G×Gp):

Lemma 3.3. For any a ∈ Gp, we have

〈T̃af1, f2〉 = 〈a.f1, f2〉

where f1, f2 ∈ L2(Γ\G×Gp)
Kp.

Proof. Let KpaKp = qdeg(a)
i=1 aiKp. By definition,

deg(a) · 〈T̃af1, f2〉 =

∫

Γ\G×Gp

deg(a)
∑

i=1

f1(x, xpai)f̄2(x, xp) dµ(x, xp).

Write for each 1 ≤ i ≤ deg(a), ai = kiak
′
i for some ki, k

′
i ∈ Kp. Since f1 is right

Kp-invariant,

f1(x, xpai) = f1(x, xpkia)

for each 1 ≤ i ≤ deg(a). By change of variables, the above is now equal to

∫ deg(a)
∑

i=1

f1(x, xpa)f̄2(x, xpk
−1
i ) dµ =

∫ deg(a)
∑

i=1

f1(x, xpa)f̄2(x, xp) dµ

since f2 is right Kp-invariant as well. Hence

deg(a) · 〈T̃af1, f2〉 = deg(a) · 〈a.f1, f2〉,
proving the claim. �
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Theorem 3.2 now follows from Lemma 3.3 and Theorem 2.6 using a general
theory of direct integral decomposition of a unitary representation (this process
is almost identical to the proof of [COU, Prop. 2.4], which we won’t repeat
here).

4. Relation between local and global Hecke operators

The following theorem, together with Theorem 3.2, implies Theorem 2.7. Set

L0 = L2(Γ\G×Gp)
Kp ∩W⊥

f

and

λ̃αp
= sup

φ∈L0,‖φ‖=1

‖T̃αp
(φ)‖.

Theorem 4.1. For any α ∈ P+
p ,

λS(αp) ≤ λ̃αp
· #∆p.

In order to prove Theorem 4.1, we consider the G-equivariant embedding
i : L2(G) → L2(G× ∆p) defined by

i(f)(g, δ) = f(g)

for f ∈ L2(G), g ∈ G and δ ∈ ∆p. Note that

‖i(f)‖ = #∆p · ‖f‖.

Now the natural embedding G × ∆p ↪→ G × Gp induces a G-equivariant
bijection between (Γ ∩ (G × {e}))\G × ∆p and Γ\(G × Gp)/Kp. Since G is
compact, Γ ∩ (G × {e}) is a finite subgroup. Hence it is trivial, as Γ being
torsion free. We therefore obtain a G-equivariant bijection

G× ∆p ' Γ\(G×Gp)/Kp.

Define the map Φ : L2(G× ∆p) → L2(Γ\G×Gp)
Kp by

Φ(ψ)(g, gp) = ψ(γ−1
p g, δp)

where ψ ∈ L2(G× ∆p), g ∈ G and gp ∈ γpδpKp for some γp ∈ Γp and δp ∈ ∆p.
It follows from the above discussion that Φ is a well defined G-equivariant

bijection, preserving the inner products.

Lemma 4.2. For any f ∈ L2(G) and g ∈ G,

T̃αp
Φ(i(f))(g, e) = Φ(i(TS(αp) f))(g, e).
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Proof. Write KpαpKp = qdeg(αp)
j=1 ajKp. Then aj = γjδjkj ∈ Γp∆pKp where

γj ∈ Γp and δj ∈ ∆p are uniquely determined. Note that

(T̃αp
Φ)(i(f))(g, e) =

1

deg(αp)

∑

j

Φ(i(f))(g, aj) =
1

deg(αp)

deg(αp)
∑

j=1

i(f)(γ−1
j g, δj).

On the other hand,

Φ(i(TS(αp) f))(g, e) = i(TS(αp) f)(g, e) = (TS(αp) f)(g).

By the definition of TS(αp), this is equal to

1

deg(αp)

deg(αp)
∑

j=1

f(γ−1
j g) =

1

deg(αp)

deg(αp)
∑

j=1

i(f)(γ−1
j g, δj).

This proves the claim. �

To be able to use Theorem 3.2 in estimating the norm of TS(αp) via the previ-
ous lemma, we need to show that the image of L2

0(G) under Φ ◦ i is orthogonal
to any finite dimensional representation of Gp occurring in L2(Γ\G×Gp) with
a non-trivial Kp-invariant vector.

We first show:

Lemma 4.3. Let Γ∞ denote the image of Γ under the natural projection of
G×Gp onto G. Then Γ∞ is dense in G.

Proof. Denote by H the closure of Γ∞ in G and by h the Lie algebra of H. Since
Γ is an infinite subgroup of a compact group G, h is not trivial. On the other
hand h is invariant by Γ∞ under the adjoint representation of G. Since Γ∞ is
Zariski dense in G and the adjoint representation is algebraic, this implies that
h should be an ideal of the Lie algebra of G. Since G is simple, it follows that
H is a subgroup of finite index in G. Since G is connected and hence has no
finite index subgroup, it follows that Γ is dense in G. �

Proposition 4.4. We have Φ(i(L2
0(G))) ⊂ L2(Γ\G×Gp)

Kp ∩W⊥
f .

Proof. Note that any finite dimensional irreducible unitary representation ρ of
Gp is a finite character representation. In fact, the kernel of ρ contains the
subgroup G+

p generated by one-parameter unipotent subgroups of Gp. Hence ρ
is essentially an irreducible representation of Gp/G

+
p , which is a finite abelian

group. Since any irreducible unitary representation of a finite abelian group is
a finite character, the claim is shown.

Since Φ(i(L2
0(G))) ⊂ L2(Γ\G × Gp)

Kp, it is enough to show that the image
Φ(i(L2

0(G))) is orthogonal to each one-dimensional representation of Gp with a
non-zero Kp-invariant vector. Write L2(Γ\G × Gp) as ⊕(V∞ ⊗ Vp) where V∞

and Vp are irreducible representations of G and Gp respectively. Let Vp be any
one-dimensional representation ofGp with a non-zero Kp-invariant vector; hence
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Vp = V
Kp

p . We first claim that for any function f ∈ V∞ ⊗ Vp and for a fixed
element gp ∈ Gp, f(·, gp) is a constant function on G. Using the convolution
operators on the G-action, we may assume that f(·, gp) is a continuous function
on G. Since Vp is of one-dimension,

f(g, gp) = τ(gp)f(g, e)

for any g ∈ G and gp ∈ Gp where τ is a finite character on Gp. Observe that
fixing gp ∈ Gp, for any γ ∈ Γ, we have

f(γ, gp) = f(1, γ−1gp) = τ(γ−1gp)f(1, 1).

Since Γ is dense in G by the previous lemma,

f(g, gp) ∈ f(1, 1) · Image(τ)

for any g ∈ G. Since the map g 7→ f(g, gp) is continuous, G is connected and
Image(τ) is finite, it follows that for each gp ∈ Gp, f(·, gp) is a constant function
as a function on G.

We will now show that Φ(i(L2
0(G))) is orthogonal to V∞ ⊗ Vp, which implies

our claim, since as a Gp-representation,

L2(Γ\G×Gp) = ⊕(mVp)

where m = dimV∞. Let h ∈ L2
0(G) and f ∈ V∞ ⊗ Vp. Since

f(g, gp) = τ(δ(gp))f(1, 1)

where δ(gp) denotes the ∆p-component of gp in the decomposition into Γp∆pKp,

(4.5) 〈Φ(i(h)), f〉 =

∫

Γ\G×Gp

Φ(i(h))(g, gp)f̄(g, gp) dµ(g, gp)

= f̄(1, 1) ·
∫

G×∆pKp

Φ(i(h))(g, δ)τ̄(δ) dµ∞(g) × dµp(δk).

Since Φ(i(h))(g, δ) = i(h)(g, δ) = h(g) and µp(Kp) = 1, the above is equal to

f̄(1, 1) ·





∑

δ∈∆p

τ̄(δ) ·
∫

G

h(g) dµ∞(g)



 .

Since h ∈ L2
0(G), we have

∫

G
h(g) dµ∞(g) = 0 and hence 〈Φ(i(h)), f〉 = 0.

Therefore the claim follows. �

Proof of Theorem 4.1 Let φ ∈ L2
0(G). By Lemma 4.2,

TS(αp) φ(g) = (Φ−1T̃αp
Φ)(i(φ))(g, e)

for any g ∈ G. Therefore

‖TS(αp) φ‖ ≤ ‖(Φ−1T̃αp
Φ)(i(φ))‖ = ‖T̃αp

(Φ(i(φ)))‖.
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Since Φ(i(φ)) ∈ L0 by Proposition 4.4, we deduce from above that

‖TS(αp) φ‖ ≤ λ̃αp
· ‖i(φ)‖.

Since ‖i(φ)‖ = #∆p · ‖φ‖, the claim follows.

5. Proof of Theorems 1.1 and 1.2

5.1. Proof of Theorem 1.1. Let G be a connected compact non-commutative
simple Lie group which is not locally isomorphic to SO(3). As is well known,
G is algebraic, i.e., there exists a linear connected simple real algebraic group
G0 such that G0(R) is isomorphic to G (note that G0(R) is always connected
[Bo2, 24.6]). If G̃0 denotes the simply connected covering of G0 over R, there

exists a central R-isogeny π : G̃0 → G0. Then π(G̃0(R)) = G0(R) and G/H '
G̃0(R)/π−1(H). Therefore it suffices to prove Theorem 1.1 for the case when
G0 is simply connected and H = {e}, which we assume.

It then follows from a theorem of Borel and Harder [BH, Theorem B] there
exists a a connected simple (simply connected) algebraic group G defined over
Q such that G0 is isomorphic to G over R. Since G is not locally isomorphic to
SO(3), the absolute rank of G is at least 2. We may therefore assume that G
and G are as in section 2 and hence we may apply Theorem 2.7 to G. It now
remains to set Sp = S(αp) for each p 6= 3 in I where αp ∈ P+

p is such that
deg(αp) is the minimum among all elements in P+

p .

5.2. Proof of Theorem 1.2. Let n ≥ 4. Since Sn can be identified with
SO(n + 1)/ SO(n), and L2(Sn) can be considered as the set of L2-functions on
SO(n+ 1) fixed by SO(n), it suffices to show Theorem 1.2 considering TS as an
operator on L2(SO(n + 1)).

It is well known (cf. [Se]) that quadratic forms of n + 1-variables over Qp

are, up to Qp-equivalence, completely classified by their local discriminant dp

and local Hasse invariants εp. Over R, any quadratic form of n + 1 variables is
equivalent to the one defined by

(x1, · · · , xn+1) 7→
(

r
∑

i=1

x2
i

)

−
(

n+1
∑

i=r+1

x2
i

)

, for some 1 ≤ r ≤ n+ 1

in which case its signature is (r, n + 1 − r) and the invariant ε∞(Q) is defined
to be (−1)(n−r+1)(n−r)/2.

For a non-degenerate quadratic form Q over Q, d(Q) denotes the discriminant
of Q, which is well defined as an element of Q∗/(Q∗)2, and sign(Q) denotes the
signature of Q over R.

It can easily be deduced from [Se, Prop 7 in Sec 3.3] that there exists a
quadratic form Q of n + 1 variables over Q satisfying the following conditions:
if n 6= 1 (mod 4),
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• d(Q) = 1
• sign(Q) = (n + 1, 0)
• εp(Q) = 1 for all prime p and ε∞(Q) = 1.

and if n = 1 (mod 4),

• d(Q) = −1
• sign(Q) = (0, n+ 1)
• εp(Q) = 1 for all prime p 6= 2 and ε∞(Q) = ε2(Q) = −1.

We fix this quadratic formQ for each n ≥ 4 and set G = SO(Q), which we may
assume that G ⊂ SLn+1 with G∩SLn+1(Zp) is a hyper-special compact subgroup
whenever G is split over Qp by Lemma 2.1. We have that Q is equivalent over Qp

to the quadratic form defined by the matrix Īn+1, whose only non-zero entries
are 1 on the skew diagonal, for each finite prime

(5.1)

{

p 6= 2 if n 6= 1 (mod 4)

p = 1 (mod 4) if n = 1 (mod 4),

This can be checked by comparing local discriminants and Hasse invariants using
the fact that −1 = 1 (mod (Q∗

p)
2) for primes p = 1 (mod 4). In particular, G is

split over Qp for each finite prime p satisfying (5.1) and G(R) is compact, since
Q is definite.

Note that the groups G(R) and G(Qp), p as in (5.1), are conjugate to

SO(n+ 1) := {g ∈ SLn+1(R) | tgIn+1g = In+1} and

SO(Īn+1)(Qp) := {g ∈ SLn+1(Qp) | tgĪn+1g = Īn+1}
by elements of GLn+1(R) and GLn+1(Qp).

Observing that





p 0 0
0 In−1 0
0 0 1/p



 ∈ SO(Īn+1)(Qp), we denote by αp the cor-

responding element in G(Qp) under the conjugation of SO(Īn+1)(Qp) to G(Qp).
Noting that the primes satisfying (5.1) are contained in

I := {p : G is split over Qp}
and the absolute rank of G is at least 2 (since n ≥ 4), Theorem 1.2 follows from
Theorem 2.7 with the following computation, based on some known facts about
the order of the special orthogonal groups over finite fields (cf. [Ca]).

Lemma 5.2. For each p ∈ I, set Sp = S(αp) (see 2.2). Then

#Sp =

{

(
∑n−1

i=0 p
i) for n even

(
∑(n−1)/2

i=0 pi)(1 + p(n−1)/2) for n odd.
.
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IHES., Vol 16, 1963, 1–30

[Bo2] A. Borel Linear Algebraic groups (2nd Ed) Springer-Verlag, 1991
[Ca] R. Carter Finite groups of Lie type-conjugacy classes and complex characters Wiley, 1985
[Cl] L. Clozel Automorphic forms and distribution of points on odd-dimensional spheres Israel

J. Math., Vol 132, 2002, 175–187
[COU] L. Clozel, H. Oh and E. Ullmo Hecke operators and equidistribution of Hecke points

Invent. Math., Vol 114. 2001. 327–351
[De] P. Deligne La conjecture de Weil I Publ. I. H. E. S., 43, 1974, 273-307
[Dr] V. G. Drinfeld Finitely additive measures on S2 and S3 invariant with respect rotations

Funct. Anal. Appl. Vol 18, 1984, 245-246
[DR] A. Del-Junco and J. Rosenblatt Counterexamples in ergodic theory and number theory

Math. Ann. Vol 245, 1979, 185–197
[HT] M. Harris and R. Taylor The geometry and cohomology of some simple Shimura varieties

Ann. Math. Studies, Princeton Univ. Press, 2002
[Gr] B. H. Gross On the Satake isomorphism in: Galois Representations in Arithmetic Al-

gebraic Geometry ed. A. J. Schp;; and R. L. Taylor Cambridge University Press 1998,
223–237

[Lu] A. Lubotzky Discrete Groups, Expanding Graphs and Invariant Measures Progress in
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